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Abstract. We investigate ground state configurations for atomic potentials including both

two- and three-body nearest-neighbor interaction terms. The aim is to prove that such po-
tentials may describe crystallization in carbon nanostructures such as graphene, nanotubes,

and fullerenes. We give conditions in order to prove that planar energy minimizers are nec-

essarily honeycomb, namely graphene patches. Moreover, we provide an explicit formula for
the ground state energy which exactly quantifies the lower-order surface energy contribution.

This allows to give some description of the geometry of ground states. By recasting the

minimization problem in three-space dimensions, we prove that ground states are necessarily
nonplanar and, in particular, rolled-up structures like nanotubes are energetically favorable.

Eventually, we check that the C20 and C60 fullerenes are strict local minimizers, hence stable.

1. Introduction

Crystallization is a fundamental issue in Materials Science. As such, it has attracted an
immense deal of attention over the centuries from the physical, chemical, and technological
viewpoint. In particular, the last decades have witnessed the discovery and applicative exploita-
tion of carbon nanostructures. Among these nanotubes and fullerenes are three-dimensional
carbon molecules showing unprecedented electro-mechanical properties which make them po-
tentially useful in a wide variety of applications ranging from chemistry, to nano-electronics, to
optics and mechanics. Even more recently, the production of isolated graphene sheets has lead
to the attribution of the 2010 Nobel Prize in Physics to Geim & Novoselov. Lightweight
and flexible yet extraordinarily strong, transparent and exceptionally conducting, graphene is
presently believed to be one of the most promising materials available to mankind.

Form the microscopic viewpoint, crystallization is the result of interatomic interactions gov-
erned by quantum mechanics. At zero temperature, such interactions are expected to be ruled
solely by the geometry of atoms configurations. From a mathematical standpoint, given a
configuration of n atoms identified with their respective positions {x1, . . . , xn} and a suitable
configurational potential V , one considers the minimization problem minV ({x1, . . . , xn}). Crys-
tallization hence consists in proving the periodicity of ground-state configurations of V , that is,
the emergence of an ideal crystal-lattice structure.

The focus of this paper is that of considering some simplified description of crystallization
in carbon in the frame of classical potentials. In particular, we let V = V2+V3 where V2 is a
short-ranged two-body interaction energy and V3 is a three-body (angular) interaction potential.
The two-body term V2 favors atoms sitting at some reference distance from each other. On the
other hand, the three-body potential V3 is designed in order to take its minimum for bond angles
of 2π/3, thus corresponding to the classical covalent bonding behavior between sp2-hybridized
carbon orbitals.
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The first main result of this paper concerns the crystallization of a finite number of atoms in
the plane: Under suitable conditions on the three-body potential, we show that planar minimiz-
ers of V are graphene patches, namely subsets of the regular hexagonal lattice (Theorem 6.1).
Moreover, we provide the exact formula for the ground-state energy of n-atoms configurations
(Corollary 6.6). The latter quantifies explicitly the surface energy due to the appearance of
boundaries which in turn influences the global geometry of ground-state configurations.

Secondly, we move our discussion to three space dimensions where we prove that minimizers
cannot be planar for large n (Theorem 7.1). In particular, our argument consists in checking
that rolled-up structures like nanotubes are energetically competitive with respect to all planar
configurations. Nanotubes and fullerenes are not three-dimensional ground states of V . On the
other hand, we can prove that the fullerenes C20 and C60 are strict local minimizers, namely
stable with respect to perturbations for a large class of potentials (Theorem 7.3).

Mathematical results on crystallization are by now quite classical in one space dimension. The
reader is referred with no claim of completeness to [2, 3, 4, 15, 18, 25, 26, 27, 28, 36, 37, 38, 39]
for a collection of results proving or disproving, under different choices for the energy, the
minimization property of an equally spaced configuration of atoms and its stability with respect
to perturbations. As for two space dimensions, for V = V2 ground states have been firstly proved
to be patches of the triangular lattice (hence crystalline) for some restricted class of potentials
by Heitman & Radin [19, 29]. The considerably more involved case of Lennard-Jones-like
potentials has been analyzed by Theil [34] in the thermodynamic limit, namely as the number
of atoms of the configuration tends to infinity. This result has then been the extended to the
case V = V2+V3 by E & Li [10]. In particular, by assuming that V2 is Lennard-Jones-like and
V3 presents sufficiently deep and narrow wells at 2π/3 and 4π/3, in [10] it is proved that in the
thermodynamic limit the ground-state energy per atom converges to some specific value related
to the hexagonal lattice.

Our analysis concerns the same class of functionals considered by E & Li [10], but in the
specific case of first-neighbors interactions. Our tenet is that this choice appears to be well-
suited for the description of covalent bonds in carbon, which are necessarily space localized. We
do not take the thermodynamic limit but rather consider a finite and fixed number of atoms
throughout. In particular, we give an explicit characterization of the ground state energy for all
n-atoms configurations. In order to achieve this, we shall resort in assuming some qualification
on the potential V3, in the same spirit of Radin [29]. The choice of a suitable assumption
frame is here quite delicate: We need to balance between the competing needs of ensuring
crystallization in the plane and keeping enough surface tension for the emergence of three-
dimensional structures. Indeed, our specific assumptions on V3 are strong enough to entail that
planar crystals are nothing but graphene patches. On the other hand, they are weak enough to
permit three-dimensionality, see Section 7.

Let us mention that crystallization problems in three dimensions appear to be very challeng-
ing. In particular, we presently have no characterization of three-dimensional ground states for
the energy V . In the case of two-body potentials V2 rigorous crystallization results are still
not available although face-centered cubic (FCC) and hexagonally close-packed (HCP) lattices
are clearly the natural candidates to be ground states. We refer to [11] for some quantitative
evidence in this direction. On the other hand, we shall mention the result announced by Flat-
ley & Theil [12, 17] who argue that, by considering also three-body interactions V = V2+V3
where V3 favors π/3 bonds, the thermodynamic limit of the energy density of ground states
corresponds to that of a suitably rescaled FCC lattice.
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2. Energy

The understanding of the spatial arrangement of atoms into molecules by energy minimization
is often referred to as geometry optimization [13]. In particular, the crystallization results recalled
in the Introduction are examples of geometry optimization via classical potentials. Geometry
optimization requires the specification of a suitable configurational energy. Many different model
energies are in use, depending on the required level of detail as well as the dimension of the
systems.

Ab initio configurational energies are obtained by quantum mechanical models. The chem-
ical behavior of an atom or a molecule is governed by its electronic structure which in turn
is described by the Schrödinger equation. In a time-independent non-relativistic frame, by
assuming the standard Born-Oppenheimer approximation, nuclei are regarded as classical par-
ticles and Quantum Mechanics is involved for the description of the electrons only. Within
this framework, by letting {x1, . . . , xn} indicate the nuclei positions, the energy can be written
as V ({x1, . . . , xn}) := minψ E(x1, . . . , xn;ψ). Functional E is a quadratic form acting on the
electronic wave function ψ : (R3×Z2)m → C. The latter ψ depends on positions and spins (m
being the number of electrons), it is normalized in L2 and antisymmetric in the usual sense. In
particuar, one has E(x1, . . . , xn;ψ) =

∫
(R3×Z2)m

ψ∗Hψ, where H is the electronic hamiltonian

operator, parametrized by the nuclei positions {x1, . . . , xn}, and accounting for Coulomb inter-
actions and for the kinetic energy of electrons. The direct treatment of the above minimization
of E is often precluded by the inherent number of dimensions, and the explicit form of V is
generally not available. A variety of approximated quantum models including Density Func-
tional Theory and Hartree-Fock-type models have been devised. See [22] for a general overview
on all these issues. Still, for the treatment of large systems one often relies instead on the
minimization of classical potential energies. In such case, V takes an explicit form, usually of
Lennard-Jones type. More general potentials, accounting for multiple body interactions, can be
used for capturing different atom bonding behaviors.

We consider here classical potentials minimization and focus on a minimal abstract frame
capable of inducing graphene-like periodicity at zero temperature. Our choice of the energy (see
below) is inspired by the many empirical potentials that have been set forth in order to describe
interactions between carbon atoms, see the reference modeling papers [5, 6, 33] as well as the
discussion in [13]. Let us emphasize the mathematical nature of our analysis, being beyond our
purposes to target in detail the indeed quite rich physics and chemistry of carbon. A rigorous
planar crystallization result, in the same spirit of [10, 19, 29, 34, 41], is our first goal.

We should also stress that this description regards the zero temperature situation and we recall
that in some regimes two dimensional crystal ordering is prevented at positive temperature, see
for instance [14].

