SELF-INTERSECTION OF OPTIMAL GEODESICS

FABIO CAVALLETTI AND MARTIN HUESMANN

ABSTRACT. Let (X, d, m) be a geodesic metric measure space. Consider a geodesic μ_t in the L^2 -Wasserstein space. Then as s goes to t, the support of μ_s and the support of μ_t have to overlap, provided an upper bound on the densities holds. We give a more precise formulation of this self-intersection property. Given a geodesic of (X, d, m) and $t \in [0, 1]$, we consider the set of times for which this geodesic belongs to the support of μ_t . We prove that t is a point of Lebesgue density 1 for this set, in the integral sense. Our result applies to spaces satisfying $\mathsf{CD}(K, \infty)$. The non branching property is not needed.

1. INTRODUCTION

Let (X, d, m) be a complete and separable metric measure space, that is (X, d) is a complete and separable metric space and m a Radon measure. Additionally we assume that

- X coincides with the support of m;
- (X, d) is a geodesic space.

Denote the set of all probability measures on X by $\mathcal{P}(X)$. The L^p -Wasserstein distance W_p between two probability measures μ_0 and μ_1 is defined to be

$$W_p^p(\mu_0,\mu_1) := \inf_{q \in \mathsf{Cpl}(\mu_0,\mu_1)} \int d^p(x,y) \ q(dx,dy),$$

where $\mathsf{Cpl}(\mu_0, \mu_1)$ is the set of all couplings between μ_0 and μ_1 , i.e. probability measures on $X \times X$ with marginals μ_0 and μ_1 . It can be shown that W_p is a metric on the space $\mathcal{P}_p(X) := \{\mu \in \mathcal{P}(X) : \int_X d^p(x_0, x) \ \mu(dx) < \infty\}$, where x_0 is arbitrary. In this note we will focus on the case p = 2.

It is then well-known that the associated L^2 -Wasserstein space $(\mathcal{P}_2(X), W_2)$ is a geodesic space as well: to any $\mu_0, \mu_1 \in \mathcal{P}_2(X)$ we can associate a geodesic $[0, 1] \ni t \mapsto \mu_t$ joining μ_0 to μ_1 , see Chapter 7 of [6].

Given μ_t , under some general assumptions on the metric measure space (X, d, m), like $CD(K, \infty)$, see [2], [4], [5] for their definitions, it is possible to prove that if μ_0 and μ_1 are both absolutely continuous with respect to reference measure m with bounded densities, then the same property holds for the density of μ_t . In particular $\mu_t \ll m$ and its density is bounded uniformly in $t \in [0, 1]$, see for instance [3].

Thanks to this uniform bound on the density, by means of standard arguments in measure theory, one can prove that the support of μ_t has to overlap with μ_0 as t goes to 0, otherwise to much "mass" would be present inside the support of μ_0 . The same property holds for any other time $s \in (0, 1]$ as t goes to s. This overlapping property is to our knowledge one of the few qualitative properties of the support of μ_t that has been proved so far.

In this note we want to give a more careful analysis of this overlapping property. We prove a structural property of supp $[\mu_t]$. Let $\mathcal{G}(X) \subset C([0,1]; X)$ denote the subset of geodesics in (X, d) and $\mathcal{P}(\mathcal{G}(X))$ the space of probability measures over it. Then, it can be shown that to each geodesic $t \mapsto \mu_t \in \mathcal{P}_2(X)$ it is possible to associate $\nu \in \mathcal{P}(\mathcal{G}(X))$, so that

$$(e_t)_{\sharp}\nu = \mu_t, \qquad e_t : C([0,1];X) \to X, \quad e_t(\gamma) := \gamma_t,$$

for all $t \in [0, 1]$, with e_t the evaluation map at time t (e.g. see [6, Theorem 7.21 and Corollary 7.22]). We refer to ν as dynamical optimal plan. Our result will be stated in terms of the support of ν , denoted by $G \subset \mathcal{G}(X)$. For each $t \in [0, 1]$ and $\gamma \in G$ consider the set

$$I_t(\gamma) := \{ \tau \in [0, 1] : \gamma_\tau \in e_t(G) \}.$$

MH gratefully acknowledges funding by CRC 1060.

