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Abstract

In this paper we make a survey of some recent developments of the theory of
Sobolev spaces W14(X,d,m), 1 < ¢ < oo, in metric measure spaces (X,d, m). In the
final part of the paper we provide a new proof of the reflexivity of the Sobolev space
based on I'-convergence; this result extends Cheeger’s work because no Poincaré in-
equality is needed and the measure-theoretic doubling property is weakened to the
metric doubling property of the support of m. We also discuss the lower semiconti-
nuity of the slope of Lipschitz functions and some open problems.
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1 Introduction

This paper is devoted to the theory of Sobolev spaces W14(X,d, m) on metric measure
spaces (X, d,m). It is on one hand a survey paper on the most recent developments of the
theory occurred in [3], [4] (see also [5] for analogous results in the space BV of functions of
bounded variation), but it contains also new results on the reflexivity of W4 1 < ¢ < oo,
improving those of [7]. The occasion for writing this paper has been the course given by
the first author in Sapporo (July-August 2012).

In a seminal paper [7], Cheeger investigated the fine properties of Sobolev functions on
metric measure spaces, with the main aim of providing generalized versions of Rademacher’s
theorem and, along with it, a description of the cotangent bundle. Assuming that the
Polish metric measure structure (X,d, m) is doubling and satisfies a Poincaré inequality
(see Definitions 2.6 and 8.1 for precise formulations of these structural assumptions) he
proved that the Sobolev spaces are reflexive and that the g-power of the slope is L(X, m)-
lower semicontinuous, namely

fur € Lip(X), /]fh—f|qdm—>0 N h}xlninf/ |th|qdm2/ IV f|7dm. (1.1)
D'e - Jx X

Here the slope |V f|, also called local Lipschitz constant, is defined by

|V fl(z) := limsup M
Yy—x d (ya z )

These results come also as a byproduct of a generalized Rademacher’s theorem, which can
be stated as follows: there exist an integer N, depending on the doubling and Poincaré
constants, a Borel partition {X;};c; of X and Lipschitz functions f;, 1<j<N(@E <N,
with the property that for all f € Lip(X) it is possible to find Borel coefficients c;'-, 1<
J < N, uniquely determined m-a.e. on X;, satisfying

N(3)

’V(f - Zc;(x)f;) (x)=0  for mae. z € X;. (1.2)




It turns out that the family of norms on RV®

N(i)
(e, @y lle = ‘VZajf; ()
j=1

indexed by = € X; satisfies, thanks to (1.2),
I(c(x), . .. ,cﬁv(i)(x))Hm = |V fl(x) for m-a.e. x € X,

Therefore, this family of norms provides the norm on the cotangent bundle on X;. Since
N (i) < N, using for instance John’s lemma one can find Hilbertian equivalent norms | - |,
with bi-Lipschitz constant depending only on N. This leads to an equivalent (but not
canonical) Hilbertian norm and then to reflexivity. In this paper we aim mostly at lower
semicontinuity and reflexivity: we recover the latter (and separability as well) without
assuming the validity of the Poincaré inequality and replacing the doubling assumption on
(X,d, m) with a weaker assumption, namely the geometric doubling of (suppm,d).

In connection with the expansion (1.2), it is also worthwhile to mention a remarkable
paper [23] by Keith, where (1.2) is obtained replacing the Poincaré assumption with a
more infinitesimal condition, called Lip-lip: for some constant K, for all locally Lipschitz
functions f, for m-a.e. x € X there holds:

rl0  yeB(z,r) T rJ0 yeB(z,r) r

However, we don’t know whether Keith’s condition is sufficient for the lower semicontinuity
of the slope.

Sobolev spaces, as well as a weak notion of norm of the gradient |V f|¢,, are built in [7]
by considering the best possible approximation of f by functions f,, having a g-integrable
upper gradient g,,, namely pairs (f,, g,) satisfying

|fu(11) = fu(v0)| < /gn for all absolutely continuous curves 7 : [0,1] — X. (1.3)
gl

Here, by best approximation we mean that we minimize

lim inf/ |gn|? dm
X

n—o0

among all sequences f,, that converge to f in L9(X,m). It must be emphasized that even
though the implication (1.1) does not involve at all weak gradients, its proof requires a fine
analysis of the Sobolev spaces and, in particular, their reflexivity. At the same time, in
[27] this approach was proved to be equivalent to the one based on the theory of g-upper
gradients introduced in [24] and leading to a gradient that we shall denote |V f|s,. In this
theory one imposes the validity of (1.3) on “almost all curves” in the sense of [12] and uses



this property to define |V f|s,. Both approaches are described more in detail in Appendix
A of this paper (see also [17] for a nice account of the theory).

More recently, the first author, N. Gigli and G. Savaré developed, motivated by a re-
search program on metric measure spaces with Ricci curvature bounds from below, a new
approach to calculus in metric measure spaces (see also [14] for the most recent devel-
opments). In particular, in [3] and [4] Sobolev spaces and weak gradients are built by a
slightly different relaxation procedure, involving Lipschitz functions f,, with bounded sup-
port and their slopes |V f,,| instead of functions f,, with ¢g-integrable upper gradient g,,: this
leads to a weak gradient a priori larger than |V f|c,. Still in [3] and [4], connection with
the upper gradient point of view, a different notion of negligible set of curves (sensitive to
the parametrization of the curves) to quantify exceptions in (1.3) was introduced, leading
to a gradient a priori smaller than |V f|s,. One of the main results of these papers is
that all the four notions of gradient a posteriori coincide, and this fact is independent of
doubling and Poincaré assumptions.

The paper, that as we said must be conceived mostly as a survey paper until Section 7,
is organized as follows. In Section 2 we recall some preliminary tools of analysis in metric
spaces, the theory of gradient flows (which plays, via energy dissipation estimates, a key
role), I'-convergence, p-th Wasserstein distance W),, with p dual to the Sobolev exponent
¢, and optimal transport theory. The latter plays a fundamental role in the construction
of suitable measures in the space of absolutely continuous curves via the so-called super-
position principle, that allows to pass from an “Eulerian” formulation (i.e. in terms of a
curve of measures or a curve of probability densities) to a “Lagrangian” one. In Section 3
we study, following very closely [4], the pointwise properties of the Hopf-Lax semigroup

dP(z,y)
ptr=t

= inf

Quf(x) = inf f(y) +

also emphasizing the role of the so-called asymptotic Lipschitz constant
Lip,(f,) == inf Lip(f, B(x, 7)) = limLip(f, B(x, 7)),

which is always larger than |V f|(z) and coincides with the upper semicontinuous relaxation
of [V f] at x in length spaces.

Section 4 presents the two weak gradients |V f|, , and |V f|, 4, the former obtained by
a relaxation and the latter by a weak upper gradient property. As suggested in the final
section of [4], we work with an even stronger (a priori) gradient, where in the relaxation
procedure we replace |V f,,| with Lip,(f,,). We present basic calculus rules and stability
properties of these weak gradients.

Section 5 contains the basic facts we shall need on the gradient flow (f;)¢>0 in L*(X, m)
of the lower semicontinuous functional f +— C,(f) := % JxIVf |2 ,dm, in particular the
entropy dissipation rate

d
G [ otdm == [ @ (GIVEL, dn

X

4



along this gradient flow. Notice that, in order to apply the Hilbertian theory of gradient
flows, we need to work in L?(X, m). Even when m is finite, this requires a suitable definition
(obtained by truncation) of |V f|., when ¢ > 2 and f € L*(X,m)\ L1(X, m).

In Section 6 we prove the equivalence of gradients. Starting from a function f with
|V flwq € L9(X, m) we approximate it by the gradient flow of f; of C, starting from f and
we use the weak upper gradient property to get

Vfs|? Vfld
limsupl/ Vs —— % dmds < VT ’qd
0o Jx fP-

1
tl0 p X

where p = ¢/(q — 1) is the dual exponent of ¢. Using the stability properties of |V f|. , we
eventually get |V fl.q < |V flw, m-ae. in X.

In Section 7 we prove that the Sobolev space W14( X, d, m) is reflexive when 1 < ¢ < oo,
(suppm, d) is separable and doubling, and m is finite on bounded sets. Instead of looking
for an equivalent Hilbertian norm (whose existence is presently known only if the metric
measure structure is doubling and the Poincaré inequality holds), we rather look for a
discrete scheme, involving functionals Fs(f) of the form

25‘1 Z |f(52 f5,]

4 A5 ~A?

Im(A9).

Here A? is a well chosen decomposition of suppm on scale §, f5; = f 4o/ and the sum

involves cells Ag close to A%, in a suitable sense. This strategy is very close to the con-

struction of approximate g-energies on fractal sets and more general spaces, see for instance
[21], [28].
It is fairly easy to show that any I'-limit point Fy of Fs5 as 6 — 0 satisfies

Fo(f) < c(ep, q)/ Lipd(f,-)dm for all Lipschitz f with bounded support,  (1.4)
b

where cp is the doubling constant of (X,d) (our proof gives c¢(cp, q) < 69c%)). More delicate
is the proof of lower bounds of Fy, which uses a suitable discrete version of the weak upper
gradient property and leads to the inequality

/ IVfle dm < Fo(f) Ve WH(X,d,m). (1.5)
Combining (1.4), (1.5) and the equivalence of weak gradients gives
3 VIt <) < clepa) [ VAL AV E WX )

The discrete functionals F5(f) + >, | fs:]"m(A?) describe L? norms in suitable discrete
spaces, hence they satisfy the Clarkson inequalities; these inequalities (which reduce to the
parallelogram identity in the case ¢ = 2) are retained by the I'-limit point o + || - [|Z. This

bt



leads to an equivalent uniformly convex norm in W14(X,d, m), and therefore to reflexivity.
As a byproduct one obtains density of bounded Lipschitz functions in W4(X,d, m) and
separability. In this connection, notice that the results of [3], [4] provide, even without
a doubling assumption, a weaker property (but still sufficient for some applications), the
so-called density in energy; on the other hand, under the assumptions of [7] one has even
more, namely density of Lipschitz functions in the Lusin sense.
Notice however that Fy, like the auxiliary Hilbertian norms of [7], is not canonical: it might
depend on the decomposition A% and we don’t expect the whole family F5 to I'-converge
as & — 07. We conclude the section with an example showing that reflexivity may fail if
the metric doubling assumption is dropped.

In Section 8 we prove (1.1), following in large part the scheme of [7] (although we
get the result in a more direct way, without an intermediate result in length spaces). In
particular we need the Poincaré inequality to establish the bound

IV <CIVflug for any Lipschitz function f with bounded support,

which, among other things, prevents |V f|,, from being trivial.

Finally, in the appendices we describe more in detail the intermediate gradients |V f|c,
and |V f|s4, we provide another approximation by discrete gradients also in non-doubling
spaces (but our results here are not conclusive) and we list a few open problems.

Acknowledgement. The first author acknowledges the support of the ERC ADG
GeMeThNES. The authors thank N. Gigli for useful comments on a preliminary version of
the paper and the reviewer for his/her detailed comments.

2 Preliminary notions

In this section we introduce some notation and recall a few basic facts on absolutely
continuous functions, gradient flows of convex functionals and optimal transportation, see
also [2], [29] as general references.

2.1 Absolutely continuous curves and slopes

Let (X,d) be a metric space, J C R a closed interval and J 3> ¢t — 2, € X. We say that
(x4) is absolutely continuous if

t
d(xs, x) < / g(r)dr Vs, teJ, s<t

for some g € L*(J). It turns out that, if (z;) is absolutely continuous, there is a minimal

function g with this property, called metric speed, denoted by || and given for a.e. t € J
by

|xt| 5112 |S—t|



See [2, Theorem 1.1.2] for the simple proof.

We will denote by C([0,1], X) the space of continuous curves from [0,1] to (X,d)
endowed with the sup norm. The set AC?([0,1], X) C C([0, 1], X) consists of all absolutely
continuous curves vy such that fol |44|P dt < oo: it is the countable union of the sets {7 :

fol |9|P dt < n}, which are easily seen to be closed if p > 1. Thus AC?([0,1], X) is a Borel
subset of C([0,1], X).

We remark that the definition of absolutely continuous curve makes sense even when
we consider an extended metric space (X, d), namely assuming that the distance may take
the value oo; the properties described above hold true, with minor variants, in this context
(see [3] for details).

The evaluation maps e : C([0,1], X) — X are defined by

et(/y) =Tty

and are clearly continuous.
Given f : X — R and E C X, we denote by Lip(f, F) the Lipschitz constant of the
function f on E, namely

: _ If(@) — fly)l
Liplf, B) = x,yigg#y dz,y)

Given f : X — R, we define slope (also called local Lipschitz constant) by

_ o fy) — f(=@)]
For f, g : X — R Lipschitz it clearly holds
V(e +Bg)| < al[VfI+[BlIVg]  Va,B5€R, (2.1a)
VUl < 1AVl + glIV £l (2.1b)

We shall also need the following calculus lemma.

Lemma 2.1 Let f:(0,1) > R, ¢ € [1,00], g € L9(0,1) nonnegative be satisfying

If(s)— f(t)] < / g(r)dr for L*-a.e. (s,t) € (0,1)%

Then f € W14(0,1) and |f'| < g a.e. in (0,1).