We shall be considering two-dimensional particle systems. We will turn to 3D issues later in
Section 7. Let Cn be a configuration of n identical atoms to be identified with their respective
positions x1, . . . , xn ∈ R2. The energy of such configuration will result from the contribution
of both two-body and three-body interactions. In particular, given the atoms xi and xj we
denote their distance by `ij = |xi−xj | and we associate to all ordered triples xi, xj , xk the
angle θijk determined by the segments xi−xj and xk−xj (choose anti-clockwise orientation, for
definiteness), see Figure 1.

The energy of the configuration will be given by the sum

V =
1

2

∑
i6=j

V2(`ij) +
1

2

∑
A

V3(θijk). (1)
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xi

xj

xk
θijk

Figure 1. Notation for bonds and bond angles.

Here, the two-body interaction potential V2 : [0,∞)→ [−1,∞] is such that

V2 =∞ on [0, 1), V2(1) = −1, V2(r) > −1 for r > 1, V2(r) = 0 for r ≥
√

2. (2)

In particular, r = 1 represents the (normalized) carbon bond length and the constraint V2 =∞
on [0, 1) is usually referred to as hard-interaction assumption, see Figure 2. We say that xi
and xj are bonded or that there is a (active) bond between xi and xj if 1 ≤ `ij <

√
2. The

set of (active) bonds forms a graph which we call bond graph and the fact that the functional

V2 vanishes for r ≥
√

2 entails that the graph is topologically planar: given a quadrilateral
with all sides and one diagonal in [1,

√
2) the second diagonal is at least

√
2. In particular, we

are restricting interactions to nearest-neighbors only. The factor 1/2 in front of the two-body
interaction part obviously reflects the fact that `ij = `ji, namely every bond is counted twice in
the sum.

As for three-body interactions we let V3 = µv where µ > 0, v : [0, 2π] → [0,∞) is Lipschitz
continuous, v vanishes just in 2π/3 and 4π/3, and v(2π−θ) = v(θ). We also require that v is
convex on [3π/5, 11π/15] and, for α in such interval, there holds v(α+2π/3) = v(α). The set

A in definition (1) corresponds to the triples (i, j, k) such that 1 ≤ `ij , `jk <
√

2, namely such
that xj is bonded to both xi and xk (in this case we say that θijk is a (active) bond angle).

∞

−1

1
√

2

V2

2π/3

V3

4π/3

Figure 2. The potentials V2 and V3: Grey boxes illustrate (3)-(4).

The current form of V extracts the main common features of the empirical carbon potentials
proposed in the literature: short-range pair-interactions and bond-angles penalization between
nearest-neighbors, see [5, 6, 33].

The first main assumption of our theory is that the three-body interaction part of the energy
does not degenerate in a prescribed quantitative fashion. In particular, we shall ask µ to be
large enough in order to have

V3 > 8 on (θmin, π/2], (3)

V3 > 3 on (θmin, 3π/5) ∪ (5π/7, 9π/7) ∪ (7π/5, 2π−θmin), (4)
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see again Figure 2. In the latter θmin := 2 arcsin(1/(2
√

2)) ≈ 0.23π is the minimal angle which
is attainable by a pair of active bonds. Note that some quantitative requirement of this sort is
clearly necessary as the ground states for µ = 0 could be patches of the triangular lattice [29, 34].
Hence, by progressively increasing µ, some symmetry-breaking bifurcation is to be expected (see
Section 4). In particular, note that an analogous size assumption on µ is subsumed in [10] as
well.

A second main assumption of our theory is that V3 grows linearly out of optimal angles. In
particular, we assume that µ is large enough in order to have

V ′3,−(2π/3) < −3/π (5)

where V ′3,− denotes the left derivative. This is reminiscent of Radin soft-interaction assumption
from [29].

Before moving on we shall comment that assumptions (2)-(5) are chosen here for the sake
of maximizing simplicity rather than generality. In particular, our theory remains valid under
some weaker assumptions at the expense of some more elaborate arguments.

First, the two-body interaction potential V2 can be generalized in order to avoid the hard-
interaction restriction. In particular, we can assume that V2 is large in a right neighborhood of
0 only (still keeping the unique minimizer r = 1), see Figure 3. Namely, we could ask for

V2 ≥
1

γ
on (0, 1−γ), V2(1) = −1, V2(r) > −1 for r > 1, V2(r) = 0 for r ≥ 1+γ.

for some small γ > 0. Indeed, under the latter assumptions the statement in [10, Lemma 2.3]
entails that all bonds in a ground state configuration have a minimal length which can be made
arbitrarily close to one by letting γ small. In particular, for some critical γ we will have that
the maximal number of bonds per ground state atom will be necessarily smaller than nine. As
it will become apparent below, this is actually enough in order to run our analysis (see Lemma
3.1). We however prefer to stick to the case of hard interactions here for the sake of notational
simplicity.

As for the assumptions on the three-body interaction part of the energy, one again could ask
for some weaker conditions with respect to (3). For instance, in case V2 vanishes on [1+ε,∞)

for some ε <
√

2−1, assumption (3) can be weakened as follows

V3 > 6 + [ε/0.15] on (θε, π/2].

Here, θε = 2 arcsin(1/(2+2ε)) is now the minimal bond angle which is attainable by a pair
of active bonds of length smaller than 1+ε. In particular, θmin < θε < π/3 and we have that
θε → π/3 as ε→ 0. Moreover, the symbol [·] stands for the right-continuous integer part function
defined as x 7→ [x] = max{z ∈ Z : z ≤ x}. In particular, the above assumption gets weaker as
ε → 0. We however prefer to stick to assumption (3) in order to keep it independent from V2
(that is, from ε). Concerning assumption (4), the values 3π/5 and 5π/7 are also not restrictive,
one could take other numbers around 2π/3. Notice that due to the structural assumptions on V3,
the condition V3(5π/7) ≥ 3 implies that also V3(3π/5) > 3. Still we prefer to write assumption
(4) giving emphasis to the pentagonal angle 3π/5 which will play a role in the sequel.

Assumption (5) is needed in order to give a control on the energy of boundary atoms of
the bond graph. However, we remark that we do not have the same requirement (the Radin
soft-interaction assumption [29]) on the two-body potential. This is interesting because in the
case µ = 0, when we are reduced to a two-body interaction, finite crystallization is not known
when omitting such requirement (see also [41]). In our result, the two-body term can have the
general form of a short-ranged Lennard-Jones-like potential (see Figure 3).
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−1

1

V`

√
2

Figure 3. A more general choice for V`.

Let us mention that our assumptions on the potential V3 are somehow intermediate between
the two limiting situations depicted in Figure 4. The function vs is singular at bond angles 2π/3

2π/3

vd

4π/32π/3

vs

4π/3

Figure 4. Two limiting examples for the potential V3

and 4π/3 whereas vd is differentiable at those values. In particular, vd recalls the Stillinger-
Weber interaction potential given in some normalized form by vd(θ) = (cos θ+1/2)2 [32] and
already mentioned in [10], see also [5, 6, 33]. By assuming V3 = µvs (for µ > 0 large) the planar
crystallization problem would be drastically simplified as all bond angles at finite energy would be
forced to 2π/3. On the other hand, this would prevent from considering three-dimensional struc-
tures since three adjacent 2π/3-bonds are necessarily planar. Namely, nanotubes and fullerenes
would be out of reach of the theory. On the contrary, by letting V3 = µvd three-dimensional
ground states are even more favored (see Section 7 below) but planar crystallization is presently
not known for finite-atoms configurations. We need here to balance between these two issues by
assuming V3 to be sufficiently singular at minima in order to entail planar crystallization but
not too singular to allow for three-dimensionality.

In order to prove that planar ground-state configurations of V are subsets of the hexagonal
lattice, we develop an induction argument on bond-graph layers which is reminiscent of that
of [19, 29, 39]. In comparison with these papers, some extra care is here needed since the
richer geometric structure of the hexagonal lattice calls for nontrivial adaptations. Our analysis
departs from the former contributions in the control of the boundary energy. This is obtained
by a novel argument based on the estimate of the ratio between two and three-bonded boundary
vertices (Lemma 6.2). Moreover, the former results are here complemented in the direction of
the discussion of the global geometry of ground-state configurations. In particular, we provide
some explicit geometric construction in Section 4.
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3. Geometric preliminaries

3.1. Bond graph. In the sequel, the notation Cn = {x1, . . . , xn} will refer to both the n-atoms
configuration and its bond graph. In particular, we shall use equivalently the terms atom for
vertex and bond for edge. Given a configuration, its energy is defined according to (1). In analogy
with Quantum Mechanics, we will term ground states the global minimizers of the energy. If no
ambiguity arises, for simplicity of notation we will denote the energy of a given configuration by
V . Similarly, the number of bonds will be denoted by b. As the energy is clearly rotation and
translation invariant, we shall tacitly assume in all of the following that statements are to be
considered up to isometries. Note that, having fixed the number of atoms of a configuration, all
ground states are necessarily contained in a ball of sufficiently large radius. In particular, the
energy V is coercive, ground states exist, and the ground-state energy is negative.

