NEWTONIAN LORENTZ METRIC SPACES
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ABSTRACT. This paper studies Newtonian Sobolev-Lorentz spaces. We
prove that these spaces are Banach. We also study the global p,g-
capacity and the p, g-modulus of families of rectifiable curves. Under
some additional assumptions (that is, X carries a doubling measure and
a weak Poincaré inequality), we show that when 1 < ¢ < p the Lipschitz
functions are dense in those spaces; moreover, in the same setting we
show that the p, g-capacity is Choquet provided that ¢ > 1. We also
provide a counterexample to the density result in the Euclidean setting
when 1 <p <n and g = co.

1. INTRODUCTION

In this paper, (X, d) is a complete metric space endowed with a nontrivial
Borel regular measure p. We assume that p is finite and nonzero on nonempty
bounded open sets. In particular, this implies that the measure p is o-finite.
Further restrictions on the space X and on the measure p will be imposed
later.

The Sobolev-Lorentz relative p, g-capacity was studied in the Euclidean
setting by Costea [6] and Costea-Maz’ya [8]. The Sobolev p-capacity was
studied by Maz’ya [24] and Heinonen-Kilpeldinen-Martio [16] in R™ and by
Costea [7] and Kinnunen-Martio [21] and [22] in metric spaces. The relative
Sobolev p-capacity in metric spaces was introduced by J. Bjorn in [2] when
studying the boundary continuity properties of quasiminimizers.

After recalling the definition of p, g-Lorentz spaces, we study some useful
properties of the p, g-modulus of families of curves needed to give the notion of
p, g-weak upper gradients. Then, following the approach of Shanmugalingam
in [27] and [28], we generalize the notion of Newtonian Sobolev spaces to the
Lorentz setting. There are several other definitions of Sobolev-type spaces
in the metric setting when p = ¢; see Hajlasz [12], Heinonen-Koskela [17],
Cheeger [4], and Franchi-Hajlasz-Koskela [11]. It has been shown that under
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reasonable hypotheses, the majority of these definitions yields the same space;
see Franchi-Hajlasz-Koskela [11] and Shanmugalingam [27].

We prove that these spaces are Banach. In order to do this, we develop a
theory of the Sobolev p, g-capacity. Some of the ideas used here when proving
the properties of the p, g-capacity follow Kinnunen-Martio [21] and [22] and
Costea [7]. We also use this theory to prove that, in the case 1 < ¢ < p,
Lipschitz functions are dense in the Newtonian Sobolev-Lorentz space if the
space X carries a doubling measure p and a weak (1, LP*9)-Poincaré inequality.
Newtonian Banach-valued Sobolev-Lorentz spaces were studied by Podbrdsky
in [26].

We prove that under certain restrictions (when 1 < ¢ < p and the space
(X,d) carries a doubling measure p and a certain weak Poincaré inequality)
this capacity is a Choquet set function.

We recall the standard notation and definitions to be used throughout this
paper. We denote by B(z,r) = {y € X : d(z,y) < r} the open ball with
center z € X and radius r > 0, while B(z,7) = {y € X : d(x,y) < r} is the
closed ball with center x € X and radius » > 0. For a positive number A,
AB(a,r) = B(a, A\r) and AB(a,r) = B(a, Ar).

Throughout this paper, C' will denote a positive constant whose value is
not necessarily the same at each occurrence; it may vary even within a line.
C(a,b,...) is a constant that depends only on the parameters a,b,.... For
E C X, the boundary, the closure, and the complement of E with respect to
X will be denoted by F, E, and X \ E, respectively; diam E is the diameter
of E with respect to the metric d.

2. LORENTZ SPACES

Let f: X — [—o0,00] be a p-measurable function. We define iy, the dis-
tribution function of f as follows (see Bennett-Sharpley [1, Definition I1.1.1]):
pp ) = p({z € X« |f(x)| > t}),  t=0.

We define f*, the nonincreasing rearrangement of f by
fr(t) =inf{v: pp(v) <t}, t>0.
(See Bennett-Sharpley [1, Definition I1.1.5].) We note that f and f* have the
same distribution function. For every positive «, we have
(L) = (e
and if |g| < |f] p-almost everywhere on X, then g* < f*. (See [1, Proposition
I1.1.7].) We also define f**, the mazimal function of f* by

t
P = my-(t) = %/0 Fr(s)ds, t>0.

(See [1, Definition I1.3.1].)
Throughout the paper, we denote by p’ the Holder conjugate of p € [1, o0].
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The Lorentz space LP4(X, 1), 1 <p < 00, 1 < g < 00, is defined as follows:
LPUX,p) ={f: X = [-00,00] : fis p-measurable, ||f||1r.a(x,.) < 00},

where

o0 1/q
([Terrord) ™ 1se<s

I flzracx = 1fllpe = 0

sup tiy (t)l/p = sup sl/pf"‘(s)7 q = oo.
t>0 s>0

(See Bennett-Sharpley [1, Definition IV.4.1] and Stein-Weiss [29, p. 191].)

If 1 < q < p, then |- ||zr.a(x,.) represents a norm, but for p < ¢ < oo it
represents a quasinorm, equivalent to the norm || - || .0 (x,,.), Where

00 1/q
([Terror) . 1sa<x,
0

||f|‘L(P~<I>(X,u) = ||f||(p,q) =

sup t/P f**(t), q = o0.
>0

(See [1, Definition IV.4.4].) Namely, from [1, Lemma IV.4.5] we have that

1l zrax,m) < WfllLeo xm < PIFIlLeacxw

for every ¢ € [1,00] and every p-measurable function f : X — [—o0, 00].

It is known that (LP4(X, u), || |[zr.e(x,u)) is @ Banach space for 1 < g < p,
while (LP4(X, p), ||| Lw.0(x,u)) is @ Banach space for 1 <p < 00,1 < ¢ < o0.
In addition, if the measure p is nonatomic, the aforementioned Banach spaces
are reflexive when 1 < ¢ < oo. (See Hunt [18, pp. 259-262] and Bennett-
Sharpley [1, Theorem IV.4.7 and Corollaries 1.4.3 and IV.4.8].) (A measure
1 is called nonatomic if for every measurable set A of positive measure there
exists a measurable set B C A such that 0 < u(B) < u(A).)

Definition 2.1. (See [1, Definition 1.3.1].) Let 1 < p < o0 and 1 < ¢ < 0.
Let Y = LP9(X, p). A function f in Y is said to have absolutely continuous
norm in Y if and only if || fx g, ||y — 0 for every sequence E}, of y-measurable
sets satisfying Ey — () u-almost everywhere.

Let Y, be the subspace of Y consisting of functions of absolutely continuous
norm and let Y;, be the closure in Y of the set of simple functions. It is known
that Y, = Y, whenever 1 < ¢ < oo. (See Bennett-Sharpley [1, Theorem
1.3.13].) Moreover, since (X, p) is a o-finite measure space, we have Y, =Y
whenever 1 < ¢ < co. (See Hunt [18, pp. 258-259].)