Proof. Let N C (0,1)? be the #Z*negligible subset where the above inequality fails.
Choosing s € (0, 1), whose existence is ensured by Fubini’s theorem, such that (s,t) ¢ N
for a.e. t € (0,1), we obtain that f € L*°(0,1). Since the set Ny = {(t,h) € (0,1)? :
(t,t+h) € NN(0,1)?} is Z*negligible as well, we can apply Fubini’s theorem to obtain



that for a.e. h it holds (¢,h) ¢ (0,1)2\ N, for a.e. t € (0,1). Let h; | 0 with this property
and use the identities

with ¢ € C1(0,1) and h = h; sufficiently small to get

/0 FF (1) dt| < / g(1)]6 ()] dt.

It follows that the distributional derivative of f is a signed measure n with finite total
variation which satisfies

1 1 1 1
[ rgar= [oan || oan|< [ glolar torevery 6. L0,
0 0 0 0

therefore 7 is absolutely continuous with respect to the Lebesgue measure with || < g.Z*.

This gives the W11(0, 1) regularity and, at the same time, the inequality |f’| < g a.e. in

(0,1). The case ¢ > 1 immediately follows by applying this inequality when g € L%(0, 1).
O

Following [18], we say that a Borel function g : X — [0, 00] is an upper gradient of a
Borel function f : X — R if the inequality

/awf' S/f’ (22)

holds for all absolutely continuous curves v : [0,1] — X. Here [, . f=f(n)— f(v), while

1 .
J,9=Jy 9(vs)|Hs| ds.

It is well-known and easy to check that the slope is an upper gradient, for locally
Lipschitz functions.

2.2 Gradient flows of convex and lower semicontinuous function-
als

Let H be an Hilbert space, ¥ : H — R U {+00} convex and lower semicontinuous and
D(¥) = {V¥ < oo} its finiteness domain. Recall that a gradient flow x : (0,00) — H of ¥
is a locally absolutely continuous map with values in D(¥) satisfying

d
€ 0~ V(zy) for a.e. t € (0, 00).

Here 0~ W(x) is the subdifferential of U, defined at any x € D(V¥) by
0 U(x) = {p e H': W(y) > (a)+ (p.y— 1) Yy € H}.

We shall use the fact that for all x5 € D(V) there exists a unique gradient flow x; of
U starting from g, i.e. xy — x¢ as t | 0, and that ¢t — V(z,) is nonincreasing and locally
absolutely continuous in (0,00). In addition, this unique solution exhibits a regularizing
effect, namely — <z, is for a.e. ¢ € (0,00) the element of minimal norm in 9~V (z).

8



2.3 The space (#Z(X),W,) and the superposition principle

Let (X,d) be a complete and separable metric space and p € [1,00). We use the notation
P(X) for the set of all Borel probability measures on X. Given p, v € Z(X), we define
the Wasserstein (extended) distance W, (i, v) € [0, 0o] between them as

Wh(p,v) = min/dp(x,y) dvy(z,y).

Here the minimization is made in the class I'(i, v) of all probability measures v on X x X
such that 7y = p and 77y = v, where 7* : X x X — X, i = 1, 2, are the coordinate
projections and f; : Z(Y) — P (Z) is the push-forward operator induced by a Borel map
f:Yy—=2
An equivalent definition of W), comes from the dual formulation of the transport prob-

lem: )

_W/P — c

pr (V) weigf(X)/¢du + /1/) duv. (2.3)
Here Lip,(X) stands for the class of bounded Lipschitz functions and the c-transform ¢
is defined by

P )
V(y) == ;g)f(T

— (x).

We will need the following result, proved in [26]: it shows how to associate to an
absolutely continuous curve p; w.r.t. W, a plan # € 2(C([0,1], X)) representing the
curve itself (see also [2, Theorem 8.2.1] for the Euclidean case). Notice that the result as

stated in [26] is concerned with curves u; with values in the space
Py(X) = {u e Z2(X): / d(zg, )P dp(z) < oo for some zy € X}
X

of probabilities with finite p-th moment (so that W, is a finite distance in Z,(X)), but
the proof works also in the extended metric space (X)), since absolute continuity forces
1 to belong to the component

{ne P(X): Wylu,po) < o0}
at a finite distance from .

Proposition 2.2 (Superposition principle) Let (X,d) be a complete and separable
metric space p € (1,00) and let p, € ACP([0,T);(P(X),W,)). Then there emists
€ Z(C(0,1],X)), concentrated on ACP([0,1],X), such that (e)ym = p for any
t€[0,7] and

/Ht|p dm(y) = |ju|? for a.e. t €10,T). (2.4)



2.4 I'-convergence

Definition 2.3 Let (X,d) be a metric space and let F, : X — [—o00,400]. We say that
F,, T-converge to F : X — [—o0, +00] if:

(a) For every sequence (up) C X convergent to uw € X we have

F(u) < liminf Fj,(up);

h—o00

(b) For all u € X there exists a sequence (u,) C X such that

F(u) > limsup Fj(up).

h—00

Sequences satisfying the second property are called “recovery sequences”; whenever
[-convergence occurs, they obviously satisfy limy, Fj,(uy) = F(u).

The following compactness property of I'-convergence (see for instance [10, Theorem
8.5]) is well-known.

Proposition 2.4 If (X,d) is separable, any sequence of functionals Fy, : X — [—00, +00]
admits a I'-convergent subsequence.

We quickly sketch the proof, for the reader’s convenience. If {U; };cy is a countable basis
of open sets of (X,d), we may extract a subsequence h(k) such that o, := limy infy, Fj
exists in R for all i € N. Then, it is easily seen that

F(z) :=supq; reX
U;>x
is the I-limit of Fj ).

We will also need an elementary stability property of uniformly convex (and quadratic
as well) functionals under I'-convergence. Recall that a positively 1-homogeneous function
N on a vector space V is uniformly convex with modulus w if there exists a function
w: [0,00) = [0,00) with w > 0 on (0, 00) such that

u-+v

Nu)=N@w)=1 = N( )Sl—w(N(u—v))

for all u, v e V.

Lemma 2.5 Let V be a normed space with the induced metric structure and let w :
[0,00) — [0,00) be continuous, nondecreasing, positive on (0,00). Let Ny, be uniformly
convex positively 1-homogeneous functions on V' with the same modulus w, I'-convergent to
some function N. Then N s positively 1-homogeneous and uniformly conver with modulus
w.

10



Proof.  The verification of 1-homogeneity of N is trivial. Let w, v € V which satisfy
N(u) = N(v) = 1. Let (up) and (v;) be recovery sequences for u and v respectively, so
that both Ny (uy) and Ny (vy,) converge to 1. Hence, uj, = up/Np(up) and vj, = vy /Ny (vr)
still converge to u and v respectively. By assumption

uy, + vy , ,
N (%) + w(Np(uy, —vp)) < 1.

Thanks to property (a) of I'-convergence, the monotonicity and the continuity of w and
the superadditivity of liminf we get

/ /
uh—l—vh

N (“ ; v) +w (N(u—v)) < liminf N, ( ) M <hmianh(U;l - U;L)>
5 B0 h—o0

/ /
< lim inf (Nh (uh;rvh) + w(Np (u), — UZ))) <1

h—o0

2.5 Doubling metric measure spaces and maximal functions

;From now on, B(z,r) will denote the open ball centered in  of radius r and B(z,r) will
denote the closed ball:

Bx,r)={ye X : dlz,y) <r}  Blx,r)={yeX : dlz,y) <r}.
If not specified, with the term ball we mean the open one.
Recall that a metric space (X,d) is doubling if there exists a natural number c¢p such
that every ball of radius r can be covered by at most ¢p balls of halved radius r/2. While
this condition will be sufficient to establish reflexivity of the Sobolev spaces, in the proof

of lower semicontinuity of slope we shall actually need a stronger condition, involving also
the reference measure m:

Definition 2.6 (Doubling m.m. spaces) The metric measure space (X,d, m) is dou-
bling if there exists cp > 0 such that

m(B(x,2r)) < épm(B(z, 7)) Va € suppm, r > 0. (2.5)
This condition is easily seen to be equivalent to the existence of two real positive numbers
«, f > 0 which depend only on ¢p such that
w(B(er)) <5 (") w(Blra)) whenever Bly.r) € Blory). ra < i,y € suppm,
T2

(2.6)
Indeed, B(z,r) C B(y,2r1), hence m(B(x,r;)) < é&hm(B(y, 7)), where k is the smallest
integer such that 2r; < 2%ry. Since k < 2+ Iny(ry/r9), we obtain (2.6) with a = Iny ép and

B = 4.

11



Condition (2.6) is stronger than the metric doubling property, in the sense that
(suppm, d) is doubling whenever (X,d, m) is. Indeed, given a ball B(x,r) with € supp m,
let us choose recursively points z; € B(z,r) Nsuppm with d(x;,z;) > r/2, and assume
that this is possible for ¢ = 1,..., N. Then, the balls B(x;,r/4) are disjoint and

m(B (e 1)) 2 epbm(Bai,2r)) = pfm(B(z, 1),

so that N < ¢3); in particular we can find a maximal finite set {x;} with this property, and
from the maximality it follows that for every o’ € B(x,r) Nsuppm we have d(x;,2") < r/2
and so

B(z,r)Nsuppm C U B(z;,1/2).
It follows that (suppm,d) is doubling, with doubling constant cp < ¢%. Conversely (but
we shall not need this fact) any complete doubling metric space supports a nontrivial
doubling measure (see [9, 20]).

Definition 2.7 (Local maximal function) Given q € [1,00), € > 0 and a Borel func-
tion f: X — R such that |f|? is m-integrable on bounded sets, we define the e-maximal
function

1/q
M f(z) = ( sup f |f|qdm) & € suppm.
B(z,r)

O0<r<e

The function Mg f(z) is nondecreasing w.r.t. e, moreover M f(x) — |f|(z) at any
Lebesgue point z of |f|?, namely a point x € supp m satisfying

. 1 e
) o, VO A = 1)

We recall that, in doubling metric measure spaces (see for instance [17]), under the
previous assumptions on f we have that m-a.e. point is a Lebesgue point of |f|? (the proof
is based on the so-called Vitali covering lemma). By applying this property to |f — s|? with
s € Q one even obtains

1

i [ 1f5) — fla)]dm(y) =0 (2.9
0 m(B(x, 7”)) B(z,r)

for every x € suppm that is a Lebesgue point of |f — s]? for every s € Q. In particular it

is clear that (2.8) is satisfied for m-a.e. = € suppm; we call such points ¢g-Lebesgue points

of f. We shall need a further enforcement of the ¢-Lebesgue point property:

Lemma 2.8 Let (X,d,m) be a doubling metric measure space and let f : X — R be a
Borel function such that |f|? is m-integrable on bounded sets. Then, at any point x where
(2.8) is satisfied, it holds

I 1
11

/E F(y) — F(@)| dm(y) = 0 (2.9)

12



whenever F, C X are Borel sets satisfying B(y,,mr,) C E, C B(x,r,) with y, € suppm
and r, — 0, for some 7 € (0,1] independent of n. In particular f, fdm — f(x).

Proof.  Since m is doubling we can use (2.6) to obtain

1
m(E,)

[E @) — f@)7dm(y) < —— /|f<y>—f<x>|qdm<y>

m(B(ym Trn)) n

1 4 dm
< T / )= @) dny)

m(B(x, 7))
~ (B (Yn, T70))

< Bro ]{9 W) = Sl dmiy)

]i ) = ) am)

Since (2.8) is true by hypothesis, the last term goes to 0, and we proved (2.9). Finally, by
Jensen’s inequality,

]ifdm—f(x) g][ - f@)|tdm = 0.

3 Hopf-Lax formula and Hamilton-Jacobi equation

Aim of this section is to study the properties of the Hopf-Lax formula in a metric space
(X, d) and its relations with the Hamilton-Jacobi equation. Notice that there is no reference
measure m here and that not even completeness is needed for the results of this section.
We fix a power p € (1,00) and denote by ¢ its dual exponent.

Let f: X — R be a Lipschitz function. For ¢ > 0 define

F(t,x,y) = f(y)+ d;sjily), (3.1)

and the function Q;f : X — R by
Q.f (z) := inf F(t,z,vy). (3.2)
yeX
Notice that @Q;f(z) < f(z); on the other hand, if L denotes the Lipschitz constant of f,
Young’s inequality (dt=1/9)P/p + (Lt'/9)7/q > Ld gives

d(z,y)? Le
ptpfl Z f(ilf)—t?,

F(t,.iﬂ,y) > f(.il?) - Ld(ﬂf,y) +
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so that Qi f(x) 1 f(z) as t | 0.

Also, we introduce the functions D", D~ : X X (0,00) — R as

D*(z,t) := sup limsupd(z, y,),
nee (3.3)
D™ (z,t) ;= inf hgi(gfd(x, Yn),
where, in both cases, the sequences (y,) vary among all minimizing sequences for F' (¢, x,-).
We also set Qof = f and D*(x,0) = 0. Arguing as in [2, Lemma 3.1.2] it is easy to check
that the map X x [0,00) 3 (z,t) — Q.f(x) is continuous. Furthermore, the fact that f is
Lipschitz easily yields

D~ (w,) < D*(a,1) < t(pLip(f))"/7. (3.4
Proposition 3.1 (Monotonicity of D¥) For all x € X it holds
DY (z,t) < D (x,5) 0<t<s. (3.5)

As a consequence, DT (x,-) and D™ (x,-) are both nondecreasing, and they coincide with at
most countably many exceptions in [0, 00).