A bond graph is connected if each two vertices are joinable through a simple path. Any
simple cycle of the bond graph is a polygon. We term acyclic all bonds which do not belong
to any simple cycle. Among these we distinguish between flags and bridges. We call bridge an
acyclic bond which is contained in some simple path connecting two atoms which are included
in two distinct cycles. On the other hand, we term flags all other acyclic bonds, see Figure 5.
The bond graph would increase in the number of connected components by removing an acyclic

Figure 5. Examples of flags (bold in the first two) and a bridge (bold in the last picture).

bond. Here, we refer to removal of a bond as of considering another configuration where the
bond subgraphs connected by the bond are shifted apart from each other in such a way that
they are not bonded anymore. This can be done for any acyclic bond. We will denote by f
(resp. g) the number of flags (resp. bridges). In what follows, we shall also refer to the removal
of a given bonded atom x from a configuration. With this, we mean that we consider another
configuration such that the atom x is relocated so far away that it has no active bonds. Notice
that each flag can be considered as corresponding to a single atom: if we have f flags we can
always remove exactly f atoms in order to deactivate the flag bonds.

Moving from energetic considerations, we shall record here some first elementary properties
of the bond graph of ground states.

Lemma 3.1. Ground-state atoms have at most three bonds.

Proof. Note that each atom has at most eight bonds as θmin > 2π/9. Assume now that the
bonds at xi are four or more. Hence, at least one of the bond angles centered in xi is smaller
than or equal to π/2. Then, assumption (3) ensures that by removing xi the energy would
strictly decrease. Indeed, no more of eight bonds are deactivated by this removal and the drop
in V3 is at least 8 by assumption (3). This contradicts the fact that the original configuration
was a ground state. �

Lemma 3.2. In a ground state all polygons have at least 6 edges and all convex polygons are
hexagons.



8 EDOARDO MAININI AND ULISSE STEFANELLI

Proof. Assume that the bond graph of a ground state contains a simple pentagon. Then, at
least one of the internal angles of the pentagon is smaller or equal to 3π/5. Let this angle θijk be
centered at xj . On the other hand, all bond angles are at least θmin, and so is θijk. Therefore,
if we remove xj we strictly decrease the energy because of assumption (4) (no more than three
bonds are deactivated due to Lemma 3.1 and the drop in V3 is more than 3). This contradicts
the fact that the configuration is a ground state. The same argument excludes simple polygons
with four or three edges. Suppose now to have a simple, convex polygon with more than 6 edges.
Then, there is at least one bond angle which is greater than or equal to 5π/7 and less than or
equal to π. Therefore, due to assumption (4), by removing the corresponding atom we again
strictly decrease the energy and contradict minimality. �

3.2. Honeycomb graph. In the mathematical and chemical literature one can find a remark-
able nonuniformity of notation and terminology when referring to hexagonal lattice structures.
We hence start by clarifying here the objects we are going to deal with. We fix the hexagonal
lattice to be the planar set {pa+qb+rc : p, q ∈ Z, r = 0, 1} with a = (

√
3, 0), b = (

√
3/2, 3/2),

and c = (
√

3, 1), see Figure 6, and term honeycomb the corresponding graph binding nearest
neighbors. Note that the honeycomb graph is planar, connected, and all edges have unit length.
We say that a configuration is honeycomb if it is a subset of the hexagonal lattice. Using the
nonnegativity of V3 and the minimality of V2 for unit length bonds, it is clear that the elementary
estimate

V ≥ −b (6)

holds, with equality if and only if the configuration is honeycomb. That is, in honeycomb
configurations the energy is computed by simply counting the number of bonds.

Figure 6. Honeycomb graph

We aim at proving that all ground states of the energy V are honeycomb (Theorem 6.1). A
preliminary step in this direction is the following.

Proposition 3.3. Let Cn with 1 ≤ n ≤ 6 be a ground state. Then, Cn is honeycomb and its
energy is −(n−1) if n ≤ 5 and −6 if n = 6.

Proof. Let n ≤ 5. As we have the lower bound (6) and it is trivial to construct honeycomb
configurations with n atoms and n−1 bonds, the result is achieved if we prove that the maximal
number of bonds is n − 1. Notice that for n ≤ 5 each bond is a flag, otherwise there would be
polygons with less than 6 edges, which is excluded by Lemma 3.2. Therefore, starting from a
reference atom, if we add the other n− 1 vertices one by one, each of them adds at most a flag.

If n = 6, either we have (at most) five flags or we have a hexagon, and the energy of the
regular hexagon with unit-length bonds is −6. �



CRYSTALLIZATION IN CARBON NANOSTRUCTURES 9

3.3. Boundary energy. Within the bond graph, we say that an atom is a boundary atom if it
is not contained in the interior region of any simple cycle. Let us define the energy of a boundary
atom xi as V (i) = −ri−si/2 where ri is the number of interior bonds at xi (0 or 1), and si is the
number of boundary bonds at xi (1, 2 or 3). Taking into account Lemma 3.1, the possible values
of the energy of a boundary atom of a ground state are xi are −1/2,−1,−3/2, and −2. Given a
n-atoms configuration Cn, we define its bulk, denoted by Cbulk

n , as the subconfiguration obtained
by dropping all the boundary atoms. The bulk is therefore a (n−d)-atoms configuration, where
d denotes the number of boundary vertices of Cn. We define V bulk as the energy of Cbulk

n . Then,
the energy of Cn can be seen as the sum of two contributions: V bulk and V bnd, where

V bnd := V − V bulk, (7)

that is, V bnd accounts for active bonds and bond angles of the configuration Cn that are not in
Cbulk
n .

From the definition of V bnd, we have

V bnd ≥
d∑
i=1

V (i) +
∑
i

V3(θi) ≥
d∑
i=1

V (i), (8)

where the second sum is extended to all the bond angles that contribute to V bnd, (we stress
that some of these may be adjacent to interior vertices). Notice that there is equality if the

configuration is honeycomb: in this case indeed −
∑d
i=1 V

(i) is reduced to the number of bonds
in Cbnd

n .

In view of Lemma 3.2, we name defect any elementary polygon (that is, a simple cycle with
no bonds in its interior region) in the bond graph which is not a hexagon (a polygon with six
bonds). A configuration Cn is then said to be defect-free if all its elementary polygons are
hexagons. Later on, we will see that ground states enjoy this property (see Proposition 6.7).
Moreover, notice that in a honeycomb configuration at least a vertex of the hexagonal lattice is
missing in the interior of a defect, and the minimal defect has 12 edges.

A distinguished role is also played by configurations with connected bond graph, no flags and
no bridges (f = g = 0). The bond graph is then delimited by a simple cycle that we call the
boundary polygon. For such graphs we adapt from [29] the following

Lemma 3.4. Consider a ground state Cn. Suppose that Cn is connected and it has no flags
nor bridges. Then,

n− d ≥ −4V + 6− 5n, (9)

and equality holds if and only if Cn is a defect-free honeycomb configuration.

Proof. Let hj be the number of elementary j-gons in the bond graph and h be the total number
of elementary polygons. We have ∑

j≥1

jhj = 2b− d,

because by summing all bonds of elementary polygons, interior bonds are counted twice. From
the latter and Lemma 3.2 we deduce

6h ≤ 2b− d
where h is the number of elementary polygons, with equality if and only if all elementary
polygons have six bonds. Combining this with the Euler formula h+ n = b+ 1 we get

n− d ≥ 4b− 5n+ 6. (10)

Making use of the lower bound (6) we obtain the result. �
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4. Daisies

As we will see in the next section, ground states are honeycomb, so that one would search for
a honeycomb configuration attaining the maximal number of bonds. This can be heuristically
restated as some minimality of the perimeter of the honeycomb configuration. This section is
devoted to the explicit construction of some of these configurations, providing a reference energy
value, namely

V = −[β(n)] where β(n) := 3n/2−
√

3n/2.

By the specific geometry of the hexagonal lattice, it is quite natural to expect the leading term
in the energy to be −3n/2 since each atom has three bonds and the bond angle contribution is

zero. The additional lower-order correction
√

3n/2 is then the effect of boundary bonds.

