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Abstract. – In this work we have reconsidered the famous paper of Bombieri, De Gior-
gi and Giusti [4] and, thanks to the software Mathematicar we made it possible for anybody
to control the difficult computations.

1. – Introduction

On April 27th, 1978, Guido Stampacchia died in Paris. His coffin arrived to Pisa for
the Adieu Ceremonial, in the Courtyard of Scuola Normale.

That day I was there, and I could not meet Ennio De Giorgi. The apparent absence of
him seemed impossible to me, considering the lasting and close friendship between Ennio
and Guido.

Many years later, Sergio Spagnolo told me that Ennio remained, the whole duration
of the Ceremonial, hidden in a corner of the building. The modesty did not permit Ennio
to show around his sorrow.

Guido had been a putative father for Ennio; he protected a younger and precious man,
as long as he could. In March 1961, De Giorgi was invited to Paris for giving two talks.
Stampacchia wanted to join him in the trip. There exists a beautiful picture of the two
friends, on the Rive Gauche with Nôtre Dame behind them. A French mathematician told
me that Stampacchia in Paris seemed to be the Assistant Professor of De Giorgi. He was
wrong. Stampacchia had never been an academic servant. He could be said a devotee of
Mathematics.

In 1955 Guido pushed Ennio into studying the XIX Hilbert’s Problem [5]. And, in
1968 Guido pushed Enrico Bombieri to work with De Giorgi. The cooperation promoted
by Stampacchia, produced two very important mathematical results.

This paper, written by Umberto Massari, Michele Miranda and myself, is offered to the
“Unione Matematica Italiana”, to be published in an issue of the Bollettino UMI dedicated
to Guido Stampacchia. It wants to be considered a gift for the young mathematicians,
and could be easier to read, than the original one of Enrico Bombieri, Ennio De Giorgi
and Enrico Giusti [4].

We have used the software Mathematicar [19], following the PhD thesis of Danilo
Benarros [2] (see also [3] and [16]), a Brazilian from Manhaus, who spent four years in
Trento for his mathematical work.
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2. – The regularity of minimal boundaries and extension of Bernstein’s
Theorem

In 1961, Ennio De Giorgi proved the regularity of minimal boundaries at points where
the tangent hyperplane exists. The details of the proof were published in two booklets
[6, 7] of the “Scuola Normale Superiore” Mathematical Seminar. These booklets were
later inserted in [8] (see also [10]).

At the same time, Wendell H. Fleming proved the full regularity of minimal boundaries
in R3. The paper appeared in “Rendiconti del Circolo Matematico di Palermo” [11] and
contained a new proof of the classical Bernstein’s Theorem [17].

De Giorgi’s conjecture of full regularity of minimal boundaries and Fleming’s conjec-
ture of the Bernstein’s Theorem, started sharing one destiny in all dimensions.

In August 1962, De Giorgi and Fleming met for the first time in Genova, guested by
professor Jorés Cecconi. Right after, they met again in Stockholm, at the International
Mathematical Union Congress. At the farewell, Fleming invited De Giorgi to spend a
semester in the USA.

In February 1964, De Giorgi sailed to New York and remained in the States until June.
Fleming met him at the sea–port, where De Giorgi offered him a mathematical gift: the
improvement of Fleming’s Theorem, which became

“If Rn has no singular minimal boundaries, then the Bernstein’s Theorem is true for
n–variable functions”.

As a Corollary, De Giorgi got the first extension of Bernstein’s Theorem to 3–variable
functions [9].

In 1965, a student of Herbert Federer, Frederic J. Almgren Jr, came to Pisa to show
his extension to 4–variables [1].

In 1967, a student of Shiin S. Chern, James H. Simons proved a strong result for
analytic cones [18]. Assuming that the cone has zero first fundamental form, and the
second fundamental form non negative, at all points except the vertex, Simons proved
that the cone is a hyperplane, until dimension 7. The stop was justified by Simons with
the cone

C = {(x, y) ∈ R4 × R4 : |x|2 − |y|2 = 0}.

3. – Simons’ cone is a singular minimal boundary and generalised solu-
tions exist in 8–variables

This section has to be considered as an introduction of the results obtained by Enrico
Bombieri, Ennio De Giorgi and Enrico Giusti in [4].

An easy proof for the minimal property of the Simons’ cone was presented by Umberto
Massari and Mario Miranda in [12].

