SELF-INTERSECTION OF OPTIMAL GEODESICS
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ABSTRACT. Let (X,d,m) be a geodesic metric measure space. Consider a geodesic p; in the L2-
Wasserstein space. Then as s goes to t, the support of ps and the support of p¢ have to overlap, provided
an upper bound on the densities holds. We give a more precise formulation of this self-intersection prop-
erty. Given a geodesic of (X,d,m) and ¢ € [0, 1], we consider the set of times for which this geodesic
belongs to the support of . We prove that ¢ is a point of Lebesgue density 1 for this set, in the integral
sense. Our result applies to spaces satisfying CD(K, 00). The non branching property is not needed.

1. INTRODUCTION

Let (X,d,m) be a complete and separable metric measure space, that is (X,d) is a complete and
separable metric space and m a Radon measure. Additionally we assume that

e X coincides with the support of m;

e (X,d) is a geodesic space.
Denote the set of all probability measures on X by P(X). The LP-Wasserstein distance W), between two
probability measures o and pq is defined to be

Wyo) = int [ d(ay) alde.dy),
q€Cpl(p0,11)

where Cpl(po, p1) is the set of all couplings between ug and pg, i.e. probability measures on X x X

with marginals uo and p1. It can be shown that W), is a metric on the space P,(X) := {u € P(X) :

Jx dP(x0,2) p(dr) < oo}, where xq is arbitrary. In this note we will focus on the case p = 2.

It is then well-known that the associated L?-Wasserstein space (P2(X), Wa) is a geodesic space as well:
to any o, 1 € P2(X) we can associate a geodesic [0,1] 3 ¢ — p; joining po to p1, see Chapter 7 of [6].

Given i, under some general assumptions on the metric measure space (X, d, m), like CD(K, o), see
[2, [4], [5] for their definitions, it is possible to prove that if up and uy are both absolutely continuous
with respect to reference measure m with bounded densities, then the same property holds for the density
of ps. In particular p; < m and its density is bounded uniformly in ¢ € [0, 1], see for instance [3].

Thanks to this uniform bound on the density, by means of standard arguments in measure theory, one
can prove that the support of u; has to overlap with pg as ¢t goes to 0, otherwise to much “mass” would
be present inside the support of 1p. The same property holds for any other time s € (0, 1] as ¢ goes to s.
This overlapping property is to our knowledge one of the few qualitative properties of the support of p;
that has been proved so far.

In this note we want to give a more careful analysis of this overlapping property. We prove a structural
property of supp[u:]. Let G(X) C C([0,1]; X) denote the subset of geodesics in (X, d) and P(G(X)) the
space of probability measures over it. Then, it can be shown that to each geodesic t — p; € Pa(X) it is
possible to associate v € P(G(X)), so that

(ee)sv = pus, e C([0,1; X) = X, e(y) =,

for all t € [0, 1], with e; the evaluation map at time ¢ (e.g. see [6l Theorem 7.21 and Corollary 7.22]). We
refer to v as dynamical optimal plan. Our result will be stated in terms of the support of v, denoted by
G C G(X). For each t € [0,1] and v € G consider the set

Ii(y) ={7€10,1] : 77 € ex(G)}.
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I (7y) is the set of times for which v remains inside the support of e;(G). So clearly t € I;(y). We will
prove that if there exists a positive constant C' so that

Hr = 0rm, 0r < C,

for all 7 in a neighborhood of ¢ € (0,1), then ¢ is a point of Lebesgue density 1 for I;(v) in the L!(v)-sense
that is

LY L) Nn(t—et+e)

lim =1

Tl
lim 9z , in L' (G,v).

The problem addressed in this note appeared in the recent paper [I] (Lemma 3.2 and its application
to Theorem 7.8). It was used to develop a certain kind of parallel transport along Wasserstein geodesics
with application to the problem of globalization for metric measure spaces with lower Ricci curvature
bounds in the sense of Lott-Sturm-Villani, in brief CD(K, N) spaces.

