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José Antonio Carrillo

Department of Mathematics, Imperial College London, South Kensington Campus,
London SW7 2AZ, UK

Stefano Lisini

Dipartimento di Matematica “F. Casorati”, Università degli Studi di Pavia,
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Abstract. We prove uniqueness in the class of integrable and bounded nonnegative so-
lutions in the energy sense to the Keller-Segel (KS) chemotaxis system. Our proof works
for the fully parabolic KS model, it includes the classical parabolic-elliptic KS equation as
a particular case, and it can be generalized to nonlinear diffusions in the particle density
equation as long as the diffusion satisfies the classical McCann displacement convexity con-
dition. The strategy uses Quasi-Lipschitz estimates for the chemoattractant equation and
the above-the-tangent characterizations of displacement convexity. As a consequence, the
displacement convexity of the free energy functional associated to the KS system is obtained
from its evolution for bounded integrable initial data.

1. Introduction

The classical Keller-Segel (KS) model for chemotaxis is the system{
∂tn = κ∆n− χdiv (n∇c),
∂tc = η∆c+ θn− γc.

Here, n is the number/mass density of a bacteria/cell population and c represents the concen-
tration of a chemical attractant that can suffer chemical degradation and that is produced by
the cells themselves due to chemotactic interaction. The parameters κ, χ, η, θ, γ might be suit-
able functions, assumed to be constant in this simplified model. We can perform a time scaling
and a suitable change of variables, that is τ = κt, ρ(x, τ) = θχ

ηκn(x, τ/κ), v(x, τ) = χ
κc(x, τ/κ).

The system is therefore reduced to{
∂tρ = ∆ρ− div (ρ∇v),

ε∂tv = ∆v + ρ− αv,
(1.1)
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1



where α ≥ 0 and ε ≥ 0 are constants (α = γ/η, ε = κ/η). In case ε = 0, it restricts to the
classical parabolic-elliptic Patlak-KS model{

∂tρ = ∆ρ− div (ρ∇v),

−∆v + αv = ρ.
(1.2)

For ε > 0, the natural free energy functional associated to the dynamics of the system (1.1)
is

Fε,α(ρ, v) :=

∫
Rd

(ρ log ρ− vρ) dx+
1

2

∫
Rd

(|∇v|2 + αv2) dx . (1.3)

In the case ε = 0, corresponding to (1.2), this Liapunov functional is at least formally equiv-
alent to

F0,α(ρ) :=

∫
Rd

(ρ log ρ− 1

2
vρ) dx (1.4)

with the convention that v is obtained from the density ρ by v = Bα,d ∗ ρ. Here, Bα,d
denotes the Bessel kernel for α > 0 or the Newtonian kernel for α = 0, for any dimension
d. Therefore the role of the parameter ε is to discriminate between parabolic-parabolic and
parabolic-elliptic system. Note that the Liapunov functionals (1.3) and (1.4) are just formally
equivalent since the L2-integrability of ∇Bα,d ∗ ρ fails if d = 1, 2 and α = 0. Thus, even if
the classical free energy writing and valid for all cases when ε = 0 is the one in (1.4), we will
prefer to work with the functional as in (1.3) even if ε = 0, with a suitable renormalization
for the cases d = 1, 2 and α = 0 discussed in Section 3.

Our main objective is the uniqueness of certain solutions, for both systems (1.1) and (1.2).
Let us introduce the notion of solution for the Cauchy problems associated to (1.1) and (1.2)
that we will consider in this work. We denote by M2(Rd;m) the set of nonnegative densities
over Rd with mass m and finite second moment, i.e.,

M2(Rd;m) :=

{
ρ ∈ L1(Rd) : ρ ≥ 0,

∫
Rd
ρ(x) dx = m,

∫
Rd
|x|2ρ(x) dx < +∞

}
.

Definition 1.1. We say that a weakly continuous map ρ ∈ Cw([0, T ]; M2(Rd;m)) is a bounded
solution to the Cauchy problem for (1.2), with initial datum ρ0 ∈M2(Rd;m) ∩ L∞(Rd), if

i) ρ ∈ L∞((0, T )× Rd) and |x|2ρt(x) ∈ L∞((0, T ), L1(Rd)),
ii) ρ0 = ρ0 and the first equation of (1.2) holds in the sense of distributions on (0, T )×Rd,

where vt = Bα,d ∗ ρt for all t ∈ [0, T ],

iii) ρt ∈W 1,1(Rd) for L1-a.e. t ∈ (0, T ) and∫ T

0

∫
Rd

|∇ρt(x)|2

ρt(x)
dx dt < +∞. (1.5)

Definition 1.2. We say that the couple (ρ, v), satisfying ρ ∈ Cw([0, T ]; M2(Rd;m)) and v ∈
L2((0, T );W 1, 2(Rd)), is a bounded solution to (1.1) with initial datum (ρ0, v0) ∈ (M2(Rd;m)∩
L∞(Rd))×W 1,2(Rd), if

I) ρ ∈ L∞((0, T )× Rd) and |x|2ρt(x) ∈ L∞((0, T ), L1(Rd)),
II) ρ0 = ρ0, the first equation of (1.1) holds in the sense of distributions on (0, T )× Rd,

and v is the unique solution to the Cauchy problem for the forced parabolic equation
ε∂tv −∆v + αv = ρ over (0, T )× Rd in the standard sense, with initial datum v0,

III) the property iii) of Definition 1.1 holds.
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Let us emphasize that the main properties we need to get uniqueness of solution are the
boundedness of the densities and the Fisher information (1.5). They together imply that the
velocity field of the continuity equation for the density ρ is a well defined object belonging to
the right functional space, as we will see later on. Moreover, the boundedness of the density
implies that we have a uniform in bounded time intervals estimate on the quasi-Lipschitz
constant of part of the velocity field. These are the basic properties that imply the uniqueness
for bounded solutions. Let us finally mention that part of the strategy is related to the
uniqueness of solutions to fluid and aggregation equations developed in [35, 28, 5, 29, 19, 7, 30].
The main novelty here is the interplay between the diffusive and the aggregation parts. The
main results of this work are:

Theorem 1.3. Let T > 0 and let ρ0 ∈ M2(Rd;m) ∩ L∞(Rd). Let ρ1, ρ2 be two bounded
solutions on [0, T ] × Rd to the Cauchy problem associated to (1.2), with initial datum ρ0.
Then ρ1 = ρ2.

Theorem 1.4. Let T > 0 and let ρ0 ∈M2(Rd;m)∩L∞(Rd), v0 ∈W 1,2(Rd)∩W 2,∞(Rd). Let
(ρ1, v1) and (ρ2, v2) be two bounded solutions on [0, T ]×Rd of the Cauchy problem associated
to (1.1), with initial datum (ρ0, v0). Then (ρ1, v1) = (ρ2, v2).

The proof of uniqueness as stated in Theorems 1.3 and 1.4 will be a consequence of a
more general property: we will show that bounded solutions satisfy a strong gradient flow
formulation by means of a family of evolution variational inequalities. This formulation is
similar to the one for semi-convex functionals and implies a non-expansivity property of the
distance between two solutions. This non-expansivity property yields uniqueness. All these
results will be stated in Theorems 3.1 and 5.1. Theorem 1.4 is stated under the assumption
v0 ∈W 2,∞(Rd), but it still holds true assuming that v0 belongs to suitable Zygmund spaces,
which will be introduced in the next sections. Moreover the evolution variational inequal-
ity formulation leads to a relaxed convexity property of the energy functional as stated in
Theorem 4.1.