 $I_t(\gamma)$ is the set of times for which γ remains inside the support of $e_t(G)$. So clearly $t \in I_t(\gamma)$. We will prove that if there exists a positive constant C so that

$$\mu_{\tau} = \varrho_{\tau} m, \quad \varrho_{\tau} \le C,$$

for all τ in a neighborhood of $t \in (0, 1)$, then t is a point of Lebesgue density 1 for $I_t(\gamma)$ in the $L^1(\nu)$ -sense that is

$$\lim_{\varepsilon \to 0} \frac{\mathcal{L}^1(I_t(\gamma) \cap (t - \varepsilon, t + \varepsilon))}{2\varepsilon} = 1, \quad \text{in } L^1(G, \nu)$$

The problem addressed in this note appeared in the recent paper [1] (Lemma 3.2 and its application to Theorem 7.8). It was used to develop a certain kind of parallel transport along Wasserstein geodesics with application to the problem of globalization for metric measure spaces with lower Ricci curvature bounds in the sense of Lott-Sturm-Villani, in brief CD(K, N) spaces.

2. The Result

Let (X, d, m) be a metric measure space verifying the assumptions stated at the beginning of the introduction. Let $\mu_0, \mu_1 \in \mathcal{P}_2(X)$ and $t \mapsto \mu_t \in \mathcal{P}_2(X)$ be a geodesic connecting them. Moreover, denote the dynamical optimal plan associated to μ_t by $\nu \in \mathcal{P}(\mathcal{G}(X))$.

Theorem 2.1. Fix $t \in (0,1)$ and assume the existence of a positive constant C and a neighborhood $U_t \subset [0,1]$ of t such that $\mu_{\tau} = \rho_{\tau} m$ with $\rho_{\tau} \leq C$ for each $\tau \in U_t$. Then we have

(2.1)
$$\lim_{\varepsilon \to 0} \frac{\mathcal{L}^1(I_t(\gamma) \cap (t - \varepsilon, t + \varepsilon))}{2\varepsilon} = 1.$$

in $L^1(G,\nu)$.

Proof. Step 1. Suppose by contradiction the claim is false. Then

$$\limsup_{\varepsilon \to 0} \int_{G} \left| 1 - \frac{\mathcal{L}^{1}(I_{t}(\gamma) \cap (t - \varepsilon, t + \varepsilon))}{2\varepsilon} \right| \nu(d\gamma) > 0.$$

Therefore there exist a sequence $\varepsilon_n \to 0$ such that

$$1 > \lim_{n \to \infty} \int_G \frac{\mathcal{L}^1(I_t(\gamma) \cap (t - \varepsilon_n, t + \varepsilon_n))}{2\varepsilon_n} \nu(d\gamma).$$

Consider the complement of $I_t(\gamma)$, denoted by $I_t^c(\gamma) := \{\tau \in [0,1] : \gamma_\tau \notin e_t(G)\}$, then from the equality

$$1 - \frac{\mathcal{L}^1(I_t^c(\gamma) \cap (t - \varepsilon_n, t + \varepsilon_n))}{2\varepsilon_n} = \frac{\mathcal{L}^1(I_t(\gamma) \cap (t - \varepsilon_n, t + \varepsilon_n))}{2\varepsilon_n}$$

we deduce that

(2.2)
$$\lim_{n \to \infty} \int_{G} \frac{\mathcal{L}^{1}(I_{t}^{c}(\gamma) \cap (t - \varepsilon_{n}, t + \varepsilon_{n}))}{2\varepsilon_{n}} \nu(d\gamma) > 0$$

Moreover, by inner regularity, we can assume that $m(e_t(G)) < \infty$.

Step 2. Denote with P_i the projection map on the *i*-th component, for i = 1, 2. Let

$$E := \{(\gamma, s) \in G \times (0, 1) : s \in I_t(\gamma)^c\} = \{(\gamma, s) \in G \times (0, 1) : d(\gamma_s, e_t(G)) > 0\}$$

and

$$E(\gamma) := P_2\Big(E \cap \left(\{\gamma\} \times (0,1)\right)\Big), \qquad E(\tau) := P_1\Big(E \cap \left(G \times \{\tau\}\right)\Big).$$