We consider a very special class of subsets Dk of the hexagonal lattice with n = 6k2 atoms
which we term daisies because of their symmetry. Daisies are constructed in a recursive way.
We define the daisy D1 to be a hexagon and construct the daisy D2 by externally attaching to
all bonds of D1 another hexagon. Then, the daisy D3 is constructed by adding hexagons such
that any boundary bond of D2 has a new hexagon constructed on it. We continue constructing
recursively for the daisy Dk, see Figure 4.1.

Figure 7. Daisies D1, D2, and D3.

We start by computing the energy of a daisy. In particular, we have he following.

Proposition 4.1. For all daisies we have V = −[β(n)].

Proof. Given the daisy Dk we denote by nk the number of atoms, bk the number of bonds, dk
the number of boundary atoms, d

(2)
k the number of two-bonded boundary atoms, ek the number

of hexagons possessing boundary atoms, hk the number of hexagons.

By referring directly to the construction of Dk, we can easily check that the following recursive
relations hold true

dk = 12 + dk−1, d1 = 6, (11)

nk = nk−1 + dk, n1 = 6, (12)

bk = bk−1 + 3d
(2)
k−1 + 6, b1 = 6, (13)

d
(2)
k = d

(2)
k−1 + 6, d

(2)
1 = 6. (14)

Moreover, note that ek = 6k−6 for k ≥ 2 and e1 = 1. From relation (11) we have

dk = 12k − 6.
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Substituting the latter into relation (12) we find

nk = nk−1+12k−6 = 6 +

k∑
j=2

(12j−6) = 6 + 6(k+2)(k−1)− 6(k−1) = 6k2,

and we observe that indeed 3nk/2 = 9k2 is a square. On the other hand, we have that ek =

dk − d(2)k and d
(2)
k = 6k (so that indeed ek = 6k − 6). The total number of hexagons in Dk is

hence

hk = 1 +

k∑
j=2

(6j−6).

Eventually, from relation (13) we can now deduce that the number of bonds of the daisy Dk is

bk = bk−1+3dk−1+6 = bk−1+18(k−1)+6 = 6 +

k∑
j=1

(18j−12) = 9k2−3k.

Now the assertion follows using (6), where equality is true for honeycomb configurations like
daisies, as

V = −bk = −9k2 + 3k = −3n/2 +
√

3n/2

and the latter is integer. �

By inspecting the proof of the latter Lemma one realizes that indeed daisies can be constructed
for n = 6k2 only. We conjecture that, for such choice of n, daisies are the unique ground states
of V . On the other hand, for n 6= 6k2, the nonuniqueness of the ground states can be easily
checked.

Before moving on let us mention that some specific highly-symmetric ground-state structure
can be identified also in the case of simple two-body interaction potentials. For instance, by
setting µ = 0 in V and considering the two-body soft disk potential of Radin [29], we may find
a symmetric ground state represented by an hexagon of edge k, constructed on the triangular
lattice, see Figure 8. The value of the ground state energy for n-atoms configuration is obtained
in [19, 29] as −[3n−

√
12n−3] and symmetric states (daisies) in this context correspond indeed

to integer values of
√

12n−3. In this respect, the reader is referred also to Yeung, Friesecke,

Figure 8. Symmetric ground states for µ = 0.

& Schmidt [41] and Schmidt [31] for an analysis on the clustering of atoms and the emergence
of a overall geometric shape as an effect of surface tension (still for the case µ = 0). A discussion
on the surface energy term in the thermodynamic limit n→∞ is in Theil [35] where it is proved
that it can be expressed as a surface integral involving just the surface normal and the interaction
potential. As mentioned in Section 2, the size of µ (which indeed modulates the relation between
two- and three-body interactions) is clearly responsible for the symmetry pattern of ground
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states. In particular, by progressively increasing µ from zero, a symmetry-breaking phenomenon
is expected to occur so that ground states turn from triangular to hexagonal patches. Some
quantitative estimates in this direction are indeed available in dependence of n. For instance,
by letting n = 7 one can argue that the honeycomb ground state lattice will surely be preferred
to the triangular one (left in Figure 8) as soon as µ > 5/(18v(π/3)+3v(π)). The appearance of
intermediate geometries between the triangular and the honeycomb phases is to be expected.

5. Energy bound

The aim of this section is that of proving an upper energy estimate for ground states. In
particular, we check for the following.

Proposition 5.1. For all ground states Cn we have V ≤ −[β(n)].

Indeed, the latter inequality will be proved to be an equality and a characterization of ground
states later on in Corollary 6.6. The proof of Proposition 5.1 consists in exhibiting Cn which
realizes the inequality V ≤ −[β(n)]. This has been already done in Proposition 4.1 for daisies,
namely for n = 6k2. For all other values of n, we proceed by an explicit construction corre-
sponding to some sort of geometric interpolation between the two closest daisies.

Proof. Proposition 4.1 proves the assertion for n = 6k2. Let 6k2 < n < 6(k+1)2 and define
m = n − 6k2 so that 1 ≤ m < 12k + 6. We shall be computing the energy of a ground state
with exactly 6k2 + m atoms by progressively adding the m atoms to the daisy Dk. From here
on we assume that k ≥ 2 as the possibility of creating ground states with n < 24 atoms can be
easily checked by hand (equivalently, by some simplified version of the arguments below).

Step 1: Construction of a (6k2+m)-atom configuration. Let us first describe our construction:
Starting from Dk we add a new atom x in the bond graph in such a way that it gets bonded
to the uppermost among the rightmost atoms of Dk. Then, we add x + (0, 1) as second atom.
Subsequently, we progressively add atoms in by letting each new atom be bonded both with the
latest added one and, possibly, with some atom of Dk. One can easily realize that this uniquely
defines a procedure in order to (clockwise) add m atoms to Dk, see Figure 9.

6k2+1

6k2+2

6k2+3

6k2+4

Figure 9. Construction of the (6k2+m)-atom configuration for k = 3, m = 4.

Our aim is now to compute the number of new bonds which have been activated. By in-
creasing m we progressively complete a connected series of new hexagons which correspond to
the boundary hexagons of Dk+1. Initially, one needs three new atoms to form a new hexagon.
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Then, one new hexagon is created every second newly added atom. This goes on for exactly
k − 1 hexagons so that the number of newly activated bonds is

dmk :=

[
3

2
m− 1

2

]
for 1 ≤ m ≤ 3 + 2(k−2) = 2k − 1.

Then, the k-th hexagon of this series is a corner hexagon of Dk+1, in gray in Figure 9. This needs
three new atoms to be completed, thus activating four new bonds. From there on, one completes
a new hexagon (activating three new bonds) every two newly added atoms until m = 4k. As
for the number of bonds, one has to sum up the newly activated bonds with those which were
already active for m = 2k − 1. In particular, we have

dmk =

[
3

2
(m−(2k−1))− 1

2

]
+

[
3

2
(2k−1)− 1

2

]
=

[
3

2
m− 1

]
for 2k ≤ m ≤ 4k.

This procedure can be restarted in correspondence to every corner hexagon of Dk+1 and gives

dmk =

[
3

2
m− 1

2
q

]
for 2(q−1)k+q−2+2(q−2)− ≤ m ≤ 2qk+q−2

and q = 1, . . . , 6, (15)

where we have used the notation x− = max{0,−x} for the negative part. Note that, for q = 6,
we reach exactly m = 2qk+q−2 = 12k+4. From there, we complete the last hexagon of Dk+1

by achieving

d12k+5
k = 18k + 4 and d12k+6

k = 18k + 6.

Let us recall from Proposition 4.1 that the numbers bk and dk of bonds and boundary bonds,
respectively, of Dk are dk+1 = 12k + 6 and bk = 9k2 − 3k. In particular, we have checked that
by adding m = dk+1 = 12k+6 atoms to Dk one can reconstruct Dk+1. Moreover, the number
of bonds of our (6k2+m)-atom configuration is

b6k2+m = 9k2 − 3k + dmk .

Step 2: The energy of the constructed configuration. In order to prove the result, making use of
(6), we check that

−V = b6k2+m = 9k2 − 3k + dmk ≥

[
3

2
(6k2+m)−

√
3

2
(6k2+m)

]
for 1 ≤ m < 12k+6.

Equivalently, by using (15), we aim at proving that[
−3k +

3

2
m− 1

2
q

]
≥

[
3

2
m−

√
9k2+

3

2
m

]
for 2(q−1)k+q−2+2(q−2)− ≤ m ≤ 2qk+q−2 and q = 1, . . . , 6,

that is

−3k +
3

2
m− 1

2
q ≥

[
3

2
m−

√
9k2+

3

2
m

]
(16)

for 2(q−1)k+q−2+2(q−2)− ≤ m ≤ 2qk+q−2 and q = 1, . . . , 6.