There is a huge literature about the KS system and their variations, so we just restrict here
to discuss the main results concerning bounded solutions. In the classical parabolic-elliptic
KS equation ε = α = 0 and d = 2, global in time bounded solutions in the subcritical case
m < 8π have been obtained joining the results in [12, 25, 14]. Actually, the global existence of
weak solutions satisfying all properties in Definition 1.1 except the L∞ bound was obtained in
[12] while L∞-bounds in bounded time intervals can be obtained from the results in [25, 14].
The same techniques could eventually be used to get local in time bounded solutions for all
masses, although such a result is not present in the literature. Let us also mention the recent
paper [17] in which the authors actually show that the L∞-norm of the solution decays in time
like for the heat equation in the subcritical case m < 8π for more restricted initial data. L∞-
apriori estimates were obtained in the classical parabolic-elliptic KS equation ε = 0 with d ≥ 2
and α ≥ 0 for small Ld/2 initial data in [20, 21]. These results together with similar arguments
as in [12] to get the free energy dissipation property and thus the Fisher information bounds,
could lead to the existence of bounded solutions in these cases. We emphasize that these L∞

estimates show that the solution in bounded time intervals is bounded by a constant that
depends only on the L∞-norm of the initial data, the initial free energy, and the final time.
In particular, existence of bounded solutions is expected if ρ0 ∈ L∞(Rd), and this explains
the presence of such an assumption in the previous definitions.

Concerning the fully parabolic KS system, we find global in time solutions satisfying all
properties stated in Definition 1.2 except the L∞ bounds in [15] for d = 2 and the subcritical
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mass case m < 8π. L∞-apriori estimates were obtained in [26] for the fully parabolic case but
in bounded domains. It is reasonable to expect that this strategy should work for the whole
space case, although it is not written as such in the literature. Results in higher dimensions
concerning solutions with L∞ estimates for small initial data can be found in [8] but estimates
on the free energy dissipation are missing there. We finally refer to [11, 13, 14, 23] for
different results concerning the existence of solutions satisfying the boundedness of the Fisher
information and/or the uniform bounds of the solutions for particular choices of ε ≥ 0, α ≥ 0,
and nonlinear diffusions.

As mentioned before, Theorems 1.3 and 1.4 are based on the derivation of quasi-Lipschitz
estimates for the chemoattractant v (this is the reason behind the additional assumption on
the initial datum v0). We will clarify the use of quasi-Lipschitz estimates of the chemoattrac-
tant in Section 2 together with a quick summary of the main properties of optimal transport
that we need in this work. Section 3 is devoted to show that bounded solutions for the
Keller-Segel model satisfy suitable evolution variational inequalities that imply, among the
other properties, the main uniqueness results. In Section 4 we show that the same evolution
variational inequalities lead to certain convexity of the associated free energy functional. In
Section 5 we give the derivation of the quasi-Lipschitz estimates of the parabolic equations
for v. In the same section, we will also prove a strengthening of Theorems 1.4 and 3.1, with
more general initial data. Finally, Section 6 is devoted to show how to adapt these arguments
to Keller-Segel models with nonlinear diffusion.

2. Preliminary notions

2.1. Some elliptic and parabolic regularity estimates. The proofs of our results are
based on the technique used by Yudovich [35] for treating uniqueness in the case of in-
compressible Euler equations for fluidodynamics. In particular, we exploit a quasi-Lipschitz
property for the velocity field of the continuity equation for ρ in (1.1) and (1.2). This prop-
erty comes from the regularity that v gains being solution to the second equation in (1.1) and
(1.2).

Suppose first that v = B0,d ∗ ρ. If ρ ∈ L1 ∩ L∞(Rd), by exploiting some estimates of
the Newtonian potential, ∇v satisfies the following log-Lipschitz property (see [6] and [31,
Chapter 8], [33] and also [35]),

|∇v(x)−∇v(y)| ≤ C|x− y|(1 + log− |x− y|),

where C is a suitable positive constant, depending only on ‖ρ‖L1 and ‖ρ‖L∞ and log− denotes
the negative part of the natural logarithm function. As a consequence, we get the estimate

|∇v(x)−∇v(y)|2 ≤ C2ϕ(|x− y|2) (2.1)

for some new positive constant C, where ϕ is the concave function on [0,∞) defined as

ϕ(x) :=

{
x log2 x if x ≤ e−1−

√
2,

x+ 2(1 +
√

2)e−1−
√

2 if x > e−1−
√

2.
(2.2)

Indeed, for large values of |x− y| the estimate (2.1) is quite obvious, since it is immediate to
show that ∇B0,d ∗ρ is a bounded function in the whole space with a direct estimate using the

fact that ρ ∈ L1 ∩ L∞(Rd).
Analogous facts hold if we consider the equation −∆v + αv = ρ, appearing in (1.2), or

more general uniformly elliptic operators, so that we have the following
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Proposition 2.1. Suppose that ρ ∈ L1 ∩ L∞(Rd) and α ≥ 0. Then v = Bα,d ∗ ρ satisfies the
estimate (2.1), where C is a suitable positive constant, depending only on α, d, ‖ρ‖L1(Rd), and

‖ρ‖L∞(Rd).

The log-Lipschitz property in general can be justified through standard elliptic regularity,
requiring the introduction of Zygmund spaces. These classes of functions were introduced in
[36], and they belong to the more general framework of Besov spaces. The basic Zygmund
class Λ1(Rd) is the set of continuous bounded functions f over Rd such that

[f ]Λ1(Rd) := sup
x,y∈Rd,x 6=y

|f(x)− 2f((x+ y)/2) + f(y)|
|x− y|

< +∞.

It is well known that functions in the Zygmund class Λ1(Rd) are in general not Lipschitz,
possibly nowhere differentiable, but enjoy a log-Lipschitz modulus of continuity. Indeed, for
any f ∈ Λ1(Rd) there exists a positive constant C such that

|f(x)− f(y)| ≤ C|x− y|(1 + log− |x− y|) ∀x, y ∈ Rd.
we refer for instance to [37, Chapter 2, §3]. We say that f ∈ Λ2(Rd) if f ∈ W 1,∞(Rd) and
all the partial derivatives of f belong to Λ1(Rd) (see for instance [34, Chapter 5]). In the
usual notation of Besov spaces, Λ2 corresponds to B2

∞,∞. The vector spaces Λ1 and Λ2 can
be endowed with the norms

‖f‖Λ1(Rd) = ‖f‖L∞(Rd) + [f ]Λ1(Rd),

‖f‖Λ2(Rd) = ‖f‖L∞(Rd) + ‖∇f‖Λ1(Rd)

and they become complete.

Proof of Proposition 2.1. If α > 0, from the general theory on Bessel potentials (see for
instance [34, Chapter 5, §3-6]) we learn that by convolution with the Bessel kernel Bα,d we

indeed get two indices of regularity in Zygmund spaces. Therefore, if ρ ∈ L∞(Rd), we indeed
get that v = Bα,d ∗ ρ belongs to Λ2(Rd), and thus ∇v ∈ Λ1(Rd) and, since ∇v is bounded,
(2.1) follows. For the case α = 0 we address to the references mentioned at the beginning of
this section (it is also possible to directly check that ∇v ∈ L∞(Rd), and then the Newtonian
potential behaves like the Bessel potential near the origin so that ∇v is also log-Lipschitz).

�

About the parabolic equation for v in (1.1), the quasi-Lipschitz property also carries over,
since formally inequality (2.1) translates in terms of the parabolic metric to

|∇v(t, x)−∇v(s, y)|2 ≤ C2ϕ((|x− y|+ |s− t|1/2)2) ∀x, y ∈ Rd, s, t ∈ [0, T ]. (2.3)

Indeed, we have the following

Proposition 2.2. Suppose that ρ ∈ L∞((0, T ) × Rd), v0 ∈ Λ2(Rd) and α ≥ 0. If v is the
unique solution to the Cauchy problem for the parabolic equation ∂tv = ∆v − αv + ρ (in the
standard sense of convolution with fundamental solution), then v satisfies (2.3), where C is
a suitable positive constant, depending only on α, d, ‖v0‖Λ2(Rd), and ‖ρ‖L∞((0,T )×Rd).

