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Abstract. We study length minimality of abnormal curves in rank 2 sub-Rieman-

nian manifolds of polynomial type. As a corollary, we prove a C1,δ regularity result

for Carnot-Carathéodory geodesics in a class of rank 2 Carnot groups.

1. Introduction

Let M be a connected n-dimensional manifold and let D be a bracket generating

distribution on M . Any fixed quadratic form on D induces a distance on M , known

as sub-Riemannian or Carnot-Carathéodory distance. If the resulting metric space is

proper, length minimizing curves between any given pair of points do exist. We call

these curves “geodesics”.

The a priori regularity of geodesics is the Lipschitz regularity. A natural question is

whether they have more regularity (see [M2], Chapter 10, Problem 10.1). In fact, there

have been several attempts to prove the C∞-regularity of sub-Riemannian geodesics.

A first wrong proof of this claim was based on an incorrect use of Pontryagin Maximum

Principle, [S]. This principle provides necessary conditions for solutions of optimal

control problems. According to the principle, a sub-Riemannian geodesic is either

the projection of a “normal extremal” or the projection of an “abnormal (singular)

extremal” (or both). Normal extremals are in fact C∞ curves solving a system of

Hamilton equations. Abnormal extremals, however, satisfy weaker conditions, that

in general provide no further regularity beyond the Lipschitz regularity.

The question whether abnormal extremals can be length minimizing was answered

in the affirmative by Montgomery [M1]. His example is a C∞ curve in a three di-

mensional manifold with bracket generating distribution of rank 2. No example of

nonsmooth length minimizing curve is known. In the case of rank 2 distributions,

Sussmann and Liu [LS] discovered later a class of abnormal extremals, called “reg-

ular abnormal extremals”, that are always locally length minimizing. On the other

hand, Chitour, Jean, and Trélat recently showed that generically there is no length

minimizing singular curve associated to distributions of rank larger or equal to 3 (see

Theorem 2.8 in [CJT]).

In [LM], Leonardi and the author proved, in a class of sub-Riemannian manifolds,

that curves with corners cannot be length minimizing. So far, this is the unique

regularity result covering abnormal geodesics. In this paper, we pursue further the
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question of regularity. We restrict the study to the case of rank 2 distributions that

are analytic, and in fact polynomial. In a preliminary step, we classify the structure

of the singularities of abnormal extremals. This is relatively easy, in analytic, rank

two distributions that satisfy Assumption 2.1 below. In a second step, we study

an abnormal curve near a singular point. Our working hypothesis is that length

minimality for an abnormal curve gets lost when approaching its singularity locus.

Roughly speaking, we can prove that this is actually the case when the singularity

at some point is of the type C1,α, with α > 0 small enough. This is the difficult part

of the program. One example of such results is Theorem 10.1, that treats the case of

Carnot groups. This theorem is a corollary of the construction of Sections 4–8.

The family of admissible (or horizontal) trajectories joining two given points is

a manifold that may have points of nondifferentiability. Abnormal extremals are

precisely the singular points of this manifold. Correspondingly, the differential of the

end-point map is singular at abnormal extremals. In a deep paper [AS], Agrachev

and Sarychev developed a second order analysis of the end-point map at abnormal

curves. However, a second order analysis may not suffice to capture the behavior

of the map in connection with length minimality. Roughly speaking, the singularity

may indeed be of “higher order”. Objective of this paper is to reduce the analysis

of the end-point map to an algebraic problem. We do this through a cut-and-adjust

technique that is a nontrivial generalization of the ideas introduced in [LM].

We take an abnormal extremal and we cut it near a singularity. In fact, we cut the

horizontal projection of the curve. This produces a gain of length. The new curve

is lifted to a horizontal curve. The end-point of the new lifted curve has changed.

We perturb the projection using devices depending on various parameters and then

we lift again. The goal is to restore the end-point adding a length not exceeding the

gained one. If we succeed, we will prove that the abnormal extremal is not length

minimizing near the singularity.

From a technical point of view, we have to solve a system of end-point equations

with estimates on the solutions. The system can by split into subsystems by means of

an equivalence relation of arithmetic type. Each subsystem is singular, meaning that

its linearization in the relevant unknowns is singular. This singularity reflects in a

precise and effective way the singularity of the end-point map at abnormal extremals.

To solve each subsystem, we exploit some algebraic cancellations that are hidden

inside the formulas providing the effect of devices on nonhorizontal coordinates. In

the end, we have to solve a nonlinear system of equations of Vandermonde type. This

is part of an inductive correction that decreases the errors related to all subsystems.

Finally, an iterative procedure sets to zero all the errors. Keeping track of the

length employed for the correction provides the threshold of singularity that we can

cut with a gain of length after the adjustment. The correction argument begins in

Section 4 and finishes in Section 8. In Section 9, we collect the results proved in

the previous sections and we comment on the various restrictions that are introduced

along the way. In Section 10, we study the case of Carnot groups.
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2. Preliminary analysis of the structure of abnormal curves

LetM be an n-dimensional analytic manifold and letD be an analytic, 2-dimension-

al distribution onM that is bracket generating. The distributionD is called horizontal

bundle. Let X1, . . . Xn be an analytic frame of vector fields in M . Such a frame always

exists locally. The vector fileds X1, X2 are such that D(x) = span{X1(x), X2(x)} for

all x ∈ M . The vector fields X3, . . . , Xn are commutators of X1, X2. Since our

analysis is of a local nature, we may identify M with Rn. Let us assume that we have

exponential coordinates of the second type:

x = (x1, . . . , xn) = exp(x1X1) . . . exp(xnXn)(0), x ∈ Rn.

Then we may identify X1, . . . , Xn with vector fields in Rn such that for all x ∈ Rn we

have

X1(x) = ∂1 and Xi(x) =
n∑
j=1

aij(x)∂j, i = 2, . . . , n,

where aij are analytic functions on Rn such that aij(0) = δij. Through elementary

algebraic operations on the horizontal frame, we may always assume that a21 = 0 and

a22 = 1 in Rn. Eventually, we have D = span{X1, X2} with

X1 = ∂1 and X2 = ∂2 +
n∑
j=3

fj(x)∂j, x ∈ Rn, (2.1)

where f3, . . . , fn are analytic functions. To compute in an effective way the formulas

of Section 3 for the horizontal lift of plane curves, we need the following nontrivial

structural hypothesis.

Assumption 2.1. There exists a system of coordinates such that the horizontal

bundle D is spanned by vector fields X1, X2 as in (2.1) such that fj(x) = fj(x1, x2)

for all j = 3, . . . , n.

Then the functions fj also satisfy fj(0, x2) = 0, as soon as we are in exponential

coordinates of the second type. We may also assume that f3, . . . , fn are linearly inde-

pendent. The linear dependence of f3, . . . , fn would contradict the bracket generating

assumption of D.

A Lipschitz curve γ : [0, 1]→M is D-horizontal if γ̇(t) ∈ D(γ(t)) for a.e. t ∈ [0, 1].

When D is spanned point wise by the frame X1, X2 as in (2.1), γ is horizontal if and

only if we have

γ̇(t) =
2∑
i=1

γ̇i(t)Xi(γ(t)), for a.e. t ∈ [0, 1].

We call the plane curve κ : [0, 1] → R2, κ = (γ1, γ2), the horizontal projection of γ

and we let κ = Proj(γ). The curve γ is determined by its horizontal projection κ. In
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fact, we have for any i = 3, . . . , n and for all t ∈ [0, 1]

γi(t) = γi(0) +

∫
κ|[0,t]

fi(x1, x2)dx2

= γi(0) +

∫ t

0

κ̇2(s)fi(κ(s)) ds.

(2.2)

Here and hereafter, we are using Assumption 2.1. Given a Lipschitz curve κ in the

plane, a horizontal curve γ defined by (γ1, γ2) = κ and by (2.2) is said to be a lift of

κ. If the starting point γ(0) is fixed, we call γ the lift of κ and we let γ = Lift(κ).

Let us fix on D a quadratic form g. As the choice of g is not relevant for our

argument, we can assume that g is the quadratic form that makes X1, X2 orthonormal.

Then the length of γ in (M,D, g) is

L(γ) =

∫ 1

0

|κ̇(t)| dt, (2.3)

where |κ̇| is the standard length of κ̇. We are interested in length-minimizing curves.

A D-horizontal curve γ is length minimizing if L(γ) ≤ L(γ̃) for any other D-horizontal

curve γ̃ : [0, 1]→M such that γ̃(0) = γ(0) and γ̃(1) = γ(1). According to Pontryagin

Maximum Principle, length minimizing curves may be either abnormal (singular) or

normal (or both). When the frame X1, X2 satisfies (2.1), these facts can be summa-

rized as follows. We need the function K : Rn−2 × R2 → R defined as

K(µ, x) =
n−2∑
i=1

µi∂1fi+2(x),

where µ = (µ1, . . . , µn−2) ∈ Rn−2 and x ∈ R2. Notice that the function x 7→ K(µ, x)

does not vanish identically, if µ 6= 0. If we had K(µ, x) = 0 for all x ∈ R2 and for

some µ 6= 0, then there would hold

n−2∑
i=1

µifi+2(x1, x2) = ψ(x2)

for some function ψ. From the property fi+2(0, x2) = 0 it would follow that ψ = 0

and the functions f3, . . . , fn would be linearly dependent.

Proposition 2.2. Let γ : [0, 1] → M be a D-horizontal curve that is length mini-

mizing in (M,D, g). Let κ = Proj(γ) be the horizontal projection of γ and assume

that |κ̇| = 1 almost everywhere. Then one of (or both) the following two statements

holds:

1) There exists µ ∈ Rn−2, µ 6= 0, such that

K(µ, κ(t)) = 0, for all t ∈ [0, 1]. (2.4)

2) The curve γ is smooth (analytic) and there exists µ ∈ Rn−2 such that κ solves

the the system of equations

κ̈ = K(µ, κ)κ̇⊥, (2.5)
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where κ⊥ = (−κ2, κ1).

A proof of Proposition 2.2 can be found in [LM], Propositions 4.2 and 4.3.

The interesting and difficult case is 1): the curve κ is in the zero set of an analytic

function that does not vanish identically. Fix µ ∈ Rn−2 and let

f(x) =
n−2∑
i=1

µi∂1fi+2(x) 6= 0,

with x = (x1, x2) ∈ R2. Let the support of κ be contained in the zero set of f .

Without loss of generality, we can assume that κ(0) = 0, i.e., we can assume that

f(0) = 0. If 0 is a regular point of f , i.e., ∇f(0) 6= 0, then κ is an analytic curve

passing through 0. The zero set of f , however, may have a singularity at 0 and the

curve κ may “switch” from one piece of analytic curve in the zero set to another piece

of analytic curve in the zero set. When the two pieces form a corner, the curve κ

passing through the corner can not be the horizontal projection of a length minimizing

curve. The singularity destroys length minimality. This is proved in [LM].

Here, we study the general question whether γ looses length minimality when we

approach along κ the singular part of the zero set of the analytic function f . We

need a precise description of the behavior of κ near the singular set. By the Puiseux

expansion theorem (see the more general uniformization theorem for real analytic sets,

Theorem 5.1 in [BM]), there exists an analytic mapping Φ = (ϕ1, ϕ2) : [0, 1] → R2

such that Φ(0) = 0 and κ([0, 1]) = Φ([0, 1]). For some integers α, β ∈ N, α, β ≥ 1, we

have the convergent power series in t ∈ [0, ε], for some ε > 0 say ε = 1,

ϕ1(t) =
∞∑
i=α

cit
i, ϕ2(t) =

∞∑
i=β

dit
i, (2.6)

with real coefficients ci, di ∈ R such that cα 6= 0 and dβ 6= 0. In the case ϕ1 = 0 or

ϕ2 = 0 we have lines. We are ignoring this case.