Note that the sequence

m 7→

[
3

2
m−

√
9k2+

3

2
m

]
− 3

2
m
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attains its maximum for m = 2(q−1)k+q−2+2(q−2)−. By substituting the latter into (16) we
reduce ourselves in proving

−3k + q ≥

[
3

2
q −

√
9k2+3(q−1)k +

3

2
q − 3 + 3(q−2)−

]
for q = 1, . . . , 6.

The latter corresponds to the following

1− 3k + q >
3

2
q −

√
9k2+3(q−1)k +

3

2
q − 3 + 3(q−2)− for q = 1, . . . , 6.

By taking the square on both sides, this is equivalent to

1

4
q2 − 2q − 3(q−2)− − 2 < 3k for q = 1, . . . , 6,

which is clearly true as k ≥ 1. �

6. Ground states are honeycomb

This section brings to our main crystallization result in the plane. In particular, we prove
the following.

Theorem 6.1. Ground states are honeycomb and connected.

The most important tool for proving the latter is a boundary energy estimate. This requires
assumptions (4) and (5) on the three-body potential V3 and reads as follows.

Lemma 6.2. Let n ≥ 6. Let Cn be a ground state and assume it to be connected with no flags
nor bridges. Then,

V bnd ≥ − [3d/2] + 3. (17)

Proof. Since no flags nor bridges are present, we can consider the boundary polygon of Cn. We
denote by ε ∈ [0, 1] the ratio of its concave angles, by ϕi, i = 1, . . . , εd such angles, and by αi,
i = 1, . . . (1−ε)d the remaining ones. Of course we have

α(1−ε)d+ ϕεd =

(1−ε)d∑
i=1

αi +

εd∑
i=1

ϕi = π(d−2), (18)

where α (resp. ϕ) denotes the mean value of the angles αi (resp. ϕi). By the assumption (4)
and the fact that Cn is a ground state we have that each convex angle αi is not less than 3π/5,
so that α ≥ 3π/5, and similarly ϕ ≥ 9π/7 (arguing as in Lemmas 3.1 and 3.2). Inserted into
relation (18), these bounds entail

ε ≤ 7

12
− 35

12d
<

7

12
. (19)

Let us consider the energy estimate (8), also recalling that each atom has at most three bonds
since Cn is a ground state, see Lemma 3.1. As the sum over the angles therein is made by
nonnegative terms, we may reduce it to the ones involving just boundary atoms (thus neglecting
the angles adjacent to interior vertices that contribute to V bnd). The energy of boundary vertices
is −1 in correspondence of convex angles (no more then two bonds are there, otherwise an angle
would be less than or equal to π/2) and it is not less than −2 otherwise. Summing up we write
the basic estimate

V bnd ≥ −(1−ε)d− 2εd+

(1−ε)d∑
i=1

V3(αi) +

εd∑
i=1
i∈P

(
V3(ϕ1

i )+V3(ϕ2
i )
)

+

εd∑
i=1
i∈Q

V3(ϕi), (20)
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where Q is the set of indices i for which the vertex in ϕi is two-bonded and P is the set of the
remaining indices. Moreover, if the vertex corresponding to ϕi is three-bonded, that is if i ∈ P ,
we are denoting with ϕ1

i , ϕ
2
i ∈ (3π/5, 5π/7) the two angles forming ϕi. Then, the structural

assumptions on V3 entail

V3(ϕ1
i ) + V3(ϕ2

i ) ≥ 2V3(ϕi/2) for any i ∈ P ,
V3(ϕi) = V3(ϕi−2π/3) + V3(2π/3) ≥ 2V3(ϕi/2) for any i ∈ Q.

Hence, still making use of the (local) convexity of V3, from (20) and (18) we get

V bnd ≥ −(1+ε)d+

(1−ε)d∑
i=1

V3(αi) +

εd∑
i=1

2V3(ϕi/2)

≥ −(1+ε)d+ (1−ε)dV3(α) + 2εdV3(ϕ/2)

≥ −(1 + ε)d+ (1+ε)dV3(α0(ε)),

(21)

where

α0(ε) :=
π(d−2)

(1+ε)d
.

We will obtain the lower bound for V bnd by minimizing the right-hand side in (21) with
respect to ε ∈ [0, 7/12). The estimate V bnd ≥ −[3d/2] + 3 follows easily if ε ≤ ([d/2]−3)/d, as
in this case it is enough to consider the first term in the right hand side of (21) (notice also that
([d/2]−3)/d is nonnegative, because d ≥ 6 from Lemma 3.2). Thus, in view of (19), and recalling
that εd has to be integer, we may reduce to the case ε ∈ [ε∗, 7/12], where ε∗ := ([d/2]−2)/d.
That is, we are left with

V bnd ≥ min
ε∗≤ε≤7/12

−(1+ε)d+ (1 + ε)dV3(α0(ε)). (22)

We let F (ε) := (1+ε)d (V3(α0(ε))− 1), on [ε∗, 7/12]. If the minimizer is attained at ε̄ such that
α0(ε̄) ≤ 3π/5, then it is enough to apply assumption (4), which immediately gives F (ε̄) ≥ 0
proving the result. So let us assume that the minimizer is attained at ε̄ ∈ [ε∗, 7/12] such that
α0(ε̄) > 3π/5. In this case, since ε 7→ α0(ε) is decreasing we have that

α0(ε∗) > α0(ε) > α0(ε̄) > 3π/5 for any ε ∈ (ε∗, ε̄). (23)

Therefore, since V3 is convex and decreasing on (3π/5, 2π/3) we have

V3(α0(ε∗)) ≥ V3(2π/3) + (α0(ε∗)−2π/3)V ′3−(2π/3) and V ′3(α0(ε∗)) ≤ V ′3−(2π/3). (24)

Using the identity (1+ε)α′0(ε) = −α0(ε), we compute the derivatives of F ,

1

d
F ′(ε) = V3(α0(ε))− 1− α0(ε)V ′3(α0(ε)) and

1

d
F ′′(ε) = −α0(ε)α′0(ε)V ′′3 (α0(ε)),

and we see that the estimates (24) entail

1

d
F ′(ε∗) = V3(α0(ε∗))− 1− α0(ε∗)V ′3(α0(ε∗))

≥ (α0(ε∗)−2π/3)V ′3−(2π/3)− 1− α0(ε∗)V ′3−(2π/3)

= −1− (2π/3)V ′3−(2π/3) > 0,

where we made use of assumption (5) for the last inequality. On the other hand, since α′0(ε) ≤ 0,
from the monotonicity (23) and the convexity of V3 on (3π/5, 2π/3) we have F ′′(ε) ≥ 0 on [ε∗, ε̄]
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which, together with F ′(ε∗) > 0 entails that F is non decreasing on [ε∗, ε̄]. As ε̄ minimizes F
we conclude that ε̄ = ε∗. The result eventually follows, since we have

F (ε∗) = (1+ε∗)d (V3(α0(ε∗))−1)

≥ ([3d/2]−2)
(
(α0(ε∗)−2π/3)V ′3−(2π/3)− 1

)
≥ ([3d/2]−2)

(
πd− 2π − 2π[3d/2]/3 + 4π/3

[3d/2]− 2
V ′3−(2π/3)− 1

)
≥ −[3d/2] + 2− π

3
V ′3−(2π/3)

> −[3d/2] + 3,

(25)

where we used again relations (24) and assumption (5). �

An immediate corollary of the boundary energy estimate of Lemma 6.2 reads as follows.

Corollary 6.3. Let n ≥ 6. Let the ground state Cn be connected and have no flags nor bridges.
If Cbulk

n is honeycomb and Cn is not, then inequality (17) is strict. Equality in (17) implies that
d is even.

Proof. By following the proof of Lemma 6.2 we shall identify the cases of equality in all the
inequalities. Assuming that Cbulk

n is honeycomb, if the length of some bond of Cn is not 1, we
have strict inequalities in (8) and (20). We also have a strict inequality in (20) if some of the
angles that we neglected therein (the ones adjacent to interior vertices that contribute to V bnd)
is different from 2π/3 or 4π/3. Moreover, the only case of possible equality in (21) corresponds
to ε = ([d/2]−3)/d, since the proof of Lemma 6.2 shows that all other cases entail the strict
inequality. If α0(([d/2]−3)/d) is not equal to 2π/3 (which is the case if d is odd), the term
involving V3 in the right-hand side of (21) gives a positive contribution, so that the inequality is
strict. Summing up, if Cbulk

n is already known to be honeycomb the equality V bnd = −[3d/2]+3
implies that the entire configuration Cn is honeycomb as well. �

Before proceeding with the proof Theorem 6.1, we state some useful, elementary inequalities
for the function β(n) = 3n/2−

√
3n/2.