Considering the fact that the cone can be written as

C =
{

(x, y) ∈ R4 × R4 : |x|4 − |y|4 = 0
}

they studied the behavior of the function

ϕ(u, v) =
u4 − v4

4
, u = |x|, v = |y|,
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with respect to the minimal surface operator. Then they computed the form

E(ϕ) =
(
ϕuu + ϕvv + 3

(ϕu
u

+
ϕv
v

))
+

+
(
ϕ2
vϕuu + ϕ2

uϕvv − 2ϕuϕvϕuv + 3(ϕ2
u + ϕ2

v)
(ϕu
u

+
ϕv
v

))
.

i.e.
E(ϕ) = (1 + |∇ϕ|2)∆ϕ+ 〈Hϕ∇ϕ,∇ϕ〉.

They got

E
(
u4 − v4

4

)
= 3(u2 − v2)(2 + (u2 + v2)(u2 − v2)2),

and also

(u2 − v2)E
(
u4 − v4

4

)
≥ 0, ∀u,∀v;

which means that u4−v4
4 is a sub-solution when it is positive and a super-solution when it

is negative.
Therefore, for any k > 0, there holds

E
(
k
u4 − v4

4

)
= 3k(u2 − v2)(2 + k2(u2 + v2)(u2 − v2)2)

and

lim
k→+∞

graph
(
k
u4 − v4

4

)
= C × R,

where C is the Simons’ cone. Due to the differential properties of the function k u
4−v4
4 ,

one obtains that the cylinder C×R is a minimal boundary in R9, and also C is a minimal
boundary in R8.

In the second part of this section, we will use the function u4−v4
4 to prove the existence

of a generalised solution S, with

S(u, v) > 0, if u > v; S(u, v) < 0, if u < v.

Let us consider, for any % ≥ 1, the ball

B% = {(x, y) ∈ R4 × R4 : |x|2 + |y|2 ≤ %2},

and the solution S% of the minimal surface equation in B%, with boundary values u4−v4
4 at

u2 + v2 = %2 (see [13])
The S% are increasing when positive and decreasing when negative, i.e. positive in

{u > v}∩{u2 +v2 < %2} and negative in {u < v}∩{u2 +v2 < %2}. Therefore, there exists
a function S

S = lim
%→+∞

S%

with values at all (u, v) ∈ [−∞,+∞], and S is a generalised minimal solution in R8 (see
[15] and [14]).
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4. – A classical non–trivial solution in 8–variables

We will follow, from now on, the Bombieri, De Giorgi and Giusti [4] indications and
our existence of generalised minimal solutions.

Bombieri, De Giorgi and Giusti chose the function

ϕ(u, v) =
u2 − v2

2

√
u2 + v2

2

instead of our u4−v4
4 , with the advantage of a homogeneous function of degree 3 instead

of 4.
Their second decision was to consider the function

φ(u, v) =
u2 − v2

2

(
1 +

√
u2 + v2

2

(
1 +A

∣∣∣∣u2 − v2

u2 + v2

∣∣∣∣a)
)

with a = 31
96 and A > 1 to be fixed.

Both ϕ(u, v) and φ(u, v) are continuous functions, and

φ(u, v) ≥ ϕ(u, v) ≥ 0, for u ≥ v;

and
φ(u, v) ≤ ϕ(u, v) ≤ 0, for u ≤ v.

At this point, Bombieri, De Giorgi and Giusti had to face the comparison of E(φ) with 0
in the area {(u, v) : u > v}.

They had to work hard to get something interesting, but not the full success.
We took advantage of the work made by Danilo Benarros [2] and the Mathematicar

book [19], to get the following inequality:

E(φ) ≤ 0, for
u2 − v2

2
≥ 96√

31
:= γ.

We only need to study the case u > v; let us define

z =
u2 − v2

2
, r =

u2 + v2

2
, s =

√
r, t =

z

r

so that, since 0 < t < 1, we can write

φ(u, v) = Γ(z, r) = z
(

1 +
√
r
(

1 +A
(z
r

)a))
= z(1 + s(1 +Ata)).