In order not to introduce some not really necessary notation before the proof of our main
results, we prefer to postpone the proof of Proposition 2.2 to Section 5. Indeed, in Section
5 we will develop a discussion about log-Lipschitz estimates for parabolic equations, and we
will also prove a strengthening of Theorem 1.4, considering the initial datum v0 in Λ1(Rd)
instead of W 2,∞(Rd).
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2.2. Elementary notions of optimal transport. Given ρ0, ρ1 ∈M2(Rd;m), we define the
Wasserstein distance between ρ0 and ρ1 as

W2(ρ0, ρ1) =

(∫
Rd
|x− T (x)|2 ρ0(x) dx

) 1
2

,

where T is the unique optimal transport map between ρ0 and ρ1, that is, the map T : Rd → Rd
which minimizes

∫
Rd |x − S(x)|2 ρ0(x) dx among all the Borel maps S : Rd → Rd satisfying

S#ρ0 = ρ1. We recall that S#ρ0 = ρ1 means that
∫
Rd ϕ(x)ρ1(x) dx =

∫
Rd ϕ(S(x))ρ0(x) dx for

every continuous and bounded function ϕ : Rd → Rd.
The Wasserstein geodesic between ρ0 and ρ1 is the curve s ∈ [0, 1] 7→ ρs ∈M2(Rd;m) de-

fined by the so-called displacement interpolation along the optimal transport map T between
ρ0 and ρ1, that is, ρs := ((1 − s)i + sT )#ρ0. In particular, for any s, Ts := (1 − s)i + sT is
the optimal map between ρ0 and ρs and there holds W2(ρr, ρs) = |s− r|W2(ρ0, ρ1).

We recall a formula for the differentiation of the squared Wasserstein distance along solu-
tions of the continuity equation. Let t ∈ [0, T ] 7→ ρt ∈ M2(Rd;m) be a weakly continuous
curve which is distributional solution of

∂tρt + div (ξtρt) = 0,

for some Borel velocity field ξt such that
∫ T

0 ‖ξt‖
2
L2(Rd,ρt;Rd)

dt < +∞. Then the curve is

absolutely continuous with respect to the Wasserstein distance, [3, Theorem 8.3.1]. Then, for
any ρ̄ ∈M2(Rd;m), it holds

1

2

d

dt
W 2

2 (ρt, ρ̄) =

∫
Rd
〈ξt(x), x− Tt(x)〉 ρt(x) dx, for L1-a.e. t ∈ (0, T ), (2.4)

where Tt is the optimal map between ρt and ρ̄ (see [3, Theorem 8.4.7, Remark 8.4.8]).
Finally, let us recall an estimate relating the 2-Wasserstein distance and the H−1 norm

proved in [28, Proposition 2.8]. Given two nonnegative densities with the same mass ρ1, ρ2 ∈
M2(Rd;m) ∩ L∞(Rd), there holds

‖ρ1 − ρ2‖Ḣ−1(Rd) ≤ max{‖ρ1‖∞, ‖ρ2‖∞}1/2W2(ρ1, ρ2). (2.5)

Here Ḣ1(Rd) denotes the space of Lebesgue measurable functions v : Rd → R such that

‖∇v‖L2(Rd) < +∞, so that Ḣ−1(Rd) is defined by duality with functions having finite L2(Rd)
norm of the gradient only. By the way, we can also consider the space H1(Rd) = W 1,2(Rd). In
fact, from the proof in [28, Proposition 2.8] it is not difficult to see that the same estimate holds

considering theH−1(Rd) space given by duality with the full norm (‖∇v‖2
L2(Rd)

+‖v‖2
L2(Rd)

)1/2.

3. Bounded solutions as gradient flows: EVI and uniqueness

The uniqueness Theorems 1.3 and 1.4 are consequences of a general result interpreting
bounded solutions to (1.1) (resp. (1.2)) as the trajectory of the gradient flow of the functional
(1.3) (resp. (1.4)) in the appropriate metric setting. We prove that bounded solutions satisfy
a family of evolution variational inequalities (EVI). Among different notions of gradient flow
in metric sense, the EVI formulation is stronger than other formulations and typically corre-
sponding to a convex structure, as in [3, Theorem 11.2.1] for the theory in the Wasserstein
setting.
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Notation for the energy functional. Before giving the proof, we introduce some uni-
form notation for working with the full functional (1.3) even in the parabolic-elliptic case.
Let ρ ∈M2(Rd;m) ∩ L∞(Rd). We are considering the free energy functional

Fε,α(ρ, v) :=

∫
Rd

(ρ log ρ− vρ) dx+
1

2

∫
Rd

(|∇v|2 + αv2) dx ,

defined for v being any W 1,2(Rd) function if ε > 0. On the other hand, if ε = 0 it is understood
that v is given by Bα,d ∗ ρ. Therefore the parameter ε only indicates if we are considering
problem (1.1) or (1.2). In particular, this writing of the functional as in (1.3) is valid in
general, even for ε = 0, except for two particular cases: ε = α = 0 and d = 1, 2, as discussed
in the introduction. In these two cases, we need to renormalize the free energy functional.
Given ρ∗ ∈ M2(Rd;m) a smooth and compactly supported density and v∗ = B0,d ∗ ρ∗, we
redefine (1.3) for ε = α = 0 and d = 1, 2 as

F0,0(ρ, v) :=

∫
Rd

[ρ log ρ− v(ρ− ρ∗)] dx+
1

2

∫
Rd
|∇(v − v∗)|2 dx− 1

2

∫
Rd
ρ∗v∗ dx . (3.1)

Notice that ∇(v − v∗) ∈ L2(Rd), as ρ− ρ∗ has zero mean, see [4, 33] for more details.
In the rest of this work, when referring to the free energy functional Fε,α(ρ, v), we will be

using (1.3) for any ε ≥ 0, α ≥ 0, except for ε = α = 0 and d = 1, 2 where the free energy
functional is given by (3.1).

Let us observe that now all the integrals involved in the definition of Fε,α are well defined
and finite for ε ≥ 0, α ≥ 0 and ρ, v as above. The negative part of the entropy term can
be classically treated by the Carleman inequality, see for instance [9, Lemma 2.2] where the
second moment bound on the density is used. The boundedness of the density controls the
positive contribution of the entropy term together with the integrability of vρ in case ε > 0
since v ∈W 1,2(Rd). For ε = 0 the integrability of vρ in case α > 0 is implied by the Newtonian
potential case α = 0 since the singularity of the Bessel potential at the origin is the same.
The integrability for α = ε = 0 and d ≥ 3 results directly from the Hardy-Littlewood-Sobolev
inequality for the Newtonian potential. For α = ε = 0 and d = 1, 2 we use the behavior at
infinity of the density ρ. Actually, α = ε = 0 and d = 1 is a trivial case since the Newtonian
potential is given by B0,1(x) = |x|. For α = ε = 0 and d = 2 since log(e + |x|2)ρ ∈ L1(Rd)
then vρ ∈ L1(Rd) using the logarithmic HLS inequality, see for instance [10].

Notation for the ambient metric space. We let Xε := M2(Rd;m)× L2(Rd) endowed
with the distance

D2(z1, z2) = D2((ρ1, v1), (ρ2, v2)) = W 2
2 (ρ1, ρ2) + ε‖v1 − v2‖2L2(Rd) ,

with the convention that X0 = M2(Rd;m) and D0(z1, z2) = W2(ρ1, ρ2). Moreover, for z =
ρ ∈ X0 × L∞(Rd), F0,α(z) will be understood to be F0,α(ρ, v) with v = Bα,d ∗ ρ, as usual
when ε = 0.

In the space Xε the metric derivative of an absolutely continuous curve t 7→ zt is denoted
and defined by

|z′|D(t) = lim
h→0

D(zt+h, zt)

h
,

and it exists for L1-a.e. t > 0. The local metric slope of the functional Fε,α is defined by

|∂Fε,α|D(z) := lim sup
D(ζ,z)→0

(Fε,α(z)−Fε,α(ζ))+

D(ζ, z)
.
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These two abstractly defined objects are used to give the notion of curves of maximal slope
in general metric setting, see [2, §3], [3, Chapter 1]. The main consequences of this gradient
flow structure are summarized in the following result.