We recall (see Costea [6]) that in the Euclidean setting (that is, when
1 = my, is the n-dimensional Lebesgue measure and d is the Euclidean distance
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on R™) we have Y, #Y for Y = LP*°(X, m,,) whenever X is an open subset
of R™. Let X = B(0,2) \ {0}. As in Costea [6] we define u : X — R,

fjxTr o<zl <1
(1) “(x)_{ 0 if1<a <2

It is easy to see that u € LP»*°(X,m,,) and moreover,

X B(0,0) || Lo (X,mn) = |l 1020 (X m) = Mn(B(0,1))1/7

for every > 0. This shows that u does not have absolutely continuous
weak LP-norm and therefore LP**° (X, m,, ) does not have absolutely continuous
norm.

Remark 2.2. Tt is also known (see [1, Proposition IV.4.2]) that for every p €
(1,00) and 1 < r < s < oo there exists a constant C(p,r, s) such that

(2) I[fllzes(x,m) < C@,7 ) fllLer (x0)

for all measurable functions f € LP"(X,u). In particular, the embedding
LP"(X, u) < LP*(X, 1) holds.

Remark 2.3. By using the results contained in Bennett-Sharpley [1, Proposi-
tion I1.1.7 and Definition IV.4.1] it is easy to see that for every p € (1, 00),
q € [1,00] and 0 < a < min(p, ¢), we have

A lEnacn = 15122
for every nonnegative function f € LP9(X, p).

2.1. The subadditivity and superadditivity of the Lorentz quasi-
norms. We recall the known results and present new results concerning the
superadditivity and the subadditivity of the Lorentz p, g-quasinorm. For the
convenience of the reader, we will provide proofs for the new results and for
some of the known results.

The superadditivity of the Lorentz p,g-norm in the case 1 < ¢ < p was
stated in Chung-Hunt-Kurtz [5, Lemma 2.5].

Proposition 2.4. (See [5, Lemma 2.5].) Let (X,u) be a measure space.
Suppose that 1 < q < p. Let {E;};>1 be a collection of pairwise disjoint -
measurable subsets of X with Ey = U;>1E; and let f € LP9(X, ). Then

Z HXEiinqu(Xhu‘) S ||XEof||[£p,q(X7/L)'
i>1

A similar result concerning the superadditivity was obtained in Costea-
Maz’ya [8, Proposition 2.4] for the case 1 < p < ¢ < co when X = Q was
an open set in R™ and p was an arbitrary measure. That result is valid for a
general measure space (X, p).



Proposition 2.5. Let (X, u) be a measure space. Suppose that 1 < p < q <
oo. Let {E;}i>1 be a collection of pairwise disjoint p-measurable subsets of X
with By = U;>1 E; and let f € LP9(X, p). Then

Z HXEifH%p,q(X}H) < ||XEOf||%p‘q(X)u)'

i>1
Proof. We mimic the proof of Proposition 2.4 from Costea-Maz’ya [8]. We
replace 2 with X. a

We have a similar result for the subadditivity of the Lorentz p, g-quasinorm.
When 1 < p < ¢ < 0o we obtain a result that generalizes Theorem 2.5 from
Costea [6].

Proposition 2.6. Let (X, u) be a measure space. Suppose that 1 < p < q <
oo. Suppose fi,i = 1,2,... is a sequence of functions in LP9(X u) and let
Jo =sup;>1 |fil. Then

00
HfOHI[),P,q(X,H) < Z ||fiH]£p,q(X7M)'
i=1

Proof. Without loss of generality we can assume that all the functions f;,i =
1,2, ... are nonnegative. We have to consider two cases, depending on whether
p<qg<ooorqg=oQ.

Let ps, be the distribution function of f; for i = 0,1,2,.... It is easy to
see that

(3) Bl (8) < Zu[m (s) for every s > 0.
i=1

Suppose that p < ¢ < oo. We have (see Kauhanen-Koskela-Maly [20,
Proposition 2.1])

oo 4 L
() T O Ry

for i =0,1,2,.... From this and (3), we obtain

o :
Vallpniasg = (o [ s maio)as)

) 4 L
< (o [Tt as) = S U

i>1 i>1
Now, suppose that ¢ = oo. From (3), we obtain
sP s (s) < Z(sp Hif.) (s)) for every s > 0,

i>1
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which implies
(5) sP g1 (s) < Z ||fi|\1£pm(x7ﬂ) for every s > 0.
i>1

By taking the supremum over all s > 0 in (5), we get the desired conclusion.
This finishes the proof. 0

We recall a few results concerning Lorentz spaces.

Theorem 2.7. (See [6, Theorem 2.6].) Suppose 1 < p < ¢ < 0o and € €
(0,1). Let f1, fo € LP9U(X, u). We denote f3 = f1 + fa. Then f3 € LP9(X, p)
and

||f3||€p,q(X,u) < (1 - 6)7p|‘f1”12p,q(x7u) + €7p||f2||1£p,q(xhu)'

Proof. The proof of Theorem 2.6 from Costea [6] carries verbatim. We replace
Q with X. O

Theorem 2.7 has an useful corollary.

Corollary 2.8. (See [6, Corollary 2.7].) Suppose 1 < p < oo and 1 < g < 0.
Let fi be a sequence of functions in LP9(X, u) converging to f with respect
to the p, g-quasinorm and pointwise p-almost everywhere in X. Then

kh_{]folo [ frlleax,m) = Il Lo p)-

Proof. The proof of Corollary 2.7 from Costea [6] carries verbatim. We replace
Q with X. O

3. P,Q-MODULUS OF THE PATH FAMILY

In this section, we establish some results about the p, g-modulus of families
of curves. Here (X, d, u) is a metric measure space. We say that a curve 7 in
X is rectifiable if it has finite length. Whenever ~ is rectifiable, we use the
arc length parametrization v : [0,4(y)] — X, where £(v) is the length of the
curve .

Let T'yect denote the family of all nonconstant rectifiable curves in X. It
may well be that T',cc; = 0, but we will be interested in metric spaces for
which Tyt is sufficiently large.

Definition 3.1. For I' C I'yect, let F/(T') be the family of all Borel measurable
functions p : X — [0, 00] such that

/leforevery’yGF.
~

Now for each 1 < p < oo and 1 < ¢ < oo we define

— 3 p
Mody,¢(I') = ot oIl o0 (xp0)-

The number Mod,, 4(T") is called the p,g-modulus of the family T
6



3.1. Basic properties of the p,g-modulus. Usually, a modulus is a mono-
tone and subadditive set function. The following theorem will show, among
other things, that this is true in the case of the p, g-modulus.

Theorem 3.2. Suppose 1 < p < o0 and 1 < q¢ < oo. The set function
I' = Mod, 4(T"), T’ C Tyect, enjoys the following properties:

(i) Mod,q(0) = 0.

(i) If T'y C T, then Mod,, 4(T1) < Mod,, 4(T2).

(iii) Suppose 1 < g < p. Then

Mod, o (| T:)¥? <> Mod, 4(T:) 7.

i=1 =1

(iv) Suppose p < q < oco. Then

Mod, o(| JTi) < Mod, 4(T).

i=1 i=1

Proof. (i) Mod,, 4(0) = 0 because p =0 € F(0).

(ii) If Iy C T'y, then F(I's) C F(I'1) and hence Mod,, 4(T'1) < Mod, 4(T'2).