By an elementary blow-up argument it can be proved that the derivative κ̇(0)

does exist. After a rotation of the coordinates in the plane, we may assume that

κ̇(0) = (1, 0). As the curve t 7→ Φ(t), t ≥ 0, is a re-parameterization of κ near 0, we

deduce that in (2.6) we have α < β. Throughout the paper, we denote by

r =
β

α
∈ Q, r > 1, (2.7)

the exponent describing the behavior of the curve near 0.

After a new re-parameterization, we may assume that κ : [0, 1] → R2 is the curve

κ(t) = (t, ϕ(t)) where the function ϕ : [0, 1]→ R is given by the Puiseux’ series

ϕ(t) =
∞∑
i=β

cit
i
α , t ∈ [0, 1]. (2.8)
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The numbers ci ∈ R are the coefficients of the series. We assume without loss of

generality that cβ = 1. Then we have ϕ(t) = tr + o(tr) and ϕ′(t) = rtr−1 + o(tr−1) as

t→ 0+. It is easy to check that ϕ is of class C1,r−1([0, 1]), when 1 < r ≤ 2.

According to whether all coefficients ci with i > β vanish or not, we distinguish

two cases:

1) Homogeneous case: ci = 0 for all i > β. In this case we have ϕ(t) = tr. The

systems of algebraic equations studied in Sections 5 and 6 are singular in a

precise sense that will be clear later.

2) Nonhomogeneous case: there exists i > β such that ci 6= 0. In this case,

we obtain better estimates on the length. In a certain sense, the algebraic

systems that we solve are “less singular”. This will be clear in Section 8.

We feel that the nonhomogeneous case can be reduced to the homogeneous case.

We tried to do this by a blow-up argument tailored to the curve t 7→ (t, tr), i.e.,

using dilatations in the plane of the form (x1, x2) 7→ (λx1, λ
rx2), λ > 0, suitably

extended to Rn. This would also have the advantage of reducing the case of analytic

distributions to the case of polynomial distributions. The metric g, however, does

not pass correctly to the limit. Thus we have been forced to study both cases, the

homogeneous one and the nonhomogeneous one.

In the next section, we introduce the tools used in the proofs and we set up the

algebraic framework of the correction argument.

3. Equivalence classes and correction devices

We are interested in the length minimality near t = 0 of the horizontal curve

γ = Lift(κ) with κ : [0, 1]→ R2, κ(t) = (t, ϕ(t)) and ϕ as in (2.8). We cut the curve

κ through a segment near t = 0. For any 0 < η < 1, let Tη ⊂ R2 be the set

Tη =
{

(x1, x2) ∈ R2 : ϕ(x1) < x2 <
ϕ(η)

η
x1, 0 < x1 < η

}
.

The boundary ∂Tη is oriented counterclockwise. Let κη : [0, 1] → R2 be the curve

κη(t) = (t, ϕ(η)t/η) for 0 ≤ t ≤ η and κη(t) = (t, ϕ(t)) for η ≤ t ≤ 1, and let

γη = Lift(κη) be the horizontal lift of κη. This lift can be computed using the

formulas (2.2). The length L(γη) of the curve γη is shorter than the length of γ. By

formula (2.3), we can compute the gain of length ∆L(η):

∆L(η) = L(γ)− L(γη) =
(r − 1)2

2(2r − 1)
η2r−1 + o

(
η2r−1

)
. (3.1)

The end point γ(1) is modified, i.e., γη(1) 6= γ(1). In the next sections, we develop

a technique to restore the end-point on modifying κη away from the cut. Formula

(3.1) gives us the total amount of length that we can use for this adjustment.

To compute the error produced by the cut Tη on each coordinate h = 3, . . . , n,

we compute the error of the cut on each monomial of the Taylor expansion of each
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analytic function fh, h = 3, . . . , n. Assume that we have

fh(x) =
∞∑

i,j=0

bijhx
i+1
1 xj2, x ∈ R2,

for suitable coefficients bijh ∈ R. Formula (2.2) for the lift provides the effect of the

cut Tη on the hth-coordinate∫
∂Tη

fh(x)dx2 =
∞∑

i,j=0

bijh

∫
∂Tη

xi+1
1 xj2dx2.

This leads us to define the error T ijη produced by the cut Tη on each monomial xi+1
1 xj2,

equivalently on the pair (i, j), for i, j ∈ N:

T ijη =

∫
∂Tη

xi+1
1 xj2dx2. (3.2)

By Stokes’ theorem, after some computations we find the following expression

T ijη =
i+ 1

j + 1

[ 1

i+ j + 2
− 1

i+ (j + 1)r + 1

]
ηi+r(j+1)+1 + o(ηi+r(j+1)+1)

= cijη
i+r(j+1)+1 + o(ηi+r(j+1)+1),

(3.3)

where the constants cij are defined through the last equality. Notice that the exponent

i + r(j + 1) + 1 may attain the same value for different pairs of integers (i, j). This

fact reflects the singularity of the end-point map at abnormal curves.

We introduce the correction devices that will be used to correct the end-point. For

fixed parameters b > 0, λ > 0 and ε > 0, let us define the curvilinear rectangles

Rb,λ(ε) =
{

(x1, x2) ∈ R2 : b < x1 < b+ |ε|λ, ϕ(x1) < x2 < ϕ(x1) + ε
}
. (3.4)

When ε < 0 we let

Rb,λ(ε) =
{

(x1, x2) ∈ R2 : b < x1 < b+ |ε|λ, ϕ(x1) + ε < x2 < ϕ(x1)
}
. (3.5)

The boundary ∂Rb,λ(ε) is oriented counterclockwise if ε > 0, while it is oriented

clockwise when ε < 0. The cost of length of the device Rb,λ(ε) is

Λ
(
Rb,λ(ε)

)
= 2|ε|. (3.6)

We denote by Rij
b,λ(ε) the effect of the device Rb,λ(ε) on the pair (i, j). Namely, we

let

Rij
b,λ(ε) =

∫
∂Rijb,λ(ε)

xi+1
1 xj2dx2.

We disaggregate this effect into a sum of effects highlighting the leading term, the

second leading term and so on. To this aim, notice that for any integer h ∈ N there

are constants ch` ∈ R, ` ∈ N, such that the h-power of ϕ has the expansion

ϕ(t)h =
∞∑
`=0

ch`t
rh+ `

α , t ∈ [0, 1]. (3.7)
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By Stokes’ theorem and formula (3.7), we find after some computations the explicit

formula

Rij
b,λ(ε) =

∞∑
`=0

j∑
h=0

cijh`R
ijh`
b,λ (ε), (3.8)

where we let

cijh` =
(i+ 1)ch`

(j + 1)(i+ rh+ `
α

+ 1)

(
j + 1

h

)
,

Rijh`
b,λ (ε) = εj+1−h

[
(b+ |ε|λ)i+rh+ `

α
+1 − bi+rh+ `

α
+1
]
.

(3.9)

Formula (3.8) with (3.9) holds for any positive or negative ε. Notice that when j+1−h
is even, we do not have control on the sign of Rijh`

b,λ .

Next, let us introduce square-devices. Let 0 < b < 1 be a position parameter. For

any ε ∈ (−1, 1) let

Qb(ε) =
{

(x1, x2) ∈ R2 : b < x1 < b+ |ε|, ϕ(x1) < x2 < ϕ(x1) + |ε|
}
. (3.10)

When ε > 0, the boundary ∂Qb(ε) of the square is oriented clockwise. When ε < 0

the boundary is oriented counterclockwise. We talk of “squares” because the sides of

Qb(ε) are of the same size. Applying the device Qb(ε) to the curve κη means that at

the point (b, ϕ(b)) the curve κη is deviated along the boundary of Qb(ε) in the sense

determined by the sign of ε and, after one loop, we follow again the curve κη. The

cost of length Λ(Qb(ε)) of the square is the sum of the length of the four sides. For

some constant C > 0 independent of b and ε we have

Λ(Qb(ε)) ≤ C|ε|. (3.11)

We denote by Qij
b (ε) the effect of the device Qb(ε) on the pair (i, j). Namely, we

let

Qij
b (ε) =

∫
∂Qb(ε)

xi+1
1 xj2dx2,

where the boundary is oriented according to the sign of ε. By Stokes’ theorem, we

find the formula

Qij
b (ε) =

∞∑
`=0

j∑
h=0

cijh`Q
ijh`
b (ε), (3.12)

where the constants cijh` are the same as in (3.9) and

Qijh`
b (ε) = sgn(ε)|ε|j+1−h

[
(b+ |ε|)i+rh+ `

α
+1 − bi+rh+ `

α
+1
]
.

Here, we control the sign.

The numbers Rijh`
b,λ (ε) and Qijh`

b (ε) satisfy the following identities. Recall that the

devices are defined starting from the function ϕ with its parameters α and β.
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Proposition 3.1. For all integers i, j, h, p, ` ∈ N such that h ≤ j and pβ ≤ i there

holds:

Rijh`
b,λ (ε) = Ri−pβ,j+pα,h+pα,`

b,λ (ε),

Qijh`
b (ε) = Qi−pβ,j+pα,h+pα,`

b (ε).
(3.13)

The proof is elementary. These identities play a central role in the quantitative

solution of a nonlinear system of equations in Sections 5–6 and Section 8.

Before proceeding, we need to group the monomials xi+1
1 xj2 into equivalence classes

that correspond to proportional effect of cut and devices. Recall that r ∈ Q, r > 1,

is the rational number r = β/α, where α, β ∈ N with 1 < α < β are the integers

appearing in (2.8). From now on, the integers α and β are fixed.

Let ∼ be the equivalence relation on N× N:

(i, j) ∼ (i′, j′) if and only if iα + jβ = i′α + j′β.

For any k ∈ N we have the equivalence class

Lk =
{

(i, j) ∈ N× N : iα + jβ = k
}
.

It may be Lk = ∅ for a finite set of integers k. For any k ∈ N such that Lk 6= ∅, we

call the representative (i, j) ∈ Lk such that j = 0, 1, . . . , α− 1 the first representative

of the class. For k ∈ N, let (i, j) be the first representative of Lk. We let

k̄ = [i/β], (3.14)

where [·] stands for the integer part. Then, Lk has exactly k̄+1 elements, and namely:

Lk =
{

(i− pβ, j + pα) ∈ N× N : p = 0, 1, . . . , k̄
}
. (3.15)

In the sequel, it will be useful to have a short notation for the following number

depending on k ∈ N:

`k = i+ jr + 1 =
k

α
+ 1, (3.16)

where (i, j) is any pair such that (i, j) ∈ Lk. This number appears, e.g., in the

exponent of η in (3.3).

The remaining part of the paper is organized as follows:

1) In a first step, we correct all the first representatives. This is done in Section

4. Here, we use only rectangles and not squares. The identities (3.13) are not

needed. This section is relevant for the analysis of the curve κ both in the

homogeneous case and in the nonhomogeneous case.

2) In a second step, we study the homogeneous case. In particular, we correct

the error of all equivalence classes. We have to solve a singular system of

algebraic equations and now we need squares. This is done in Section 5 when

the system is two dimensional and in Section 6 for the general case. The

identities (3.13) are central.
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3) Then we analyze the nonhomogeneous case. For the sake of simplicity, we

confine ourselves to equivalence classes with at most two elements. This is

done in Section 8, that continues, also in the notation, Section 4.

4) In Section 9, we briefly estimate the cost of length of the various procedures

and we collect the results of the previous sections.

5) Finally, in Section 10 we discuss the case of Carnot groups. In particular,

in Theorem 10.1 we prove a C1,δ regularity result for Carnot-Carathéodory

geodesics.