Before stating the Theorem we define the function ω : [0,+∞)→ [0,+∞) by

ω(x) =
√
mxϕ(m−1x), (3.2)

where ϕ is defined in (2.2). Moreover, given a fixed s0 > 0, we define a strictly monotone
continuous function G : [0,+∞) → [−∞,+∞) by G(s) :=

∫ s
s0

1
ω(r) dr for s > 0 and G(0) =

−∞ (we observe that G−1 : [−∞,+∞)→ [0,+∞) is surjective).

Theorem 3.1. Let t 7→ zt = (ρt, vt) be a bounded solution of problem (1.1) for ε > 0, starting
from z0 = (ρ0, v0) ∈ Xε ∩

(
L∞(Rd) × (W 1,2(Rd) ∩ Λ2(Rd))

)
, according to Definition 1.2. If

ε = 0, let zt = ρt be a bounded solution to problem (1.2), starting from z0 = ρ0 ∈ X0∩L∞(Rd),
according to Definition 1.1. Then the three following properties hold:

i) The evolution variational inequality (EVI) formulation: for any z̄ = (ρ̄, v̄) ∈ Xε ∩(
L∞(Rd) × W 1,2(Rd)

)
(reduced to z̄ = ρ̄ ∈ X0 ∩ L∞(Rd) if ε = 0), the map t 7→

D2(zt, z̄) is absolutely continuous and there exists a constant C depending on
‖ρ‖L∞((0,T )×Rd), ‖ρ̄‖L∞(Rd) and ‖v0‖Λ2(Rd), such that

1

2

d

dt
D2(zt, z̄) ≤ Fε,α(z̄)−Fε,α(zt) + Cω(D2(zt, z̄)) for L1-a.e. t ∈ (0, T ). (3.3)

ii) The energy dissipation equality (EDE) in metric sense: the map t 7→ Fε,α(zt) is locally
Lipschitz continuous and

d

dt
Fε,α(zt) = −1

2
|∂Fε,α|2D(zt)−

1

2
|z′|2D(t) for L1-a.e. t ∈ (0, T ). (3.4)

iii) The following expansion control property: given another bounded solution t 7→ ζt, with
initial datum ζ0 in the same space of z0 above, there exists a constant C, depending
on ‖ρ‖L∞((0,T )×Rd) and ‖v0‖Λ2(Rd) (and the same quantities associated to ζ), such that
there holds

D2(zt, ζt) ≤ G−1(G(D2(z0, ζ0)) + 4Ct) for every t ∈ [0, T ). (3.5)

We explicitly observe that all the constants in Theorem 3.1 clearly depend also on the
parameters of the problem: ε,m, d, α. Often we omit to mention this dependence and we only
stress the more relevant dependence on the norms of the data.

Proof. We first introduce the auxiliary functional

Φε,α(ρ, v) :=

∫
Rd

(ρ log ρ− vρ) dx,

for ρ and v being as in the definition of Fε,α at the beginning of this section, so that

Fε,α(ρ, v) = Φε,α(ρ, v) +
1

2

∫
Rd

(|∇v|2 + αv2) dx

and, for d = 1, 2,

Φ0,0(ρ, v) = F0,0(ρ, v)− 1

2

∫
Rd
|∇(v − v∗)|2 dx+

1

2

∫
Rd
ρ∗v∗ dx−

∫
Rd
ρ∗v dx. (3.6)

The proof is organized in four steps.
8



Step1. Quasi-Lipschitz Estimate implies control of the evolution of the Wasserstein distance.-

Thanks to the assumption (1.5), we learn that the Fisher information
∫
Rd
|∇ρt(x)|2
ρt(x) dx is finite

for L1-a.e. t ∈ (0, T ). Let ρ̄ ∈M2(Rd;m) ∩ L∞(Rd). Exploiting the differentiability proper-
ties of the entropy functional, we can use the above-the-tangent formulation of displacement
convexity to get for L1-a.e. t ∈ (0, T )∫

Rd
ρ̄(x) log ρ̄(x) dx−

∫
Rd
ρt(x) log ρt(x) dx ≥

∫
Rd
〈∇ρt(x), Tt(x)− x〉 dx, (3.7)

where Tt denotes the optimal transport map between ρt and ρ̄. We refer to [2, §3.3.1] for
an intuitive proof of this fact, and to [3, Chapter 10] for the theory in full generality. In
particular, the finiteness of the Fisher information of ρt implies that the second term is finite,
so that this differentiation formula is meaningful. If ε > 0 (resp. ε = 0), let v̄ ∈ W 1,2(Rd)
(resp. v̄ = Bα,d ∗ ρ̄). Take

It := Φε,α(ρ̄, v̄)− Φε,α(ρt, vt) +

∫
Rd

(v̄(x)− vt(x))ρ̄(x) dx .

Using the notation xst := (1− s)x+ sTt(x), s ∈ [0, 1], and taking into account that∫
Rd
vt(x)(ρ̄(x)− ρt(x)) dx =

∫
Rd

(vt(Tt(x))− vt(x))ρt(x) dx

=

∫
Rd

(vt(x
1
t )− vt(x0

t ))ρt(x) dx

=

∫ 1

0

d

ds

∫
Rd
vt(x

s
t )ρt(x) dx ds

and (3.7), we obtain for L1-a.e. t ∈ (0, T )

It ≥
∫
Rd
〈∇ρt(x), Tt(x)− x〉 dx−

∫
Rd
vt(x)(ρ̄(x)− ρt(x)) dx

=

∫
Rd
〈∇ρt(x), Tt(x)− x〉 dx−

∫ 1

0

∫
Rd
〈∇vt(xst ), Tt(x)− x〉 ρt(x) dx ds

=

∫
Rd
〈∇ρt(x)− ρt(x)∇vt(x), Tt(x)− x〉 dx

−
∫ 1

0

∫
Rd
〈∇vt(xst )−∇vt(x), Tt(x)− x〉 ρt(x) dx ds.

Let us denote by IIt the last term in the right hand side above. The crucial point is to
treat such term using the log-Lipschitz property of ∇v. Notice that, if ε = 0, we are in the
assumptions of Proposition 2.1 and we apply (2.1), where the constant C depends in principle
only on (m, α, d and) the L∞ norm of ρt, which we are assuming to be uniformly bounded
on (0, T ). In the case ε > 0, still by the uniform space-time L∞ assumption on ρt and the
Λ2 assumption on v0, we are in the framework of Proposition 2.2, so that we can apply the
estimate (2.3). In this case the constant will depend also on (ε and) ‖v0‖Λ2(Rd). Since ϕ is
concave, we can also use the Jensen inequality, and letting ρst = xst#ρt be the Wasserstein
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geodesic connecting ρt and ρ̄ we have

|IIt| ≤W2(ρt, ρ̄)

∫ 1

0

(∫
Rd
|∇vt(xst )−∇vt(x)|2ρt(x) dx

)1/2

ds

≤ CW2(ρt, ρ̄)

∫ 1

0

(∫
Rd
ϕ(|xst − x|2)ρt(x) dx

)1/2

ds

≤
√
mCW2(ρt, ρ̄)

∫ 1

0

√
ϕ(m−1W 2

2 (ρt, ρst )) ds

≤
√
mCW2(ρt, ρ̄)

√
ϕ(m−1W 2

2 (ρt, ρ̄)) .