(iii) Suppose that 1 < ¢ < p. The case p = ¢ corresponds to the p-modulus
and the claim certainly holds in that case. (See, for instance, Hajlasz [13,
Theorem 5.2 (3)].) So we can look at the case 1 < g < p.

We can assume without loss of generality that

> Mod,, (T;)4/? < oc.
=1

Let € > 0 be fixed. Take p; € F(T';) such that
||pi‘|%p,q(x#) < MOdp,q(Fi)q/p + £27",

Let p:= (3202, p)1/4. We notice via Bennett-Sharpley [1, Proposition II.1.7
and Definition IV.4.1] and Remark 2.3 applied with o = ¢ that

©) P e LI, ) and 1] gy = Dol

forevery i =1,2,.... By using (6) and Remark 2.3 together with the definition

of p and the fact that || - ||L§,1(X ) is a norm when 1 < ¢ < p, it follows that
e

p € F(T') and

oo o0

MOdp,q(Fi)q/p < ||p||%p‘q(x,u) < Z ‘|Pi|‘%p,q(x7u) < ZMOdp,q<Fi)q/p + 2.

i=1 i=1

Letting ¢ — 0, we complete the proof when 1 < g < p.
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(iv) Suppose now that p < g < co. We can assume without loss of generality
that

> Mod,, 4(T';) < oo.
i=1

Let € > 0 be fixed. Take p; € F(I';) such that
||pi||ip-,q(X7“) < MOdp,q(Fi) + 5271-.

Let p := sup,;>q pi- Then p € F(T'). Moreover, from Proposition 2.6 it follows
that p € LP9(X, ) and

Mod,,q(I") < HIOHip,q(x,u) < Z ||pi|‘ip,q(x,u) < ZMOdP,q(Fi) + 2e.
i=1 =1

Letting € — 0, we complete the proof when p < ¢ < 0. O

So we proved that the modulus is a monotone function. Also, the shorter
the curves, the larger the modulus. More precisely, we have the following
lemma.

Lemma 3.3. Let I'1,I'y C Tyeet. If each curve v € T'y contains a subcurve
that belongs to I's, then Mod,, 4(I'1) < Mod,, 4(T'2).

Proof. F(I's) < F(T'y). O

The following theorem provides an useful characterization of path families
that have p, ¢-modulus zero.

Theorem 3.4. Let I' C I'yect. Then Mod, 4(I') = 0 if and only if there exists
a Borel measurable function 0 < p € LP9(X, u) such that fv p = o0 for every
vyel.
Proof. Sufficiency. We notice that p/n € F(T') for every n and hence
MOdPalZ(F) S nh—>H;o ||p/n‘|1[),p,q(x,u) = 0
Necessity. There exists p; € F(T') such that [|pil[poa(x,y < 27° and
fv pi > 1 for every v € I'. Then p := ) ;2| p; has the required properties. [

Corollary 3.5. Suppose 1 < p < o0 and 1 < q < oo are given. If 0 < g €
LP9(X, ) is Borel measurable, then fv g < oo for p,g-almost every v € Tyect.

The following theorem is also important.

Theorem 3.6. Let uy : X — R = [—o0, o0] be a sequence of Borel functions
which converge to a Borel function u: X — R in LP9(X, n). Then there is a
subsequence (uy,); such that

/|ukj—u|—>0 as j — oo,
v

for p, g-almost every curve vy € oy



Proof. We follow Hajtasz [13]. We take a subsequence (uy;); such that
(7) ||Uk] - UHLP'Q(X,;L) < 2_2j.
Set g; = |ug; — ul, and let I' C I'rect be the family of curves such that
limsup/gj > 0.

Jj—o0 ¥
We want to show that Mod, 4(I') = 0. Denote by I'; the family of curves in
Trecq for which [ g; > 279. Then 2/g; € F(I';) and hence Mod,, 4(T';) < 2P
as a consequence of (7). We notice that

oo o0
rc(Yrs-

i=1j=i
Thus,
[e's) o ' |
MOdP,q(F)l/p < ZMOdP,q(Fj)l/P < ZQ—J _ol—i
Jj=i j=i
for every integer ¢ > 1, which implies Mod,, 4(I") = 0. 0

3.2. Upper gradient.

Definition 3.7. Let u : X — [—00,00] be a Borel function. We say that a
Borel function g : X — [0, 00] is an upper gradient of u if for every rectifiable
curve vy parametrized by arc length parametrization we have

®) ur(0) = ux (eI < [ g

gl
whenever both u(v(0)) and u(y(£(v))) are finite and fy g = oo otherwise. We
say that g is a p, ¢-weak upper gradient of u if (8) holds on p, g-almost every
curve v € et

The weak upper gradients were introduced in the case p = ¢ by Heinonen-
Koskela in [17]. See also Heinonen [15] and Shanmugalingam [27] and [28].

If g is an upper gradient of v and g = g, pu-almost everywhere, is another
nonnegative Borel function, then it might happen that ¢ is not an upper
gradient of u. However, we have the following result.

Lemma 3.8. If g is a p, g-weak upper gradient of u and g is another nonnega-
tive Borel function such that g = g p-almost everywhere, then g is a p, g-weak
upper gradient of u.

Proof. Let I'y C T'jeet be the family of all nonconstant rectifiable curves « :
[0,2(7)] — X for which fv lg — g] > 0. The constant sequence g, = |g — g|
converges to 0 in LP7(X, i), so from Theorem 3.6 it follows that Mod,, ,(T'1) =
0 and fy lg — g] = 0 for every nonconstant rectifiable curve v : [0,4(y)] = X
that is not in I';.
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Let T's C T'yeet be the family of all nonconstant rectifiable curves vy :
[0,4()] — X for which the inequality

ur(0) ~ ur()] < [ 9
gl
is not satisfied. Then Mod, ,(I'2) = 0. Thus Mod,, ,(I'; UT'3) = 0. For every
v € I'iect nOt in 'y UT'y we have

ur0) ~ utr(el < [ 9= [
This finishes the proof. O

The next result shows that p, g-weak upper gradients can be nicely approx-
imated by upper gradients. The case p = ¢ was proved by Koskela-MacManus
[23].

Lemma 3.9. If g is a p, g-weak upper gradient of u which is finite p-almost
everywhere, then for every e > 0 there exists an upper gradient g. of u such
that

ge > g everywhere on X and ||ge — g\Ivaq(X,#) <e.

Proof. Let I' C T'yect be the family of all nonconstant rectifiable curves ~ :
[0,£()] = X for which the inequality

ur(0)) = ux () < [ g
2!

is not satisfied. Then Mod,, 4(I') = 0 and hence, from Theorem 3.4 it follows
that there exists 0 < p € LP9(X, u) such that f7 p = oo for every v € I'. Take

ge = g +ep/l|pllLracx,p)- Then g. is a nonnegative Borel function and

wwm»—uwwwnns/ya

.
for every curve 7y € I'jec. This finishes the proof. O

If A is a subset of X let I'4 be the family of all curves in I'jee; that intersect
A and let FX be the family of all curves in I'}ect such that the Hausdorff one-
dimensional measure H; (7| N A) is positive. Here and throughout the paper
|v| is the image of the curve ~.