Notation. If A and B are real functions depending on η, the notation A . B

means that there is a constant C > 0 independent of η such that |A| ≤ C|B|. The

notation A ' B means that there is a constant C > 0 independent of η such that

C−1|B| ≤ |A| ≤ C|B|. The notations A . B and A ' B for vector valued functions

have the same meaning, but component wise.

If A = A(λ, µ) and B = B(λ, µ) are functions depending on a finite set of real

parameters λ = (λ0, λ1, . . .) and µ = (µ0, µ1, . . .), by A ∼ B we mean A(0) = B(0).

4. Correction of first representatives

There is a bijection between the pairs (i, j) ∈ N × N such that j ≤ α − 1 and the

integer k ∈ N such that iα + jβ = k. The pair (i, j) is the first representative of the

equivalence class Lk.

We strengthen Assumption 2.1 requiring the functions f3, . . . , fn to be polynomials.

Assumption 4.1. There exists a system of coordinates such that the horizontal

bundle D is spanned by vector fields X1, X2 as in (2.1) such that the functions fj(x) =

fj(x1, x2), j = 3, . . . , n, are polynomials.

Under assumption (4.1) we have the bound k ≤ K for some fixed K ∈ N. This

assumption is needed to bound with a finite multiplicative constant the cost of length.

See Remark 4.3 below.

We call error or effect on k the error or effect on the pair (i, j) corresponding to

k. The error T kη produced by the cut Tη on k is given by formula (3.3). Namely, we

have

T kη = ckη
`k+r + o(η`k+r), (4.1)

where ck are constants depending on (i, j) ∈ Lk such that j = 0, 1, . . . , α−1. We also

define the initial error produced by the cut Tη as the vector:

E(η) =
(
c0η

`0+r + o(η`0+r), . . . , cKη
`K+r + o(η`K+r)

)
. (4.2)

In general, the space of errors is indicated by E = RK+1.

A correction of an error E ∈ E is an at most countable union R of devices Rh as in

(3.4)–(3.5), h ∈ N, that sets to zero the vector E. The cost of length of the correction

R is the sum of the cost of length of the devices

Λ(R) =
∑
h∈N

Λ(Rh).
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Theorem 4.2. Let ε > 0. There are numbers C > 0 and 0 < δ < 1 such that for any

0 < η < δ there is a correction R of the initial error E(η) in (4.2) with cost of length

satisfying

Λ(R) ≤ Cη1+r−ε. (4.3)

Proof. We divide the proof into several steps.

Step 1: Correction of k = 0. Let us fix parameters η0 = η < δ and λ0 > 0. The

precise choice of δ > 0 and λ0 will be done at the end of our construction.

We correct k = 0 with the device Rη0,λ0(ε), for some ε ∈ R. From the formula (3.8),

we obtain the effect R0
η0,λ0

(ε) produced by Rη0,λ0(ε) on k = 0 (i.e., with i = j = 0):

R0
η0,λ0

(ε) = ε|ε|λ0 . (4.4)

The effect does not depend on η0. By (4.1) with k = 0 (and thus `k = 1), the equation

R0
η0,λ0

(ε) + T kη = 0 is then ε|ε|λ0 + c0η
1+r = 0 and its solution ε = ε0 is

ε0 = −c
1

1+λ0
0 η

1+r
1+λ0 . (4.5)

Here, c0 is the constant appearing in (4.2). The cost of length of Rη0,λ0(ε) is

Λ(Rη0,λ0(ε0)) = 2|ε0| = 2c
1

1+λ0
0 η

1+r
1+λ0 . (4.6)

The device Rη0,λ0(ε0) produces an additional error Rk
η0,λ0

(ε0) on k 6= 0. This error

can be obtained starting from formula (3.8):

Rk
η0,λ0

(ε0) =
i+ 1

(j + 1)`k
ε0

[
(η0 + |ε0|λ0)`k − η`k0

]
+

+
i+ 1

j + 1

j−1∑
h=0

(
j + 1

h

)
εj+1−h

0

i+ rh+ 1

[
(η0 + |ε0|λ0)i+rh+1 − ηi+rh+1

0

]
.

(4.7)

We highlighted the jth summand. In order to determine the leading term, we compare

η0 = η and |ε0|λ0 . We have η0 <
1
2
|ε0|λ0 as soon as η is small enough and

1 >
λ0(1 + r)

1 + λ0

, that is λ0 <
1

r
.

The condition λ0 < 1/r is our first condition on λ0. Then for any fixed h = 0, 1, . . . , j,

we have

εj+1−h
0

[
(η0 + |ε0|λ0)i+rh+1 − ηi+rh+1

0

]
' ε

j+1−h+λ0(i+rh+1)
0 .

The exponent e(h) = j + 1 − h + λ0(i + rh + 1) satisfies e′(h) = rλ0 − 1 < 0 and

thus it achieves the minimum value when h is maximum. Thus formula (4.7) may be

written in the following way:

Rk
η0,λ0

(ε0) =
i+ 1

(j + 1)`k
ε0

[
(η0 + |ε0|λ0)`k − η`k0

]
+ cij|ε0|2+λ0(`k−r) + Error, (4.8)
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where Error is a negligible quantity with respect to the preceding term and cij are

constants that can be computed. Similar formulas with the precise second leading

term will be needed in Sections 5, 6, and 8. A rougher expression for the effect is

Rk
η0,λ0

(ε0) ' |ε0|1+`kλ0 ' η
(1+`kλ0)(1+r)

1+λ0 .

This error dominates the error T kη produced by the cut Tη. In fact, we have

(1 + `kλ0)(1 + r)

1 + λ0

< `k + r ⇔ λ0 <
1

r
.

After correcting k = 0 we have a new vector of errors E0 such that:

E0 .
(
0, . . . , η

(1+`kλ0)(1+r)

1+λ0 , . . .
)
. (4.9)

In the vector above, k ranges from 1 to K.

Step 2: Correction of k = α. For the sake of clearness, we provide details for the

correction of k = α. This is the minimum k ≥ 1 such that Lk 6= ∅. The integers

k = 1, 2, . . . , α− 1 are not related to any pair (i, j). In the next step, we shall set up

the inductive construction.

When k = α we have i = 1 and j = 0. We correct the error with the device Rηα,λα(ε)

where the parameters ηα and λα are chosen according to the following rules.

i) The parameter λα is such that

0 < λα < λ0. (4.10)

This choice will ensure a general decrease of errors.

ii) The position parameter ηα should be as small as possible in order to produce the

smallest effect on k > α. The position must be compatible with the devices already

present along the curve. We may then choose ηα ≥ η0 + |ε0|λ0 . In fact, as the second

term is larger, we choose

ηα = 2|ε0|λ0 ' η
λ0(1+r)

1+λ0 .

We denote by Eα
0 the error on k = α after the cut and the correction of k = 0.

This error is Eα
0 = Tαη +Rα

η0,λ0
(ε0) ' Rα

η0,λ0
(ε0) where

Rα
η0,λ0

(ε0) = ε0

[
(η0 + |ε0|λ0)`α − η`α0

]
= −c

1+`αλ0
1+λ0

0 η
(1+`αλ0)(1+r)

1+λ0 + Error, (4.11)

and Error is a negligible quantity depending on η. The equation Rα
ηα,λα

(ε) + Eα
0 = 0

in the unknown ε is then

ε
[
(ηα + |ε|λα)`α − η`αα

]
= c

1+`αλ0
1+λ0

0 η
(1+`αλ0)(1+r)

1+λ0 + Error. (4.12)

We look for a solution ε satisfying the condition

1

2
|ε|λα > ηα. (4.13)
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In this case, the equation Rα
ηα,λα

(ε) + E3
0 = 0 can be approximated by the following

equation:

ε|ε|`αλα = c
1+`αλ0
1+λ0

0 η
(1+`αλ0)(1+r)

1+λ0 + Error.

This equation has a solution ε = εα that satisfies:

εα = c
1+`αλ0

(1+λ0)(1+`αλα)

0 η
(1+`αλ0)(1+r)

(1+λ0)(1+`αλα) + Error. (4.14)

This solution satisfies condition (4.13). In fact, we have

λα(1 + r)(1 + `αλ0)

(1 + λ0)(1 + `αλα)
<
λ0(1 + r)

1 + λ0

⇔ 1 + `αλ0

λ0

<
1 + `αλα

λα
⇔ λα < λ0.

Notice that `α = 2. This shows that (4.13) holds.

The argument starting from (4.13) can now be made rigorous in the following way.

Let εα be given by formula (4.14). By the intermediate value theorem we can show

that equation (4.12) has a solution ε such that ε ∈ [εα/M, εαM ] where M > 1 is a

suitable constant independent of η. The solution ε satisfies (4.13). We shall use this

argument freely in the next step.

The cost of length of Rηα,λα(εα) is

Λ(Rηα,λα(εα)) = 2|εα|.

Now we compute the effect Rk
ηα,λα

(εα) of Rηα,λα(εα) on k 6= α. This effect is given

by formula (4.11), replacing 0 with α:

Rk
ηα,λα(εα) =

i+ 1

(j + 1)`k
εα

[
(ηα + |εα|λα)`k − η`kα

]
+ cij|εα|2+λα(`k−r) + Error

' η
(1+`αλ0)(1+`kλα)(1+r)

(1+λ0)(1+`αλα) .

(4.15)

We compare this effect with the error on k ≥ 1 produced by the correction of k = 0

(see (4.9)). Notice that for k > α we have `k > `α and thus

(1 + `αλ0)(1 + `kλα)(1 + r)

(1 + λ0)(1 + `αλα)
<

(1 + `kλ0)(1 + r)

1 + λ0

⇔ 1 + `αλ0

1 + `kλ0

<
1 + `αλα
1 + `kλα

⇔ λα < λ0.

The new error dominates the old one. Therefore the new vector of errors Eα satisfies

Eα .
(
η

(1+`αλ0)(1+`0λα)(1+r)
(1+λ0)(1+`αλα) , 0, . . . , η

(1+`αλ0)(1+`kλα)(1+r)

(1+λ0)(1+`αλα) , . . .
)
.

We compare the new error on k = 0 with the initial error on k = 0 (see (4.2)). Notice

that `0 = 1. We have

`0 + r = 1 + r <
(1 + `αλ0)(1 + λα)(1 + r)

(1 + λ0)(1 + `αλα)
⇔ 1 + `αλ0

1 + λ0

>
1 + `αλα
1 + λα

⇔ λ0 > λα.

The new error is thus infinitesimal of higher order with respect to the old one.

Step 3: Inductive correction. Let k ∈ N be a fixed number. Assume that numbers

λ0 > . . . > λk > 0 and numbers ε0, ε1, . . . , εk > 0 are already chosen. To avoid
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pointless complications, we ignore the fact that for a finite set of k we have Lk = ∅.
We define by induction

εk+1 = dk|εk|
1+`k+1λk

1+`k+1λk+1 ,

where dk 6= 0 are constants that are not of interest for us. In the following inequalities,

we assume that dk = 1. This is without loss of generality. The number εk+1 will be

the solution of our correcting equation. By our base construction for k = 0, we have

ε0 as in (4.5) and we find in closed form

εk+1 ' η
1+r

1+λ0

∏k+1
h=1

1+`hλh−1
1+`hλh . (4.16)

Assume that position parameters 0 < η0 < . . . < ηk are given such that ηk ≤ 1
2
|εk|λk .

We define the position parameter

ηk+1 = 2|εk|λk ' |εk|λk .

In closed form, we have

ηk+1 ' η
λk

1+r
1+λ0

∏k
h=1

1+`hλh−1
1+`hλh . (4.17)

Finally, assume that, after correcting k, we have a vector of errors Ek such that:

Ek .
(
. . . , |εh+1|1+`hλh+1 , . . .︸ ︷︷ ︸

h=0,...,k−1

, 0, . . . , |εk|1+`hλk , . . .︸ ︷︷ ︸
h=k+1,...,K

)
. (4.18)

Notice that the structure of the error is different when h < k and when h > k. The

index h refers to the position in the vector. The 0 is at position k.