We obtain in this way that

E(φ) = (1 + φ2
u + φ2

v)
(
φuu + φvv +

3φu
u

+
3φv
v

)
− (φ2

uφuu + 2φuφvφuv + φ2
vφvv)

= φuu + φvv +
3φu
u

+
3φv
v︸ ︷︷ ︸

=Dφ

+

+ φ2
vφuu + φ2

uφvv − 2φuφvφuv + 3(φ2
u + φ2

v)
(
φu
u

+
φv
v

)
︸ ︷︷ ︸

=E0φ

.
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We also have that

φu = (Γr + Γz)u, φv = (Γr − Γz)v, φuv = (Γrr − Γzz)uv,

φuu = Γr + Γz + (Γrr + Γzz + 2Γrz)u2, φvv = Γr − Γz + (Γrr + Γzz − 2Γrz)v2.

From these formulae, taking into account that 0 < t < 1, we get

φu = s
√

1 + t(g + f), φv = s
√

1− t(g − f), φuv =
√

1− t2(G− F ),

φuu = g + f + (1 + t)(G+ F + 2H), φvv = g − f + (1− t)(G+ F − 2H),

where we have defined

f = Γz, g = Γr, F = rΓzz, G = rΓrr, H = rΓrz.

In conclusion, we obtain the following formulae

Dφ = 2(F +G+ 2tH + 4g)(1)

E0φ = 2r
(

(g2 − f2)(g + tf) + 6g(f2 + g2 + 2tfg)(2)

+2(1− t2)(f2G+ g2F − 2fgH)
)
.

A direct computation gives

f = 1 +
√
r
(

1 + (1 + a)A
(z
r

)a)
= 1 + s(1 + (1 + a)Ata);

g =
z

2
√
r

+
√
rA
(z
r

)a+1
(

1
2
− a
)

=
st

2
+ sAta+1

(
1
2
− a
)

;

F = a(a+ 1)A
√
r
(z
r

)−1+a
= a(a+ 1)Ast−1+a;

G = − z

4
√
r
−A

(
1
4
− a2

)√
r
(z
r

)a+1
= −st

4
−A

(
1
4
− a2

)
sta+1;

H =
√
r +A

(
1
2
− a
)

(1 + a)
√
r
(z
r

)a
= s+A

(
1
2
− a
)

(1 + a)sta.

The next step is to substitute the previous values in formulae (1) and (2); this computation
is rather long and complicated, but it can be performed with the aid of some computer’s
software, such as Mathematicar [19] (the command to get the result can be found in
Appendix A). There holds:

Dφ =
11
2
st+ 2a(a+ 1)Ast−1+a +A

(
11
2
− 10a− 2a2

)
sta+1.

Since the three terms are positive for A > 1, we have that

Dφ ≤ Ast−1+a

(
11
2

+ 2a2 + 2a+
11
2
− 10a− 2a2

)
≤ 9Ast−1+a.

Regarding E0, we have that E0φ/2r is a polynomial of degree three in the s–variable

E0φ
2r

= −t+ c1s+ c2s
2 + c3s

3.
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We estimate now the coefficient c1, c2 and c3. For c1, it can be written as c1 = c11+c12+c13

where

c11 = −t+
t3

2
< 0

c12 = At1+a(−1− 8a+ 2a2)

c13 = At3+a(
1
2
− 2a2) ≥ 0.

We also have that,

c12 + c13 ≤ At1+a(−1− 8a+ 2a2) +At1+a(
1
2
− 2a2)

= At1+a

(
−1

2
− 8a

)
≤ 0

and then c1 ≤ 0. For the coefficient c2 we have c2 = c21 + c22 + c23 + c24 + c25 with

c21 = 3aAt1+a(−3 + 2a) < 0
c22 = 9aA2t1+2a(−1− a) < 0

c23 =
21
4
t3 > 0

c24 = 3At3+a

(
7
2
− 5a− 2a2

)
> 0

c25 = 3A2t3+2a

(
7
4
− 5a+ 3a2

)
> 0.

First of all, we have that

c21 + c23 ≤ 3aAt1+a(−3 + 2a) +
21
4
t1+a

= 3t1+a

(
−3aA+ 2a2A+

7
4

)
≤ 3t1+a

(
−19

36
A+

7
4

)
≤ 0

if A ≥ 63
19 . We also have that

c22 + c25 ≤ −9aA2t1+2a(1 + a) + 3A2t1+2a

(
7
4
− 5a+ 3a2

)
= −3A2t1+2a

(
8a− 7

4

)
.

Since

c24 ≤ 3At1+2a

(
7
2
− 5a− 2a2

)
,

we then obtain that

c22 + c24 + c25 ≤ −3At1+2a

(
A

(
8a− 7

4

)
− 7

2
+ 5a+ 2a2

)
≤ −3At1+2a

(
A

4
− 17

8

)
< 0
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if A > 17
2 . At the end we have that also c2 ≤ 0.