The following lemma will be useful later in this paper.

Lemma 3.10. Let u; : X — R, i > 1, be a sequence of Borel functions such
that g € LP4(X) is a p, q-weak upper gradient for every w;,i > 1. We define
u(z) = im0 ui(z) and E = {x € X : |u(z)| = co}. Suppose that p(E) =0
and that u is well-defined outside E. Then g is a p, q-weak upper gradient for
U.
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Proof. For every ¢ > 1, we define I'; ; to be the set of all curves v € I'yc for
which

w:3(0) ~ s < [ 9

v

is not satisfied. Then Mod, 4(I'1,;) = 0 and hence Mod, 4(T'1,0) = 0, where
o =U2I'1;. Let I'y C I'tect be the collection of all curves having a sub-
curve in I'y g. Then F(I'y o) C F(I'1) and hence Mod,, ,(T'1) < Mod, 4(T'1,0) =
0.

Let 'y be the collection of all paths v € I'ioct such that fvg = 00. Then
we have via Theorem 3.4 that Mod, 4(T'g) = 0 since g € LP9(X, u).

Since u(E) = 0, it follows that Mod, ,(I';;) = 0. Indeed, oo - xg € F(I'})
and [[00 - xg||Lr.a(x,u) = 0. Therefore, Mod, (Io UT L UT7) = 0.

For any path 7 in the family [yeet \ (Do UTH UTy), by the fact that the
path is not in FE, there exists a point y in |y| such that y is not in E, that
is y € || and |u(y)| < oo. For any point x € |y|, we have (since v has no
subcurves in I'; o)

us(@)] — s ()] < i) — ws()] < /g < .

Therefore,
hus(@)] < Jui(y)| + / "
Yy

Taking limits on both sides and using the facts that |u(y)| < oo and that « is
not in 'y UT';, we see that

lin Jus(o)] < Jim JusC)| + [ g =[u(w)| + [ g < o0

i—00 i—00 y v

and therefore x is not in E. Thus 'y € T'o U I‘E UT'y and Mod, 4(I'g) = 0.
Next, let v be a path in Iyect \ (T'o UFE UT';). The above argument showed

that |y| does not intersect E. If we denote by x and y the endpoints of v, we

have

(o)~ uly)| = | Jim wi(o) ~ Jim us(y)] = lim fus(o) ~ walo)] < [ 9

Therefore, g is a p, g-weak upper gradient for u as well. O

The following proposition shows how the upper gradients behave under a
change of variable.

Proposition 3.11. Let F : R — R be C' and let u : X — R be a Borel
function. If g € LP4(X, p) is a p, q-weak upper gradient for u, then |F'(u)|g
is a p, q-weak upper gradient for F ow.
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Proof. Let 'y to be the set of all curves v € I'ject for which

[u((0)) — u(y(¢()))| < / g

Y

is not satisfied. Then Mod, ¢(I'g) = 0. Let I'; C I'yecy be the collection of all
curves having a subcurve in I'y. Then F(I'g) C F'(I'1) and hence Mod, 4(T'1) <
MOdp’q(Fo) =0.

Let 'y be the set of curves v € T'ject for which f,y g = oo. Then we have via
Theorem 3.4 that Mod,, 4(I'2) = 0 since g € L”9(X, ). Thus, Mod, 4(T'; U
Ip) =0.

The claim will follow immediately after we show that

()
(9) [(Fou)(v(0)) = (Fou)(y(¢(y)))] S/O (IF" (u(y(s))] +€)g(~(s)) ds.

for all curves v € Tieet \ (I'1 UT'2) and for every € > 0.

So fix € > 0 and choose a curve 7y € Tyeet \ (I'1 UT'2). Let £ = (). We notice
immediately that u o+ is uniformly continuous on [0, ] and F” is uniformly
continuous on the compact interval I := (uo7v)([0,¢]). Let 4,5, > 0 be chosen
such that

[(F"ouoy)(t) = (F ouoq)(s)| + [(uoy)(t) = (wo)(s)| < b
for all ¢t,s € [0,£] with |t — s| < ¢ and such that
|F'(u) — F'(v)| < ¢ for all u,v € I with |u—v| < 4.

Fix an integer n > 1/§ and put ¢; = (if)/n,i = 0,...,n — 1. For every
1=0,...,n— 1 we have

[(Fouwoy)(liv1) = (Fouwoy) ()] =F"(tiis1)| [(woy)(lip1) = (woy)(6:)]

i1
<|F 2,041 ‘ / S,

where ¢; ;41 € I; i11 := (o) ((¢;, i+1)). From the choice of §, it follows that

Lit1
[(Fouoy)(lip1) — (Fouoy)(4)] S/ (IF (u(v(s))] + ) g(7(s)) ds,

for every ¢ = 0,...,n— 1. If we sum over i, we obtain easily (9). This finishes
the proof. O

As a direct consequence of Proposition 3.11, we have the following corol-
laries.

Corollary 3.12. Let r € (1,00) be fized. Suppose u : X — R is a bounded
nonnegative Borel function. If g € LP9(X, ) is a p, g-weak upper gradient of
u, then ru" g is a p, g-weak upper gradient for u”.

12



Proof. Let M > 0 be such that 0 < u(z) < M for all z € X. We apply
Proposition 3.11 to any C* function F : R — R satisfying F(t) = t",0 < t <
M. O

Corollary 3.13. Let v € (0,1) be fized. Suppose that w : X — R is a
nonnegative Borel function that has a p, g-weak upper gradient g € LP1(X, p).
Then r(u+¢)""tg is a p, g-weak upper gradient for (u +¢)" for all € > 0.

Proof. Fix € > 0. We apply Proposition 3.11 to any C! function F : R — R
satisfying F(t) = t",e <t < oo. O

Corollary 3.14. Suppose 1 < q < p < oo. Let uy,us be two nonnegative
bounded real-valued Borel functions defined on X. Suppose g; € LP9(X, u),i =
1,2 are p,q-weak upper gradients for u;,i = 1,2. Then LP9(X,p) > g =
(g2 + gD is a p, g-weak upper gradient for u := (u? + ud)'/.

Proof. The claim is obvious when ¢ = 1, so we assume without loss of gen-
erality that 1 < ¢ < p. We prove first that g € LP9(X, ). Indeed, via Re-
mark 2.3 it is enough to show that ¢g¢ € Le (X, u). But g = ¢¢ + ¢ and
gl e Ls’l(X7 w) since g; € LP4(X, p). (See Remark 2.3.) This, the fact that
[ - ||L§‘1(X’M) is a norm whenever 1 < ¢ < p, and another appeal to Remark
2.3 yield g € LP4(X, ) with

90 Ea sy =N g oy S N g oy 11021 50

:HngquaQ(X,u) + ||g2||%P’Q(X7u)'

For i = 1,2 let I'; ; be the family of nonconstant rectifiable curves 7 in
Tiect for which

s (1(0)) — ws (v (1)) < / o

~
is not satisfied. Then Mod,, 4(T'; 1) = 0 since g; is a p, g¢-weak upper gradient
for u;,¢ = 1,2. Let I'g; be the family of nonconstant rectifiable curves -y in
[iect having a subcurve in I'y; UT'9 1. Then F(I'1; UT21) C F(Tp,1) and
hence Modnq(l—‘o’l) S Modnq(I‘l,l @] ].—‘2’1) = 0.