We correct the error Ek+1
k , the (k + 1)-th component of Ek, using the device

Rηk+1,λk+1
(ε), where 0 < λk+1 < λk and ε ∈ R has to be computed. We look for

a solution ε = εk+1 such that

1

2
|εk+1|λk+1 ≥ ηk+1. (4.19)

In this case, the equation Rk+1
ηk+1,λk+1

(εk+1) + Ek+1
k = 0 has a solution ε = εk+1 such

that

|εk+1| ' |εk|
1+`k+1λk

1+`k+1λk+1 (4.20)

This solution satisfies (4.19).

The effect of Rηk+1,λk+1
(εk+1) on h 6= k + 1 is

Rh
ηk+1,λk+1

(εk+1) = |εk+1|1+`hλk+1 .

We compare this effect with the errors in the vector (4.18). We deal first with the

component h > k + 1. In this case, the new error dominates the old one. In fact, by

(4.20) we have

|εk+1|1+`hλk+1 > |εk|1+`hλk ⇔ |εk|
(1+`k+1λk)(1+`hλk+1)

1+`k+1λk+1 > |εk|1+`hλk

⇔ 1 + `hλk+1

1 + `k+1λk+1

<
1 + `hλk

1 + `k+1λk
⇔ λk+1 < λk.
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The last equivalence holds because `h > `k+1 if h > k + 1.

We claim that in the case h < k the old error dominates the new one. Namely, for

h = 0, . . . , k − 1 we have

|εk+1|1+`hλk+1 < |εh+1|1+`hλh+1 .

This inequality follows from the fact that for j = h+ 1, . . . , k we have

|εj+1|1+`hλj+1 < |εj|1+`hλj ⇔ |εj|
(1+`hλj+1)(1+`j+1λj)

1+`j+1λj+1 < |εj|1+`hλj

⇔ 1 + `hλj+1

1 + `j+1λj+1

>
1 + `hλj

1 + `j+1λj

⇔ λj+1 < λj.

In fact, `j+1 > `h.

After the correction of k + 1, we have a new vector of errors Ek+1 that satisfies

Ek+1 .
(
. . . , |εh+1|1+`hλh+1 , . . .︸ ︷︷ ︸

h=0,...,k

, 0, . . . , |εk|1+`hλk , . . .︸ ︷︷ ︸
h=k+2,...,K

)
. (4.21)

This is the estimate in (4.18) for the step k+1. This ends the inductive construction.

Step 4: General decrease of errors. We started from the error E(η). In the first

step, we corrected the error of k = 0, producing a new error on each k ≥ 1. The

new error dominates the error of the cut Tη. Then we corrected inductively the error

on each k = 1, . . . , K, component by component, as described in Step 3. During the

procedure, the error on a fixed h increases till k reaches h. When correcting k > h

the new error added on h is however negligible. These facts are clear from formula

(4.18).

We deduce that the real error on k that has to be corrected is

Rk
ηk−1,λk−1

(εk−1) ' |εk−1|1+`kλk−1 .

Based on this assessment, we define the theoretical initial vector of errors Ē(η) pro-

duced by the cut Tη as

Ē(η) =
(
T 0
η , . . . , |εk−1|1+`kλk−1 , . . .︸ ︷︷ ︸

k=1,...,K

)
.

We compare this error with the vector of errors after the correction of k = K, i.e.,

with

EK(η) = EK '
(
. . . , |εk+1|1+`kλk+1 , . . .︸ ︷︷ ︸

k=0,...,K−1

, 0
)
. (4.22)

We compare first the component k = 0. Notice that the first relevant k after k = 0 is

k = α. We have T 0
η ' η1+r and

E0
K(η) ' |εα|1+λα ' η%0(1+r) ' Ē0(η)β0 , where %0 =

(1 + `αλ0)(1 + λα)

(1 + λ0)(1 + `αλα)
> 1.
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Analogously, for any relevant 0 < k < K we have

Ek
K(η) '

[
|εk−1|1+`kλk−1

] (1+`k+1λk)(1+`kλk+1)

(1+`kλk)(1+`k+1λk+1) ' Ēk(η)%k ,

where the exponent %k is

%k =
(1 + `k+1λk)(1 + `kλk+1)

(1 + `kλk)(1 + `k+1λk+1)
> 1.

With the choice

% = min
{
%0, . . . , %K−1

}
> 1,

we have the following quantitative general decrease of errors

EK(η) . Ē(η%), 0 < η < δ, (4.23)

for a suitable constant 0 < δ < 1.

In order to achieve this general decrease of errors, we paid a certain cost of length

that is the sum of the cost of length of all the devices that have been used. As

|εK | ≤ . . . ≤ |ε0|, (see (4.16)), the total cost is

K∑
k=0

2|εk| ' |ε0| ' η
1+r

1+λ0 . (4.24)

Remark 4.3. The sequence (εk)k∈N is converging to 0 rather fastly, see (4.16). We

could not understand whether there exists a fine choice of the parameters λk > 0 such

that
∞∑
k=0

2|εk| ' |ε0|

This would permit us to drop Assumption 4.1.

Step 5: Iteration argument. We can iterate countably many times the construction

described in the steps 1–3. We get in this way a correction R of the error E(η), i.e.,

an at most countable choice of devices that sets to zero all the coordinates of E(η).

The cost of length of R is

Λ(R) ≤
∞∑
h=0

η
1+r

1+λ0
%h ' η

1+r
1+λ0 .

Now the proof of the theorem can be concluded on choosing λ0 > 0 small enough.

�
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5. Equivalence classes with two elements. Homogeneous case

In this section, we correct an equivalence class with two elements. In the homoge-

neous case (i.e., ϕ(t) = tr), the coefficients ch` in (3.7) satisfy ch` = 0 for all ` > 0 and

thus cijh` = 0 for all ` > 0. We shall adjust the notation introduced between (3.8)

and (3.13) on letting

Rijh
η,λ(ε) = Rijh0

η,λ (ε), Qijh
b (ε) = Qijh0

b (ε), cijh = cijh0. (5.1)

When no confusion arises, we shall drop η, λ, and b in our notation.

Assume that during a certain iterative correction, at a certain step we want to

correct the error of the equivalence class Lk, for some k. Let us denote by Rk the set

of all rectangles R of the type (3.4)–(3.5) with their parameters (that are omitted in

our notation), which have been used in the correction of the first representatives of

the equivalence classes L0, L1, . . . , Lk. Let us denote by Qk the set of all squares Q

of the type (3.10), with their parameters, which have been used in the correction of

the equivalence classes L0, L1, . . . , Lk−1.

Assume that the error of the first representative (i, j) ∈ Lk, j < α, was set to zero

at the previous step. The total error on a pair (i, j) ∈ Lk with, j ≥ α is

Eij = T ijη +
∑
R∈Rk

Rij +
∑
Q∈Qk

Qij. (5.2)

This error is a function of the cut parameter η. According to the notation introduced

in (3.8) and (3.12), we have

Eij = T ijη +

j∑
h=0

cijhE
ijh, with Eijh =

∑
R∈Rk

Rijh +
∑
Q∈Qk

Qijh. (5.3)

From now on, we assume that Lk contains two elements, Lk = {(i0, j0), (i1, j1)},
with the notation (3.15). We let i = i0 and j = j0. In this section, we describe the

procedure to correct the error of Lk. In the next section, we treat the case of an

arbitrary equivalence class. We use two squares of the type (3.10). Let η > 0 be the

cut parameter and let bq = aqη
µ, q = 0, 1, be the position parameters of the squares,

where µ > 0 is a parameter that will be needed in the next sections to control the

propagation of errors, and 1
2
≤ aq ≤ 1. The squares are

Qbq(σq) =
{

(x1, x2) ∈ R2 : bq < x1 < bq + |σq|, xr1 < x2 < xr1 + |σq|
}
, q = 0, 1.

We have the system of two equations in the unknowns σq

∑
q∈{0,1}

j∑
h=0

cijhQ
ijh
bq

(σq) = 0

∑
q∈{0,1}

j1∑
h=0

ci1j1hQ
i1j1h
bq

(σq) + Ei1j1 = 0.
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We multiply the first equation by ci1j1j1 , we multiply the second equation by cijj, and

we subtract the first equation from the second one. Using the identities (3.13), the

system transforms into the equivalent system

∑
q∈{0,1}

j∑
h=0

cijhQ
ijh
bq

(σq) = 0

∑
q∈{0,1}

j1−1∑
h=0

c′ijhQ
i1j1h
bq

(σq) + cijjE
i1j1 = 0,

(5.4)

where c′ijh are explicit constants. Assume that the error in the left hand side of the

second equation satisfies for some s > 0

Ei1j1 ' ηs. (5.5)

We call s the structural exponent of Lk. The exponent s for the first equivalence

class with two elements will be computed later. The further exponents s are defined

inductively in Section 7. We look for solutions σ0, σ1 to the system (5.4) satisfying

the condition
1

C
η

1
3
{s−µ(`k−r−1)} ≤ |σq| ≤ Cη

1
3
{s−µ(`k−r−1)}, (5.6)

where C > 1 is a suitably large constant. The reason for this restriction will be clear

in (5.12). Recall that `k = i+ rj + 1. Now assume that the parameter µ satisfies

0 < µ <
1

3

{
s− µ(`k − r − 1)

}
. (5.7)

Any µ > 0 small enough satisfies this condition. If σq satisfies the constraint (5.6)

and (5.7) holds, then we have

|σq| <
1

4
ηµ, (5.8)

as soon as η > 0 is small enough. Then we have the Taylor development

Qijh
bq

(σq) = sgn(σq)|σq|j+1−h
[(
aqη

µ + |σq|
)i+hr+1 −

(
aqη

µ
)i+hr+1

]
= sgn(σq)(i+ hr + 1)ai+hrq ηµ(i+hr)

{
|σq|j+2−h + o(|σq|j+2−h)

}
.

On the other hand, when σq is subject to the constraint (5.6), we have

ηµ(i+hr)|σq|j+2−h ' ηµ(i+hr)+ 1
3
{s−µ(`k−r−1)}(j+2−h). (5.9)

If we assume the following condition on µ

µr − 1

3
{s− µ(`k − r − 1)} < 0, (5.10)

then the exponent of η in the right hand side of (5.9) is minimum when h is maximum.

Condition (5.10) holds if µ is sufficiently close to 0 and implies condition (5.7). Thus

the leading terms in the sums in h appearing in the two equations of system (5.4) are
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obtained on choosing h = j and h = j1 − 1, respectively. The system can therefore

be approximated in the following way (we also assume a0 = 1):{
ηµ(`k−1)

{
σ0|σ0|+ o(σ2

0)}+ a`k−1
1 ηµ(`k−1)

{
σ1|σ1|+ o(σ2

1)
}

= 0

ηµ(`k−r−1)
{
σ3

0 + o(σ3
0)
}

+ a`k−r−1
1 ηµ(`k−r−1)

{
σ3

1 + o(σ3
1)
}

+ c1E
i1j1 = 0,

(5.11)

where c1 6= 0 is a constant. From the first equation, we deduce that

σ0 = −a(`k−1)/2
1 σ1 + o(σ1).

Replacing this relation into the second equation, we obtain

ηµ(`k−r−1)σ3
1 + o(σ3

1) + c2E
i1j1 = 0,

where c2 6= 0 is a new constant. The error on the left hand side satisfies (5.5). Then,

by the intermediate value theorem, this equation has a solution σ1 subject to the

constraint (5.6), provided that C > 1 is large enough (independently from η) and

η > 0 is small enough. The solution σ1 satisfies

σ1 ' η
1
3
{s−µ(`k−r−1)}. (5.12)

The solution σ0 satisfies the same estimate.