(3.8)

The last inequality holds since geodesic interpolation ensures∫
Rd
|x− xst |2ρt(x) dx = W 2

2 (ρt, ρ
s
t ) = s2W 2

2 (ρt, ρ̄)

for all s ∈ [0, 1] and since ϕ is non decreasing. We recall that the constant C in (3.8) depends
only on (ε, α, d, the mass m and) the L∞((0, T )× Rd) norm of ρ and, in the case ε > 0, the
Λ2(Rd) norm of v0. Inserting this in the estimate for It, we have for L1-a.e. t ∈ (0, T )

It ≥
∫
Rd
〈∇ρt(x)− ρt(x)∇vt(x), Tt(x)− x〉 dx− Cω(W 2

2 (ρt, ρ̄)) , (3.9)

where ω is the function defined in (3.2). Since ρt satisfies the continuity equation

∂tρt + div (ξtρt) = 0 with ρtξt = −∇ρt + ρt∇vt

and (1.5), the uniform L∞ bound of ρt implies that
∫ T

0 ‖ξt‖
2
L2(Rd,ρt;Rd)

dt < +∞. Therefore

t 7→ ρt is absolutely continuous with respect to W2 and by (2.4)

1

2

d

dt
W 2

2 (ρt, ρ̄) =

∫
Rd
〈∇ρt(x)− ρt(x)∇vt(x), Tt(x)− x〉 dx for L1-a.e. t ∈ (0, T ).

Inserting this into (3.9), and recalling the definition of It, we finally obtain

1

2

d

dt
W 2

2 (ρt, ρ̄) ≤ Φε,α(ρ̄, v̄)− Φε,α(ρt, vt) +

∫
Rd

(v̄ − vt)ρ̄ dx+ Cω(W 2
2 (ρt, ρ̄)) (3.10)

for L1-a.e. t ∈ (0, T ).

Step 2: EVI for the parabolic-parabolic case.- Recalling that v̄ ∈W 1, 2(Rd), observing that
∆vt ∈ L2(Rd) for a.e.-t ∈ (0, T ) and using the elementary identity |a|2 − |b|2 = |a − b|2 +
2〈b, a− b〉 for every a, b ∈ Rk, the variation of the second part of the functional (1.3) (that is,
Fε,α − Φε,α) can be written as

1

2

∫
Rd

[
|∇v̄|2− |∇vt|2 + α(v̄2 − v2

t )
]
dx

=

∫
Rd

(αvt −∆vt)(v̄ − vt) dx+
1

2
‖∇(vt − v̄)‖2L2(Rd) +

α

2
‖vt − v̄‖2L2(Rd)

=

∫
Rd

(ρt − ε∂tvt)(v̄ − vt) dx+
1

2
‖∇(vt − v̄)‖2L2(Rd) +

α

2
‖vt − v̄‖2L2(Rd)

=

∫
Rd
ρt(v̄ − vt) dx+

ε

2

d

dt
‖vt − v̄‖2L2(Rd) +

1

2
‖∇(vt − v̄)‖2L2(Rd) +

α

2
‖vt − v̄‖2L2(Rd).

(3.11)
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Therefore, we deduce

Fε,α(ρ̄, v̄)−Fε,α(ρt, vt) = Φε,α(ρ̄, v̄)− Φε,α(ρt, vt) +

∫
Rd
ρt(v̄ − vt) dx

+
ε

2

d

dt
‖vt − v̄‖2L2(Rd) +

1

2
‖∇(vt − v̄)‖2L2(Rd) +

α

2
‖vt − v̄‖2L2(Rd).

(3.12)

Now, we use again (3.10), leading to

ε

2

d

dt
‖vt − v̄‖2L2(Rd) +

1

2

d

dt
W 2

2 (ρt, ρ̄)

≤ Fε,α(ρ̄, v̄)−Fε,α(ρt, vt) + Cω(W 2
2 (ρt, ρ̄))

+

∫
Rd

(ρ̄− ρt)(v̄ − vt) dx−
1

2
‖∇(vt − v̄)‖2L2(Rd) −

α

2
‖vt − v̄‖2L2(Rd).

(3.13)

By using the duality between Ḣ1 and Ḣ−1, the Young inequality, and (2.5) we have∫
Rd

(ρ̄− ρt)(v̄ − vt) dx ≤ ‖ρ̄− ρt‖Ḣ−1(Rd)‖v̄ − vt‖Ḣ1(Rd)

≤ 1

2
‖ρ̄− ρt‖2Ḣ−1(Rd)

+
1

2
‖∇(v̄ − vt)‖2L2(Rd)

≤ 1

2
QW 2

2 (ρ̄, ρt) +
1

2
‖∇(v̄ − vt)‖2L2(Rd),

(3.14)

where Q is the largest of the L∞ norms of ρ̄ and ρt over the time interval (0, T ). Taking into

account that ω is given by (3.2) and that
√

mϕ(m−1x2) ≥ x for every x > 0, combining (3.13)
and (3.14) we get, up to introducing a new constant C,

ε

2

d

dt
‖vt − v̄‖2L2(Rd) +

1

2

d

dt
W 2

2 (ρt, ρ̄) ≤ Fε,α(ρ̄, v̄)−Fε,α(ρt, vt)

+ Cω(W 2
2 (ρt, ρ̄))− α

2
‖vt − v̄‖2L2(Rd)

(3.15)

for a.e. t ∈ (0, T ). The new constant C depends as usual on (ε α, d, m and) ‖ρ‖L∞((0,T )×Rd),

‖v0‖Λ2(Rd), ‖ρ̄‖L∞(Rd).

Step 3: EVI for the parabolic-elliptic case.- When either d ≥ 3 or α > 0, we can repeat the
proof of the parabolic-parabolic case, letting ε = 0 therein and recalling that v̄ is no more
an arbitrary W 1,2(Rd) function but is given by convolution with ρ̄. In particular we arrive
to the corresponding of (3.13), and the second line therein can now be estimated as follows.
Using the inequality ‖v‖H1

α(Rd) ≤ ‖ρ‖H−1
α (Rd) for −∆v+αv = ρ, α > 0, where the notation is

‖v‖2
H1
α(Rd)

:= ‖∇v‖2
L2(Rd)

+ α‖v‖2
L2(Rd)

(and using Ḣ1 if α = 0), we get∫
Rd

(v̄ − vt)(ρ̄− ρt) dx ≤ ‖v̄ − vt‖H1
α(Rd)‖ρ̄− ρt‖H−1

α (Rd)

≤ 1

2
‖v̄ − vt‖2H1

α(Rd) +
1

2
‖ρ̄− ρt‖2H−1

α (Rd)
.

Moreover, recalling the estimate (2.5) (which works both in Ḣ−1 and H−1
α ) we have

‖ρ̄− ρt‖H−1
α (Rd) ≤ QW

2
2 (ρ̄, ρt),
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for all t ∈ [0, T ], where Q is the largest of the L∞ norms of ρ̄ and ρt over the time interval
[0, T ]. Inserting these estimates in (3.13) we obtain

1

2

d

dt
W 2

2 (ρt, ρ̄) ≤ F0,α(ρ̄)−F0,α(ρt) + Cω(W 2
2 (ρt, ρ̄)), (3.16)

for L1-a.e. t ∈ (0, T ), where the constant C depends only on ε, α, d, m, ‖ρ̄‖L∞(Rd),

‖ρ‖L∞((0,T )×Rd).

In the case α = 0, d = 1, 2, we have to consider the functional in (3.1). By using the
identity

1

2
‖∇(v̄ − v∗)‖2L2(Rd) −

1

2
‖∇(vt − v∗)‖2L2(Rd) =

∫
Rd

(ρt − ρ∗)(v̄ − vt) dx+
1

2
‖∇(vt − v̄)‖2L2(Rd),

with similar computations as in (3.11), this time considering F0,0(ρ, v)−Φ0,0(ρ, v) as obtained
from (3.6), we can still find (3.12) and conclude obtaining again (3.16).

Step 4: Conclusion.- We are ready to prove the three points in the statement of the theorem.
The proof of i) is a consequence of (3.15) for the case ε > 0, and (3.16) for the case ε = 0,
taking into account that α ≥ 0 and that ω(D2(zt, z̄)) ≥ ω(W 2

2 (ρt, ρ̄)) being ω increasing.
It is a standard fact that the gradient flow formulation in EVI sense implies the one in

EDE sense in (3.4). Indeed, the proof of ii) follows from (3.3) and (3.5) and can be exactly
carried out as in [2, Proposition 3.6].