Proof. Fix x € X. For t = 0 there is nothing to prove. Now pick 0 < ¢t < s and for every
e € (0,1) choose z;. and z,. minimizers up to € of F(t,z,-) and F(s,z,-) respectively,
namely such that F(t,z,2,.) —e < F(t,z,w) and F(s,z,25.) —e < F(s,z,w) for every
w € X. Let us assume that d(z,z:.) > (1 —e)D*(z,t) and d(z,z5.) < D™ (x,s) +&. The
minimality up to € of x;., x5, gives

dP(zse, )
< f(iUs,e)JFFJré?
dP(zye, )

< f(xt,a)_’_W +e.

flage) + M

Adding up and using the fact that % > % we deduce
(1—e)P Dt (2, 1) < dP (240, 7) < dP (250, 2)H2pe(tP—s'"P) "L < (D™ (z, 5)+e)P+2pe(tt P—s'P) 71,

Letting ¢ — 0 we obtain (3.5). Combining this with the inequality D~ < D% we im-
mediately obtain that both functions are nonincreasing. At a point of right continuity of
D~ (x,-) we get

D (x,t) <inf D™ (x,s) = D™ (x,t).

s>t

This implies that the two functions coincide out of a countable set. O

Next, we examine the semicontinuity properties of D¥. These properties imply that
points (z,t) where the equality D" (z,t) = D™ (z,t) occurs are continuity points for both
Dt and D~.
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Proposition 3.2 (Semicontinuity of D*) D7 is upper semicontinuous and D~ is lower
semicontinuous in X x [0, 00).

Proof. We prove lower semicontinuity of D™, the proof of upper semicontinuity of D
being similar. Let (x;,t;) be any sequence converging to (x,t) such that the limit of
D~ (z;,t;) exists and assume that ¢t > 0 (the case t = 0 is trivial). For every ¢, let (') be
a minimizing sequence of F'(t;, z;,-) for which lim, d(y?, z;) = D~ (x;,t;), so that

d? na %
tin 7 () + &)

n—00 ptfil

= Qtzf(xz)

Using the continuity of Q; we get

dp i ) . . dp n?
% > lim sup limsup f(y}') + i z)

i—00 n—00 ptp_l

Qif(x) = Zliglo nh_{{.lo flyl') + > Qi f (),

where the first inequality follows from the boundedness of 3 and the estimate

dp(ynaxi) dp(,yn’x) d(.T,.CL’l) p—1 d(y",x) |tp—1 — tp71|
¢ — L < d(y! 7 vV d TL, - . :
pt; ptr =P (A i) vl )"+ p (t;t)P=1

(which in turn can be proved thanks to the inequality |a? — b?| < pla — bl(a V b)P71).
Analogously

lim D™ (zy,t;) = lim lim d(y}, ;) > limsup limsupd(y}', ).

1—00 1—00 N—r00 i—00 n—oo

Therefore by a diagonal argument we can find a minimizing sequence (y," (i)) for F(t,x,-)

with lim sup, d(y," @, x) < lim; D~ (z;,t;), which gives the result. O

Proposition 3.3 (Time derivative of Q,f) The map t — Q.f is Lipschitz from [0, c0)
to the extended metric space of continuous functions C(X), endowed with the distance

1f = glloe = sup [ f(x) — g(x)].
rzeX

Moreover, for all x € X, it satisfies:

d 1[D*(z,t)]"

— = | = 3.6
for any t > 0, with at most countably many exceptions.

Proof. Let t < s and for every € € (0,1) choose z;. and z,. minimizers up to ¢
of F(t,x,-) and F(s,x,-) respectively, namely such that F(¢,z,2;.) — e < F(t,z,w) and
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F(s,x,xs.)—¢ < F(s,z,w) for every w € X. Let us assume that d(x, z;.) > (1—¢) D" (z,t)
and d(x, xs.) < D™ (z,s) + . We have

dP(x, ) P71 — P!

Qsf (@) = Quf(x) S F(s,x,me) — F(t, 0, m) + € = p pres yems
dP(x, zg.) P71 — P71
st(x) - Qtf<x> 2 F(Sa xwxs,e) - F(t7x7 xs,s) — &= p p—1gp—1 —&.

For € small enough, dividing by s — ¢, using the definition of x;. and x5, and using the
inequality (p — 1)tP~2 < % < (p — 1)s"~% we obtain

Q@) Q) _ ) oDy | e

s—t - qsP s—t’
st((li) - Qtf<x> > _dp(xa xs,z—:) . €
s—1 - qt? s—t’

which gives as ¢ — 0 that ¢ — Q.f(z) is Lipschitz in [0, T] for any 0 < § < T" uniformly
with respect to z € X. Also, taking Proposition 3.1 into account, we get (3.6). Now notice
that from (3.4) we get that ¢|$Q,f(z)| < p?[Lip(f)]? for any = € X and a.e. ¢ > 0, which,
together with the pointwise convergence of Q,f to f ast | 0, yields that t — Q;f € C(X)
is Lipschitz in [0, 00). O

We will bound from above the slope of Q;f at x with |DT(x,t)/t[P~!; actually we shall
prove a more precise statement, which involves the asymptotic Lipschitz constant

Li := inf Li B = lim Li B . .
ip, (f,) = inf Lip(f, B(x, 7)) = limLip(f, Bz, )) (3.7)
We collect some properties of the asymptotic Lipschitz constant in the next proposition.

Proposition 3.4 Let f: X — R be a Lipschitz function. Then
Lip(f) = Lip,(f,z) = [V f[*(z), (3.8)

where |V f|* is the upper semicontinuous envelope of the slope of f. In length spaces the
second inequality is an equality.

Proof. The first inequality in (3.8) is trivial, while the second one follows by the fact that
Lip,(f,-) is upper semicontinuous and larger than |V f|. Since |V f| is an upper gradient
of f, we have the inequality

€(v)
Iﬂw—f@HSA 1 £ (ye)

for any curve v with constant speed joining y to z. If (X,d) is a length space we can
minimize w.r.t. v to get

Lip(f, B(z,7)) < sup |[Vf| < sup [Vf]"
B(xz,3r) B(x,3r)

As r | 0 the inequality Lip,(f, z) < |V f[*(x) follows. O
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Proposition 3.5 (Bound on the asymptotic Lipschitz constant of Q),f) For

(x,t) € X x (0,00) it holds:
D+(x,t)r_1_ (3.9)

Lip,(Quf.2) < |24

In particular Lip(Q:(f)) < pLip(f).

Proof. Fix y,z € X and t € (0,00). For every € > 0 let y. € X be such that
F(t,y,y.) —e < F(t,y,w) for every w € X and |d(y,y.) — D (y,t)| < e. Since it holds

Quf (2) — Quf (y) < F(t, 2,4.) — F(ty,y) +e = f(y) + % ) — df;g(g),_?f) s
Wy +duv)? e
ptpil ptp*l
< ) (d(z,9) + D¥(y,t) + )"+,

S
so that letting ¢ — 0, dividing by d(z,y) and inverting the roles of y and z gives
Lip(Quf, B(z,r)) <t'77(2r+ sup D*(y, )"
yEB(z,r)

Letting r | 0 and using the upper semicontinuity of D we get (3.9).
Finally, the bound on the Lipschitz constant of @Q,f follows directly from (3.4) and

(3.9). O
Theorem 3.6 (Subsolution of HJ) For every z € X it holds

d 1 .

@S (@) + 5LIPZ(Qtf, r) <0 (3.10)

for every t € (0,00), with at most countably many exceptions.
Proof. The claim is a direct consequence of Propositions 3.3 and 3.5. O

Notice that (3.10) is a stronger formulation of the HJ subsolution property

d 1 ,
G @)+ ZIVQ () <0, (3.11)

with the asymptotic Lipschitz constant Lip,(Qf,-) in place of |[VQ,f].

4 Weak gradients

Let (X,d) be a complete and separable metric space and let m be a nonnegative Borel
measure in X (not even o-finiteness is needed for the results of this section). In this section
we introduce and compare two notions of weak gradient, one obtained by relaxation of the
asymptotic Lipschitz constant, the other one obtained by a suitable weak upper gradient
property. Eventually we will show that the two notions of gradient coincide: this will lead
also to the coincidence with the other intermediate notions of gradient considered in [7],
[24], [27], described in the appendix.
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4.1 Relaxed slope and |V f|,,

The following definition is a variation of the one considered in [7] (where the relaxation
procedure involved upper gradients) and of the one considered in [3] (where the relaxation
procedure involved slopes of Lipschitz functions). The use of the (stronger) asymptotic
Lipschitz constant has been suggested in the final section of [4]: it is justified by the
subsolution property (3.10) and it leads to stronger density results. In the spirit of the
Sobolev space theory, these should be considered as “H definitions”, since approximation
with Lipschitz functions with bounded support are involved.

Definition 4.1 (Relaxed slope) We say that g € LY(X,m) is a g-relazed slope of f €
LI(X,m) if there exist g € L9(X,m) and Lipschitz functions with bounded support f, such
that:

(a) fn— f in LYX,m) and Lip,(f,,-) weakly converge to g in LI(X,m);
(b) §<gm-a.e. inX.

We say that g is the minimal g-relaxed slope of f if its LY(X, m) norm is minimal among
q-relazed slopes. We shall denote by |V f|., the minimal g-relaxed slope (also called the
q-relaxed gradient).

By this definition and the sequential compactness of weak topologies, any L9 limit of
Lipschitz functions f,, with bounded support and with [ Lip?(f,, -) dm uniformly bounded
has a g-relaxed slope. On the other hand, using Mazur’s lemma (see [3, Lemma 4.3] for
details), the definition of g-relaxed slope would be unchanged if the weak convergence of
Lip,(fn,-) in (a) were replaced by the condition Lip,(f,, ) < ¢, and g, — § strongly
in L7(X,m). This alternative characterization of g-relaxed slopes is suitable for diagonal
arguments and proves, together with (2.1a), that the collection of g-relaxed slopes is a
closed convex set, possibly empty. Hence, thanks to the uniform convexity of L¢(X, m),
the definition of |V f|., is well posed. Also, arguing as in [3] and using once more the
uniform convexity of L¢(X,m), it is not difficult to show the following result:

Proposition 4.2 If f € LY(X, m) has a g-relazed slope then there exist Lipschitz functions
fn with bounded support satisfying

“dm = 0. (4.1)

lim /X|fn—f|qc1m+/X\Lipa(fm-)—|Vf|*,q

n—oo

Notice that in principle the integrability of f could be decoupled from the integrability
of the gradient, because no global Poincaré inequality can be expected at this level of
generality. Indeed, to increase the symmetry with the definition of weak upper gradient
(which involves no integrability assumption on f), one might even consider the convergence
m-a.e. of the approximating functions, removing any integrability assumption. We have
left the convergence in LY because this presentation is more consistent with the usual
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presentations of Sobolev spaces, and the definitions given in [7] and [3]. Using locality and
a truncation argument, the definitions can be extended to more general classes of functions,
see (5.2). In this connection, we should also mention that in [7] and [3] the approximating
functions are not required to have bounded support. However, we may fix zo € X and
a sequence of Lipschitz functions y, : X — [0,1] with x, = 1 on Bg(zg), xx = 1 on
X \ Bgy1(zo), Lip(xg) < 1. Since for any locally Lipschitz function f € L%(X, m) with
Lip,(f) € LY(X, m) the functions fx; have bounded support and satisfy

fxe = f i L(X,m),  Lip,(fxx) = Lip,(f) in L/(X,m),
a diagonal argument proves that the class of relaxed slopes is unchanged.

Lemma 4.3 (Pointwise minimality of |V f|.,) Let g1, g» be two q-relazed slopes of f.
Then min{gy, g2} is a g-relaxed slope as well. In particular, not only the L? norm of |V f|.q
is minimal, but also |V fl.q, < g m-a.e. in X for any q-relaxed slope g of f.

Proof.  We argue as in [7], [3]. First we notice that for every f, g € Lip(X)
Lip,(f +9,#) < Lip,(f,#) + Lip,(9,7) ~ Vr € X, (4.2)

Lip,(fg,x) < |f(x)[ Lip,(g, z) + |g(x)| Lip,(f,2) Vo e X. (4.3)
Indeed (4.2) is obvious; for (4.3) we have that

|f(2)g9(2) = fw)gW)| < f(2)lg(z) — g + g f(z) = fly)| Yy, 2z € X,

so that

Lip(fg, B(z,r)) < sBu(p)If(Z)|Lip(g,B(x,r))+ SBu(p)Ig(y)lLip(f,B(x,T)) Vz e X
zeB(x,r yeo(x,r

and we let r — 0.

It is sufficient to prove that if B C X is a Borel set, then Xpg; + Xx\pg2 is a g-relaxed
slope of f. Let us consider the class J of all Borel sets B satisfying this property for any pair
(g1, g2) of relaxed slopes of f. Clearly the class JF is stable under complement; in addition,
taking into account the closure of the class of ¢-relaxed slopes under LY convergence, B, T B
and B, € F implies B € F. Finally, it is easily seen that JF is stable under finite disjoint
unions. Hence, by Dynkin’s theorem, to prove that any Borel set belongs to F suffices to
show that open sets belong to J.

We fix an open set B, r > 0 and a Lipschitz function ¢, : X — [0, 1] equal to 0 on
X \ B, and equal to 1 on Bs,, where the open sets By C B are defined by

B,:={z € X : dist(z,X \ B) > s} C B.