Lemma 6.4. Let n ≥ 1. Then [β(n−1)] + 1 ≤ [β(n)] and [β(n−1)] + 3 ≥ [β(n+1)].

Proof. By definition of β, the inequality β(n− 1) + 1 ≤ β(n) (which implies the desired one) is

equivalent to
√

3n/2 − 3/2 ≤
√

3n/2− 3/2. The latter is clearly true for any positive integer.

Analogously, the inequality β(n−1)+3 ≥ β(n+1) is equivalent to
√

3n/2− 3/2 ≤
√

3n/2 + 3/2
which again can be directly checked. �

Lemma 6.5. Let n ≥ 12 and 6 ≤ m,n−m ≤ n. Then,

[β(m)] + [β(n−m)] + 1 ≤ [β(n)] (26)

and the equality holds if and only if n = 12 and m = 6.

Proof. Note that β is increasing and strictly convex. In particular, it is immediate to check that
m 7→ β(m) +β(n−m) attains its maximum over the given range for m = 6 or m = n−6. Hence,
we have that

[β(m)] + [β(n−m)] + 1 ≤ β(m) + β(n−m) + 1 ≤ β(6) + β(n−6) + 1

= 6 +
3

2
(n−6)−

√
3

2
(n−6) + 1.
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For all n large enough, the above right-hand side is strictly smaller than β(n)− 1 which in turn
is controlled by [β(n)]. In particular, it is easily proved that

6 +
3

2
(n−6)−

√
3

2
(n−6) + 1 < β(n)− 1 =

3

2
n−

√
3

2
n− 1

whenever n ≥ 17, so that the assertion follows. The remaining cases n = 12, . . . , 16 can be
checked directly. �

Proof of Theorem 6.1. We aim at proving the following claim: If Cn is a ground state then it
is honeycomb, connected, and V = −[β(n)]. In order to check this we proceed by induction on
n. For n ≤ 6 the claim follows from Proposition 3.3. Let us assume that it holds for all ground
states Cm with m < n and prove it for n.

Step 1: Nonhoneycomb Cn with flags. Suppose that the ground state Cn is not honeycomb and
has a flag. If Cn−1 obtained by cutting the flag is not honeycomb, by induction its energy is
strictly greater than −[β(n−1)], therefore

V > − [β(n−1)]− 1 (27)

since each flag decreases the energy at most by 1. By combining the latter with the inequality
[β(n−1)] + 1 ≤ [β(n)] from Lemma 6.4 we obtain that V > −[β(n)]. This contradicts the fact
that Cn is a ground state by Proposition 5.1. If Cn−1 is honeycomb, then the considered flag is
not of unit length or creates an angle which is not 2π/3 nor 4π/3 (otherwise Cn would have been
honeycomb itself). By the inductive assumption the energy of Cn−1 is greater than or equal to
−[β(n−1)], and in this case the contribution of the flag to the energy is strictly greater than
−1, thus (27) holds and we conclude that V > −[β(n)] in the same way, again contradicting the
fact that Cn is a ground state.

Step 2: Nonhoneycomb Cn with bridges. Suppose that the ground state Cn is not honeycomb
and has a bridge. Consider the two subconfigurations Cm and Cn−m which are connected by
the bridge. If both Cm and Cn−m are honeycomb and Cn is not, then the bridge is not of
unit length or creates an angle which is not 2π/3 nor 4π/3 (otherwise Cn would have been
honeycomb itself), so that its contribution to the energy is strictly greater than −1. By the
induction assumption we get

V > −[β(m)]− [β(n−m)]− 1 ≥ −[β(n)],

where the latter inequality follows from Lemma 6.5. This contradicts the fact that Cn is a ground
state by Proposition 5.1. In case one out of Cm or Cn−m is not honeycomb, the sum of their
energies is strictly greater than −[β(m)]− [β(n−m)] by induction. Since the bridge contribution
to the energy is in general greater than or equal to −1, we still get V > −[β(m)]− [β(n−m)]−1
and we conclude V > −[β(n)] with Lemma 6.5. Hence, Cn is not a ground state, a contradiction.

Step 3: Cn not connected. If the ground state Cn has two or more connected components, by
arguing similarly as above we use the induction assumption and obtain an inequality of the form
V ≥ −[β(m)]− [β(n−m)]. This still implies V > −[β(n)] by using Lemma 6.5 contradicting the
fact that Cn is a ground state.

Step 4. Nonhoneycomb and connected Cn with no flags nor bridges. Owing to Steps 1-3, we
are left with the most important case, a connected ground state Cn with no flags nor bridges.
Suppose that Cn is not honeycomb. Then, either the bulk is not honeycomb itself, or it is still
honeycomb. In the first case, by induction

V bulk > −

[
3

2
(n−d)−

√
3

2
(n−d)

]
. (28)
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In the second case, we have

V bnd > − [3d/2] + 3, (29)

as a consequence of Corollary 6.3. By using relations (7) and (17), and recalling that by induction
we always have V bulk ≥ −[β(n−d)], in both cases we get

V > −

[
3

2
(n−d)−

√
3

2
(n−d)

]
− [3d/2] + 3 ≥ −

[
3

2
n−

√
3

2
(n−d)

]
+ 3. (30)

Since the right-hand side is integer, the strict inequality implies

−([−V ] +1) ≥ −3

2
n+

√
3

2
(n−d) + 3. (31)

On the other hand, as Cn is not honeycomb we have from (6) that V > −b. We recall that V
is negative (otherwise it is obvious that V > −[β(n)], hence Cn is not a ground state). Since b
is integer, −V < b implies [−V ] ≤ b− 1, which, together with relation (10), entails

4[−V ] ≤ 4b− 4 ≤ 6n− d− 6− 4.

This is equivalent to

n− d ≥ 4([−V ]+1)− 5n+ 6. (32)

By using relation (32) into inequality (31) we get

−([−V ] +1) ≥ −3

2
n+

√
3

2
(4([−V ]+1)−5n+6) + 3.

As the function x 7→ x + 3n/2 − 3 −
√

3(−4x+6−5n)/2 is nondecreasing and vanishes for
x = −β(n), the above inequality implies

−([−V ] +1) ≥ −3

2
n+

√
3

2
n,

but now the left hand side is integer, therefore

V > −([−V ] +1) ≥ −

[
3

2
n−

√
3

2
n

]
.

That is, V > −[β(n)] contradicting the fact that Cn is a ground state.

Step 5: Energy equality. We have shown that Cn is honeycomb and connected. Since we already
know that V ≤ −[β(n)] by Proposition 5.1, what we are left to prove is the opposite inequality.

As Cn is honeycomb, in case it has a flag, by using induction and the fact that a flag decreases
the energy at most by 1, we have that V ≥ −[β(n−1)]− 1. Then, the lower bound V ≥ −[β(n)]
follows by Lemma 6.4. If Cn has two subconfigurations that are connected by a bridge (or that
are two distinct connected components), by induction we find V ≥ −[β(n−m)] − [β(m)] − 1,
where n − m,m are the numbers of atoms of the subconfigurations. Then, the lower bound
V ≥ −[β(n)] follows by applying Lemma 6.5. The case of more connected components is
reduced to the previous one.

Finally, if Cn has a single connected component, no flags and no bridges, by using (7),
induction, and Lemma 6.2 we get that

V ≥ −[β(n−d)]− [3d/2] + 3 ≥ −

[
3

2
n−

√
3

2
(n−d)

]
+ 3.
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Then, using relation (9) we find

V ≥ −

[
3

2
n−

√
3

2
(−4V−5n+6)

]
+ 3 ≥ −3

2
n+

√
3

2
(−4V−5n+6) + 3.

By following the final part of Step 4, the above inequality implies V ≥ −β(n), upon noting

that the function x 7→ x + 3n/2 − 3 −
√

3(−4x+6−5n)/2 is nondecreasing and vanishing for
x = −β(n). But V = −b since Cn is honeycomb. In particular V is integer and the assertion
V ≥ −[β(n)] follows. �

By considering the proof of Theorem 6.1, we are in the position of stating a characterization
of ground states in terms of their energy. In particular, we have the following.

Corollary 6.6. Ground states are characterized by the equality V = −[β(n)].