Then by Fubini's Theorem and (2.2) we obtain that

$$\lim_{n \to \infty} \frac{1}{2\varepsilon_n} \int_{(t-\varepsilon_n, t+\varepsilon_n)} \nu(E(\tau)) \mathcal{L}^1(d\tau) = \lim_{n \to \infty} \frac{1}{2\varepsilon_n} \nu \otimes \mathcal{L}^1\left(E \cap (G \times (t-\varepsilon_n, t+\varepsilon_n))\right)$$
$$= \lim_{n \to \infty} \frac{1}{2\varepsilon_n} \int_G \mathcal{L}^1(E(\gamma) \cap (t-\varepsilon_n, t+\varepsilon_n)) \nu(d\gamma) > 0.$$

So there must be a sequence of $\{s_n\}_{n\in\mathbb{N}}$ converging to 0 so that $\nu(E(t+s_n)) \geq \kappa$, for some $\kappa > 0$. Then, since $e_{t+s_n}(G)$ converges to $e_t(G)$ in Hausdorff topology as s_n goes to 0, we have

$$m(e_t(G)^{\varepsilon}) \ge m(e_t(G) \cup e_{t+s_n}(E(t+s_n))) \ge m(e_t(G)) + m(e_{t+s_n}(E(t+s_n))),$$

where $e_t(G)^{\varepsilon} := \{z \in X : d(z, e_t(G)) \leq \varepsilon\}$. Since by assumption $\rho_{\tau} \leq C$ on $e_{\tau}(G)$ for all $\tau \in U_t$, it follows that $m(e_{t+s_n}(E(t+s_n)))$ remains uniformly strictly positive as s_n goes to 0. Since

$$m(e_t(G)) = \lim_{\varepsilon \to 0} m(e_t(G)^{\varepsilon}),$$

we have a contradiction and the claim is proved.

Remark 2.2. Arguing similarly we can say something about pointwise convergence: for any sequence $\varepsilon_n \to 0$ there exists H, ν -negligible and depending on the sequence ε_n , such that

$$\limsup_{n \to \infty} \frac{\mathcal{L}^1 (I_t(\gamma) \cap (t - \varepsilon_n, t + \varepsilon_n))}{2\varepsilon_n} = 1,$$

for all $\gamma \in G \setminus H$.

Indeed suppose by contradiction the existence of a set $H \subset G$, with $\nu(H) > 0$ such that for all $\gamma \in H$

$$\limsup_{n \to \infty} \frac{\mathcal{L}^1 \big(I_t(\gamma) \cap (t - \varepsilon_n, t + \varepsilon_n) \big)}{2\varepsilon_n} < 1.$$

Possibly restricting H, this implies

$$\liminf_{n \to \infty} \frac{\mathcal{L}^1 \left(I_t^c(\gamma) \cap (t - \varepsilon_n, t + \varepsilon_n) \right)}{2\varepsilon_n} > \alpha$$

for some $\alpha > 0$. Then, reasoning as in the proof of Theorem 2.1, we obtain a contradiction.

Remark 2.3. As already mentioned in the introduction the assumption, of the theorem is satisfied in $CD(K, \infty)$ spaces as shown in [3]. Moreover, in this note we considered the L^2 -Wasserstein space. However, the only property we used is that any $\mathcal{P}_2(X)$ -geodesic can be represented via a dynamical optimal plan. Hence, for any other cost function inducing the same property on the space of probability measures, the same result applies, e.g. one could take L^p cost for p > 1. See also [6, Theorem 7.21] for more general costs.

References

- F. Cavalletti. Decomposition of geodesics in the Wasserstein space and the globalization property. accepted by GAFA, 2013.
- [2] J. Lott and C. Villani. Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math., 169(3):903–991, 2009.
- [3] T. Rajala. Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm. J. Funct. Anal., 263:896–924, 2012.
- [4] K.T. Sturm. On the geometry of metric measure spaces.I. Acta Math., 196(1):65–131, 2006.
- [5] K.T. Sturm. On the geometry of metric measure spaces.II. Acta Math., 196(1):133–177, 2006.
- [6] C. Villani. Optimal transport, old and new. Springer, 2008.

RWTH, DEPARTMENT OF MATHEMATICS, TEMPLERGRABEN 64, D-52062 AACHEN (GERMANY) *E-mail address:* cavalletti@instmath.rwth-aachen.de

UNIVERSITÄT BONN, INSTITUT FÜR ANGEWANDTE MATHEMATIK, ENDENICHER ALLEE 60, D-53115 BONN (GERMANY) *E-mail address*: huesmann@iam.uni-bonn.de

3