2. THE RESuULT

Let (X,d,m) be a metric measure space verifying the assumptions stated at the beginning of the
introduction. Let po, p1 € Po(X) and ¢ — py € P2(X) be a geodesic connecting them. Moreover, denote
the dynamical optimal plan associated to p; by v € P(G(X)).

Theorem 2.1. Fiz t € (0,1) and assume the existence of a positive constant C' and a neighborhood
U; C [0,1] of t such that pr = orm with o0 < C for each 7 € U;. Then we have

2.1) i £l (It(v) Nt—e,t+ 5)) _
' e—0 2e ’

in LY(G,v).
Proof. Step 1. Suppose by contradiction the claim is false. Then
LYL(y)N(t—e,t
sy | 1 - @0t
e—0 e

2e
Therefore there exist a sequence €, — 0 such that

1 —
1> lim LHI(y)N(t—en, t+ E"))u(dv).
n—o0o | 2en

Consider the complement of I;(7y), denoted by If(vy) := {7 € [0,1] : v+ ¢ e:(G)}, then from the equality

LY N(t—en,t+en) LT (V)N ([E—en,t+en))
B 2en o 2en

1

v(dy) > 0.

1

)

we deduce that
1 ¢ _
(2.2) i [ L) N —ent+en))

n—oo Jq 2en

v(dy) > 0.

Moreover, by inner regularity, we can assume that m(e;(G)) < oo.
Step 2. Denote with P; the projection map on the i-th component, for i = 1,2. Let
E:={(7,5) € Gx(0,1):5 € Li(7)} = {(7,5) € G x(0,1) : d(7s, e4(G)) > 0},
and
E(y) =Py (E N ({v} % (0, 1))), E(r) = P, (E N (G x {T})).
Then by Fubini’s Theorem and (2.2)) we obtain that

n—oo 2&,

1 1
lim _/ W(E()LHdr) = Tim ——v@ L (EN (G X (t— enst+21)))
(t_8n1t+5n)

~ lim L/ LHEM) N (t = enyt +en))0(dy) > 0.
G

n—oco 2,

So there must be a sequence of {s,}nen converging to 0 so that v(E(t + s,)) > k, for some k£ > 0.
Then, since et (G) converges to e;(G) in Hausdorff topology as s, goes to 0, we have

m(ei(G)7) = m(e(G) Uerrs, (E(t+ sn))) = m(er(Q)) +m(erss, (E(t + 5n))),
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where e;(G)° := {z € X : d(z,e:(@)) < €}. Since by assumption o, < C on e,(G) for all 7 € Uy, it
follows that m(etys, (E(t + $5))) remains uniformly strictly positive as s,, goes to 0. Since

m(ey(G)) = lim m(e(G)),

we have a contradiction and the claim is proved.

O

Remark 2.2. Arguing similarly we can say something about pointwise convergence: for any sequence
en — 0 there exists H, v-negligible and depending on the sequence ¢,,, such that

. El(lt(ly) ﬂ(t_gnat+5n))
lim sup =

forally e G\ H.
Indeed suppose by contradiction the existence of a set H C G, with v(H) > 0 such that for all vy € H

LY L) N(t—en,t+en))

lim sup < 1.
n— 00 2571
Possibly restricting H, this implies
LYIE)N(t—ep,t +en
lim inf ( £ Nl >) > q,

n—o00 2e,

for some « > 0. Then, reasoning as in the proof of Theorem [ZI] we obtain a contradiction.

Remark 2.3. As already mentioned in the introduction the assumption, of the theorem is satisfied
in CD(K, o) spaces as shown in [3]. Moreover, in this note we considered the L?-Wasserstein space.
However, the only property we used is that any P2(X)-geodesic can be represented via a dynamical
optimal plan. Hence, for any other cost function inducing the same property on the space of probability
measures, the same result applies, e.g. one could take L? cost for p > 1. See also [6l Theorem 7.21] for
more general costs.
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