The proof of (3.5) still follows from (3.3). Indeed we can apply [3, Lemma 4.3.4] (see also
the argument of [3, Theorem 11.1.4]) and obtain that for L1-a.e. t ∈ (0, T )

1

2

d

ds
D2(zs, ζs)

∣∣∣
s=t
≤ 1

2

d

ds
D2(zs, ζt)

∣∣∣
s=t

+
1

2

d

ds
D2(zt, ζs)

∣∣∣
s=t
≤ 2Cω(D2(zt, ζt)). (3.17)

Here, C = max{C1, C2}, where C1 is the supremum on s ∈ (0, T ) of the constant in (3.3) for
zt with z̄ = ζs, which is finite since the first component of ζ belongs to L∞((0, T )×Rd), and
C2 is the same inverting z and ζ. The estimate (3.17) implies

d

dt
D2(zt, ζt) ≤ 4Cω(D2(zt, ζt)), for L1-a.e. t ∈ (0, T ).

Since the inequality

y(t) ≤ y(0) + 4C

∫ t

0
ω(y(s)) ds

entails that y(t) ≤ G−1(G(y(0)) + 4Ct), we conclude. �

Proof of Theorems 1.3 and 1.4. The main theorems in the introduction are now a straight-
forward consequence of the expansion control iii) in Theorem 3.1. Both Theorems follow from
the inequality (3.5), observing that G−1(G(0) + 4Ct) = G−1(−∞) = 0, and recalling that
W 2,∞(Rd) ⊂ Λ2(Rd). �

4. ω-convexity of the functional

In this section we show another consequence of the EVI formulation of bounded solutions.
For the functional Fε,α a relaxed ω-convexity along geodesics holds, see [18] for ω-convexity
of functionals on measures. The proof of the geodesic convexity as a consequence of the EVI
was introduced in [22].

We take Zε := Xε ∩
(
L∞(Rd) × (W 1,2(Rd) ∩ Λ2(Rd))

)
if ε > 0 (resp. Z0 := X0 ∩ L∞(Rd)

if ε = 0) as the set of initial data for the evolution equation (1.1) (resp. (1.2)), as in theorem
12



3.1. We remark that such set is geodesically convex in (Xε, D). This is trivial for the part
concerning v while for the density ρ we use the classical displacement convexity of all the Lp

norms [32] (moreover, along a geodesic the L∞(Rd) norm of ρ and the energy are uniformly
bounded in terms of the same quantities at the endpoints).

Here we also assume that bounded solutions to (1.1) (resp. (1.2) for ε = 0), with initial
data in Zε, verify that for some T > 0

‖ρt‖L∞(Rd) ≤ R(ρ0, v0) for L1-a.e. t ∈(0, T ), (4.1)

where R is a bound only depending (increasingly) on ‖ρ0‖L∞(Rd) and the initial energy

Fε,α(ρ0, v0) (and possibly, if ε > 0, on ‖v0‖Λ2(Rd)). This assumption has been proved in
several cases, see the introduction for more details.

Theorem 4.1. Assume that bounded solutions for the evolutions (1.1) (resp. (1.2) for ε = 0),
with inital data in Zε, exist and verify (4.1). Then, for every z0, z1 ∈ Zε there exists a constant
C (depending only on ‖ρi‖L∞(Rd), Fε,α(zi), i = 0, 1, and, in the case ε > 0, also on ‖vi‖Λ2(Rd),

i = 0, 1) such that for every geodesic s ∈ [0, 1]→ zs of the space (Xε, D) connecting z0 to z1

there holds

Fε,α(zs) ≤ (1− s)Fε,α(z0) + sFε,α(z1)

+ C
[
(1− s)ω(s2D2(z0, z1)) + s ω((1− s)2D2(z0, z1))

]
∀s ∈ [0, 1].

Proof. Let z0, z1 ∈ Zε, let s ∈ [0, 1] → zs = (ρs, vs) be a geodesic of the space (Xε, D)
connecting z0 to z1. Let t 7→ zst be the bounded solution of (1.1) or (1.2) in [0, T ] × Rd
starting from the initial datum zs, T being chosen according to (4.1).

Consider any z̄ = (ρ̄, v̄) ∈ Xε ∩
(
L∞(Rd)×W 1,2(Rd)

)
(reduced to z̄ = ρ̄ ∈ X0 ∩ L∞(Rd) if

ε = 0). Taking into account that t 7→ zst is a bounded solution, t 7→ D2(zst , z̄) is absolutely
continuous and t 7→ Fε,α(zst ) is decreasing by (3.4), so that using (3.3) we obtain

1

2
D2(zst , z̄)−

1

2
D2(zs, z̄) ≤ t(Fε,α(z̄)−Fε,α(zst )) + C

∫ t

0
ω(D2(zsr , z̄)) dr (4.2)

for all t ∈ [0, T ]. We claim that (4.2) holds with a constant C depending only on the L∞(Rd)
norms of ρ0, ρ1, ρ̄, on Fε,α(z0), Fε,α(z1) and, if ε > 0, on the Λ2(Rd) norms of v0, v1. Indeed,
since T is chosen as in (4.1), the constant C in (4.2), coming from (3.3), depends only on
‖ρ̄‖L∞(Rd), ‖ρs‖L∞(Rd), Fε,α(zs) and ‖vs‖Λ2(Rd). But the last three quantities are uniformly
bounded with respect to s as remarked at the beginning of this section and the claim follows.
Therefore, multiplying by (1− s) the inequality (4.2) for z̄ = z0 and by s the inequality (4.2)
for z̄ = z1, then summing up, we may conclude that

1

2
((1− s)D2(zst , z

0) + sD2(zst , z
1))− 1

2
((1− s)D2(zs, z0) + sD2(zs, z1))

≤ t((1− s)Fε,α(z0) + sFε,α(z1)−Fε,α(zst ))

+ C

(
(1− s)

∫ t

0
ω(D2(zsr , z

0)) dr + s

∫ t

0
ω(D2(zsr , z

1)) dr

)
,

where C depends only on ‖ρ0‖L∞(Rd), ‖ρ1‖L∞(Rd), Fε,α(z0), Fε,α(z1) and, in the case ε > 0,

on ‖v0‖Λ2(Rd),‖v1‖Λ2(Rd).
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Using the fact that s 7→ zs is a geodesic, the left hand side is nonnegative, thus

Fε,α(zst )− (1− s)Fε,α(z0)− sFε,α(z1)

≤ C
(

(1− s)1

t

∫ t

0
ω(D2(zsr , z

0)) dr + s
1

t

∫ t

0
ω(D2(zsr , z

1)) dr

)
.

The lower semi continuity of t 7→ Fε,α(zst ) and the continuity of r 7→ D2(zsr , z
i), i = 0, 1 yield

Fε,α(zs) ≤ (1− s)Fε,α(z0) + sFε,α(z1) + C((1− s)ω(D2(zs, z0)) + sω(D2(zs, z1))).

Since s 7→ zs is a geodesic we have D2(zs, z0) = s2D2(z1, z0) and D2(zs, z1) = (1 −
s)2D2(z0, z1) and we conclude. �

Remark 4.2. In general, geodesical λ-convexity for some λ ∈ R is not expected for functional
Fε,α on Zε (with respect to the distance D), because of the presence of the term −

∫
Rd vρ dx.

For instance in the case ε > 0 we may fix ṽ ∈ Λ2(Rd) \ W 2,∞(Rd) such that −ṽ is not a
λ-convex function. With this choice of ṽ, the functional Fε,α is not λ-convex along geodesics
of the form s 7→ zs = (ρs, vs) with vs ≡ ṽ. We may recover the λ-convexity of Fε,α in the

case ε > 0 by restricting to the set Xε ∩
(
L∞(Rd)× (W 1,2(Rd) ∩W 2,∞(Rd))

)
.