Let I'; » be the family of nonconstant rectifiable curves  in I'ec for which
f,y g; = oo. Then for i = 1,2 we have Mod, 4(I';2) = 0 via Theorem 3.4
because by hypothesis g; € LP9(X, pn),i = 1,2. Let T'g = I UT1 2 UT9,.
Then Mod,, 4(I'o) = 0.

Fix ¢ > 0. By applying Corollary 3.12 with r = ¢, v = u; and g = g;,
i =1,2, we see that L»%(X, ) 3 q(u; +¢)9 1g; is a p, g¢-weak upper gradient
of (u; +¢)? for i = 1,2. Thus, via Holder’s inequality it follows that G is a
p, g-weak upper gradient for U,, where

Ge = q((u1+&) 7+ (uzg+2)0) T/ (g +¢3)"/9 and U = (u1 +¢)+ (uz+¢)".
13



We notice that G. € LP%(X, ). Indeed, G, = qUE(q_l)/qg, with U, nonnega-
tive a bounded and g € L?9(X, p1), so Ge € LP9(X, ).

Now we apply Corollary 3.13 with » = 1/¢, u = U, and g = G, to obtain
that ue := U,;-l/q has l/qu(lfq)/qGE = g as a p,qg-weak upper gradient that
belongs to LP%(X, ui). In fact, by looking at the proof of Proposition 3.11, we
see that

1:0) ~ w () < [ 9

¥
for every curve v € I'jeet that is not in I'y. Letting ¢ — 0, we obtain the
desired conclusion. This finishes the proof of the corollary. O

Lemma 3.15. If u;,i = 1,2 are nonnegative real-valued Borel functions
in LP9(X, p) with corresponding p,q-weak upper gradients g; € LP9(X, p),
then ¢g := max(g1,92) € LPUX,pn) is a p,q-weak upper gradient for u :=
max(uy,uz) € LP9(X, ).

Proof. Tt is easy to see that u,g € LP9(X, ). For i = 1,2 let T'g; C T'yeet be
the family of nonconstant rectifiable curves v for which f,y g; = 00. Then we
have via Theorem 3.4 that Mod,, ,(I'g;) = 0 because g; € LP9(X, ). Thus
MOdpyq(Fo) = O, where Fo = F071 U ].—‘072.

For i =1,21let I'; ; C I'yect, be the family of curves v € T'yeet \ T'o for which

|MW®—mwwwm§/m

~

is not satisfied. Then Mod,, 4(I'1,;) = 0 since g; is a p, g-weak upper gradient
for w;, i = 1,2. Thus, Mod, ,(I';) =0, where I'y =T'1 1 UT 5.
It is easy to see that

(10) u(z) = u(y)] < max(|ui(z) = ur(y)]; [ua(z) = u2(y)])-

On every curve 7 € Dieet \ (Do UT'1) we have

|wwm—mwwwms/%g/g

y
This and (10) show that

www»—uwwwnﬂgjﬁ

5

on every curve v € I'yeet \ (Tg UT'). This finishes the proof. O

Lemma 3.16. Suppose g € LP4(X,pu) is a p,q-weak upper gradient for a
nonnegative Borel function uw € LP9(X,u). Let X > 0 be fized. Then uy =
min(u, \) € LP9(X, ) and g is a p, g-weak upper gradient for uy.

14



Proof. Obviously 0 < wuy < w on X, so it follows via Bennett-Sharpley
[1, Proposition 1.1.7] and Kauhanen-Koskela-Maly [20, Proposition 2.1] that
ux € LPUX, p) with |[ux||re.a(x,) < |[ullreacx,u). The second claim follows
immediately since |ux(z) — ux(y)| < Ju(z) — u(y)| for every z,y € X. O

4. NEWTONIAN LP?7 SPACES

We denote by NUE" (X, 1) the space of all Borel functions u € LP4(X, )
that have a p, g-weak upper gradient g € LP9(X, u). We note that the space
NLL? (X, ) is a vector space, since if o, 8 € R and uq,us € NLLM(X, )
with respective p, g¢-weak upper gradients g1, g2 € LP4(X, u), then |a|g1+|5|g2
is a p, g-weak upper gradient of cu; + Sus.

Definition 4.1. If u is a function in N7 (X, 1), let

. 1/q
HU” (HUH%p,q(X’M) + lnfg ||g||%”*q(X,u)) . 1<q<p,
N1,LP:d ‘=

» f » 1/p <
HuHprq(X,y,) +1mn g ||g||LP~<I(X”u) y D < q = o0,

where the infimum is taken over all p, g-integrable p, g-weak upper gradients
of w.
Similarly, let

a2 1 inf, ||g]]" Y 1<g<
Ul e (x,pm) T Ma I L@ (x 0 ) S q=<p,

||UHN1,L(%Q) = » . , p
(16l 0y + 508 191 B ) 5 P < 0 S 00,

where the infimum is taken over all p, g-integrable p, g-weak upper gradients
of u.

If u,v are functions in NVE""(X, 1), let u ~ v if |Ju — V|| grea = 0. Tt
is easy to see that ~ is an equivalence relation that partitions N-E" (X, )
into equivalence classes. We define the space N (X, ) as the quotient
NUEP (X, 1)/~ and

lullyrzes = JJul[g1,er.a and [Jul] g1 poo = [lull g1ce.o

Remark 4.2. Via Lemma 3.9 and Corollary 2.8, it is easy to see that the infima
in Definition 4.1 could as well be taken over all p, g-integrable upper gradients
of u. We also notice (see the discussion before Definition 2.1) that || HNI,L(M)
is a norm whenever 1 < p < oo and 1 < ¢ < oo , while || - ||y1,2r.¢ is & norm
when 1 < ¢ < p < 0co. Moreover (see the discussion before Definition 2.1),

lull jrra < lull g1 cwo < pllullyrees

for every 1 < p < o0, 1 < ¢ <ooand ue NV""(X, ).
15



Definition 4.3. Let u: X — [—00, 00| be a given function. We say that

(i) w is absolutely continuous along a rectifiable curve v if uwo~ is absolutely
continuous on [0, £(v)].

(ii) w is absolutely continuous on p, g-almost every curve (has ACC,, , prop-
erty) if for p, g-almost every 7 € T'yeet, w0y is absolutely continuous.

Proposition 4.4. If u is a function in NV2"" (X, 1), then u is ACC,,.

Proof. We follow Shanmugalingam [27]. By the definition of NLL?? (X, u), u
has a p, g-weak upper gradient g € L»7(X, ). Let Ty be the collection of all
curves in I'jet for which

[u((0)) — u(x(E(1))] < / g

.
is mot satisfied. Then by the definition of p, g-weak upper gradients, we have
that Mod,, 4(T'g) = 0. Let I'y be the collection of all curves in I'yee; that have
a subcurve in I'g. Then Mod,, 4(I'1) < Mod, 4(T'g) = 0.