Let now f,;, ¢ = 1, 2, be Lipschitz functions with bounded support converging to f in
L9(X,m) as n — oo, with Lip,(f.,-) weakly convergent to g; in LY(X, m) and set f, :=
O fra + (L — @) fra. Then, Lip,(fn, ) = Lip,(fn1,:) on Bs, and Lip,(fn, ) = Lip,(fn.2, )
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on X \ B,; for every x € B, \ By, by applying (4.2) to f,2 and &,(fn1 — faz2) and by
applying (4.3) to ¢, and(f,1 — fn2), we can estimate

Lip, (fn, 7) < Lip,(fu2, z) + Lip(¢r)[ fr1(2) = fu2(z)| + &r (Lipa<fn,17x) + Lip, (fn.2, JJ))
Since B, C B, by taking weak limits of a subsequence, it follows that

XB,, 91 + Xx\5;92 + XB\Bs, (91 + 292)

is a g-relaxed slope of f. Letting r | 0 gives that Xpg1 + Xx\pg2 is a g-relaxed slope as
well.

For the second part of the statement argue by contradiction: let g be a g-relaxed slope
of f and assume that B = {g < |V f|.,} is such that m(B) > 0. Consider the g-relaxed
slope gXp + |V fl.gXx\p5: its L9 norm is strictly less than the L? norm of |V f|. 4, which is
a contradiction. O

The previous pointwise minimality property immediately yields
|V fleq < Lip,(f,-) m-a.e. in X (4.4)

for any Lipschitz function f : X — R with bounded support. Since both objects are local,
the inequality immediately extends by a truncation argument to all functions f € L(X, m)
with a ¢-relaxed slope, Lipschitz on bounded sets.

Also the proof of locality and chain rule is quite standard, see [7] and [3, Proposition 4.8]
for the case ¢ = 2 (the same proof works in the general case).

Proposition 4.4 (Locality and chain rule) If f € LY(X,m) has a g-relazed slope, the
following properties hold.

(a) |[Vhl|.g = |V flig m-a.e. in {h = f} whenever f has a q-relazed slope.

(0) INO()g < | (NNIV fleg for any C* and Lipschitz function ¢ on an interval con-
taining the image of f. Fquality holds if ¢ is nondecreasing.

4.2 ¢-weak upper gradients and |V f

w,q
Recall that the evaluation maps e; : C([0,1], X) — X are defined by e;(7) := . We also
introduce the restriction maps restr; : C([0,1], X) — C([0,1], X), 0 <t < s < 1, given by
reStrf(’Y)r = Y(A—r)tdrss (45)

so that restry “stretches” the restriction of the curve to [s, ] to the whole of [0, 1].

Our definition of g-weak upper gradient is inspired by [24], [27], allowing for exceptional
curves in (2.2), but with a different notion of exceptional set, compared to [24], [27]. We
recall that p is the dual exponent of gq.
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Definition 4.5 (Test plans and negligible sets of curves) We say that a probability
measure ® € Z(C([0,1],X)) is a p-test plan if w is concentrated on ACP([0,1], X),
ffol |44|Pdt dw < oo and there exists a constant C(m) such that

(e)ym < C(m)m  Vt e [0,1]. (4.6)

A set A C C([0,1], X) is said to be g-negligible if it is contained in a w-negligible set for
any p-test plan 7. A property which holds for every v € C([0,1], X), except possibly a
q-negligible set, is said to hold for g-almost every curve.

Observe that, by definition, C'([0, 1], X))\ AC?(]0, 1], X) is g-negligible, so the notion starts
to be meaningful when we look at subsets of AC?(]0, 1], X).

Remark 4.6 An easy consequence of condition (4.6) is that if two m-measurable functions
f, g : X — R coincide up to a m-negligible set and 7 is an at most countable subset of
[0, 1], then the functions f o~ and g o coincide in T for g-almost every curve 7.

Moreover, choosing an arbitrary p-test plan 7 and applying Fubini’s Theorem to the
product measure Z! x 7 in (0,1) x C([0,1]; X) we also obtain that foy =go~y ZL'-a.e.
in (0, 1) for 7r-a.e. curve 7; since 7 is arbitrary, the same property holds for ¢-a.e. 7.

Coupled with the definition of g-negligible set of curves, there are the definitions of
g-weak upper gradient and of functions which are Sobolev along g-a.e. curve.

Definition 4.7 (¢-weak upper gradients) A Borel function g : X — [0,00] is a g-weak
upper gradient of f: X — R if

/ f‘ < /g < 00 for q-a.e. ~. (4.7)
Oy g

Definition 4.8 (Sobolev functions along g-a.e. curve) A function f : X — R is
Sobolev along q-a.e. curve if for q-a.e. curve v the function f o~ coincides a.e. in
0,1] and in {0,1} with an absolutely continuous map f, :[0,1] — R.

By Remark 4.6 applied to T := {0,1}, (4.7) does not depend on the particular repre-
sentative of f in the class of m-measurable function coinciding with f up to a m-negligible
set. The same Remark also shows that the property of being Sobolev along ¢-q.e. curve
is independent of the representative in the class of m-measurable functions coinciding with
f m-a.e. in X.

In the next proposition, based on Lemma 2.1, we prove that the existence of a ¢-weak
upper gradient g implies Sobolev regularity along g-a.e. curve.

Proposition 4.9 Let f : X — R be m-measurable, and let g be a q-weak upper gradient
of f. Then f is Sobolev along q-a.e. curve.
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Proof. Notice that if 7 is a p-test plan, so is (restr])yw. Hence if ¢ is a ¢-weak upper
gradient of f such that f7 g < oo for g-a.e. vy, then for every t < s in [0, 1] it holds

FO) — Fw)l < / gom)linldr  for gae. .

Let 7 be a p-test plan: by Fubini’s theorem applied to the product measure .#? x 7 in
(0,1)? x C([0,1]; X), it follows that for m-a.e. v the function f satisfies

[f(vs) = flw)] <

/ 9(v) || dr’ for ZL*-a.e. (t,s) € (0,1)°.
¢
An analogous argument shows that for m-a.e. ~y

{|f( — F()l < fg 9w ] dr
1F(n) = FO)l < [ () 3| dr

Since g o v|§| € L'(0,1) for m-a.e. v, by Lemma 2.1 it follows that f o~ € W(0,1) for
m-a.e. v, and

for Z'-ae. s € (0,1). (4.8)

d
dt(f 7)‘ <gon|y| a.e. in(0,1), for m-a.e. 7. (4.9)

Since 7r is arbitrary, we conclude that foy € WH1(0,1) for g-a.e. 7, and therefore it admits
an absolutely continuous representative f.; moreover, by (4.8), it is immediate to check
that f(y) = f,(¢) for t € {0,1} and g-a.e. 7. O

The last statement of the proof above and (4.9) yield the following

gi, 1 = 1,2 g-weak upper gradients of f = min{gy, go} ¢-weak upper gradient of f.

(4.10)
Using this stability property we can recover, as we did for relaxed slopes, a distinguished
minimal object.

Definition 4.10 (Minimal ¢-weak upper gradient) Let f : X — R be a m-
measurable function having at least a g-weak upper gradient go : X — [0,00] such that
{90 > 0} is o-finite with respect to m. The minimal g-weak upper gradient |V fly,.4 of f is
the q-weak upper gradient characterized, up to m-negligible sets, by the property

IV flws <g m-a.e. in X, for every q-weak upper gradient g of f. (4.11)
We will refer to it also as the q-weak gradient of f.

Uniqueness of the minimal weak upper gradient is obvious. For existence, since {gy > 0}
is o-finite we can find a Borel and m-integrable function 6 : X — [0, 00) which is positive
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on {go > 0} and |V f|y, := inf, g,, where g, are ¢g-weak upper gradients which provide a
minimizing sequence in

inf {/ ftan"'gdm : g < gy is a g-weak upper gradient of f} :
X

We immediately see, thanks to (4.10), that we can assume with no loss of generality that
gn+1 < gn. Hence, applying (4.7) to g, and by monotone convergence, the function |V f|, ,
is a g-weak upper gradient of f and [, @tan~'gdm is minimal at g = |V f|,, This
minimality, in conjunction with (4.10), gives (4.11).

Remark 4.11 Notice that the o-finiteness assumption on {go > 0} automatically holds if
[ g§ dm < oo for some o > 0. The following example shows that in order to get a minimal
object we really need, unlike the theory of relaxed gradients, a o-finiteness assumption.
Let X = R, d the Euclidean distance, m the counting measure, f : X — R equal to
the identity map. It is easily seen that g is a g-weak upper gradient of f (and actually
an upper gradient) if and only if ¢ > 1 #!-a.e. in X. In this class, there is no minimal
function up to m-negligible sets, since we can always modify a ¢g-weak upper gradient at a
single point (thus in a set with positive m-measure) preserving the g-weak upper gradient

property.

Next we consider the stability of ¢g-weak upper gradients (analogous to the stability
result given in [27, Lemma 4.11]). We shall actually need a slightly more general statement,
which involves a weaker version of the upper gradient property (when e = 0 we recover the
previous definition, since curves with 0 length are constant).

Definition 4.12 (¢-weak upper gradient up to scale ¢) Let f : X — R. We say that
a Borel function g : X — [0,00) is a q-weak upper gradient of f up to scale € > 0 if for
g-a.e. curve v € ACP([0,1]; X) such that

1
0

/ f‘§/9<oo. (4.12)

v gl

Theorem 4.13 (Stability w.r.t. m-a.e. convergence) Assume that f, are m-
measurable, €, > 0 and that g, € LY(X,m) are q-weak upper gradients of f, up to scale
en. Assume furthermore that f,(z) — f(z) € R for m-a.e. x € X, ¢, — ¢ and that (g,)
weakly converges to g in LY(X,m). Then g is a qg-weak upper gradient of f up to scale €.

Proof. Fix a p-test plan w. We have to show that (4.12) holds for m-a.e. ~ with
fol |9¢| dt > €. Possibly restricting 7 to a smaller set of curves, we can assume with no loss
of generality that

it holds

1
/ || dt > " for m-a.e. v
0
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for some &’ > . We consider in the sequel integers h sufficiently large, such that ¢, < ¢’
By Mazur’s lemma we can find convex combinations

Npi1 Npi1
E ;i with «; > 0, E a;, =1, N = 00
i=Np+1 i=Np+1

converging strongly to g in L9(X, m). Denoting by . the corresponding convex combina-
tions of f,, h, are g-weak upper gradients of f,, and still f, — f m-a.e. in X.
Since for every nonnegative Borel function ¢ : X — [0, 0o] it holds (with C' = C())

/(Aw)dw:/(/Olsom)mdt)dw [ ([ eaoa)”( [ ) an
< </01/g0qd(et)ﬁﬂ'dt / [l dt dr ) o
< (C’/gpq dm)l/q(//o |%|pdtd7r /p, (4.13)

1
/ / hy — g dre < CMa( // 54[P dt de) Y2l — glly = 0.
'y 0

Hence we can find a subsequence n(k) such that

we obtain

lim /|hn(k) —g/—0 for m-a.e. 7.
k—o00 5

Since fn converge m-a.e. to f and the marginals of 7 are absolutely continuous w.r.t. m
we have also that for mw-a.e. v it holds f,(70) — f(7) and fn(71) = f(m).

If we fix a curve v satisfying these convergence properties, we can pass to the limit as
k — oo in the inequalities | [, Fatiy] < S, gy to get | [ f1 < [ g O

Combining Proposition 4.2 with the fact that the asymptotic Lipschitz constant is an
upper gradient (and in particular a g-weak upper gradient), the previous stability property
gives that |V f|., is a ¢-weak upper gradient. Then, (4.11) gives

IV flw

¢ <I|Vflig mae inX (4.14)
whenever f € L7(X,m) has a ¢-relaxed slope. The proof of the converse inequality (un-
der no extra assumption on the metric measure structure) requires much deeper ideas,
described in the next two sections.

5 Gradient flow of C, and energy dissipation

In this section we assume that (X,d) is complete and separable, and that m is a finite
Borel measure.
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As in the previous sections, ¢ € (1,00) and p is the dual exponent. In order to apply
the theory of gradient flows of convex functionals in Hilbert spaces, when ¢ > 2 we need to
extend |V f]., also to functions in L?(X, m) (because Definition 4.1 was given for L¢(X, m)
functions). To this aim, we denote f~ := max{—N, min{f, N}} and set

C:= {f : X = R: f" has a g-relaxed slope for all N € N} . (5.1)
Accordingly, for all f € € we set
Vflog = IVfY.y  meac in {|f] < N} (5.2)

for all N € N. We can use the locality property in Proposition 4.4(a) to show that
this definition is well posed, up to m-negligible sets, and consistent with the previous
one. Furthermore, locality and chain rules still apply, so we shall not use a distinguished
notation for the new gradient.

We define an auxiliary functional, suitable for the Hilbertian energy dissipation esti-
mates, by

C,(f) ::é/X]Vf\iqdm if f e I2(X,m)ne (5.3)

and set to o0 if f € L*(X, m)\ C. We note that, thanks to the sublinearity of the minimal
g-relaxed slope, C as well as the domain of finiteness of C, are vector spaces.

Theorem 5.1 The functional C, is convex and lower semicontinuous in L*(X,m).