5. A refined result in Zygmund spaces

This section is devoted to give a rigorous justification of the estimates of Section 2 in the
parabolic case. We will also give a slight improvement of Theorem 3.1 and Theorem 1.4 by
guaranteing a suitable quasi-Lipschitz estimate under a more general condition on the initial
datum v0.

Zygmund estimates and log-Lipschitz regularity in the parabolic case. Let T > 0. Let us
denote QT := (0, T ) × Rd and then Q̄T := [0, T ] × Rd. In the half d + 1 dimensional space,
we consider the standard parabolic metric

δ((x, t), (y, s)) := max{|x− y|,
√
|t− s|}.

With respect to the parabolic metric, the definition of Zygmund spaces adapts as follows. We
have Λ0(Q̄T ) := L∞(QT ), and Λ1(Q̄T ) is the space of continuous bounded functions f over
Q̄T such that there hold

sup
x,y∈Rd,x 6=y
t∈[0,T ]

|f(x, t)− 2f((x+ y)/2, t) + f(y, t)|
|x− y|

< +∞,

sup
x∈Rd

0≤s<t≤T

|f(x, t)− 2f(x, (t+ s)/2) + f(x, s)|
|t− s|1/2

< +∞.
(5.1)

Moreover, we say that f ∈ L∞(QT ) belongs to Λ2(Q̄T ) if

sup
x∈Rd , 0≤s<t≤T

|f(x, t)− 2f(x, (t+ s)/2) + f(x, s)|
|t− s|

< +∞

and ∇f ∈ Λ1(Q̄T ). We see that f ∈ Λ2(Q̄t) implies f ∈ L∞((0, T );W 1,∞(Rd)), with ∇f
satisfying (5.1), so that finally f satisfies also (2.3).

When dealing with parabolic equations, it is suitable to consider spaces of functions defined
with respect to the parabolic metric, since it is natural to deal with functions which have
derivative up to order k with respect to time and 2k with respect to space. For classic results,
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we refer for instance to [16] or to the monograph [27], where estimates are derived in Sobolev
and Hölder spaces of this kind, see Chapter 4 therein.

In [16] we find that if the forcing term of the heat equation has bounded mean oscillation
(BMO), still with respect to the parabolic metric, than the same holds true for second order
space derivatives and first order time derivatives of the solution. This would be enough for
deducing that first derivatives in space are in the Zygmund class with respect to the parabolic
metric and that therefore they satisfy a log-Lipschitz estimate. The results in [16] deal only
with null initial datum, but they can be generalized to more general data with suitable
regularity requirements. Some extensions involving initial data in Zygmund classes are found
in [1, 24], based on direct estimates on fundamental solutions. Summing up, we have

Proof of Proposition 2.2. Suppose that v is the solution (convolution with fundamental
operator) of the forced heat equation ∂tv = ∆v + ρ. Suppose ρ ∈ Λ0(Q̄T ) and v0 ∈ Λ2(Rd).
Then we have v ∈ Λ2(Q̄T ). See [16] for the case v0 = 0, see [24, Theorem 4] for a general result.
As already observed, if v ∈ Λ2(Q̄T ) then (2.3) follows. If we consider the second equation of
(1.1) with α > 0, the fundamental solution is just multiplied by a decaying exponential at
infinity and the same result carries over. �

This gives a rigorous justification of the assumptions on the initial datum of Theorem 3.1.
However a refined analysis shows that this assumption can be weakened, as we do next.

Initial datum in Λ1(Rd). We have to consider the weighted Zygmund space Λ−1
2 (QT ), defined

as the corresponding space Λ2(Q̄T ), with the addition of a time weight which is divergent as
t → 0. In particular, locally in QT functions in Λ−1

2 (QT ) have the same smoothness as the
ones in Λ2(Q̄T ), but this regularity does no more extend to the closure of QT . More precisely,
by definition f ∈ Λ−1

2 (QT ) means that f ∈ Λ1(Q̄T ),

sup
x,y∈Rd,x 6=y
t∈[0,T ]

√
t
|∇f(x, t)− 2∇f((x+ y)/2, t) +∇f(y, t)|

|x− y|
< +∞ (5.2)

and the second finite differences of f and ∇f with respect to time verify the corresponding
estimates, as in the definition of Λ2(Q̄T ), still with the addition of the weight t1/2.

Theorem 5.1. Let T > 0. Let ρ0 ∈M2(Rd;m) ∩ L∞(Rd) and v0 ∈ Λ1(Rd) ∩W 1,2(Rd). Let
zt = (ρt, vt) be a bounded solution on [0, T ] × Rd to the Cauchy problem for (1.1), according
to Definition 1.2, with initial datum z0 = (ρ0, v0). For any reference point z̄ = (ρ̄, v̄) ∈
(M2(Rd;m) ∩ L∞(Rd))×W 1,2(Rd), the general EVI holds

1

2

d

dt
D2(zt, z̄) ≤ Fε,α(z̄)−Fε,α(zt) + Ct−1/2ω(D2(zt, z̄)) for L1-a.e. t ∈ (0, T ), (5.3)

for a constant C depending on ‖ρ‖L∞((0,T )×Rd), ‖v0‖Λ1(Rd), ‖ρ̄‖L∞(Rd).

Moreover the EDE (3.4) holds, and the expansion control property holds in this form: given
another bounded solution t 7→ ζt as above with initial datum ζ0 ∈ (M2(Rd;m) ∩ L∞(Rd)) ×
(Λ1(Rd) ∩W 1,2(Rd)) there is

D2(zt, ζt) ≤ G−1(G(D2(z0, ζ0)) + 8C
√
t) for every t ∈ [0, T ), (5.4)

where C is a constant depending on ‖ρ‖L∞((0,T )×Rd) and ‖v0‖Λ1(Rd) (and the same quantities

associated to ζ). In particular, z = ζ if z0 = ζ0.
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Proof. Since we are in the hypotheses of [24, Theorem 4], v belongs to Λ−1
2 (QT ), so that

(5.2) above holds for v and then, due to the log-Lipschitz regularity in the Zygmund class,
we deduce

|∇vt(x)−∇vt(y)| ≤ Kt−1/2|x− y|(1 + log− |x− y|), (5.5)

for all x, y ∈ Rd, t ∈ (0, T ), where K is a suitable constant depending only on T and the data.
Notice that from the definition of Λ−1

2 (QT ), it does not follow that ∇v ∈ L∞(QT ). Thus we
deduce the weighted analogous of (2.3), that is

|∇vt(x)−∇vt(y)|2 ≤ C2

t
ϕ(|x− y|2), (5.6)

where C is a new suitable positive constant depending on the data and ϕ is defined in (2.2).
Following the line of the proof Theorem 3.1 we reach the estimate (3.8) for IIt, which now
has to be changed because we have to use (5.6), obtaining

|IIt| ≤ Ct−1/2W2(ρt, ρ̄)
√

mϕ(m−1W 2
2 (ρt, ρ̄)) = Ct−1/2ω(W 2

2 (ρt, ρ̄)).

We can repeat all the other steps which lead to (3.14), obtaining the corresponding EVI with

the additional weight t−1/2, which directly lead to (5.3). We conclude as in Step 4 of the
proof of Theorem 3.1: from (5.3), the EDE formulation (3.4) follows, still referring to [2,
Proposition 3.6]. Moreover, (5.4) follows by (5.3) by

d

dt
D2(zt, ζt) ≤ 4Ct−1/2ω(D2(zt, ζt)), for L1-a.e. t ∈ (0, T ).