Let I's be the collection of all curves in I'yeet such that fv g = oo. Then
Mod,, ¢(I'2) = 0 because g € L”9(X, ). Hence, Mod,, ((I'y UT'2) = 0. If v is a
curve in Tieet \ (T'1 UT2), then 7 has no subcurves in I'y, and hence

8
[u((8)) — u(y(a))] S/ 9(y(t)) dt, provided [a, 5] C [0, £(7)].

[e%
This implies the absolute continuity of v oy as a consequence of the absolute
continuity of the integral. Therefore, u is absolutely continuous on every curve
Y in Frcct \ (Fl @] FQ) O

Lemma 4.5. Suppose u € NYL"" (X, 11) is such that l|ul|Lp.a(x,) = 0. Then
the family
I'={y € Tiect : u(x) # 0 for some x € |v|}

has zero p, g-modulus.

Proof. We follow Shanmugalingam [27]. Since ||ul|pr.q(x,,) = 0, the set E =
{z € X : u(z) # 0} has measure zero. With the notation introduced earlier,
we have
I=Tp=TLUTe\TH).
We can disregard the family FE, since
Mody o(T5) < llo0 - XEl[% 0 xy = O

where g is the characteristic function of the set E. The curves v in I'p \ I';

intersect E only on a set of linear measure zero, and hence with respect to

the linear measure almost everywhere on v the function « is equal to zero.

Since v also intersects E, it follows that w is not absolutely continuous on 7.

By Proposition 4.4, we have Mod, ,(I'z \ I';;) = 0, yielding Mod, ,(T") = 0.

This finishes the proof. O
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Lemma 4.6. Let F be a closed subset of X. Suppose that u : X — [—00, 0]
is a Borel ACC, 4 function that is constant u-almost everywhere on F. If
g € LP9(X, ) is a p,q-weak upper gradient of u, then gxx\p is a p,q-weak
upper gradient of u.

Proof. We can assume without loss of generality that © = 0 p-almost every-
where on F. Let E = {z € F : u(xz) # 0}. Then by assumption u(E) = 0.
Hence, Mod,, ,(I'f;) = 0 because oo - xg € F(I'}).

Let Ty C I'yect be the family of curves on which u is not absolutely contin-
uous or on which

[u(7(0)) — u(r(E(1))] < / g

-
is not satisfied. Then Mod,, 4(T'9) = 0. Let 'y C T'yee be the family of curves
that have a subcurve in I'g. Then F(I'g) C F(I'y) and thus Mod, 4(T1) <
MOdpyq(Fo) =0.

Let Ty C Tt be the family of curves on which fvg = oo. Then via
Theorem 3.4 we have Mod,, ,(I's) = 0 because g € LP9(X, ).

Let 7 : [0,£(7)] = X be a curve in Iyee \ (' UT2 UTS) connecting = and
y. We show that

(o)~ u) < [ gver
¥
for every such curve 7.

The cases |y| C F\ E and |y| C (X \ F)UE are trivial. So is the case when
both z and y are in F'\ E. Let K := (uo+v)~}({0}). Then K is a compact
subset of [0, £(v)] because u o 7 is continuous on [0, ¢(+)]. Hence, K contains
its lower bound ¢ and its upper bound d. Let 1 = vy(¢) and y; = v(d).

Suppose that both x and y are in (X \ F) U E. Then we see that [c,d] C
(0,6(7)) and A([0,¢) U (d, 6(x)]) © (X \ F) U E.

Moreover, since v is not in I'y and u(z1) = u(y1), we have

u(z) — u(y)] <|u(z) = u(z1)| + [ulyr) — w(y)]

S/ 9+/ g < /ng\F
7([0,e]) ([d,(]) Rl

because the subcurves v[j,; and v[(4.¢(y)] intersect £ on a set of Hausdorff
1-measure zero.

Suppose now by symmetry that z € (X \ F)UFE and y € F \ E. This
means in terms of our notation that ¢ > 0 and d = ¢(y). We notice that
v([0,¢)) C (X \ F)U E and u(z1) = u(y) and thus

() — u(y)| = Juz) — u(z)] < / e / X

because the subcurve 7| ) intersects £ on a set of Hausdorff 1-measure zero.
This finishes the proof of the lemma. g
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Lemma 4.7. Assume that w € NV (X, ), and that g,h € LP9(X, 1) are
D, q-weak upper gradients of u. If F C X is a closed set, then

p=gxr + hxx\r

is a p, q-weak upper gradient of u as well.

Proof. We follow Hajtasz [13]. Let I'y C I'yect be the family of curves on which
J,(g+h) = co. Then via Theorem 3.4 it follows that Mod, 4(I'1) = 0 because
g+heLPiX, pn).

Let I'y C I'iect be the family of curves on which u is not absolutely contin-
uous. Then via Proposition 4.4 we see that Mod,, ,(I'2) = 0.

Let T’ ;, C T'yect be the family of curves on which

[4(3(0)) — u(3(¢(7)))] < min ( / 0 / h)

is not satisfied. Let I's C Frect be the family of curves which contain subcurves
belonging to I'y. Since F(I'y) C F(T's), we have Mod,, ,(T's) < Mod,, 4(T'3) = 0.
Now it remains to show that

[u(v(0)) — u(y(¢()))| < / P

for all v € T'yeet \ (I U2 UL'3). If |y| C F or |y| C X\ F, then the inequality is
obvious. Thus, we can assume that the image || has a nonempty intersection
both with F' and with X \ F.

The set y~1(X \ F) is open and hence it consists of a countable (or fi-
nite) number of open and disjoint intervals. Assume without loss of general-
ity that there are countably many such intervals. Denote these intervals by
((ti,50))2:- Let vi = 7l,,s,)- We have

u(1(0) — u(y(E)] < Ju(r(0)) — uly(t)] + [u(y(t1)) — u(r(s1))]
u S <
b luly(s) - ) /m;”/%

where v\ 71 denotes the two curves obtained from v by removing the interior
part 1, that is the curves vj¢,) and 7|[s, ). Similarly, we can remove a larger
number of subcurves of . This yields

[u(v(0)) — u(y(£(7)))] </\Un _9+/w K

for each positive integer n. By applying Lebesgue dominated convergence
theorem to the curve integral on v, we obtain

[u(7(0)) — u(v(E())] < / oxr + / S / ’

18



Next we show that when 1 < p < co and 1 < ¢ < oo, every function
U € NLLM(X, 1) has a ‘smallest’ p, g-weak upper gradient. For the case
p = q, see Kallunki-Shanmugalingam [19] and Shanmugalingam [28].

Theorem 4.8. Suppose that 1 < p < oo and 1 < ¢ < 0. For every u €
NI (X, 1), there exists the least p,q-weak upper gradient g, € LP(X, )
of u. It is smallest in the sense that if g € LP%(X, ) is another p,q-weak
upper gradient of u, then g > g, p-almost everywhere.