Proof. The proof of convexity is elementary, so we focus on lower semicontinuity. Let (f},)
be convergent to f in L?(X,m) and assume, possibly extracting a subsequence and with
no loss of generality, that C,(f,,) converges to a finite limit.

Assume first that all f,, are uniformly bounded, so that f, — f also in LI(X,m)
(because m is finite). Let f,u) be a subsequence such that |V f, )|+, weakly converges to
g in L9(X,m). Then, since we can use Proposition 4.2 to find Lipschitz functions gy with
bounded support satisfying

lim / ‘fn(k) - gk’qdm+/ van(k) *,q Lipa(gka )|qdm = Oa
X X

k—00

we obtain that ¢ is a ¢-relaxed slope of f and
Co(f) <> [ 1gidm < timinf S [ |V ful?, dm = liminf C,(f,)
)= Xg m_llggglq . n(k) Lx,q A = UM g fn )

In the general case when f,, € € we consider the functions f» := max{—N,min{f,, N}};
the pointwise inequality

Lipa(max{_Nv min{ga N}}? l’) S Lipa(97 ZL’)
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and the m-a.e. minimality property of the g-relaxed slope immediately give |V V], , <
|V fulsq m-ae. in X, so that the previously considered case of uniformly bounded functions
gives fV := max{—N, min{f, N}} has g-relaxed slope for any N € N and

/ VN2, dm < liminf/ V|2, dm < liminf/ |V ful? , dm.
X ’ n—00 X ’ n—o00 X ’
Passing to the limit as N — oo, the conclusion follows by monotone convergence. U

Remark 5.2 More generally, the same argument proves the L?(X, m)-lower semicontinu-
ity of the functional
VI

*7q
x|l

in €, for any a > 0. Indeed, locality and chain rule allow the reduction to nonnegative
functions f,, and we can use the truncation argument of Theorem 5.1 to reduce ourselves
to functions with values in an interval [c, C] with 0 < ¢ < C' < oo. In this class, we can
again use the chain rule to prove the identity

\vaill
/ IV f2)8, dm = |,6’|q/ | f|:’q dm
X x |/l

with § := 1 — a/q to obtain the result when a # ¢. If @ = ¢ we use a logarithmic
transformation.

dm

f=

Since the finiteness domain of C, is dense in L?(X, m) (it includes bounded Lipschitz
functions), the Hilbertian theory of gradient flows (see for instance [6], [2]) can be applied to
Cheeger’s functional (5.3) to provide, for all fo € L?(X, m), a locally absolutely continuous
map t — f; from (0,00) to L*(X, m), with f; — fy as t | 0, whose derivative satisfies

%ft € —0 C,(f) for a.e. t € (0,00). (5.4)

Having in mind the regularizing effect of gradient flows, namely the selection of elements
with minimal Z?(X, m) norm in 9~ C,, the following definition is natural.

Definition 5.3 (¢-Laplacian) The g-Laplacian A, f of f € L*(X,m) is defined for those

[ such that 0~ C,(f) # 0. For those f, —A,f 1is the element of minimal L*(X, m) norm
in 0~ Cy(f). The domain of A, will be denoted by D(A,).

It should be observed that, even in the case ¢ = 2, in general the Laplacian is not a linear
operator. For instance, if X = R? endowed with the sup norm ||(z,y)| = max{|z|, |y|},

then 5 5 )
CQ(f)=/RZ(£ f) dudy,

+_
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Since Cs is not a quadratic form, its subdifferential is not linear.
Coming back to our general framework, the trivial implication

v e 0 Cy(f) = M7l € 97 C, (N f), VAER,

still ensures that the g-Laplacian (and so the gradient flow of C,) is (¢ — 1)-homogenous.
We can now write

_ft Agfi

for gradient flows f; of C,, the derivative being understood in L?(X, m), in accordance
with the classical case.

Proposition 5.4 (Integration by parts) For all f € D(A,), g € D(C,) it holds

- [ adipam< [ 199l /0 Iz dm. (5.5)

Equality holds if g = ¢(f) with ¢ € C*(R) with bounded derivative on the image of f.
Proof. Since —A,f € 0 C,(f) it holds

Cq(f)—/XegAqfdmng(f—keg), Vg € LY(X,m), ¢ € R.

For e > 0, |V f|.q+¢|Vgl|sq is a g-relaxed slope of f+eg (possibly not minimal) whenever
f and g have g-relaxed slope. By truncation, it is immediate to obtain from this fact that
f, g € Cimplies f 4+ eg € C and

IV(f4+¢€9)|ug < |Vlag+elVlig m-a.e. in X.
Thus it holds ¢C,(f +¢e9) < [ (|Vflig +€|Vglsq)? dm and therefore
1
~ [ eodufdm < S [ (911t eVol ) = 9F1L dm = ¢ [ VgL, VAIz! dm o+ o).
be b
Dividing by e and letting € | 0 we get (5.5).

For the second statement we recall that |V (f +ed(f))|sq = (1 +e¢'(f))|V fley for |g]|
small enough. Hence

C,(f +ed(f)) - / VA (L ed(£)— 1) dm = /X V12,8 () dm +ofe),

which implies that for any v € 9~ Cy(f) it holds [, vo(f)dm = [ [V f|2 ¢'(f)dm, and
gives the thesis with v = —A, f. O
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Proposition 5.5 (Some properties of the gradient flow of C,) Let fy € L*(X,m)
and let (fi) be the gradient flow of C, starting from fy. Then the following properties hold.
(Mass preservation) [ fydm = [ fodm for any ¢t > 0.

(Maximum principle) If fo < C (resp. fo > ¢) m-a.e. in X, then f; < C (resp f; > ¢)
m-a.e. in X for anyt > 0.

(Energy dissipation) Suppose 0 < ¢ < fo < C' < oo m-a.e. in X and ® € C*([c,C]). Then
t > [ ®(f;)dm is locally absolutely continuous in (0,00) and it holds

c(lit O(f;) dm = —/‘b//(ft)\Vft 1,dm  fora.e. t € (0,00).

Proof. (Mass preservation) Just notice that from (5.5) we get

/ftdm‘ ‘/1 A ftdm‘ /|V1|* q|Vft dm =0 forae. t> 0,

where 1 is the function identically equal to 1, which has minimal g-relaxed slope equal to
0 by (4.4).

(Maximum principle) Fix f € L*(X,m), 7 > 0 and, according to the so-called implicit
Euler scheme, let f™ be the unique minimizer of

1
g > Cq(g)+2—/ lg — f]>dm.
T Jx

Assume that f < C. We claim that in this case f7 < C as well. Indeed, if this is not the
case we can consider the competitor g := min{f7, C'} in the above minimization problem.
By locality we get C,(g) < C,(f7) and the L? distance of f and g is strictly smaller than
the one of f and f7 as soon as m({f™ > C'}) > 0, which is a contradiction. Starting from
fo, iterating this procedure, and using the fact that the implicit Euler scheme converges
as 7, 0 (see [6], [2] for details) to the gradient flow we get the conclusion.

(Energy dissipation) Since ¢ +— f; € L?(X, m) is locally absolutely continuous and, by the
maximum principle, f; take their values in [c, C] m-a.e., from the fact that ® is Lipschitz
in [¢,C] we get the claimed absolute continuity statement. Now notice that we have
L1d(f,)dm = [@'(f,)Ayfrdm for a.e. t > 0. Since ® belongs to C'([¢, C]), from (5.5)
with g = ®'(f;) we get the conclusion. O

We start with the following proposition, which relates energy dissipation to a (sharp)

combination of g-weak gradients and metric dissipation in W),

Proposition 5.6 Assume that m is a finite measure, let u; = fim be a curve in
ACP([0,1],(2(X),W,)). Assume that for some 0 < ¢ < C' < oo it holds ¢ < f; < C m-a.e.
in X for any t € [0,1], and that fy is Sobolev along q-a.e. curve with |V fo|w, € L(X, m).
Then for all ® € C?*([c,C]) convez it holds

/CI)(fo)dm—/@(ft)de %//O (<I>”(f0)|Vf0|w,q)qfsdsdm+%/0 |f1s|Pds vt > 0.
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Proof. Letw € Z2(C([0,1], X)) be aplan associated to the curve (p;) as in Proposition 2.2.
The assumption f; < C m-a.e. and the fact that ff; P dtdm(y) = [|uPdt < oo
guarantee that 7 is a p-test plan. Now notice that it holds |V®'(fo)|w,q = 2" (f0)|V folw,q
(it follows easily from the characterization (4.9)), thus we get

/@(fo)dm—/(I)(ft)dmg/@’(fo)(fo—ft)dm:/@’(fo)oeo—é’(fo)oetdr
< o3 )V Folug(3e) il ds ()
< 3 // (‘P”(fo(%))|Vf0’w,q(%))qdeﬂ'(W)+% // afP s dre(7)

1 t t
= //0 (@"(fo)Wfo\w,q)qfsdsdm+% /0 ual? ds.

g

The key argument to achieve the identification is the following lemma which gives
a sharp bound on the W,-speed of the L?-gradient flow of C,. This lemma has been
introduced in [25] and then used in [13, 3] to study the heat flow on metric measure spaces.

Lemma 5.7 (Kuwada’s lemma) Assume that m is a finite measure, let fo € L*(X,m)
and let (f;) be the gradient flow of C, starting from fo. Assume that for some 0 < ¢ <
C < oo it holds ¢ < fy < C m-a.e. in X, and that ffg dm = 1. Then the curve
t = = fim € Z(X) is absolutely continuous w.r.t. W, and it holds

Vil
|fn]? < /’ ;]:t_‘l’q dm for a.e. t € (0,00).
t
Proof. We start from the duality formula (2.3) (written with ¢ = —1)

WP(p,
M: sup /XngodV—/X(de (56)

p @€Lip, (X)

where Q¢ is defined in (3.1) and (3.2), so that Q¢ = ¥°.
We prove that the duality formula (5.6) is still true if the supremum in the right-hand
side is taken over nonnegative and bounded ¢ € Lip(X) with bounded support

Wy (s, v)

= sup {/ Qrodv — / edup ¢ € Lip(X), ¢ > 0, with bounded support}.
p X X

(5.7)
The duality formula (5.6) holds also if the supremum is taken over bounded nonnegative
¢ in Lip(X) up to a translation. In order to prove the equivalence it is enough to show
that for every ¢ € Lip,(X) nonnegative there holds

hg(i)gf{/XQl[xw] dl/—/ersodu} Z/XQupdv—/Xsodu, (5.8)
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where Y, is a Lipschitz cutoff function which is nonnegative, identically equal to 1 in
B(zo,r) and identically equal to 0 outside B(xg,r + 1) for some 2y € X fixed. Since
Xrp < @ it follows that fX Xrpdp < fX @ dp, so that by Fatou’s lemma suffices to show
that liminf, . Q1[x.¢] > Q1p. Let x € X be fixed and let x, € X be satisfying

FEL) < D Qe

Since d(z,,x) is obviously bounded as r — oo, the same is true for d(z,,z), so that
Xr () = 1 for r large enough and Q p(z) < r~' + Q:[x,¢](z) for r large enough. Fix now
¢ € Lip(X) nonnegative with bounded support and recall that @;p has bounded support
for every t > 0 and that (Proposition 3.3) the map ¢t — @, is Lipschitz with values in
C(X), in particular also as a L?(X, m)-valued map.

Fix also 0 <t < s, set £ = (s — t) and recall that since (f;) is a gradient flow of C,
in L?(X,m), the map [0,¢] > 7 — f;,, is absolutely continuous with values in L*( X, m).
Therefore, since both factors are uniformly bounded, the map [0,¢] > 7 — Qzpfirr 18
absolutely continuous with values in L?(X,m). In addition, the equality

Q#@fﬁwh - Q%@ftw Q# - Q%SO fraran — frar

XT‘(SET‘>(IO(‘TT) +

together with the uniform continuity of (z,7) — Qzp(z) shows that the derivative of
T = Qzpfrir can be computed via the Leibniz rule.
We have:

| @win— [ van= [Qopian— [ pram= [ [ "L (@it i dm

¢ L@ )
< / / ————— " ft4r T Qz A fi1r d7 dm,
xJo qt
having used Theorem 3.6.
Observe that by inequalities (5.5) and (4.4) we have
[ @ietafirdn < [ 19Qsel oIV funrfty dm < [ Linu(@5 ) V|t dm
X
5 5.10)
Bt [Vl (
S - Llpg QZ P Tdm + _ A dm.
qﬁ/); ( 290 )ft+ p X tp+7_1

Plugging this inequality in (5.9), we obtain

¢t V fiir|d
/deus—/sodut<—//| fH'qd dr.
t+7'

This latter bound does not depend on ¢, so from (5.7) we deduce

— |vf 7'|*
W (g, pis) < £ 1/0 X%d mdr.

t+1

At Lebesgue points of r — [ < IV, P~ dm where the metric speed exists we obtain
the stated pointwise bound on the metric speed. Il
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6 Equivalence of gradients

In this section we assume that (X,d) is complete and separable, and that m is finite on
bounded sets. We prove the equivalence of weak gradients, considering first the simpler
case of a finite measure m.

Theorem 6.1 Let f € LI(X,m). Then f has a q-relazed slope if and only if f has a
q-weak upper gradient in LY(X,m) and |V fl., = |V fluwe m-a.e. in X.

Proof. One implication and the inequality > have already been established in (4.14). We
prove the converse ones first for finite measures, and then in the general case.