It remains to consider the last coefficient; we have that c3 = c31 + c32 + c33 + c34 +
c35 + c36 + c37 where

c31 =
3
2
aAt1+a(−1 + 3a) < 0

c32 = −3a(1 + a)A2t1+2a < 0

c33 = −3aA3t1+3a

(
1
2

+
5
2
a+ 2a2

)
< 0

c34 =
45
8
t3 > 0

c35 =
3
2
At3+a

(
45
4
− 11a− 3a2

)
> 0

c36 = 3A2t3+2a

(
45
8
− 11a+ a2

)
> 0

c37 = 3A3t3+3a

(
15
8
− 11

2
a+

5
2
a2 + 2a3

)
> 0.

We have the following estimate

c32 + c34 + c35 ≤ 3At1+2a

(
−a(1 + a)A+

15
2
− 11

2
a− 3

2
a2

)
≤ 3At1+2a

(
− 5

16
A+

193
32

)
< 0

if A ≥ 193
10 . Moreover,

c33 + c37 ≤ −3aA3t1+3a

(
1
2

+
5
2
a+ 2a2

)
+3A3t1+3a

(
15
8
− 11

2
a+

5
2
a2 + 2a3

)
= −3A3t1+3a

(
6a− 15

8

)
≤ 0.

So our final choice of A is A > 193
10 , and so A = 20 will do. With this choice of the

parameters a and A we have obtained that

E0φ ≤ c31,

and then, for the minimal surface operator applied to φ there holds

Eφ = Dφ+ E0φ ≤ sAt−1+a
(
9− (1− 3a)3a(rt)2

)
.

We then have Eφ ≤ 0 only under the condition rt ≥ γ.
The third decision of Bombieri, De Giorgi and Giusti was to introduce in their calculi

the function

K(σ) =
∫ σ

0
exp

(
B

∫ +∞

τ

1
w1−a + w1+a

dw

)
dτ, σ > 0,

and B > 0 to be fixed.
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The first and second derivatives of K are

K ′(σ) = exp
(
B

∫ +∞

σ

1
w1−a + w1+a

dw

)
> 1

K ′′(σ) = − B

σ1−a + σ1+a
K ′(σ).

Therefore

E(K(φ)) = K ′(φ)
(
Dφ+K ′(φ)2E0φ−B

φ2
u + φ2

v

φ1−a + φ1+a
K ′(φ)

)
.

So the inequality

EK(φ) ≤ 0, for
u2 − v2

2
≥ γ

remains true.
And we only have to prove, for u2−v2

2 ≤ γ,

D(φ)−B φ2
u

φ1−a + φ1+a
≤ 0.

Since

φu ≥ u

(
1 +

√
u2 + v2

2
(1 +Ata)

)
= uQ,

it is sufficient to prove

9Ast−1+a ≤ BrQ2

(rt)1−aQ1−a + (rt)1+aQ1+a
,

i.e.

9Ast−a
(

1
Q1+a

+
(rt)2a

Q1+a

)
≤ B.

And, for s ≤ 1, thanks to Q ≥ 1, we get

9Ast−a
(

1
Q1+a

+
(rt)2a

Q1+a

)
≤ 9A(1 + γ2a).

For s ≥ 1, thanks to Q ≥ s, we get

9Ast−a
(

1
Q1+a

+
(rt)2a

Q1+a

)
≤ 9A(1 + γ2a).

Finally, choosing B ≥ 9A(1 + γ2a) we get the solution of our problem.