We specialize to the first equivalence class with two elements. The equivalence class

Lk with k = α · β contains exactly two elements, Lk =
{

(β, 0), (0, α)
}

. In particular,

we have k̄ = 1. We call Lk for k = α · β the leading equivalence class with two

elements. We compute the exponent s appearing in (5.5) in this case. The number s

governs the inductive construction of Section 7.

Assume that we already corrected the errors of all first representatives, according

to the procedure described in Section 4. By formula (5.2) with QK = ∅, we have

Eβ0 = T β0
η +

K∑
h=0

Rβ0
ηh,λh

(εh) = T β0
η +

K∑
h=0

εh

[
(ηh + |εh|λh)β+1 − ηβ+1

h

]
= 0. (5.13)

After this correction, the total error on the pair (0, α) is precisely (recall the notation

introduced in (3.8) and (5.1))

E0α = T 0α
η +

K∑
h=0

α∑
p=0

c0αpR
0αp
ηh,λh

(εh). (5.14)

By the formulas (3.13), R0αα
ηh,λh

(εh) is a constant multiple of Rβ0
ηh,λh

(εh), by a universal

proportionality constant. Also T β0
η and T 0α

η are proportional, independently from η.

Then we can subtract identity (5.13) from (5.14), to obtain

E0α = cT 0α
η +

K∑
h=0

α−1∑
p=0

c0αpε
α+1−p
h

[
(ηh + |εh|λh)pr+1 − ηpr+1

h

]
, (5.15)

where c ∈ R is a constant (in fact, c 6= 0). By the results in Section 4, T 0α
η is

dominated by the sum in (5.15). Moreover, by (4.19) we have

εα+1−p
h

[
(ηh + |εh|λh)pr+1 − ηpr+1

h

]
' εα+1−p

h |εh|λh(pr+1),



20 ROBERTO MONTI

and the quantity is maximum when p is maximum, i.e., p = α − 1. Thus we obtain

the estimate for the error

E0α '
K∑
h=0

|εh|2+(`k−r)λh .

We compute the largest term in the previous sum. We have the elementary equiva-

lences (when η is small enough)

|εh+1|2+(`k−r)λh+1 < |εh|2+(`k−r)λh ⇔ 1 + `h+1λh
2 + (`k − r)λh

>
1 + `h+1λh+1

2 + (`k − r)λh+1

⇔ `k − r < 2`h+1.

Let k̂ = min{h ∈ N : h ≤ K − 1, `k − r < 2`h+1}. Then we have E0α ' |εk̂|
2+(`k−r)λk̂

and, by (4.16), we obtain E0α ' ηs where

s = (1 + r)
2 + (`k − r)λk̂

1 + `k̂λk̂

k̂−1∏
h=1

1 + `h+1λh
1 + `hλh

> (1 + r)
2 + (`k − r)λk̄

1 + `k̄λk̄
. (5.16)

We call the number s the leading structural exponent.

We estimate the cost of length of the correction. Let µk be a number satisfying

(5.7), i.e.,

0 < µk <
1

3

{
s− µk(`k − r − 1)

}
,

and let bq = aqη
µk , q = 0, 1, be position parameters. We correct the error of the class

Lk, i.e., the pair Eβ0 = 0 and E0α, with the pair of squares Qb0(σ0), Qb1(σ1). The

procedure is explained above. The solutions σ0, σ1 satisfy (5.12), and namely,

σ0 ' σ1 ' η
1
3
{s−µk(`k−r−1)}.

The cost of length of the correction is

Λ
(
Qb0(σ0) ∪Qb1(σ1)

)
= 4|σ0|+ 4|σ1| ' η

1
3
{s−µk(`k−r−1)},

where s is the leading structural exponent in (5.16). Setting all the parameters λk
and µk equal to zero, we realize from (5.16) that

Λ
(
Qb0(σ0) ∪Qb1(σ1)

)
∼ η

2
3

(1+r). (5.17)

This is the cost of length for the correction of the first equivalence class with two

elements.

6. Generic equivalence class. Homogeneous case

In this section, we generalize the construction of Section 5 to the case of system of

any dimension. We correct the error of the equivalence class

Lk =
{

(i− pβ, j + pα) ∈ N× N : p = 0, 1, . . . , k̄
}

by means of k̄ + 1 squares of the type (3.10)

Qbq(σq) =
{

(x1, x2) ∈ R2 : bq < x1 < bq + |σq|, xr1 < x2 < xr1 + |σq|
}
,
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where q = 0, 1, . . . , k̄. Here, σq ∈ R are size parameters and bq are position parameters

of the form bq = aqη
µ, q = 0, 1, . . . , k̄, where 0 < µ < 1 is to be fixed later in the

iterative argument and 1
2
≤ a0, a1, . . . , ak̄ ≤ 1 are parameters that will be fixed in a

suitable way.

In this section, we solve the following nonlinear system of equations

k̄∑
q=0

jp∑
h=0

cipjphQ
ipjph
bq

(σq) + Eipjp = 0, p = 0, 1, . . . , k̄. (6.1)

The unknowns are σ0 . . . , σk̄. The errors Eipjp have the structure (5.2). Recall our

notation (3.12). As above, we let ip = i − pβ and jp = j + pα, so that i = i0 and

j = j0. We may assume Eij = 0.

Now we transform the system (6.1) into a new equivalent system exploiting the

cancellations (3.13). The procedure produces errors with a new structure. We shall

call them reduced errors. We perform the following operations:

(1) We multiply by cipjpjp the first equation (i.e., the equation with p = 0), we

multiply the p-equation by cijj, and we subtract the resulting equations. By

the identities (3.13), the p-equation with p ≥ 1 transforms into the following:

k̄∑
q=0

jp−1∑
h=0

cipjphQ
ipjph
bq

(σq) + cijjE
ipjp − cipjpjpEij = 0, p = 1, 2, . . . , k̄, (6.2)

where cipjph are new constants.

(2) We multiply by cipjpjp , p ≥ 2, the second equation in (6.2) (i.e., the equation

with p = 1), we multiply by ci1j1j1 the p-equation in (6.2), and we subtract

the resulting equations. We use again the identities (3.13).

(3) We repeat k̄ times the procedure described in (1) and (2). Eventually, the

system of equations (6.1) transforms into the equivalent system of equations

k̄∑
q=0

jp−p∑
h=0

c′ijphQ
ipjph
bq

(σq) +

p∑
q=0

dijqE
iqjq = 0, p = 0, 1, . . . , k̄, (6.3)

where c′ijph and dijq are suitable constants that can be computed.

We call the new errors

F ipjp =

p∑
q=0

dijqE
iqjq (6.4)

the reduced errors of the equivalence class Lk. The sums defining F ipjp enjoy the same

cancellation properties described above, by (3.13) and (5.3).

Now let us assume that the leading reduced error F ik̄jk̄ satisfies the following esti-

mate for some exponent s > 0:

F ik̄jk̄ ' ηs. (6.5)
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We look for solutions σq, q = 0, 1, . . . , k̄, to the system (6.3) satisfying for a suitable

constant C > 1 independent of η the condition

C−1η
1
k̄+2
{s−µ(`k−k̄r−1)} ≤ |σq| ≤ Cη

1
k̄+2
{s−µ(`k−k̄r−1)}, q = 0, 1, . . . , k̄. (6.6)

The reason for this restriction will be clear later. The parameter µ > 0 is chosen such

that

0 < µ <
1

k̄ + 2
{s− µ(`k − k̄r − 1)}. (6.7)

Any small enough µ > 0 satisfies (6.7). If σq satisfies (6.6) and (6.7) holds, then we

have

|σq| ≤
1

4
ηµ, (6.8)

as soon as η > 0 is small enough. Then we have the Taylor development (as η → 0)

Qijh
bq

(σq) = (i+ hr + 1)ai+hrq ηµ(i+hr)sgn(σq)|σq|j−h+2 + o(ηµ(i+hr)σj−h+2
q ).

On the other hand, when σq is subject to the constraint (6.6) we have

ηµ(i+hr)|σq|j−h+2 ' ηµ(i+hr)+ 1
k̄+2
{s−µ(`k−k̄r−1)}(j−h+2). (6.9)

Under the following condition on µ

µr − 1

k̄ + 2

{
s− µ(`k − k̄r − 1)

}
< 0,

that holds for all µ > 0 sufficiently close to 0 and implies (6.7), the exponent of η in

the right hand side of (6.9) is minimum when h is maximum. Thus the leading term

in the sum in h appearing in (6.3) is obtained on chosing h = jp − p. The system

may then be approximated in the following way:

ηµ(`k1+pr)
{ k̄∑

q=0

a`k−1−pr
q sgn(σq)|σq|p+2 + o(σp+2

q )
}

+ cijpF
ipjp = 0, p = 0, 1, . . . , k̄.

(6.10)

Above, cijp are explicit constants.

We prove existence of solutions σ0, σ1, . . . , σk̄ of system (6.10) by an inductive

argument on k̄ ≥ 1. The errors F ipjp are assumed to satisfy the following structural

assumptions: there exist h ∈ N, µ̃ > 0, and s̃ > 0 such that

F ipjp ' η(`k−pr−1)µ̃+ p+2
h̄+2
{s̃−µ̃(`h−h̄r−1)}, p = 0, 1, . . . , k̄. (6.11)

Above, h̄ = [h/β] as in (3.14). Assumption (6.11) is motivated by the structure (5.3)

of the errors. In particular, by (6.5), s and s̃ are related through the relation

s = (`k − k̄r − 1)µ̃+
k̄ + 2

h̄+ 2

{
s̃− µ̃(`h − h̄r − 1)

}
. (6.12)

This relation describes the transformation of structural exponents, and, eventually,

governs the propagation of errors between equivalence classes. This will be the moti-

vation for the introduction of the function ∆ in (7.10).
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Proposition 6.1. Assume the reduced errors F ipjp satisfy the structural assumptions

(6.11). Then there exist position parameters a0, a1, . . . , ak̄ such that the system (6.10)

has solutions σ0, σ1, . . . , σk̄ satisfying (6.6).

Proof. When k̄ = 1, i.e., when we have a system of two equations, the claim is proved

in Section 5. Assume the claim holds for all h̄ = 1, 2, . . . , k̄ − 1.

We solve system (6.10) on considering σk̄ as a fixed parameter satisfying (6.6) with

q = k̄. We may rewrite the first k̄ equations in (6.10) as

ηµ(`k−pr−1)
{ k̄−1∑

q=0

a`k−pr−1
q sgn(σq)|σq|p+2 + o(σp+2

q )
}

+ F̃ ipjp = 0, p = 0, 1, . . . , k̄ − 1,

(6.13)

where, up to constants,

F̃ ipjp = F ipjp + ηµ(`k−pr−1)
{
a`k−k̄r−1

k̄
sgn(σk̄)|σk̄|p+2 + o(σk̄+2

k̄
)
}
, p = 0, 1, . . . , k̄ − 1.

We claim that we have

F̃ ipjp ' ηµ(`k−pr−1)+ p+2
k̄+2
{s−µ(`k−k̄r−1)}, p = 0, 1, . . . k̄ − 1. (6.14)

Statement (6.14) follows from (6.11) and from the inequality

µ(`k−pr−1)+
p+ 2

k̄ + 2

{
s−µ(`k− k̄r−1)

}
< µ̃(`k−pr−1)+

p+ 2

h̄+ 2

{
s̃− µ̃(`h− h̄r−1)

}
,

that, by (6.12), is equivalent to the inequality

`k − pr − 1

p+ 2
>
`k − k̄r − 1

k̄ + 2
,

that holds for all p = 0, 1, . . . , k̄ − 1.