Indeed the inequality

y(t) ≤ y(0) + 4C

∫ t

0
s−1/2ω(y(s)) ds

implies that y(t) ≤ G−1(G(y(0)) + 8C
√
t) as desired. Finally, the uniqueness result follows

since G(0) = −∞ and G−1(−∞) = 0. �

6. The case of nonlinear diffusion

We show next how to adapt our techniques to more general aggregation diffusion equations
in a quite straightforward way. Let us consider the problem{

∂tρ = div (ρ∇P (ρ))− div (ρ∇v),

ε∂tv = ∆v + ρ− αv,
(6.1)

to which we associate the functional

Gε,α(ρ, v) :=

∫
Rd

(Ψ(ρ)− vρ) dx+
1

2

∫
Rd

(|∇v|2 + αv2) dx, (6.2)

for all ε > 0, α ≥ 0, ρ ∈M2(Rd;m) ∩ L∞(Rd), v ∈W 1,2(Rd), where

Ψ(ρ) :=

∫ ρ

0
P (r) dr.

We give the same restrictions as [3, §9.3], the first one being

lim
r→0

Ψ(r)

rq
> −∞ for some q >

d

d+ 2
,

a property ensuring that
∫
Rd Ψ(ρ) 6= −∞. Moreover, the crucial property to be satisfied by

the new nonlinearity is the displacement convexity, that is the map r 7→ rdΨ(r−d) is convex
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and nondecreasing on (0,+∞). This notion, introduced in [32], is stronger than convexity
and corresponds for C2 functions to the inequality

r−1Ψ(r)−Ψ′(r) + rΨ′′(r) ≥ − 1

d− 1
rΨ′′(r) ∀ r ∈ (0,+∞).

The more relevant cases correspond to nonlinear diffusion of power kind. Indeed, if

Ψ(ρ) =
1

m− 1
ρm, m ≥ d− 1

d

the displacement convexity property holds. The case m > 1 (resp. m < 1) correspond to a
slow diffusion (resp. fast diffusion) in the equation. On the other hand, the linear diffusion
is recovered taking P (ρ) = log ρ, it is seen that in this case functional (6.2) is reduced, up to
a constant, to (1.3). Finally, let us mention that the free-energy functional in the parabolic-
elliptic case is similar to (1.4) and given by

G0,α(ρ, v) :=

∫
Rd

(Ψ(ρ)− 1

2
vρ) dx, (6.3)

for ρ ∈M2(Rd;m)∩L∞(Rd) and v = Bα,d ∗ ρ. It can be written as (6.2), taking into account
the same renormalization as in (3.1), to be done in the pathological cases ε = α = 0 and
d = 1, 2.

The notion of bounded solution is completely analogous to Definitions 1.1 and 1.2, both
for the parabolic-elliptic and the parabolic-parabolic case. Indeed, the only point to adapt is
the finiteness of the Fisher information, now rewritten into the generalized version∫ T

0

∫
Rd
|∇P (ρt(x))|2 ρt(x) dx dt < +∞. (6.4)

Corollary 6.1. Theorem 1.3, Theorem 1.4, Theorem 3.1 and Theorem 5.1 hold for bounded
solutions to (6.1).

Proof. The displacement convexity property makes the internal energy functional

ρ ∈M2(Rd;m) 7→
∫
Rd

Ψ(ρ(x)) dx

convex along Wasserstein geodesics, as shown in [3, §9.3]. This in turn gives the possibility to
write down a subdifferential inequality in Wasserstein sense (for a definition see [3, §10.1.1])
as follows. Let ρ ∈M2(Rd;m) ∩ L∞(Rd) be such that

∫
Rd |∇P (ρ)|2 ρ dx is finite. Then∫

Rd
Ψ(ρ̄(x)) dx−

∫
Rd

Ψ(ρ(x)) dx ≥
∫
R
〈∇P (ρ(x)), T (x)− x〉 ρ(x) dx, (6.5)

for any ρ̄ ∈ M2(Rd;m), where T is the optimal transport map from ρ to ρ̄. Convexity and
differentiability of functionals defined on probability densities, as the internal energy, are
standard elements in the theory of Wasserstein gradient flows. For the proof of inequality
(6.5), which characterizes the vector ∇P (ρ) as the Wasserstein subdifferential of the internal
energy functional, we refer to [2, §3.3.1] or to the general theory in [3, §10.4.3].

On the other hand, (6.5) can be used to generalize the proof of Theorem 3.1. Indeed, if
(ρt, vt) solves (6.1) according to our notion of solution, thanks to (6.4) ρt satisfies the identity
(6.5) for almost any t. From this inequality, all the rest of the proof of Theorem 3.1 can
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be carried out. Indeed, with the same notation therein, we obtain the L1-a.e. t ∈ (0, T )
inequality

It := Gε,α(ρ̄, v̄)− Gε,α(ρt, vt) +

∫
Rd

(v̄(x)− vt(x))ρ̄(x) dx ≥∫
Rd
〈ρt(x)∇P (ρt(x))− ρt(x)∇v(x), Tt(x)− x〉 dx− Cω(W 2

2 (ρt, ρ̄)),

for any ρ̄ ∈M2(Rd;m)∩L∞(Rd) and any v̄ ∈W 1,2(Rd) if ε > 0 or v̄ = Bα,d ∗ ρ̄ if ε = 0. This
estimate substitutes (3.9) in the proof of Theorem 3.1. The rest of the proofs is completely
analogous. �

Notice that the corresponding of Theorem 4.1 also holds in the nonlinear diffusion case.
However, here we have less knowledge about existence of bounded solutions.
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[5] L. Ambrosio and S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity,
Comm. Pure Appl. Math., 61 (2008), no. 11, 1495–1539.

[6] [10.1142/S0218202511400057] A. L. Bertozzi, T. Laurent and F. Léger, Aggregation and Spreading via
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[24] A. N. Konënkov, The Cauchy problem for the heat equation in Zygmund spaces (Russian), Differ. Uravn.,
41 (2005), no. 6, 820–831, 863; translation in Differ. Equ., 41 (2005), no. 6, 860–872.

[25] R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305 (2005), 566–588.
[26] R. Kowalczyk and Z. Szyman’ska, On the global existence of solutions to an aggregation model, J. Math.

Anal. Appl., 343 (2008), 379–398.
[27] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva, “Linear and quasi-linear equations of para-

bolic type” (Russian), Nauka, Moscow, 1968, 736 pp. Translations of Mathematical Monographs, Vol. 23
American Mathematical Society, Providence, R.I. 1967 xi+648 pp.

[28] G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded densitiy, J. Math.
Pures Appl., 86 (2006), 68–79.

[29] E. Mainini, A global uniqueness result for an evolution problem arising in superconductivity, Boll. Unione
Mat. Ital. (9), II (2009), no. 2, 509–528.

[30] E. Mainini, Well-posedness for a mean field model of Ginzburg-Landau vortices with opposite degrees,
NoDEA Nonlinear Differential Equations Appl., 19 (2012), no. 2, 133–158.

[31] A.J. Majda and A.L. Bertozzi, “Vorticity and Incompressible Flow”, Cambridge Texts Appl. Math., vol.
27, Cambridge Univ. Press, 2002.

[32] R. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153–179.
[33] S. Serfaty and J. L. Vazquez, Hydrodynamic Limit of Nonlinear Diffusions with Fractional Laplacian

Operators, to appear in Calc. Var. PDEs.
[34] E. M. Stein, “Singular integrals and differentiability properties of functions”, Princeton Mathematical

Series, No. 30 Princeton University Press, Princeton, N.J. 1970.
[35] V. Yudovich, Nonstationary flow of an ideal incompressible liquid, Zhurn. Vych. Mat., 3 (1963), 1032–

1066.
[36] A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47–76.
[37] A. Zygmund, “Trigonometric series”, Vol. I, II. Third edition. With a foreword by Robert A. Fefferman.

Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2002.

19



E-mail address: carrillo@imperial.ac.uk

E-mail address: stefano.lisini@unipv.it

E-mail address: edoardo.mainini@unipv.it

20


	1. Introduction
	2. Preliminary notions
	2.1. Some elliptic and parabolic regularity estimates
	2.2. Elementary notions of optimal transport

	3. Bounded solutions as gradient flows: EVI and uniqueness
	4. -convexity of the functional
	5. A refined result in Zygmund spaces
	6. The case of nonlinear diffusion
	Acknowledgements
	References