A. – The Mathematicar’s commands

In this section we present the command (together with the output) that can be used
with Mathematica (version 6) in order to obtain the result of the present paper.
In[1] := f [s ]:=1 + s ∗ (1 + (1 + a) ∗A ∗ t∧a)In[1] := f [s ]:=1 + s ∗ (1 + (1 + a) ∗A ∗ t∧a)In[1] := f [s ]:=1 + s ∗ (1 + (1 + a) ∗A ∗ t∧a)
In[2] := g[s ]:=(s ∗ t)/2 + s ∗A ∗ t∧(1 + a) ∗ (1/2− a)In[2] := g[s ]:=(s ∗ t)/2 + s ∗A ∗ t∧(1 + a) ∗ (1/2− a)In[2] := g[s ]:=(s ∗ t)/2 + s ∗A ∗ t∧(1 + a) ∗ (1/2− a)
In[3] := F [s ]:=a ∗ (a+ 1) ∗A ∗ s ∗ t∧(−1 + a)In[3] := F [s ]:=a ∗ (a+ 1) ∗A ∗ s ∗ t∧(−1 + a)In[3] := F [s ]:=a ∗ (a+ 1) ∗A ∗ s ∗ t∧(−1 + a)
In[4] := G[s ]:=− (s ∗ t)/4−A ∗ (1/4− a∧2) ∗ s ∗ t∧(1 + a)In[4] := G[s ]:=− (s ∗ t)/4−A ∗ (1/4− a∧2) ∗ s ∗ t∧(1 + a)In[4] := G[s ]:=− (s ∗ t)/4−A ∗ (1/4− a∧2) ∗ s ∗ t∧(1 + a)

8



In[5] := H[s ]:=s/2 +A ∗ (1/2− a) ∗ (1 + a) ∗ s ∗ t∧aIn[5] := H[s ]:=s/2 +A ∗ (1/2− a) ∗ (1 + a) ∗ s ∗ t∧aIn[5] := H[s ]:=s/2 +A ∗ (1/2− a) ∗ (1 + a) ∗ s ∗ t∧a
In[6] := D[s ]:=2 ∗ (F [s] +G[s] + 2 ∗ t ∗H[s] + 4 ∗ g[s])In[6] := D[s ]:=2 ∗ (F [s] +G[s] + 2 ∗ t ∗H[s] + 4 ∗ g[s])In[6] := D[s ]:=2 ∗ (F [s] +G[s] + 2 ∗ t ∗H[s] + 4 ∗ g[s])
In[7] := Simplify[D[s]]In[7] := Simplify[D[s]]In[7] := Simplify[D[s]]

Out[7] = − s(−11t2−4a(1+a)Ata+(−11+20a+4a2)At2+a)
2t

In[8] := E0[s ]:=In[8] := E0[s ]:=In[8] := E0[s ]:=
2 ∗ r ∗ ((g[s]∧2− f [s]∧2) ∗ (g[s] + t ∗ f [s])2 ∗ r ∗ ((g[s]∧2− f [s]∧2) ∗ (g[s] + t ∗ f [s])2 ∗ r ∗ ((g[s]∧2− f [s]∧2) ∗ (g[s] + t ∗ f [s])

+6 ∗ g[s] ∗ (f [s]∧2 + g[s]∧2 + 2 ∗ t ∗ f [s] ∗ g[s])+6 ∗ g[s] ∗ (f [s]∧2 + g[s]∧2 + 2 ∗ t ∗ f [s] ∗ g[s])+6 ∗ g[s] ∗ (f [s]∧2 + g[s]∧2 + 2 ∗ t ∗ f [s] ∗ g[s])
+2 ∗ (1− t∧2) ∗ (f [s]∧2 ∗G[s] + g[s]∧2 ∗ F [s]− 2 ∗ f [s] ∗ g[s] ∗H[s]))+2 ∗ (1− t∧2) ∗ (f [s]∧2 ∗G[s] + g[s]∧2 ∗ F [s]− 2 ∗ f [s] ∗ g[s] ∗H[s]))+2 ∗ (1− t∧2) ∗ (f [s]∧2 ∗G[s] + g[s]∧2 ∗ F [s]− 2 ∗ f [s] ∗ g[s] ∗H[s]))

In[9] := Simplify[E0[s]]In[9] := Simplify[E0[s]]In[9] := Simplify[E0[s]]
Out[9] = 1

4rt
(
−8− 4s

(
2− t2 − 2

(
−1− 8a+ 2a2

)
Ata +

(
−1 + 4a2

)
At2+a

)
+6s2

(
7t2 + 4a(−3 + 2a)Ata − 12a(1 + a)A2t2a − 2

(
−7 + 10a+ 4a2

)
At2+a

+
(
7− 20a+ 12a2

)
A2t2+2a

)
+3s3

(
15t2 + 4a(−1 + 3a)Ata − 8a(1 + a)A2t2a

−4a
(
1 + 5a+ 4a2

)
A3t3a −

(
−45 + 44a+ 12a2

)
At2+a

+
(
45− 88a+ 8a2

)
A2t2+2a +

(
15− 44a+ 20a2 + 16a3

)
A3t2+3a

))
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