So, assume for the moment that m(X) < co. Up to a truncation argument and addition
of a constant, we can assume that 0 < ¢ < f < C < oo m-a.e. for some 0 < ¢ < C' < 0.
Let (g¢) be the L*-gradient flow of C, starting from gy := f and let us choose ® € C?([c, C])
in such a way that ®”(z) = 27 in [¢,C]. Recall that ¢ < g; < C m-a.e. in X and that
from Proposition 5.5 we have

/(P(go) dm—/@(gt) dm:/Ot/X@”(gs)|Vgs|Z’qdmds we,00).  (6.1)

In particular this gives that fo Jx @"( (9s)IVgs|?,dmds is finite. Setting p; = gim,
Lemma 5.7 and the lower bound on g; give that ,ut € ACP((0,00), (Z(X),W,)), so that
Proposition 5.6 and Lemma 5.7 yield

Vs*
/ (go) dm — / (g)dm < = // "(90)IVgolwg) gs dmds + = //’ g 24 dmds.
X gs

Hence, comparing this last expression with (6.1), our choice of ® gives

//t |VQ5 *qd dm </ / |Vg[)|wq dmds
PN

Now, the bound f > ¢ > 0 ensures ®"(g9)|Vgolsq € L(X, m). In addition, the maximum
principle together with the convergence of g, to go in L?(X,m) as s | 0 grants that the
convergence is also weak* in L>(X, m), therefore

L Vgdl? Vol 4
lim sup — “// Vg qd dm < &godm = ’g#d
X

t10 gg(p - x gt

The lower semicontinuity property stated in Remark 5.2 with o = p — 1 then gives

’V90|Z,q | 9ols wq

X 9o

dm

This, together with the inequality |Vgolw, < [Vgolsq m-a.e. in X, gives the conclusion.
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Finally, we consider the general case of a measure m finite on bounded sets. Let
X, = B(zg,n), n > 1, and notice that trivially it holds

\Vflxwwag < |V flwg m-a.e. in X, (6.2)

because the class of test plans relative to X, is smaller. Hence, if we apply the equivalence
result in X,,, we can find Lipschitz functions f; : X,, — R which converge to f in LI(X,,, m)
and satisfy Lip, x, (fx,") = |V flwx, in LY(X,,m). If ¢, : X — [0,1] is a 2-Lipschitz
function identically equal to 1 on B(xo,n — 1) and with support contained in B(0,n — }1),
the functions v, fi can obviously be thought as Lipschitz functions with bounded support

on X and satisfy (thanks to (4.3))

Llpa(¢nfk) S wnLimen(fk) + 2X”|fk|’

where x,, is the characteristic function of B(0,n) \ B(0,n — 1). Passing to the limit as
k — oo (notice that multiplication by v, allows to turn L9(X,, m) convergence of the
asymptotic Lipschitz constants to L?(X, m) convergence, and similarly for f;) it follows
that 1, f has g-relaxed slope, and that

IV (¢onf)leq < V]
Invoking (6.2) we obtain

Xn,w,q + 2Xn|f| m-a.e. in X.

V@ f)eqg < |VFlwg +2xalf]  m-ae in X.

Eventually we let n — oo to conclude, by a diagonal argument, that f has a g¢-relaxed
slope and that |V f|., < |V f|w, m-a.e. in X. O

The proof of the previous result provides, by a similar argument, the following locality
result.

Proposition 6.2 If f has a q-weak upper gradient and A C X is open, then denoting by
IV {7 0,4 the minimal q-relazed slope in the metric measure space (A,d, m),

IVl Fwg = IV flwg m-a.e. in A. (6.3)

Proof. We already noticed that, by definition, [V f|7,, , < [V flw, m-a.e. in A Let BC A
be an open set with dist(B, X\ A) > 0 and let ¢ : X — [0, 1] be a Lipschitz cut-off function
with support contained in A and equal to 1 on a neighbourhood of B. If f,, € Lip(A) have
bounded support, converge to f in L?(A, m) and satisfy Lip, (fn,) = |V f|z,, in LY(A, m),
we can consider the functions f,,) and use (4.3) to obtain that |V f|7, ,+ Lip(¥)x|f] is a
g-relaxed slope of f in X, where x is the characteristic function of the set {¢) < 1}. Since

x = 0 on B it follows that
IV g < Vfla., mae inB.

Letting B T A and using the identification of gradients the proof is achieved. g
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In particular, since any open set A C X can be written as the increasing union of
open subsets A, with A, C A, it will make sense to speak of the weak gradient on A of a
function f : A — R having a ¢-weak upper gradient when restricted to A, for all n; suffices
to define |V f|, 4 : A — [0,00) by

Vilwg =IVfla, b,  mae onA, (6.4)

and the definition is well posed m-a.e. in X thanks to Proposition 6.2.

7 Reflexivity of WX ,d,m), 1 < g < o0

We will denote by W14(X, d, m) the Banach space of functions f € L(X,m) having a
g-relaxed slope, endowed with the norm

1 e = A7 + IV flegllZe-

By a general property of normed spaces, in order to prove completeness, it suffices to
show that any absolutely convergent series in W%¢(X, d,m) is convergent; if f, sat-
isfy >, [Ifallfyre < oo, the completeness of L(X,m) yields that f := > f, and
g := >, |V fuliqg converge in LI(X, m), and the finite subadditivity of the relaxed gradient
together with the lower semicontinuity of C, give f € W'4(X,d, m) and [ [V |7 dm <
lgll9e < O 11V filegllza)?. A similar argument gives that

*?q

N 1/q o
(L1703 fatgam) "< 5 W Lglhe

1=N+1

hence Y, f, converges in W(X,d, m).

In this section we prove that the Sobolev spaces W19(X,d, m) are reflexive when 1 <
q < 00, (X,d) is doubling and separable, and m is finite on bounded sets. Our strategy
is to build, by a finite difference scheme, a family of functionals which provide a discrete
approximation of Cheeger’s energy. The definition of the approximate functionals relies on
the existence of nice partitions of doubling metric spaces.

Lemma 7.1 For every § > 0 there exist {5 € N U {00} and pairs set-point (A%, 29), 0 <
i < {5, where A C X are Borel sets and 20 € X, satisfying:

(i) the sets A, 0 <i < s, are a partition of X and d(z{,2) > & whenever i # j;

(ii) AS are comparable to balls centered at 20, namely

J 5
B2, -)cAcB(2,%5]).
(zz,3> CA; C (zz,45)
4

Proof. Let us fix once for all a countable dense set {xj}ren. Then, starting from z) = x,
we proceed in this way:
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e for i > 1, set recursively

B; =X\ JB(,0);

j<i
e if B; = () for some 7 > 1, then the procedure stops. Otherwise, take 20 = z;, where

k; =min{k € N : z; € B;}.

We claim that for every € > 0 we have that
UB(.6+¢) =X
=0

To show this it is sufficient to note that for every z € X we have a point z; such that
d(zj, ) < €; then either x; = 20 for some i or x; € B(z?,§) for some i. In both cases we
get

Vre X JieN such that d(20,z) < 6 + €. (7.1)

Now we define the sets A similarly to a Voronoi diagram constructed from the starting
point 2¢: for i € N we set

Bf:{xEX : d(x,zf)ﬁd(l’,zg)‘i‘g Vj}-

It is clear that B? are Borel sets whose union is the whole of X; we turn them into a Borel
partition by setting
Ay=B), A =B\|[JB], j>o0
i<j

We can also give an equivalent definition: z € A iff
k=minl,  where I, ={ieN:d(z2))<d(z2))+e VjeN}.

In other words, we are minimizing the quantity d(x, 2?) and among those indeces i who are
minimizing up to ¢ we take the least one i,. By this quasi minimality and (7.1) we obtain
d(z, 2} ) <infiend(z,20) + & < § + 2. Furthermore if d(z, 2) < 6/2 — /2 then I, = {i}.
Indeed, suppose there is another j € I, with j # 4, then d(zgw) <d(20,7)+e<5/2+¢/2
and so

6 <d(20,20) <d(2,x) + d(z}s,:c) <4

177) —_

We just showed that

B <z5 g - g) C AP B(0,6 + 2¢).

The dual definition gives us that A¢ are a partition of X, and (ii) is satisfied choosing
e=10/8. O
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Note that this construction is quite simpler if X is locally compact, which is always the
case if (X, d) is doubling and complete. In this case we can choose € = 0.

We remark that partitions with additional properties have also been studied in the
literature. For example, in [8] dyadic partitions of a doubling metric measure space are
constructed.

Definition 7.2 (Dyadic partition) A dyadic partition is made by a sequence ({,) C
N U {oo} and by collections of disjoint sets (called cubes) A" = {Al}1<;yn) such that for
every h € N the following properties hold:

e m(X\ U, A =0;
o foreveryi € {1,..., 01} there exists a unique j € {1,...,0,} such that A" A;L;

o for everyi € {1,...0,} there exists 2! € X such that B(2!,agd") C Al C B(2! a,0")
for some positive constants 6, ag, ay independent of © and h.

In [8] existence of dyadic decompositions is proved, with §, a; and ag depending on the
constant ¢p in (2.5). Although some more properties of the partition might give additional
information on the functionals that we are going to construct, for the sake of simplicity we
just work with the partition given by Lemma 7.1.

In order to define our discrete gradients we give more terminology. We say that A? is
a neighbor of Aj- , and we denote by AJ ~ Ag , if their distance is less than 0. In particular
A? ~ A% implies that d(z7,20) < 46: indeed, if 2 € AJ and z) € A? satisfy d(Z{,29) < o'
we have 10

5 .6 5 =6 25 =6 )
d(27,25) < d(zf, ) +d(%, %)) +d(z], 27) < Z(S"' &
and letting ¢’ | 0 we get
14
5 5

This leads us to the first important property of doubling spaces:

In a cp-doubling metric space (X,d), every A2 has at most ¢3 neighbors. (7.2)
Indeed, we can cover B(z?,40) with ¢}, balls with radius §/2 but each of them, by the
condition d(z?,29) > 4, can contain only one of the zJ’s.

Now we fix § € (0,1) and we consider a partition A% of suppm on scale §. For every
u € LY(X, m) we define the average us; of u in each cell of the partition by f,; udm. We

denote by PCs(X), which depends on the chosen decomposition as well, the set of functions
u € L(X, m) constant on each cell of the partition at scale 4, namely

u(z) = us; for m-a.e. v € AS.

We define a linear projection functional Ps : LI(X,m) — PCs(X) by Psu(x) = us,; for
every x € A9.
The proof of the following lemma is elementary.
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Lemma 7.3 P; are contractions in LY(X, m) and Psu — u in LY(X, m) as 6 | 0 for all
u € LI(X,m).

Indeed, the contractivity of Ps is a simple consequence of Jensen’s inequality and it
suffices to check the convergence of Ps as § | 0 on a dense subset of L4(X, m). Since m
is finite on bounded sets, suffices to consider bounded continuous functions with bounded
support. Since bounded closed sets are compact, by the doubling property, it follows that
any such function u is uniformly continuous, so that Psu — u pointwise as § | 0. Then,
we can use the dominated convergence theorem to conclude.

We now define an approximate gradient as follows: it is constant on the cell A? for
every 60, ¢+ € N and it takes the value

1
[Dsul’(z) = = > fusi—usylt Vo€ A
A~ AS
] K3

We can accordingly define the functional Fs, : LI(X, m) — [0, oo by

Fs,q(u) ::/X|D(;u|q(x) dm(z). (7.3)

Now, using the weak gradients, we define a functional Ch : LI(X, m) — [0, oo] that we
call Cheeger energy, formally similar to the one (5.3) used in Section 5, for the purposes
of energy dissipation estimates and equivalence of weak gradients. Namely, we set

Ch, (1) fX [Vuld, ,dm if u has a g-relaxed slope
w) = :
! +00 otherwise.

At this level of generality, we cannot expect that the functionals J5 , I'-converge as ¢ | 0.
However, since L?(X,m) is a complete and separable metric space, from the compactness
property of I'-convergence stated in Proposition 2.4 we obtain that the functionals JFs,
have I'-limit points as ¢ | 0.

Theorem 7.4 Let (X,d,m) be a metric measure space with (suppm,d) complete and dou-
bling, m finite on bounded sets. Let I, be a I'-limit point of Fs, as 0 1 0, namely

F,:=T— lim F;,,,
k—o0

for some infinitesimal sequence (0y), where the I'-limit is computed with respect to the
L9(X,m) distance. Then:

(a) T, is equivalent to the Cheeger energy Ch,, namely there exists n = n(q, cp) such that

L Chyfu) £ 9,(0) Sy Chy(u) V€ L/(X,m) (74)

36



(b) The norm on WhH4(X, d, m) defined by
() + Fo () vue WH(X,d,m) (7.5)

. . . 1/2 . . .
is uniformly convex. Moreover, the seminorm 9’2/ 1s Hilbertian, namely

Fo(u+v) + Folu —v) =2(Fo(u) + F2(v))  Vu, v e WH(X,d, m). (7.6)

Corollary 7.5 (Reflexivity of W4(X d, m)) Let (X,d,m) be a metric measure space
with (suppm,d) doubling and m finite on bounded sets. The Sobolev space WH(X,d, m)
of functions v € LY(X, m) with a g-relazed slope, endowed with the usual norm

(Jull? + Chy(u))"*  Yu € WH(X,d,m), (7.7)

18 reflexive.