By induction, there exist position parameters a0, a1, . . . , ak̄−1 such that the system

(6.13) has solutions σ0, σ1, . . . , σk̄−1 (depending on σk̄). Moreover, since we have

F ik̄−1jk̄−1 ' ηs̄ with s̄ = µ(`k − (k̄ − 1)r − 1) +
k̄ + 1

k̄ + 2

{
s− µ(`k − k̄r − 1)

}
,

the solutions σ0, σ1, . . . , σk̄−1 satisfy (6.6) with k̄− 1 replacing k̄ and with s̄ replacing

s, i.e.,

|σq| ' η
1
k̄+1
{s̄−µ(`k(1−(k̄−1)r)} = η

1
k̄+2
{s−µ(`k−k̄r−1)}, q = 0, 1, . . . , k̄ − 1.

Equivalently, σq satisfies (6.6) itself. In particular, we have σq ' σk̄ for all q =

0, 1, . . . , k̄−1. The solutions σ0, σ1, . . . , σk̄−1 depend on σk̄. We insert these functions

of σk̄ into the last equation of system (6.10). The leading term in σk̄ is the power

σk̄+2
k̄

. With a suitable choice of the position parameter ak̄, the coefficient of σk̄+2
k̄

is

nonzero. Then the (k̄ + 1)-th equation in (6.10) is of the form

ηµ(`k−k̄r−1)
{

sgn(σk̄)|σk̄|k̄+2 + o(σk̄+2
k̄

)
}

+ cF ik̄jk̄ = 0, (6.15)
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where c 6= 0 is a constant. By our assumptions (6.11)-(6.12) with p = k̄, equation

(6.15) has a solution σk̄ satisfying (6.6). This follows by an easy continuity argument.

This ends the proof.

Let us notice here for future reference that the cost of lenght of the correction of

the equivalence class Lk is

Λ
( k̄⋃
q=0

Qbq(σq)
)

= 4
k̄∑
q=0

|σq| ' η
1
k̄+2
{s−µ(`k−k̄r−1)}, (6.16)

where s is the structural exponent of the equivalence class Lk given by (6.12).

�

7. Iterative correction of all equivalence classes. Homogeneous

case

In this section, we iterate the construction of Section 6. At the same time, we take

into account the procedure of Section 4.

For k ∈ N, let k̄ be the number in (3.14). The equivalence class Lk has k̄+1 distinct

elements, as in (3.15). An error of Lk is a k̄+1-dimensional vector v = (v0, v1, . . . , vk̄)

of real numbers. The number v0 is the error of the first representative of Lk, etc..

The index k ranges from 0 to a fixed integer K ∈ N. The total space of errors is

denoted by

E = R0̄+1 × R1̄+1 × . . .× RK̄+1.

Let us denote a generic element of E by v = (v0, v1, . . . , vK), with vk ∈ Rk̄+1. By

(3.3), the initial error produced by the cut Tη is

E(η) = v, with vk = (c0η
`k+r, c1η

`k+r, . . . , ck̄η
`k+r), (7.1)

where c0, c1, . . . , ck̄ are constants depending on k. A correction of E(η) is a countable

union R =
⋃
h∈NRh of rectangles of the type (3.4)-(3.5) and a countable union Q =⋃

h∈NQh of squares of the type (3.10) that set to zero all the components of E(η).

The cost of length Λ(R ∪Q) of the correction is

Λ(R ∪Q) =
∑
h∈N

Λ(Rh) + Λ(Qh).

In this section, we make the following structural assumption. Let k0 = min{k ∈
N : k̄ = 1} = α · β.

Assumption 7.1. The function ϕ : {k0, k0 + 1, . . . , K} → Q

ϕ(k) =
`k − k̄r + 1

k̄ + 2
is injective. (7.2)

Remark 7.2. Notice that ϕ is injective when restricted to indices k with the same

k̄. Namely, by the monotonicity of `k, if k̄ = h̄ then there holds ϕ(k) < ϕ(h) if and

only if k < h.
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In general, it may happen that ϕ(h) = ϕ(k) for some h 6= k (and h̄ 6= k̄). The

construction of Theorem 7.3 does not work in this case, because there is a loop of

errors between the equivalence classes Lh and Lk. Dropping Assumption 7.1 requires

new more refined ideas.

Theorem 7.3. Assume (7.2). For any ε > 0 there are numbers C > 0 and 0 < δ < 1

such that for any 0 < η < δ there is a correction R ∪ Q of the initial error E(η) in

(7.1) with cost of length satisfying

Λ(R ∪Q) ≤ Cη
2
3

(1+r)−ε. (7.3)

Proof. For k = k0, k0 + 1, . . . , K we will fix parameters µk > 0 satisfying various

smallness conditions and strictly ordered in the following way:

µk > µh ⇔ ϕ(k) < ϕ(h). (7.4)

This is possible by our Assumption 7.1.

Now we divide the argument in several steps.

Step 1. We correct the first representatives as described in Section 4. In this step,

we only use rectangles of the type (3.4)-(3.5) depending on parameters λ0, λ1, . . . , λK .

Step 2. We correct the leading equivalence class with two elements, as described in

Section 5. In this case, we have k = k0 = α · β. The structural exponent s appearing

in (5.5) is computed in (5.16). Notice that we have

s ∼ 2(1 + r), (7.5)

where ∼ means that we set to 0 the parameters λh appearing in (5.5). The param-

eter µk > 0 is suitably small. This choice is made after we fixed the parameters

λ0, λ1, . . . , λK .

Step 3. We prove that the additional errors on first representatives produced in

Step 2 are negligible for the procedure used in Step 1.

Let h > k = α · β, (i, j) ∈ Lh, let b = ηµk , and σ = η
1
3
{s−µk(`k−r−1)}. The effect

Qij
b (σ) of the square Qb(σ) on the pair (i, j) is

Qij
b (σ) ' σ2ηµk(i+jr) = η

2
3
{s−µk(`k−r−1)}+µk(`h−1).

This formula can be obtained by the argument contained between (5.6) and (5.9).

Assume that (i, j) is the first representative of the class Lh. The error produced

on (i, j) by the correction of first representatives can be found in line (4.22) and is

|εh+1|1+`hλh+1 = ηd, d = (1 + r)
1 + `hλh+1

1 + λ0

h+1∏
p=1

1 + `pλp−1

1 + `pλp
∼ 1 + r.

On the other hand, by (7.5) we have

2

3
{s− µk(`k − r − 1)}+ µk(`h − 1) ∼ 4

3
(1 + r) + µk

{
`h − 1− 2

3
(`k − r − 1)

}
.
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It follows that if µk is small enough, then the error produced on (i, j) by the procedure

of Step 2 is negligible.

Step 4. We claim that the reduced error produced by the squares used in Step 2

dominates the reduced error produced by the rectangles used for the correction of

first representatives in Step 1.

Let us first develop some general formulas. For fixed k, h ∈ N, µ > 0, and s > 0, let

b = ηµ and σ = η
1
k̄+2
{s−µ(`k−k̄r−1)}. We know from (6.6) and Proposition 6.1 that this is

the size of the parameters σ for the correction of Lk starting from the parameters s and

µ. By (3.12), the effect of the square Qb(σ) on the pair (ip, jp) = (i−pβ, j+pα) ∈ Lh,
p ∈ {1, . . . , h̄}, is

Q
ipjp
b (σ) =

jp∑
q=0

cipjpqQ
ipjpq
b (σ).

Let us determine the reduced error. When we correct the equivalence class Lh, we

exploit several cancellations in the sum for Q
ipjp
b (σ), as described in Section 6. The

leading term after the cancellations is obtained on taking the index q = jp − p, and

namely

Q
ipjp,jp−p
b (σ) = sgn(σ)|σ|p+1

[
(b+ |σ|)`h−pr − b`h−pr

]
' η

p+2
k̄+2
{s−µ(`k−k̄r−1)}+µ(`h−pr−1).

(7.6)

By (3.8), the effect onto the pair (ip, jp) of the generic rectangle Rηq ,λq(εq) used in

the correction of first representatives is

R
ipjp
ηqλq

(εq) =

jp∑
u=0

cipjpuR
ipjpu
ηqλq

(εq).

The parameters ηq, λq, εq are defined in Section 4.

The leading term after the cancellations is obtained on taking u = jp − p, and,

namely, by (4.16) we have

R
ipjp,jp−p
ηqλq

(εq) = εp+1
q

[
(ηq + |εq|λq)`h−pr − η`h−prq

]
' η

1+r
1+λ0

[p+1+λq(`h−pr)]
∏q
u=1

1+`uλu−1
1+`uλu .

(7.7)

We compare (7.6) and (7.7) when k = α ·β, so that k̄ = 1, h > k, and the exponent

s is given by (5.16):

s = (1 + r)
(2 + (`k − r)λk̂)

1 + `k̂λk̂

k̂−1∏
u=1

1 + `u+1λu
1 + `uλu

,

where k̂ is an integer such that 0 ≤ k̂ ≤ k. We claim that for a suitable choice of the

parameters λ0, λ1, . . . , λk, and µ > 0, there holds

Q
ipjp,jp−p
b (σ) ≥ R

ipjp,jp−p
ηqλq

(εq).
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For small η > 0, this is equivalent to the inequality A < B, where

A :=
p+ 2

3

{
s− µ(`k − r − 1)

}
+ µ(`h − pr − 1)

B :=
1 + r

1 + λ0

{p+ 1 + λq(`h − pr)}
q∏

u=1

1 + `uλu−1

1 + `uλu
.

(7.8)

For λ0 = . . . = λk = 0 and µ = 0, we have

A ∼ 2

3
(p+ 2)(r + 1) and B ∼ (p+ 1)(r + 1).

Thus, when p > 1, we have A < B as soon as λ0, . . . , λk, µ > 0 are small enough.

When p = 1 we have A ∼ B and we argue as follows. In this case, inequality A < B

reads as

s+ µ(`h − `k) <
1 + r

1 + λ0

{2 + λq(`h − r)}
q∏

u=1

1 + `uλu−1

1 + `uλu
. (7.9)

In the case µ = 0 and λ0 = λ1 = . . . = λk = λ > 0, inequality (7.9) holds. In fact, in

this case we have

(1 + r)(2 + λ(`k − r))
1 + `1λ

<
(1 + r)(2 + λ(`h − r))

1 + λ
,

because `k < `h and `1 ≥ 1. By continuity, (7.9) holds for some λk < λk−1 < . . . < λ0

and µ > 0.

Step 5. Let us define the function ∆ : N× N×Q→ Q

∆(k, h; s) = (h̄+ 2)
{ 1

k̄ + 2
s+ µk

(
ϕ(h)− ϕ(k)

)}
. (7.10)

This function has the following meaning. If the reduced error of the equivalence class

Lk has size ηs, then the correction of the equivalence class Lk produces a reduced error

of the size η∆(k,h;s) on the equivalence class Lh. See (7.6) with p = h̄ and µ = µk. We

claim that for all k, h, u ∈ N such that k 6= h there holds

∆
(
h, u; ∆(k, h; s)

)
> ∆(k, u; s). (7.11)

The proof is an elementary computation. In fact, we have

∆
(
h, u; ∆(k, h; s)

)
= (ū+ 2)

{ 1

k̄ + 2
s+ µk

(
ϕ(h)− ϕ(k)

)
+ µh

(
ϕ(u)− ϕ(h)

)}
,

and inequality (7.11) is equivalent with(
ϕ(h)− ϕ(k)

)
(µk − µh) > 0,

that holds by Assumption 7.1 and by the choice (7.4) of the parameters µk, µh.

Step 6. We set up the inductive step of the iterative argument. After the correction

of a number of equivalence classes and after the cancellations described in Section 6,

the structure of the error of a generic equivalence class Lk is determined by the size

of the reduced error of the element of Lk in (3.15) with maximal p, i.e., with p = k̄.