By using Corollary 6.6 one immediately obtains that all daisies as well as all configurations
constructed in the proof of Proposition 5.1 are ground states. Moreover, one can check that
the only ground state with a bridge is the right-most configuration in Figure 5. Indeed, let a
ground state contain a bridge connecting two subsets of m and n−m atoms each. By Theorem
6.1, the configuration is honeycomb. From minimality we necessarily have that m and n realize
the equality in relation (26). Hence, by Lemma 6.5 we have that n = 2m = 12.

We conclude the geometric characterization of ground states by showing that they have no
defects. In the following lemma, given a honeycomb configuration with some defect, we name
sink each vertex of the hexagonal lattice which is missing in the interior of the defect.

Proposition 6.7. All ground states are defect-free.

Proof. It is enough to consider ground states without flags, because if a ground state Cn has
f flags, the (n−f)-atoms configuration obtained by removing all flags is still a ground state.
Indeed, suppose that this is not the case. Then, since the energy drop due to each flag is at
most 1, we have V > −[β(n−f)]− f . Hence, Lemma 6.4 yields V > −[β(n)], a contradiction to
minimality due to Corollary 6.6.

Suppose there is a single sink in a honeycomb configuration. This corresponds to a twelve
edges defect. By filling the sink one activates three bonds. So it is enough to take a two-bonded
boundary atom (which does always exist) and place it at the sink and the energy decreases.
This shows that a configuration with only a single sink is not a ground state.

Then, we use induction on the number m of sinks. Assume that any honeycomb configuration
with a defect containing at most m−1 sinks, m > 1, is not a ground state and let by contradiction
Cn−1 be a ground state (hence honeycomb) with a defect containing m sinks. We shall be
distinguishing two cases. At first, suppose that in the defect with m sinks there is a sink at
distance 1 from three distinct vertices of the defect. In this case it is again enough to move
a two-bonded boundary atom and place it in correspondence of that sink in order to decrease
the energy and contradict minimality. On the other hand, suppose that in the defect with m
sinks, there is no sink at distance 1 from three distinct vertices of the defect. Since the defect
is a closed polygon, it necessarily possess at least two consecutive interior angles of 2π/3. This
means that three consecutive edges of the defect belong to the same unit hexagon. Therefore,
placing two atoms in the two sinks completing the hexagon would mean to activate three new
bonds: we let Cn+1 be this new configuration. Since Cn+1 has m− 2 sinks, by induction there
holds

−[β(n+1)] < V (Cn+1) = V (Cn−1)− 3.
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Combining this with the second inequality of Lemma 6.4, we deduce V (Cn−1) > −[β(n−1)], a
contradiction. �

7. Nonplanar ground states

The energy V has a clear planar nature as it consists of two- and three-body interaction terms
only. On the other hand, the very definition of V makes sense also in three-dimensional space.
In this section, we investigate some consequence of assuming V to be defined on configurations of
atoms in R3. The aim is that of relating V to the description of some specific three-dimensional
allotropes of carbon: fullerenes and nanotubes. We shall not attempt to review on the com-
plex phenomenology of these molecules, let us just record from Kroto [21] that fullerenes are
clusters of carbon atoms forming a so-called closed cage composed of twelve pentagons and an
unrestricted number of hexagons. Among these, the most common is C60 which consists of
twelve planar pentagons and twenty planar hexagons (soccer ball). The existence of fullerenes
has been theoretically speculated since the 70s. Their experimental discovery by Curl, Kroto,
& Smalley in 1985 lead to the 1996 Nobel Prize in Chemistry.

Nanotubes are cylindrical structures with atom-thick carbon walls. Ideally, nanotubes can be
visualized as the result of the roll-up of a graphene strip (sometimes referred to as a graphene
nanoribbon). In particular, given the characteristic chiral vector (p, q), the roll-up is such that
the atom x gets identified with x+ pa+ qb. Nanotubes are called armchair for p = q, zigzag for
p = 0, and chiral in all other cases, see Figure 10. Carbon nanotubes (either single- or multi-

a

b pa+qb

zigzag

armchair

Figure 10. Rolling-up of nanotubes from a graphene sheet.

walled) show remarkable electro-mechanical properties and are believed to be possibly playing
a major technological role in the near future. The reader is referred to [1, 40] and the references
therein for an account on atomistic-based description of the mechanics of carbon nanotubes.

Our functional frame, although extremely simplified, describes to some extent the emergence
of these three-dimensional structures. Of course nonplanar ground states exist. Indeed, when-
ever a planar ground state exhibits a flag (and already for n = 4) one can find a nonplanar
configuration realizing exactly the same energy by simply tilting the flag out of the plane. On
the other hand, one may then wonder whether by dropping the planarity constraint one could
realize a strictly smaller energy. In other words, if three-dimensional ground states happen to
be necessarily nonplanar. Leaving this issue open for small n (for n = 6, even in three space
dimensions, the regular hexagon, the benzene cycle, is the only ground state), the first result
of this section proves that ground states are necessarily nonplanar for large n. This evidence
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is reminiscent of the applicative difficulty of realizing two-dimensional crystallization in prac-
tice. The reader is also referred to Grivopoulos [16] for an argument against honeycomb
crystallization for an infinite configuration interacting via Lennard-Jones-like potentials in two-
dimensional space. Before moving on let us mention that the results of this section do not
require assumption (5) but are rather valid in some more generality. In particular, we can allow
here some differentiable potential V3, possibly of the form V3 = µvd, see Figure 4.

Theorem 7.1. There exists no planar ground state for large n.

Proof. We aim at exhibiting a three-dimensional configuration whose energy is strictly less than
−[3n/2−

√
3n/2] by rolling-up a sufficiently big planar hexagonal configuration. In doing so, we

pay some three-body energy as we are forced to leave the optimal bond angles 2π/3 but we are
gaining on the two-body interaction term as we are activating extra bonds by rolling-up. We
shall show that the overall balance is favorable.

Let us focus first on the case of n = 6k2. We shall consider the daisy Dk to be ideally
embedded in an infinite hexagonal lattice and roll it up in an armchair nanotube defined by
the vector (k, k). By resorting to either the so-called conventional (or rolled-up) model [9] or
the polyhedral model for nanotubes [7], we have that the bond angles (depending on the model
either all of them or some of them, the others being 2π/3) behave like

θ = 2π/3 + O(1/k2) as k →∞.
Hence, the energy loss in the three-body interaction term fulfills

1

2

∑
A

V3(θijk) ∼ ck2V3(2π/3 + O(1/k2)) = O(1) as k →∞.

On the other hand, the gain in the two-body energy part is exactly −k for it amounts to a fixed
finite number of newly activated bonds. In particular, one can compute that

Vrolled−up = −9k2 + 3k − k + O(1) = −3n/2 +
√

2n/3 + O(1)

< −3n/2 +
√

3n/2 = Vplanar for n large. (33)

Hence, it is enough to take a sufficiently large n = 6k2 in order to have that the rolled-up
daisy is favorable with respect to the planar one.

The argument for general n is analogous, just starting from a ground state which is interme-
diate between daisies, in the same spirit as in the proof of Proposition 5.1. �

Before moving on we shall comment that the same argument of Theorem 7.1 applies to the
behavior of a nanotubes as well. Indeed, assume to be given a indefinitely long graphene strip
cut along some orthogonal direction to a given chiral vector (p, q), see the dashed lines in Figure
10. Arguing as in the proof of Theorem 7.1 we clearly have that, by letting p+q be large enough,
one can find a critical strip width starting from which it is energetically favorable to roll-up the
strip into a nanotube. The emergence of such a critical width somehow relates to the fact that,
depending on the chiral direction, some minimal nanotube diameter is observed. Moreover, the
energy loss by rolling-up increases with the strip width. This represents the evidence that larger
nanotubes show enhanced stability.

An interesting feature of the functional V is its capability of predict the aspect ratio of carbon
nanotubes, as suggested by Mielke [24]. In particular, we can check that, by progressively
adding atoms to a nanotube, its diameter remains constant and its length scales with the number
of atoms. This provides an illustration of the fact that carbon nanotubes are presently grown
to lengths which are up to 108 times the diameter. This corresponds to the fact that, by
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progressively increasing n, namely adding atoms to a carbon nanotube, the functional V drives
the structure to maintain a constant diameter and to grow at the ends. We record this fact in
the following statement.

Proposition 7.2. The length of a nanotube scales like n.