Proof.  Since the Banach norms (7.5) and (7.7) on W4(X,d, m) are equivalent thanks
to (7.4) and reflexivity is invariant, we can work with the first norm. The Banach space
Wh(X d, m) endowed with the first norm is reflexive by uniform convexity and Milman-
Pettis theorem. g

We can also prove, by standard functional-analytic arguments, that reflexivity implies
separability.

Proposition 7.6 (Separability of W(X,d,m)) If WYX, d, m) is reflezive, then it is
separable and bounded Lipschitz functions with bounded support are dense.

Proof. 'The density of Lipschitz functions with bounded support follows at once from the
density of this convex set in the weak topology, ensured by Proposition 4.2. In order to

prove separability, it suffices to consider for any M a countable and L?(X, m)-dense subset
®M of

Ly = {f € Lip(X) N LY (X, m) : / IVl ,dm < M},

stable under convex combinations with rational coefficients. The weak closure of Dy,
obviously contains £, by reflexivity (because if f,, € Dy converge to f € Ly in LI(X, m),
then f, — f weakly in W9(X, d, m)); being this closure convex, it coincides with the
strong closure of Dj;. This way we obtain that the closure in the strong topology of
Un Dy contains all Lipschitz functions with bounded support. U

The strategy of the proof of statement (a) in Theorem 7.4 consists in proving the
estimate from above of J, with relaxed gradients and the estimate from below with weak
gradients. Then, the equivalence between weak and relaxed gradients provides the result.
In the estimate from below it will be useful the discrete version of the g-weak upper gradient
property given in Definition 4.12.

In the following lemma we prove that for every u € L9(X, m) we have that 4|Dsu| is a
g-weak upper gradient for Psu up to scale 6/2.
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Lemma 7.7 Let v € ACP([0,1]; X). Then we have that

b b
|Psu(vp) — Psu(ya)] < 4/ |Dsu|(ve) || dt  for all a < b s.t. / |34 dt > §/2. (7.8)

In particular 4|Dsu| is a g-weak upper gradient of Psu up to scale §/2.

Proof. 1t is enough to prove the inequality under the more restrictive assumption that

5 b
5 g/ 5| dt < 6, (7.9)

because then we can slice every interval (a,b) that is longer than /2 into subintervals
that satisfy (7.9), and we get (4.12) by adding the inequalities for subintervals and using
triangular inequality.

Now we prove (4.12) for every a, b € [0, 1] such that (7.9) holds. Take any time ¢ € [a, b];
by assumption, it is clear that d(y,7,) < ¢ and d(y,7) < J, so that the cells relative to
v, and 7y, are both neighbors of the one relative to ;. By definition then we have:

1 1
[Dsul(ve) = 55 (Psulye) = Psuly)|* + [Poulre) — Psulra)l) = 55, [Psulre) =Peulya)l”.

Taking the g-th root and integrating in ¢ we get

b ) Psu(vy) — Psu(vq b 1
[ sl ar > B B0 [P > Sipgutan) - Bt

which proves (7.8). O

We can now prove Theorem 7.4.
Proof of the first inequality in (7.4). We prove that there exists a constant 7, = n;(cp)
such that

F,(u) < nl/X|Vf|Z7q dm  Yue LI(X,m). (7.10)
Let u : X — R be a Lipschitz function with bounded support. We prove that
|Dsul!(x) < 69c3 (Lip(u, B(w, 65)))7. (7.11)

Indeed, let us consider i, j € [1, ;)N such that A and A;S- are neighbors. For every x € A,
y € A% we have that d(z,y) < diam(A?) +diam(A?) +d(A?, A?) < (10/4+10/4+1)6 = 66

and that y € B(29,196/4) C B(z?,56). Hence

‘Ué,i - ué,j‘

0 ~ om(A?)m(A9) /Angg

Thanks to the fact that the number of neighbors of A does not exceed c%, (see (7.2)) we
obtain

[u(z) — u(y)| dm(z) dm(y) < 6Lip(u, B(2{,59)).

|Dsul!(z) < 69c (Lip(u, B(z,66)))!  Va € suppm,
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which proves (7.11).
Integrating on X we obtain that

Fsq(u) < GQC%/X(Lip(u,B(m,65)))qdm($).

Choosing ¢ = dy, letting k — oo and applying the dominated convergence theorem on the
right-hand side as well as the definition of asymptotic Lipschitz constant (3.7) we get

F,(u) < li;n inf F5, ,(u) < 6%%/ Lip?(u, x) dm(z).
— 00 X

By approximation, Proposition 4.2 yields (7.10) with n; = 6¢%,.

Proof of the second inequality in (7.4). We consider a sequence (ug) which converges to
win L9(X, m) with liminf; I, ,(uy) finite. We prove that v has a ¢g-weak upper gradient
and that

—/ [Vult  dm < hm inf Fs, ,(ur). (7.12)

Then, (7.4) will follow easily from (7.10), (7.12), Definition 2.3b and the coincidence of
weak and relaxed gradients.

Without loss of generality we assume that the right-hand side is finite and, up to a
subsequence not relabeled, we assume that the liminf is a limit. Hence, the sequence f; :=
|Ds, ug| is bounded in L9(X, m) and, by weak compactness, there exist g € LY(X, m) and
a subsequence k(h) such that fi) — g weakly in L¢(X, m). By the lower semicontinuity
of the g-norm with respect to the weak convergence, we have that

/ “dm < hmmf/ fimy dm = hm fﬂ;k (k). (7.13)
be

We can now apply Theorem 4.13 to the functions u, = ngk(h) (uk(ny), which converge to v in
L(X,m) thanks to Lemma 7.3, and to the functions g, = 4fy) which are g-weak upper
gradients of u, up to scale dp(n)/2, thanks to Lemma 7.7. We obtain that 4¢ is a weak
upper gradient of u, hence g > |Vul, /4 m-a.e. in X. Therefore (7.13) gives

—/ |Vuld dm</ qdmgklim Fspq(ur).
—00

Proof of statement (b). Let Ny5 : LY(X,m) — [0,00] be the positively 1-homogeneous
function

Nys(w) = (I[Psulld + Fs(w) " Vue LYX,m).
For ¢ > 2 we prove that N, s satisfies the first Clarkson inequality [22]

U+ v U — v 1
Ny s < 5 ) + N s < 5 ) §(N35( )+ N2 () Vu, v € LY(X,m).  (7.14)
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Indeed, let X5 C NU (N x N) be the (possibly infinite) set
X; = ([1,4;) NN) U {(z’,j) e ([1,6s)NN)*: AP ~ Aj.}

and let ms be the counting measure on X;. We consider the function ®,5 : L9(X, m) —
L9(Xs, ms) defined by

By 5[ul (i) = (m(A9)) " %us, Vie[l,l;)NN

1

Dol (3, )) = (m(AD) /=2 () € ([1,6) NN)? st A~ A3,

It can be easily seen that @, ; is linear and that
||<I>q75(u)||Lq(X6,m5) = Nq,(;(u) Yu € Lq(X, m) (715)

Writing the first Clarkson inequality in the space L%(X},m;) and using the linearity
of ®,5 we immediately obtain (7.14). Let w : (0,1) — (0,00) be the increasing and
continuous modulus of continuity w(r) = 1 — (1 —r7/29)/4, ;From (7.14) it follows that
for all u, v € LY(X, m) with N, s(u) = N, s(v) =1 it holds

N,s (“ ;r ”) <1— w5 (u—wv)).

Hence N,; are uniformly convex with the same modulus of continuity w. Thanks to
Lemma 2.5 we conclude that also the I-limit of these norms, namely (7.5), is uniformly
convex with the same modulus of continuity.

If ¢ < 2 the proof can be repeated substituting the first Clarkson inequality (7.14) with
the second one

lwq,g (“ u “ﬂﬁ [Nq,(; (“ . “)F < B(Nq,é(u))q 5 (Nys0)" e (X om)

where p = q/(q — 1), see [22]. In this case the modulus w is 1 — (1 — (r/2)P)"/.
Finally, let us consider the case ¢ = 2. From the Clarkson inequality we get

7, (”;“) + T, <“;”) < 2(F(u) + Fo(v)). (7.16)

If we apply the same inequality to u = (v’ +v")/2 and v = (u/ —v’) /2 we obtain a converse
inequality and, since v’ and v" are arbitrary, the equality.

We conclude this section providing a counterexample to reflexivity. We denote by ¢,
the Banach space of summable sequences (x,),>0 and by f, the dual space of bounded
sequences, with duality (-,-) and norm ||v||o.. We shall use the factorization ¢; = Y; + Re;,
where e;, 0 < i < 0o, are the elements of the canonical basis of ¢;. Accordingly, for fixed
we write © = x} 4+ z;¢; and, for f: /; — R and y € Y}, we set

fy(t) = fly+te) teR.
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Proposition 7.8 There exist a compact subset X of {1 and m € P (X) such that, if d is
the distance induced by the inclusion in (1, the space WH4(X,d, m) is not reflexive for all
q € (1,00).
Proof. For i > 0, we denote by m; the normalized Lebesgue measure in X; := [0,27] and
define X to be the product of the intervals X; and m to be the product measure. Since X
is a compact subset of /1, we shall also view m as a probability measure in ¢; concentrated
on X.

Setting f(z) := (v, z), we shall prove that the map v +— f* provides a linear isometry
between /., endowed with the norm

o= ([ 102l ame) + Hvuzo)w (717)

and W(X d,m). Since the norm (7.17) is equivalent to the ¢, norm, it follows that
W14(X,d, m) contains a non-reflexive closed subspace and therefore it is itself non-reflexive.

Since the Lipschitz constant of f¥ is ||v]|, it is clear that |||V ]y qllze < [|v]loe- To
prove equality, suffices to show that [ [V f" ¢ gdm > [[v]|% . Therefore we fix an integer
i > 0 and we prove that [, [V f*]2 dm > |v;].

Fix a sequence (f") of Lipschitz functions with bounded support with f™ and Lip,(f™)
strongly convergent in L?(X,m) to f¥ and |V f"|,, respectively. Possibly refining the
sequence, we can assume that

Dol = foNE < oo (7.18)

If we show that
liminf/ Lip(f", z) dm(z) > |v;|? (7.19)
X

n—oo

we are done. Denoting m = m; ® m; the factorization of m (with m; € Z(Y;)), we can use
the obvious pointwise inequalities

Lipa(ga ?/ + tez) Z Lipa(gya t) Z |ng|(t)

and Fatou’s lemma, to reduce the proof of (7.19) to the one-dimensional statement

lim inf / V) dmy(t) > [t for feae. y € Vi (7.20)
X

n—o0

Since (7.18) yields
/y. Z 1fy — f;}Hqu(Xhmi) dm;(y) = Z 1™ = vaqu()gm) < 00,

we have that f;' — f in L9(X;,m;) = LY(X;, 202" for my-a.e. y € Y;. We have also
IV)[(t) = |vi| for any t € X, therefore (7.20) is a consequence of the well-known lower
semicontinuity in LY(X;, £') of g = [ |¢'(t)|?dZ"(t) for Lipschitz functions defined on
the real line (notice also that in this context we can replace the slope with the modulus of
derivative, wherever it exists). U
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8 Lower semicontinuity of the slope of Lipschitz func-
tions

Let us recall, first, the formulation of the Poincaré inequality in metric measure spaces.

Definition 8.1 The metric measure space (X,d, m) supports a weak (1,q)-Poincaré in-
equality if there exist constants 7, A > 0 such that for every v € WH(X d,m) and for
every x € suppm, r > 0 the following holds:

1/q
][ u—][ uldm <77 <][ |vu\;qum> : (8.1)
B(z,r) B(z,r) B(x,Ar) '

Many different and equivalent formulations of (8.1) are possible: for instance we may
replace in the right hand side [Vul?, ~with [Vu|?, requiring the validity of the inequality
for Lipschitz functions only. The equivalence of the two formulations has been first proved
in [19], but one can also use the equivalence of weak and relaxed gradients to establish it.
Other formulations involve the median, or replace the left hand side by

inf ][ |u—m|dm.
meR B(z,r)

The following lemma contains the fundamental estimate to prove our result.

Lemma 8.2 Let (X,d, m) be a doubling metric measure space which supports a weak (1, q)-
Poincaré inequality with constants T, A. Let u € W'(X,d, m) and let g = |Vul?, . There
exists a constant C' > 0 depending only on the doubling constant ¢p and T such that

lu(z) — u(y)| < Cd(z, y) (MA@ g(2)) 10 4 (MA@ ()19, (8.2)

for every Lebesgue points x, y € X of (a representative of ) u.

Proof. The main estimate in the proof is the following. Denoting by u., the mean value
of u on B(z,r), for every s > 0, x, y € X such that B(x,s) C B(y,2s) we have that

[ty s — ty 2] < Co(Ep, 7)s (Mg ()", (8.3)

Since m is doubling and the space supports (1, ¢)-Poincaré inequality, from (2.6) we have
that

1/q
U s — Uy 25| < ][ |u—uy 95| dm < BQQ][ [u—1y 25| dm < 2ltagrs (7[ g7 dm)
B(z,s) B(y,2s) B(y,2As)

and we obtain (8.3) with Cy = 237,
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For every r > 0 let s, = 27"r for every n > 1. If x is a Lebesgue point for u then
Uz, — u(x) as n — oo. Hence, applying (8.3) to z = y and s,, = 27"r, summing on n > 1
and remarking that MqQAS"g < Mé\”g, we get

[ty —u(z)] < Z |Us,5,, — Uz2s,| < Z CoSn (M(f’"g(:v))l/q = Cor(Mévg(x))l/q. (8.4)
n=0

n=0

For every r > 0, x, y Lebesgue points of u such that B(z,r) C B(y, 2r), we can use the
triangle inequality, (8.3) and (8.4) to get

[u(@) — u(y)] < [u(®) — Ugp| + [Ugr — Uy or| + |ty 2 — u(y)]
< Cor(Mé\Tg(x))l/q + Cyr (Mf“g(y))l/q + Cor (M;\Tg(y))l/q.