Proof. We follow Hajlasz [13]. Let m = infy ||g|| 1r.a(x ), Wwhere the infimum is
taken over the set of all p, g-weak upper gradients of u. It suffices to show that
there exists a p, g-weak upper gradient g, of u such that [|gu||rr.a(x,u) = m.
Indeed, if we suppose that g € LP*%(X, i) is another p, g¢-weak upper gradient
of w such that the set {g < g, } has positive measure, then by the inner
regularity of the measure p there exists a closed set F' C {g < g, } such that
p(F) > 0. Via Lemma 4.7 it follows that the function p := gxr + guXx\F is a
p, ¢-weak upper gradient. Via Kauhanen-Koskela-Maly [20, Proposition 2.1]
that would give ||p||zr.a(x,u) < ||9ullLra(x,) = m, in contradiction with the
minimality of ||gu||zr.a(x,u)-

Thus, it remains to prove the existence of a p, ¢-weak upper gradient g,
such that ||gy||rra(x,) = m. Let (g:)72; be a sequence of p,g-weak upper
gradients of u such that ||g;||rr.a(x,) < m + 27" We will show that it is
possible to modify the sequence (g;) in such a way that we will obtain a new
sequence of p, g-weak upper gradients (p;) of u satisfying

||Pi|\vaq(X,,L) <m+ 21_i, p1 > p2 > ps > ... pu-almost everywhere.

The sequence (p;)$2; will be defined by induction. We set p; = ¢g1. Suppose
the p, g-weak upper gradients p1, po, ..., p; have already been chosen. We will
now define p;41. Since p; € LP9(X, ), the measure p is inner regular and the
(p, ¢)-norm has the absolute continuity property whenever 1 < p < oo and
1 < ¢ < oo (see the discussion after Definition 2.1), there exists a closed set
F C {gi+1 < pi} such that

piX{gisr<p\FllLrax,n) < 27k
Now, we set piy1 = git+1XF + pixx\r- Then
pit+1 < pi and pit1 < GitIXFU{gis1>pi} T PiX{gis1<pi}\F-

We show that m < ||piy1||Lra(x,) < m—+ 27" Suppose first that 1 < ¢ < p.
Since || - ||pr.a(x,u) i @ norm, we see that

[pi+1llLrax,u) SNGit1XFULgi 1 >0y Lrax ) + 11PiX{gis<pi\FllLra(x )
<m4277 o7l =y 4 27
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Suppose now that p < g < co. Then we have via Proposition 2.6

|1£p’q(X,/,L) + ||piX{gi+1<pi}\F||12P=Q(X’H)
<(m+277hP 4 27P0HD < (4 270,

| |pi+1 ‘ |Z[7,p,q(X,u) §| |gi+1XFU{g7‘,+1 >pi}

The sequence of p, g-weak upper gradients (p;)$2, converges pointwise to a
function p. The absolute continuity of the (p, ¢)-norm (see Bennett-Sharpley
[1, Proposition 1.3.6] and the discussion after Definition 2.1) yields

lim ||p; — pl|Lr.a(x,u) = 0.
71— 00

Obviously ||pl|zr.a(x,) = m. The proof will be finished as soon as we show
that p is a p, g-weak upper gradient for w.

By taking a subsequence if necessary, we can assume that ||p;—p||Lr.a(x ) <
272 for every i > 1.

Let 'y C I'yeet be the family of curves on which f,y(p + p;) = oo for some
i > 1. Then via Theorem 3.4 and the subadditivity of Mod, ,(-)'/? we see
that Mod,, 4(I'1) = 0 since p + p; € LP9(X, p) for every ¢ > 1.

For any integer ¢ > 1 let I'y ; C I'yect be the family of curves for which

[u((0)) — u(y(¢()))| < / oi

.
is not satisfied. Then Mod,, 4(T'2,;) = 0 because p; is a p, g-weak upper gradi-
ent for u. Let I'y = U2 Ty ;.

Let I's C T'yece be the family of curves for which limsup;_,, [ |[pi —p| > 0.

Then it follows via Theorem 3.6 that Mod, 4(I'3) = 0.
Let v be a curve in Tyeet \ (T'1 UT2 UT'3). On any such curve we have (since
7y is not in I’y ;)

u(1(0)) — u(y(€()] < / pi for every i > 1.

¥
By letting ¢ — oo, we obtain (since v is not in I'y UT'3)

[u(+(0)) ~ u(3(¢())] < Jim / pi = / p< ox.
This finishes the proof of the theorem. d

5. SOBOLEV p, g-CAPACITY

In this section, we establish a general theory of the Sobolev-Lorentz p, g-
capacity in metric measure spaces. If (X, d, 1) is a metric measure space, then
the Sobolev p, g-capacity of a set £ C X is

Cap, (E) = inf{[|ul[}{) o0 2 u € A(E)},

where
A(E) ={u € ]\fl’LM(X7 ) :u>1on E}.
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We call A(E) the set of admissible functions for E. If A(E) = 0, then
Cap,, ,(E) = occ.

Remark 5.1. It is easy to see that we can consider only admissible functions
u for which 0 < u < 1. Indeed, for u € A(FE), let v := min(u4, 1), where
us = max(u, 0). We notice that |v(z) — v(y)| < Ju(x) — u(y)| for every z,y in
X, which implies that every p, g-weak upper gradient for u is also a p, g-weak
upper gradient for v. This implies that v € A(E) and ||v||y1,cra < ||u||y1,2p9.

5.1. Basic properties of the Sobolev p, g-capacity. A capacity is a mono-
tone, subadditive set function. The following theorem expresses, among other
things, that this is true for the Sobolev p, g-capacity.

Theorem 5.2. Suppose that 1 < p < oo and 1 < g < oco. Suppose also
that (X,d, ) is a complete metric measure space. The set function E —
Cap, ,(E), E C X, enjoys the following properties:

(i) If Ey C Ey, then Cap, ,(E1) < Cap, ,(E2).

(ii) Suppose that p is nonatomic. Suppose that 1 < q < p. If By C Ey C

.CE=UZ,E CX, then

Capp’q(E) = Zlggo Capp’q(Ei).

(iii) Suppose that p < q < oco. If E =J;2, E; C X, then
Capp(B) < 3 Cay o ).
i=1
(iv) Suppose that 1 < q<p. If E=J;2, E; C X, then
Cap,, ,(E)Y/? < fj Cap,, ,(E)/?.
i=1

Proof. Property (i) is an immediate consequence of the definition.
(ii) Monotonicity yields

L := lim Cap,, ,(E;) < Cap, ,(E).

To prove the opposite inequality, we may assume without loss of generality
that L < co. The reflexivity of LP?(X, u) (guaranteed by the nonatomicity of
w1 whenever 1 < ¢ < p < c0) will be used here in order to prove the opposite
inequality.

Let € > 0 be fixed. For every i = 1,2,... we choose u; € A(E;), 0 <wu; <1
and a corresponding upper gradient g; such that

(11) [Jwil |1, m0 < Capp’q(Ei)Q/P +e< LUP 4 ¢

We notice that u; is a bounded sequence in N*"*(X, u). Hence there exists
a subsequence, which we denote again by u; and functions u,g € LP%(X, )
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such that u; — u weakly in LP9(X, u) and g; — ¢g weakly in LP9(X, u). It is
easy to see that

u > 0 p-almost everywhere and g > 0 p-almost everywhere.