Proof. For the sake of definiteness, let us focus on zigzag nanotubes. Other geometries can be
treated analogously. Assume to be given a rectangular graphene patch consisting in λ rows of
w hexagons, piled up in a zigzag configuration (that is (p, q) = (w+1, 0)). The patch can be
conveniently rolled up in direction (1, 0) as soon as its width w is large enough (and regardless
of its length λ). By rolling up the patch one activates new bonds so that the energy drops,
to first order, by the quantity −λ + 1. On the other hand, the roll-up causes the angles to
deviate from the optimal angle 2π/3 by some quantity of the order of w−2 (recall that w is
large). Correspondingly, the energy loss per angle bond is proportional to w−2 (see the proof
of Theorem 7.1) and, by summing up for the n atoms, we get that the loss in the three-body
interaction contribution scales like nw−2. As n is proportional to wλ (again to first order),
we have checked that the roll-up entails an energy change of the order of 1 − λ + cλ2n−1. By
minimizing the latter with respect to λ we identify the optimal scalings as λ ∼ n and w is
constant. �

Let us conclude this discussion by explicitly remarking that nanotubes are not ground states
for large n. Indeed, the argument of Proposition 7.2 entails that the energy of a nanotube scales
like −3n/2 + O(n). The factor −3n/2 follows since each atom in the nanotube has three bonds.
The O(n) correction takes into account the fact that bond angles are non-optimal. Note that,
by increasing n bond angles do not change since the diameter of the nanotube is constant from
Proposition 7.2. On the other hand, the computation in (33) shows that the energy of a rolled-up
daisy behaves like −3n/2 + O(

√
n), as well as the energy of the daisy itself. By increasing n the

radius of the rolled-up daisy increases and its bond angles get closer to the optimal 2π/3. This
is reflected in the different scaling of the correction term. Eventually, for large n it is better to
roll-up a daisy instead of a rectangular patch.

7.1. Stability of fullerenes. From the applicative viewpoint, the stability of carbon structures
and, particularly, of fullerenes bears of course a crucial relevance. The aim of this section is to
present a rigorous stability proof within our variational frame. In particular, we prove that the
two fullerenes C20 (unsaturated dodecahedrane, a regular dodecahedron) and C60 (the smallest
fullerene presenting isolated pentagons) are strict local minimizers for the energy provided the
three-body interaction part is decreasing and strictly convex around 3π/5.

Theorem 7.3. Let V3 decreasing and convex in a neighborhood of 3π/5. Then, C20 and C60

are strict local minimizers, hence stable.

Let us comment that the monotonicity and convexity of V3 follows for the Stillinger-Weber
potential (see Section 2) and it is completely independent of the size of µ. In particular, the
validity of Theorem 7.3 is independent from the actual form of the two-body interaction term
V2 which can be arbitrarily chosen, provided that attains its minimum in 1. On the other hand,
let us remark that under assumption (4), no fullerene is a ground state as the energy decreases
by removing the five vertices of a pentagon.

Proof of Theorem 7.3. Let us develop the proof for C60 = {x1, . . . , x60}, the argument for C20

being analogous. Let {x̃1, . . . , x̃60} be some small perturbation of C60. We shall prove that

indeed, Ṽ > V . The perturbed configuration has exactly twelve 5-cycles and twenty 6-cycles.



CRYSTALLIZATION IN CARBON NANOSTRUCTURES 23

Within the bond angles of the perturbed configuration we shall distinguish between internal
angles of 5-cycles and those of 6-cycles. In particular, we indicate πkj the angles of 5-cycles

(j = 1, . . . , 5, k = 1, . . . , 12) and by hkj those of 6-cycles (j = 1, . . . , 6, k = 1, . . . , 20). Note now
that, due to the convexity of V3 we have that, for all k,

5∑
j=1

V3(πkj ) ≥ 5V3

1

5

 5∑
j=1

πkj

 . (34)

On the other hand, we have that

1

5

 5∑
j=1

πkj

 ≤ 3

5
π. (35)

Indeed, the latter is a consequence of the fact that the internal angles of a 5-cycle sum up at
most to 3π. In particular, we have equality if and only if the 5-cycle is planar. Hence, owing to
(34) and the monotonicity of V3 we get that

5∑
j=1

V3(πkj ) ≥ 5V3 (3π/5) (36)

and we have equality if and only if we have equality in (35). Hence, we can compute that

Ṽ =
1

2

∑
i,j

V2(˜̀
ij) +

1

2

12∑
k=1

5∑
j=1

V3(πkj ) +
1

2

20∑
k=1

6∑
j=1

V3(hkj )

≥ 1

2

∑
i,j

V2(`ij) +
1

2

12∑
k=1

5V3 (3π/5) = V

since hexagonal angles and bond lengths can only improve in passing to V . In particular, we
have equality in the latter if and only if all pentagons and hexagons are planar and regular.
That is if and only if the perturbation is trivial. �

A specific trait of the latter proof is that it crucially uses the planarity of the faces. This
restricts our argument to the only two fullerenes which present just planar faces, namely C20

and C60 [30]. This restriction sounds quite severe as fullerenes are believed to possibly exists
for arbitrary (even) 20 ≤ n 6= 22 and in a variety of different isomers. In particular, the
nonisomorphic closed carbon cages for n ≤ 84 amount to 222509 [8]. The investigation for
possible stability criteria of the few observed fullerenes within this wide family has of course
triggered an intense research and it would be probably too naive to expect our simple variational
technique (which is, once again, purely geometric) to be decisive in this matter. Let us however
mention that the possible relevance of planarity of the faces with respect to stability has been
recently emphasized [20].

Still, the two fullerenes included in our result are truly remarkable structures. C60 is the most
common fullerene as it is generally the first one to form during clustering, probably due to its
uniformly distributed strain energy [21]. As such, C60 clearly has a predominant role within the
fullerene class. The fullerene C20 is expected to possibly show a variety of interesting properties
including superconductivity. Note however that the production of C20 is very delicate [23].

Eventually, we remark that the stability result of Theorem 7.3 applies to all structures made
of regular planar pentagons and planar hexagons, possibly also nonclosed. In particular, our
argument confirms that graphene patches and planar ground states are strict local minimizers
in three dimensions. Moreover, one obtains also the stability of corrannulene, an open carbon
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cage formed by a pentagon surrounded by five hexagons, as well as of other corannulene-based
molecules.

7.2. Other three-dimensional configurations. We presently do not have a characterization
of ground states of V in three-dimensions. Still, under assumption (3) we can readily exclude
that ground states are patches of FCC or HCP lattices, namely the candidate ground states for
two-body interactions V = V2 [17, 12]. Indeed, in both these cases one easily checks that an
internal atom has exactly twelve active bonds and at least eight bond angles of π/3 (depending
on the lattice). Hence, by removing an internal atom the energy of the resulting configuration
fulfills Vnew < Vold + 12 − 8V3(π/3). Under assumption (3), Vnew < Vold and FCC or HCP
patches are not ground states.

Besides nanotubes and fullerenes, other intrinsically three-dimensional crystalline carbon al-
lotropes exist: diamond and lonsdaleite. These are characterized by the occurrence of four-
bonded atoms with bond angles equal to the tetrahedral angle θτ = 2 arctan(

√
2) arising in

connection with so-called sp3-hybridized orbitals. The computation of V to the leading order
for both diamond and lonsdaleite gives V ∼ (−2 + 6V3(θτ ))n. In particular, if and only if
V3(θτ ) ≤ 1/12 (which is still compatible with assumptions (3)-(5), although, given v, it cannot
be enforced by merely triggering the constant µ) some sufficiently large (and suitably shaped)
collection of diamond or lonsdaleite crystals realize a smaller energy than the corresponding pla-
nar ground state. Hence, such ensembles may be used for contradicting planarity in the proof
of Theorem 7.1 (although under an extra assumption).

The latter argument can be also localized: By assuming V3(θτ ) > 2/3 we can exclude that
diamond and lonsdaleite are ground states in three dimensions. Indeed, in this case it would be
energetically favorable to remove from a ground state any four bonded atom being the center
of a regular tetrahedron. Note incidentally that surface tension effects are not negligible for
small n: Letting for instance n = 5, the single tetrahedron has energy V = −4 + 6V (θτ ) which

is strictly larger than the planar ground state energy −[3 · 5/2−
√

3 · 5/2] = −4 which is, for
instance, obtained with a single chain of four bonds.

We shall remark that our functional V is specifically tailored to the description of sp2-
hybridized bonds and, as such, it appears to be not well-suited for describing intrinsically three-
dimensional situations such that of diamond and lonsdaleite. Indeed, let V3 be strictly convex
around θτ (as for the Stillinger-Weber potential). Hence, a tetrahedral configuration for n = 5
with unit bonds is stable if and only if the sum of the bond angles is locally maximal. It can
be proved that this is not the case for the regular tetrahedron (which may however be checked
to be stationary for V ). This entails in particular that diamond and lonsdaleite are not local
minimizers of V .
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