This error is a power of η with structural exponent s > 0 as in (6.5). The number
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s determines the entire vector of reduced errors of Lk, as in (6.11)–(6.12). For each

equivalence class, one real number suffices to describe the full reduced error. Thus let

us define the total space of reduced errors as F = RK−k0+1. We denote the components

of a vector F ∈ F of reduced errors as F = (Fk0 ,Fk0+1, . . . ,FK), i.e., the enumeration

starts from k0. We need not consider equivalence classes with one element.

After the correction of all first representatives and of the leading equivalence class

with two elements Lk0 , the total reduced error Fk0 satisfies

Fk0 '
(
0, . . . , η∆(k0,h;s), . . .︸ ︷︷ ︸

h=k0+1,...,K

)
. (7.12)

This follows from Step 4. From now on, s is the leading structural exponent defined

in (5.16).

Now we proceed iteratively as follows: we correct the error of all first representatives

and the error of the equivalence class Lk for each k ≥ k0 + 1. A new error appears

on the equivalence classes Lh with h 6= k.

We make this procedure quantitative. We claim that after k − k0 + 1 steps, i.e.,

after the correction of Lk, the total reduced error Fk satisfies

Fk .
(
. . . ,

k∑
u=h+1

η∆(u,h;∆(k0,u;s)), . . .︸ ︷︷ ︸
h=k0,...,k−1

, 0, . . . , η∆(k0,h;s), . . .︸ ︷︷ ︸
h=k+1,...,K

)
. (7.13)

We argue by induction. When k = k0, the claim holds as noted in (7.12). Assume

that (7.13) holds for k. We check it for k + 1.

We correct the error of the equivalence class Lk+1 with the procedure of Section

6. The structural exponent in (6.5) is s̃ = ∆(k0, k + 1; s). The new reduced error

produced on Lh with h 6= k + 1 has the size η∆(k+1,h;s̃). By the argument of Step 5,

see (7.11), we have

∆(k + 1, h; ∆(k0, k + 1; s)) > ∆(k0, h; s).

Therefore, for h > k + 1 there is no change in the structural exponent of Lh. After

the correction of Lk+1, the new vector Fk+1 of reduced errors satisfies

Fk+1 .
(
. . . ,

k+1∑
u=h+1

η∆(u,h;∆(k0,u;s)), . . .︸ ︷︷ ︸
h=k0,...,k

, 0, . . . , η∆(k0,h;s), . . .︸ ︷︷ ︸
h=k+2,...,K

)
.

This is (7.13) for k + 1.

Step 7. (General decrease of errors) After the correction of the last equivalence

class with k = K, the total reduced error FK(η) = FK satisfies

FK(η) .
(
. . . ,

K∑
u=h+1

η∆(u,h;∆(k0,u;s)), . . .︸ ︷︷ ︸
h=k0,...,K−1

, 0
)
. (7.14)
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Let Q denote the set of all squares Q used for the correction of equivalence classes

up to the end of Step 6. By formula (6.16) for the cost of the correction of one

equivalence class, by the recursive relation (6.12) linking structural exponents, and

by the formula (5.17) for the basic cost, we deduce that the total cost of length for

getting to (7.14) is

Λ
( ⋃
Q∈Q

Q
)
∼ η

2(1+r)
3 . (7.15)

Let us define the theoretical initial vector of reduced errors as

F(η) =
(
. . . , η∆(k0,h;s), . . .︸ ︷︷ ︸

h=k0,...,K

)
.

This is obtained from Fk0 in (7.12), inserting in the first coordinate ηs = η∆(k0,k0;s) in

place of 0. By Step 3, we can without loss of generality assume that this is the total

reduced error before the correction of Lk0 .

By the argument of Step 5, see (7.11), we have for any h = k0, . . . , K − 1 and for

all u = h+ 1, . . . , K

∆(u, h; ∆(k0, u; s)) > ∆(k0, h; s).

It follows that

% := min
{∆(u, h; ∆(k0, u; s))

∆(k0, h; s)
: h = k0, . . . , K − 1, u = h+ 1, . . . , K

}
> 1.

Then we have the following quantitative general decrease of errors

FK(η) ≤ F(η%), 0 < η < δ. (7.16)

Step 8. We can now iterate the procedure of Steps 1–7. We get in this way a

correction Q of the total error with cost of length satisfying

Λ(Q) ∼ η
2(1+r)

3 .

This finishes the proof.

�

8. Equivalence classes with two elements. Nonhomogeneous case

In this section, we discuss the nonhomogeneous case, i.e., ci 6= 0 for some i > β in

(2.8). We restrict the analysis to the case when equivalence classes have at most two

elements.

We need the notions of leading effect and second leading effect. Consider some

k ∈ N with k̄ = 1. As in (3.15), we have Lk = {(i0, j0), (i1, j1)} and we let i = i0
and j = j0. Assume that at some previous stage we used a rectangle Rη,λ(ε) with

parameters η, λ, ε satisfying (4.19), that is,

1

2
|ε|λ > η. (8.1)
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We compute the effect of the rectangle on the pairs of Lk. By formula (3.8), we have

Rij
η,λ(ε) =

j∑
h=0

cijh0R
ijh0
η,λ (ε) +

j∑
h=0

∞∑
`=̂̀ cijh`R

ijh`
η,λ (ε).

Above, we let ̂̀= min
{
` ≥ 1 : ch` 6= 0

}
,

where the constants ch` are from (3.7). By elementary properties of binomial powers,

one can check that ̂̀ does not depend on h. Under assumption (8.1), for fixed ` the

leading Rijh`
η,λ (ε) is the one with maximum h, i.e., with h = j. The proof of this fact

is in Section 4, between formulas (4.7) and (4.8).

On varying `, the leading effect is obtained for ` = 0. Then we have Rij
η,λ(ε) =

cijj0R
ijj0
η,λ (ε) + Error where the Error is negligible. We call

Rijj0
η,λ (ε) ' ε|ε|λ`k

the leading effect. When the effect is an error, we speak of leading error. By the

formulas (3.13), we have Rijj0
η,λ (ε) = Ri1j1j10

η,λ (ε). Later, we shall use this identity to

cancel the leading error. It is then important, to identify the leading term in the

difference

Rij
η,λ(ε)− cijj0R

ijj0
η,λ (ε) =

j−1∑
h=0

cijh0R
ijh0
η,λ (ε) +

j∑
h=0

∞∑
`=̂̀ cijh`R

ijh`
η,λ (ε)

' Rij,j−1,0
η,λ (ε) +Rijj ̂̀

η,λ (ε)

' ε2|ε|λ(`k−r) + ε|ε|λ(`k+
̂̀
α

).

For λ > 0 small enough, the leading term is the latter. We call

Rijj ̂̀
η,λ (ε) ' ε|ε|λ(`k+`′), where `′ =

̂̀
α
, (8.2)

the second leading effect, and when the effect is an error, we speak of second leading

error. Notice our new notation `′ =
̂̀
α

.

Let us recall that by E(η) we denote the initial error (7.1) produced by the cut. A

correction R of the error is a countable choice of rectangles that sets to zero all the

components of E(η). Under Assumption 4.1 we have a bound K ∈ N on k.

Theorem 8.1. Let κ(t) = (t, ϕ(t)), t ∈ [0, 1], be curve as in (2.8) with ci 6= 0 for

some i > β. Assume that k̄ ≤ 1 for all k ≤ K. For any ε > 0 there are numbers

C > 0 and 0 < δ < 1 such that for any 0 < η < δ there is a correction R of the initial

error E(η) in (7.1) with cost of length satisfying

Λ(R) ≤ Cη1+r−ε. (8.3)

Proof. In the proof, we use freely the arguments and the observations made in the

proof of Theorem 4.2. To construct the correction, we proceed as follows:
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1) We correct all classes with one element (i.e., first representatives) with the

recursive method described in Section 4.

2) Then we correct recursively all equivalence classes with two elements.

3) We iterate the construction and we estimate the costs.

The error on k = 0 after the cut is comparable to ηs with s = 1+r, see the vector of

errors (4.2) at position k = 0. We correct recursively the error of first representatives

for h = 0, 1, . . . , k up to a certain k ∈ N included. This is explained in the proof of

Theorem 4.2. The vector of leading errors after this correction, is the vector Ek in

(4.18). It is useful to express this error in the following way. For k, h ∈ N, we let

∆(k, h) =
1 + `hλk
1 + `kλk

and Π(k) = ∆(0, 1)∆(1, 2) . . .∆(k − 1, k).

The parameters λ0 > λ1 > . . . > λk > 0 are the ones fixed in Section 4. Then we

have

Ek '
(
. . . , ηsΠ(h+1)∆(h+1,h), . . .︸ ︷︷ ︸

h=0,...,k−1

, 0, . . . ηsΠ(k)∆(k,h), . . .︸ ︷︷ ︸
h≥k+1

)
.

This is formula (4.2) with our new notation. Let us introduce the vector of second

leading errors. Motivated by formula (8.2), let us set for k, h ∈ N

∆′(k, h) =
1 + (`h + `′)λk

1 + `kλk
.

By (8.2), the total second leading error accumulated on h after correcting the first

representatives 0, 1, . . . , k is comparable to ηsA with

A = ∆′(0, h) + Π(1)∆′(1, h) + . . .+ Π(k)∆′(k, h).

We search the sum for its leading term. Notice that

Π(k − 1)∆′(k − 1, h) ≤ Π(k)∆′(k, h) ⇔ 1 + (`h + `′)λk−1

1 + `kλk−1

≤ 1 + (`h + `′)λk
1 + `kλk

⇔ `h + `′ ≤ `k.

(8.4)

For any h ∈ N, let h∗ = min{k ∈ N : `h + `′ ≤ `k}. Clearly, we have

h∗ > h. (8.5)

Then, for any h ∈ N, the map k 7→ Π(k)∆′(k, h) attains the minimum when k = h∗.

Now let k ∈ N be the minimum k ∈ N such that k̄ = 1. In our previous notation,

we have k = k0. Assume we already applied the recursive procedure for correcting

the first representatives from 0 to k included. The error on the first representative

(i, j) of Lk is 0. Let Ei1,j1 denote the total error on (i1, j1), the second element of Lk,

accumulated during the procedure. This is made up by the sum of the errors produced

by the cut and by the rectangles used in previous stages. However, the correction

of (i, j) corrects automatically the leading error on (i1, j1), by the identities (3.13).



32 ROBERTO MONTI

Therefore, Ei1,j1 is the accumulated second leading error. By (8.4) and (8.5), we thus

have

Ei1j1 ' ηsΠ(k)∆′(k,k). (8.6)

We correct the error of the equivalence class Lk with two rectangles Rηk,q ,λk(εk,q),

q ∈ {0, 1}, where ηk,q, λk, εk,q satisfy (8.2). We have the system of equations

∑
q∈{0,1}

∞∑
`=0

j∑
h=0

cijh`R
ijh`
ηk,q ,λk

(εk,q) = 0

∑
q∈{0,1}

∞∑
`=0

j1∑
h=0

ci1j1h`R
i1j1h`
ηk,q ,λk

(εk,q) + Ei1j1 = 0.

(8.7)

We multiply the first equation by ci1j1j10, we multiply the second equation by cijj0,

and we subtract the first equation from the second one. Using the identities (3.13),

the second equation transforms into the equation∑
q∈{0,1}

j1−1∑
h=0

c′ijh0R
i1j1h0
ηk,q

(εk,q) +
∑

q∈{0,1}

∞∑
`=̂̀

j1∑
h=0

c′ijh`R
i1j1h`
ηk,q ,λk

(εk,q) + cijjE
i1j1 = 0, (8.8)

where c′ijh` are explicit constants.