Taking r = d(z,y) (which obviously implies B(x,r) C B(y,2r)) and since M; f(x) is
nondecreasing in € we obtain (8.2) with C' = 2C,. O

Proposition 8.3 Let (X,d,m) be a doubling metric measure space, supporting a weak
(1, q)-Poincaré inequality with constants T, A and with suppm = X There ezists a constant
C > 0 depending only on the doubling constant ¢p and T such that

Vu| < C'|Vu|y, m-a.e. inX (8.5)

for any Lipschitz function u with bounded support.

Proof. We set g = |Vul? ; we note that g is bounded and with bounded support, thus

w,q?
M¢Zg converges to g in LY(X, m) as € — 0. Let us fix A > 0 and a Lebesgue point z for u
where (2.8) is satisfied by Mpg. Let y, — x be such that

Vu|(z) = Jim 0n) = u@)] (8.6)

and set r, = d(x,y,), B, = B(yn, A\rn) C B(x,2r,). Since (8.2) of Lemma 8.2 holds for
m-a.e. y € By, from the monotonicity of M;g we get

() — ()| < f ju(x) — u(y)] dm(y) + Ara Lip(u, B,)

n

<Cr, ((M;A“g(x))” I +][ (M;Amg(y))” e dm(y)) + ArnL,

n

where L is the Lipschitz constant of u. For n large enough B, C B(z,1) and 4Ar, < A\
Using monotonicity once more we get

lu(z) — u(yn)| < Cry, (M;\g(x) —|—][ (M(;\g)l/q dm) + Arp, L (8.7)

n
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for n large enough. Since B(y,,r,) = B, C B(z,2r,) and since x is a 1-Lebesgue point
for Mpg, we apply (2.9) of Lemma 2.8 to the sets B, to get

lim o+ Migdm = Mg(x). (8.8)

We now divide both sides in (8.7) by r, = d(z,y,) and let n — co. From (8.8) and (8.6)
we get

V() < 2C(Mg(x))""* + AL,

Since this inequality holds for m-a.e. x, we can choose an infinitesimal sequence (A;) C
(0,1) and use the m-a.e. convergence of Mqug to g to obtain (8.5). O

Theorem 8.4 Let (X,d, m) be a metric measure space with m doubling, which supports a
weak (1, q)-Poincaré inequality and satisfies suppm = X. Then, for any open set A C X
1t holds

loc
n—oo

Up, U € Lipy(A), up, — u in Li, (4) = liminf/ |Vu,|?dm > / |[Vu|?dm. (8.9)
A A

In particular, understanding weak gradients according to (6.4), it holds |Vu| = |Vuly,
m-a.e. in X for all u € Lip,,.(X).

Proof. By asimple truncation argument we can assume that all functions u,, are uniformly
bounded, since |V(M AvV—M)| < |Vou|and |V(M AvV—M)| 1 |Vv|as M — oco. Possibly
extracting a subsequence we can also assume that the lim inf in the right-hand side of (8.9)
is a limit and, without loss of generality, we can also assume that it is finite. Fix a bounded
open set B with dist(B, X \ A) > 0 and let ¥ : X — [0,1] be a cut-off Lipschitz function
identically equal to 1 on a neighborhood of B, with support bounded and contained in A.
It is clear that the functions v, := w,® and v := wy are globally Lipschitz, v, — v in
L%(X,m) and (v,) is bounded in W4(X, d, m).

JFrom the reflexivity of this space proved in Corollary 7.5 we have that, possibly ex-
tracting a subsequence, (v,,) weakly converges in the Sobolev space to a function w. Using
Mazur’s lemma, we construct another sequence (9,,) that is converging strongly to w in
Wh4(X,d,m) and 0, is a finite convex combination of v,,v,;1,.... In particular we get
Uy — w in L9(X, m) and this gives w = v. Moreover,

/ﬁvmwmugam/ﬁvwwmn
B B

k>n
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Eventually, from Proposition 8.3 applied to the functions v — v,, we get:

1/q 1/q 1/q
(/ (V| dm) < lim inf { (/ (V0,|? dm> + </ IV (v—10,)? dm) }
1/q
< limsup{(/ \an|qdm) } + C'limsup ||[v — Oy ||y
n—o00 B n—o0o

1/q
= lim sup (/ \an|qdm) :
n—o00 B

Since v,, = u, and v = u on B we get

/]Vu|qdm§hmsup/ |Vu,|?dm < lim/|Vun|qdm

n—o0

and letting B T A gives the result. O

9 Appendix A: other notions of weak gradient

In this section we consider different notions of weak gradients, all easily seen to be inter-
mediate between |V f|,, and |V f|.,, and therefore coincident, as soon as Theorem 6.1 is
invoked. These notions inspired those adopted in [3].

9.1 ¢-relaxed upper gradients and |V f|c,

In the relaxation procedure we can consider, instead of pairs (f,Lip, f) (i.e. Lipschitz
functions and their asymptotic Lipschitz constant), pairs (f, g) with ¢ upper gradient of f.

Definition 9.1 (¢-relaxed upper gradient) We say that g € LY(X,m) is a g-relazed
upper gradient of f € LI(X,m) if there exist g € LY(X,m), functions f, € LY(X,m) and
upper gradient g, of f, such that:

(a) fn— f in LYX,m) and g, weakly converge to g in LY(X, m);
(b) g <gm-a.e inX.

We say that g is a minimal q-relaxed upper gradient of f if its L9(X, m) norm is minimal
among q-relazed upper gradients. We shall denote by |V f|c, the minimal g-relaxed upper
gradient.

Again it can be proved (see [7]) that |V f|¢, is local, and clearly

Vfle, <IVfley  mae in X (9.1)
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because any g-relaxed slope is a g-relaxed upper gradient. On the other hand, the stability
property of g-weak upper gradients stated in Theorem 4.13 gives

\Vflwg <|Vfle, wmeae in X. (9.2)

In the end, thanks to Theorem 6.1, all these notions coincide m-a.e. in X.

Notice that one more variant of the “relaxed” definitions is the one considered in [3],
with pairs (f, |V f]). It leads to a weak gradient intermediate between the ones on (9.1),
but a posteriori equivalent, using once more Theorem 6.1.

9.2 g-upper gradients and |V f|s,

Here we recall a weak definition of upper gradient, taken from [24] and further studied
in [27] in connection with the theory of Sobolev spaces, where we allow for exceptions in
(2.2). This definition inspired the one given in [3], based on test plans.

Recall that, for I' ¢ AC([0,1], X), the ¢-modulus Mod,(I") is defined by

Mod,(T) := inf{/ p?dm : /,02 1 nyEF}, (9.3)
X ol

where the infimum is taken over all non-negative Borel functions p : X — [0, +0c]. We
say that I' is Mod,-negligible if Mod,(I') = 0. Accordingly, we say that a Borel function
g: X —[0,00] with [ v 97dm < oo is a g-upper gradient of f if there exist a function f
and a Mod,-negligible set I' such that f = fm-ae. in X and

1F(0) = Fon)| < / g<oo  VyeAC([0,1,X)\T.

o

Notice that the condition fv g < oo for Mod,-almost every curve v is automatically satisfied,
by the g-integrability assumption on g. It is not hard to prove that the collection of all ¢-
upper gradients of f is convex and closed, so that we can call minimal g-upper gradient, and
denote by |V fl|s4, the element with minimal L¢(X, m) norm. Furthermore, the inequality

IV £lsq <I|Vilcg m-a.e. in X (9.4)

(namely, the fact that all g-relaxed upper gradients are g-upper gradients) follows by a
stability property of g-upper gradients very similar to the one stated in Theorem 4.13 for
g-weak upper gradients, see [27, Lemma 4.11].

Observe that for a Borel set I' C C'([0,1], X') and a test plan 7, integrating on I' w.r.t.
7 the inequality f7 p > 1 and then minimizing over p, we get

1/p

(1) < (Cm) o (tody o) [ e asann)
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which shows that any Mod,-negligible set of curves is also ¢g-negligible according to Defi-
nition 4.5. This immediately gives that any ¢-upper gradient is a g-weak upper gradient,
so that

\Vflwg <|Vflsy  m-ae in X. (9.5)

Combining (9.1), (9.4), (9.5) and Theorem 6.1 we obtain that also |V f|s, coincides m-a.e.
with all other gradients.

10 Appendix B: discrete gradients in general spaces

Here we provide another type of approximation via discrete gradients which doesn’t even
require the space (X,d) to be doubling. We don’t know whether this approximation can
be used to obtain the reflexivity of W4(X, d, m) even without doubling assumptions.

We slightly change the definition of discrete gradient: instead of taking the sum of the
finite differences, that is forbidden due to the fact that the number of terms can not in
general be uniformly bounded from above, we simply take the supremum among the finite
differences. Let us fix a decomposition A? of suppm as in Lemma 7.1. Let u € LY(X,m)
and denote by us; the mean of u in A? as before. We consider the discrete gradient

1
|Dst]oo() = = sup {|us; — us;|} Vo € Al

0 psna?

Then we consider the functional Fg° : LI(X, m) — [0, oo given by

T = [ D) (o) dmo)
With these definitions, the following theorem holds.

Theorem 10.1 Let (X,d, m) be a Polish metric measure space with m finite on bounded
sets. Let Fg° be a I'-limit point of I35 as 0 | 0, namely

F*° . =T— lim F°°
q k—00 q,ék’

where 8 — 0 and the T'-limit is computed with respect to the L1(X, m)-distance. Then the
functional F2° is equivalent to Cheeger’s energy, namely there exists a constant ., = 1so(q)
such that

1
n—Chq(u) < F7°(u) < 0oChy(u) Yu € LY(X,m). (10.1)

The proof follows closely the one of Theorem 7.4. An admissible choice for 7., is 69.
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11 Appendix C: some open problems

In this section we discuss some open problems.

1. Optimality of the Poincaré assumption for the lower semicontinuity of slope.
As shown to us by P. Koskela, the doubling assumption, while sufficient to provide reflexiv-
ity of the Sobolev spaces W14(X,d, m), is not sufficient to ensure the lower semicontinuity
(1.1) of slope. Indeed, one can consider for instance the Von Koch snowflake X C R? en-
dowed with the Euclidean distance. Since X is a self-similar fractal satisfying Hutchinson’s
open set condition (see for instance [11)), it follows that X is Ahlfors regular of dimension
a=1In4/In3 € (1,2), namely 0 < 7*(X) < oo, where 7“ denotes a-dimensional Haus-
dorff measure in R?. Using self-similarity it is easy to check that (X,d, ) is doubling.
However, since absolutely continuous curves with values in X are constant, the g-weak
upper gradient of any Lipschitz function f vanishes. Then, the equivalence of weak and
relaxed gradients gives |V f|., = 0 7“-a.e. on X. By Proposition 4.2 we obtain Lipschitz
functions f, convergent to f in L%(X, %) and satisfying

lim [ Lip!(fn,z)ds#(x) = 0.
n—oo X
Since Lip,(fn,*) = |V fal, if [V f] is not trivial we obtain a counterexample to (1.1).

One can easily show that any linear map, say f(x1,22) = 1, has a nontrivial slope on
X at least %-a.e. in X. Indeed, |V f|(x) = 0 for some x € X implies that the geometric
tangent space to X at x, namely all limit points as y € X — 2 of normalized secant
vectors (y — x)/|y — x|, is contained in the vertical line {x; = 0}. However, a geometric
rectifiability criterion (see for instance [1, Theorem 2.61]) shows that this set of points x is
contained in a countable union of Lipschitz curves, and it is therefore o-finite with respect
to ' and #*-negligible.

This proves that doubling is not enough. On the other hand, quantitative assumptions
weaker than the Poincaré inequality might still be sufficient to provide the result.

2. Dependence on ¢ of the weak gradient. The dependence of |V f], , on ¢ is still
open: more precisely, assuming for simplicity that m(X) is finite, f € W4(X, d, m) easily
implies via Proposition 4.2 that f € W (X,d, m) for 1 < r < ¢ and that

|Vf|r7* S |Vf|q7* m_a-e. in X.

Whether equality m-a.e. holds or not is an open question. As pointed out to us by Gigli,
this holds if |Vgl,,, is independent of ¢ for a dense class D of functions (for instance
Lipschitz functions g with bounded support); indeed, if this the case, for any g € D we
have

IV flax < IVlgw + IV = 9lgs = [Valrs + [V = 9l

and considering g, € D with g, — f strongly in W4(X,d, m) we obtain the result, since

convergence occurs also in W (X, d,; m) and therefore |Vg,|.. — [V f|.. in L"(X, m).
Under doubling and Poincaré assumptions, we know that these requirements are met

with the class D of Lipschitz functions with bounded support, therefore as pointed out
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in [7] the weak gradient is independent of g. Assuming only the doubling condition, the
question is still open.
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