The leading effect of the rectangles in (8.8) is obtained for ` = ̂̀ and h = j1. The

first equation of the system (8.7) provides εk,0 ' −εk,1. The second equation in (8.8)

can be then approximated as follows

εk,1|εk,1|λk(`k+`′) ' ηsΠ(k)∆′(k,k). (8.9)

This determines εk,1. The cost of length of the correction is

Λ
( ⋃
q∈{0,1}

Rηk,q(εk,q)
)
' |εk,0| ' η

s
Π(k)∆′(k,k)

1+λk(`k+`′) . (8.10)

This correction produces new leading and second leading errors. The leading effect

on h 6= k is comparable to

η
sΠ(k)∆′(k,k)

1+`hλk
1+(`k+`′)λk = ηsΠ(k)∆(k,h).

This is the same effect produced by the correction of the first representative of Lk.

The second leading effect on h 6= k is comparable to

η
sΠ(k)∆′(k,k)

1+(`h+`′)λk
1+(`k+`′)λk = ηsΠ(k)∆′(k,h).

This error is the same second leading effect produced by the correction of the first

representative of Lk.

Now we correct the equivalence class Lk+1. The error on the first representative (the

leading error) is comparable to ηsΠ(k)∆(k,k+1). The second leading error is comparable

to ηsΠ(k)∆′(k,k+1). The procedure described in the previous step produces the following
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new errors. The new leading error and second leading error produced on h 6= k + 1

are comparable to, respectively,

ηsΠ(k+1)∆(k+1,h), ηsΠ(k+1)∆′(k+1,h).

The dynamics of leading errors is the same as in Section 4. We analyze the dynamics

of second leading errors. After che correction of the first representatives 0, 1, . . . , k,

the vector E′k of second leading errors (the vector starts from the coordinate k) is

E′k '
(
. . . , ηsΠ(k)∆′(k,h), . . .

)
.

After the correction of the entire equivalence class Lk the error is

E′k '
(
0, . . . , ηsΠ(k)∆′(k,h), . . .︸ ︷︷ ︸

h≥k+1

)
.

After che correction of the entire equivalence class Lk+1 the error is

E′k+1 '
(
ηsΠ(k+1)∆′(k+1,k), 0, . . . , ηsΠ(k)∆′(k,h) + ηsΠ(k+1)∆′(k+1,h), . . .︸ ︷︷ ︸

h≥k+2

)
'
(
ηsΠ(k+1)∆′(k+1,k), 0, . . . , ηsΠ(k+1)∆′(k+1,h), . . .︸ ︷︷ ︸

h≥k+2

)
.

Inductively, for any p > k we find the vector of second leading errors

E′p '
(
. . . ,

p∑
q=k

ηsΠ(q)∆′(q,h), . . .︸ ︷︷ ︸
h<p

, 0, . . . , ηsΠ(p)∆′(p,h), . . .︸ ︷︷ ︸
h>p

)

'
(
. . . , ηsΠ(h∗p)∆′(h∗p,h), . . .︸ ︷︷ ︸

h<p

, 0, . . . , ηsΠ(p)∆′(p,h), . . .︸ ︷︷ ︸
h>p

)
,

where h∗p = min{h∗, p}. The 0 is at position p.

For the sake of simplicity, we assume that K =∞, so that we can let p go to infinity.

This is without loss of generality. In the length estimate, however, we assume k ≤ K.

After letting p→∞, the final vector E of leading errors and the final vector E′ of

second leading errors are, respectively,

E '
(
. . . , ηsΠ(h+1)∆(h+1,h), . . .

)
, E′ '

(
. . . , ηsΠ(h∗)∆′(h∗,h), . . .

)
.

By (8.10), the total cost of length of the recursive construction is

Λ
( K⋃
k=k0

⋃
q∈{0,1}

Rηk,q(εk,q)
)
'

K∑
k=k0

η
s

Π(k)∆′(k,k)

1+λk(`k+`′) ∼ ηs. (8.11)

The new structural exponent is s1 = sΠ(1)∆(1, 0) = s∆(0, 1)∆(1, 0) > s. Letting

% = ∆(0, 1)∆(1, 0), we have s1 = %s with % > 1. Repeating countably many times
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the procedure started at the beginning of the proof, we get a correction R of the error

E(η) in (7.1) with cost of lenght

Λ(R) '
∞∑
h=1

K∑
k=k0

η
sh

Π(k)∆′(k,k)

1+λk(`k+`′) ∼ ηs.

The claim (8.3) follows from this estimate and from Theorem 4.2. �

9. Main results

In this section, we collect the results proved so far. In the following, (M,D, g)

is a sub-Riemannian manifold satisfying Assumption 4.1 and κ : [0, 1] → R2, with

κ(0) = 0, is the horizontal projection of an abnormal curve γ : [0, 1]→M . The curve

κ may be either homogeneous or nonhomogeneous, according to the classification

introduced at the end of Section 2. The curve κ has its parameters α, β ∈ N and we

assume that 1 ≤ α < β, so that r = β/α > 1.

Theorem 9.1. Let Assumption 7.1 hold and let κ be homogeneous. If r < 5/4, then

the curve γ = Lift(κ) is not length minimizing.

Proof. We can cut κ by a triangle Tη, where η > 0 is a small parameter. Let κη be

the new curve and let γη = Lift(κη) be its horizontal lift. The gain of length ∆L(η)

is given by (3.1):

∆L(η) =
(r − 1)2

2(2r − 1)
η2r−1 + o

(
η2r−1

)
.

By Theorem 7.3 we can adjust the end-point γη(1), i.e., we can move it back to γ(1).

Namely, for any ε > 0 there are a constant C > 0 and a correction R ∪ Q of the

end-point with cost of length

Λ(R ∪Q) ≤ Cη
2
3

(1+r)−ε.

This holds for all 0 < η < δ for some δ > 0. On choosing 0 < ε < 5− 4r, we have for

small enough η > 0

Λ(R ∪Q) < ∆L(η).

Therefore, the curve γ is not length minimizing.

�

When κ is in the nonhomogeneous case, we have the following result. Recall that

k̄+ 1 is the cardinality of Lk and that K is the bound on k given by Assumption 4.1.

Theorem 9.2. Let κ be nonhomogeneous and assume that k̄ ≤ 1 for all k ≤ K. If

r < 2, then the curve γ = Lift(κ) is not length minimizing.

Proof. Now the cost of length to restore the end-point is given by Theorem 8.1.

Namely, for any ε > 0 there exist a constant C > 0 and a correction R of the

end-point with cost of length

Λ(R) ≤ Cη1+r−ε.
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This holds for all 0 < η < δ for some δ > 0. On choosing 0 < ε < 2− r, we have for

small enough η > 0

Λ(R) < ∆L(η).

Therefore, the curve γ is not length minimizing. �

Let us comment on the assumptions made in Theorems 9.1 and 9.2.

1) Both theorems hold under Assumption 4.1, that provides the bound k ≤ K.

This is needed to control the multiplicative constant in the length estimate. See

Remark 4.3.

2) In Theorem 9.1 we have Assumption 7.1. We could not get rid of this assumption.

Another natural question, of course, is whether the threshold 5/4 has any meaning.

The construction made in Sections 4–7 seems precise. In some cases, however, the

estimate can be improved. Let us consider in R5 the horizontal distribution spanned

by the frame of vector fields

X1 = ∂1, X2 = ∂2 + x1∂3 + x5
1∂4 + x1x

3
2∂5.

By Proposition 2.2, the plane curve x2 = x
4/3
1 is the horizontal projection of an abnor-

mal extremal. The curve is in fact of the homogeneous type. A delicate construction

(all details are omitted, here) shows that the horizontal lift of this curve is not length

minimizing near x1 = 0 for the natural Carnot-Carathéodory metric. The singularity

with exponent 4/3 > 5/4 can be cut and adjusted with gain of length.

3) In Theorem 9.2 we have the assumption k̄ ≤ 1. This restriction can be probably

dropped. It is likely that one has to consider all nonzero higher order terms in the

expansion of ϕ in (2.8) and then mix the techniques of Sections 4–7 with the ones of

Section 8.

4) Our very initial starting point is a structure theorem of algebraic type for ab-

normal curves. This is the case 1) in Proposition 2.2, which relies upon the restrictive

Assumption 2.1. In the setting of Carnot groups there is a similar explicit alge-

braic classification of abnormal extremals, with no restrictions on rank and step, see

[LLMV].

10. C1,δ regularity of geodesics in a class of Carnot groups

Let g be a stratified nilpotent n-dimensional real Lie algebra with g = g1⊕ . . .⊕gS,

S ≥ 2, and gi+1 = [g1, gi] for i ≤ S−1 and gi = {0} for i > S. We assume that the Lie

algebra has rank 2, i.e., that the horizontal layer g1 is two-dimensional, dim(g1) = 2.

We also assume that the following commutativity relations on higher layers hold:

[gi, gj] = 0 for all i, j ≥ 2 such that i+ j > 4. (10.1)

We can realize g as a Lie algebra of left invariant vector fields in Rn. Then we may

assume that g1 is spanned by a pair of vector fields X1 and X2 as in (2.1), where fj,

j = 3, . . . , n, are polynomials with degree deg(fj) ≤ S−1. By (10.1), the polynomials

fj only depends on the variables x1 and x2 of Rn (see Proposition 2.6 in [LM]). The



36 ROBERTO MONTI

Lie algebra g is naturally associated and may in fact be identified with a Lie group. A

nilpotent and stratified Lie group is known as Carnot group. If S ≤ 4, the assumption

in (10.1) is automatically satisfied. It is known that if S ≤ 4 (and the rank is 2) all

sub-Riemannian geodesics are C∞ smooth (see Example 4.6 in [LM]). The following

theorem is of interest in the case S > 4.

Theorem 10.1. Any length minimizing curve for the Carnot-Carathèodory distance

in a Carnot group of rank 2 and step S > 4 satisfying (10.1) is of class C1,δ for any

0 ≤ δ < min
{ 2

S − 4
,
1

4

}
. (10.2)

Proof. Let κ : [0, 1] → R2 be the horizontal projection of a singular curve. The

support of the curve lies in the zero set of a polynomial f =
∑n

j=3 µj∂1fj 6= 0, where

µ3, . . . , µn ∈ R. After a left translation in the group and after a rotation of the

coordinates in the plane, we may assume that κ(0) = 0 and κ(t) = (t, ϕ(t)) where ϕ

is the function in (2.8) with its parameters α, β ∈ N, with 1 < α < β.

Our argument in Sections 4–8 proves that γ = Lift(κ) is not length minimizing,

provided that β/α < 5/4 and Assumption 7.1 holds. On the other hand, Assumption

7.1 does hold if equivalence classes Lk contain at most two elements, as noted in

Remark 7.2.

The correction procedures of Sections 4–8 are restricted to monomials of the form

xi+1
1 xj2 with the bound i + j ≤ S − 2. We introduced in Section 3 the equivalence

classes Lk, with k ∈ N. Assume that (i, j) ∈ Lk, with j = 0, . . . , α − 1, is the first

representative of Lk. Then we have i ≤ S−2, because monomials xi+1
1 xj2 with i > S−2

do not apperar in the polynomials f3, . . . , fn. Then, if β is large, the cardinality of

Lk is small, and namely we have the implication

β >
S

2
− 1 ⇒ k̄ =

[ i
β

]
≤ i

β
< 2 ⇒ Card(Lk) ≤ 2. (10.3)

We estimate the minimum β/α which is not covered by the cut-and-adjust argu-

ment. By (10.3), this minimum is

m = min
{β
α
∈ Q : α, β ∈ N, 1 < α < β ≤ S

2
− 1
}

= min
{ β

β − 1
∈ Q : β ∈ N, β ≤ S

2
− 1
}

≥ S − 2

S − 4
.

If β/α < min{m, 5/4} the curve κ is not length minimizing. On the other hand, if

β/α ≥ min{m, 5/4}, then the curve κ is C1,δ for any δ as in (10.2). This ends the

proof. �
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