Indeed, since w; converges weakly to u in LP%(X, ) which is the dual of
LP4' (X, 1) (see Hunt [18, p. 262]), we have

lim Ui(m)w(ﬂf)du(ﬂﬁ):/ u(z)e(z) dp(x)

i—oo [y X

for all ¢ € L7 (X, ). For nonnegative functions ¢ € LP 4 (X, j1), this yields

0< lim [ wi(z)p(z)du(z) =/ u(z)e(z) du(x),

1—> 00 X X
which easily implies u > 0 p-almost everywhere on X. Similarly, we have
g > 0 p-almost everywhere on X.
From the weak-* lower semicontinuity of the p, g-norm (see Bennett-Shar-
pley [1, Proposition 11.4.2, Definition IV.4.1 and Theorem IV.4.3] and Hunt
[18, p. 262]), it follows that

(12) [[ul| oo (xp) ShgingUiHLm(X,u) and
gl Lpa(x,p) < lim inf gil| Lpoa (x,p0)-

Using Mazur’s lemma simultaneously for u; and g;, we obtain sequences
v; with correspondent upper gradients g; such that v; € A(E;), v; — u in
LP9(X, u) and p-almost everywhere and g; — ¢ in LP?(X, 1) and p-almost
everywhere. These sequences can be found in the following way. Let iy be
fixed. Since every subsequence of (u;,g;) converges to (u,g) weakly in the
reflexive space LP9(X, ) x LP9(X, 1), we may use the Mazur lemma (see
Yosida [30, p. 120]) for the subsequence (u;, g;),i > 4.

We obtain finite convex combinations v;, and g;, of the functions u,; and
gi, & > ip as close as we want in LP9(X, u) to u and g, respectively. For every
i =10,% +1,..., we see that u; =1 in F; D E;,. The intersection of finitely
many supersets of E;, contains E;,. Therefore, v;, equals 1 on E;,. It is easy to
see that g;, is an upper gradient for v;,. Passing to subsequences if necessary,
we may assume that v; converges to u pointwise p-almost everywhere, that g;
converges to g pointwise u-almost everywhere and that for every ¢ = 1,2,...
we have

(13) Vit = villzoa(x ) + Gir1 — Gill ooy < 27"

Since v; converges to w in LP9(X, ) and pointwise p-almost everywhere
on X while g; converges to g in LP*9(X, ) and pointwise p-almost everywhere
on X it follows via Corollary 2.8 that

(14) lggo [vil Lo (x,0) = lul|Lr.a(x, ) and llggo 1GillLra(x,0) = l1gl|Lra(x )
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This, (11) and (12) yield
(15) Ml oy + 1900y = 00 [0l 1 < 297 e
For j =1,2,... we set

w; = supv; and g; = sup g;.

i>j i>j
It is easy to see that w; = 1 on E. We claim that g; is a p, ¢-weak upper
gradient for w;. Indeed, for every £ > j, let

Wj k= Sup vj.

k>i>j

Via Lemma 3.15 and finite induction, it follows easily that g; is a p, g-weak
upper gradient for every w;; whenever k > j. It is easy to see that w; =
limy,_, o w;  pointwise in X. This and Lemma 3.10 imply that g; is indeed a
p, g-weak upper gradient for w;.

Moreover,
% k-1
(16) w; <vj+ Y | —vil and G <G+ Y [Gir1 — il
=] =7
Thus,
o
[wj||Lra(x ) <[|vjlleax,w + Z [[vit1 = villLra(x )
i=j
<ol ppa(x, +277 1
and

o0
1G5l Lo <HGillzracxmw + > Fir1 = Gill Lro )
i=j
<Gjllpeacx,m +2777,
which implies that w;,g; € LP9(X, ). Thus, w; € A(E) with p, g¢-weak upper
gradient g;. We notice that 0 < g = inf;>;g; p-almost everywhere on X
and 0 < u = inf;>; w; p-almost everywhere on X. Since wy and g; are in
LP9(X, 1), the absolute continuity of the p, g-norm (see Bennett-Sharpley [1,
Proposition 1.3.6] and the discussion after Definition 2.1) yields

(].7) ]lirgo ||wj — ’LL||Lp,q(X“u) =0 and Jll}l’glo ||§]\J - gHLp,q(X,#) =0.
By using (15), (17), and Corollary 2.8, we see that
q/p ; |14 — q q q/p
Capp,q(E) S jli)I& HwJHNl,Lqu - ||UHLP¢I(X7#) + ||gHLPy¢I(X“u,) S L +e.

By letting € — 0, we get the converse inequality so (ii) is proved.
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(iii) We can assume without loss of generality that
(oo}
Z Capnq(Ei)q/p < 00.
i=1

Fori=1,2,... let u; € A(E;) with upper gradient g; such that
0 <u; <1 and [|ui|[}1 e < Cappyq(Ei)q/p + 270

Let u = (352, u)Y/? and g := (352, gf)}/9. We notice that u > 1 on E.
By repeating the argument from the proof of Theorem 3.2 (iii), we see that
u,g € LP9(X, ) and

oo

1l sy + 1900y < D (181 n oy + 19600 50)
=1

o0
<2 + Z Capp7q(Ei)‘I/p.

i=1
We are done with the case 1 < ¢ < p as soon as we show that u € A(F)
and that g is a p,g-weak upper gradient for w. It follows easily via Corol-
lary 3.14 and finite induction that ¢ is a p, ¢-weak upper gradient for u,, :=
(X cicn uh)t/a for every n > 1. Since u(z) = lim;_ o0 %;(7) < 00 on X \ F,
where F = {x € X : u(x) = oo} it follows from Lemma 3.10 combined with
the fact that w € LP9(X, u) that g is in fact a p, g-weak upper gradient for w.
This finishes the proof for the case 1 < ¢ < p.

(iv) We can assume without loss of generality that

> Cap,, ,(E;) < oc.
=1

For i =1,2,... let u; € A(E;) with upper gradients g; such that
0 <wu; < 1and [Jug|} 1oa < Cap, ,(E;) +227".

Let u := sup;>; u; and g := sup; >, gi;- We notice that u = 1 on E. Moreover,
via Proposition 2.6 it follows that u,g € LP9(X, ) with

oo

Hu”l[),lJ‘Q(X)M) + HgHZ[),p‘q(X)p,) S Z (”Ui”ip‘q(){)u) + HgiHip,q(X’M))
i=1

o0
<2 + Z Cap,, ,(E:).

i=1
We are done with the case p < ¢ < 0o as soon as we show that u € A(E) and
that g is a p, g¢-weak upper gradient for u. Via Lemma 3.15 and finite induction,
it follows that g is a p, g-weak upper gradient for u,, := max;<;<y u; for every
n > 1. Since u(x) = lim;_, o @;(z) pointwise on X, it follows via Lemma 3.10
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that ¢ is in fact a p, g-weak upper gradient for u. This finishes the proof for
the case p < ¢ < c. O

Remark 5.3. We make a few remarks.

(i) Suppose p is nonatomic and 1 < ¢ < oo. By mimicking the proof of
Theorem 5.2 (ii) and working with the (p, ¢)-norm and the (p, ¢)-capacity, we
can also show that

lim Cap, q)(Ei) = Cap(,q) (E)

whenever By C E; C...C E=J2, E; C X.
(ii) Moreover, if Cap,, , is an outer capacity then it follows immediately
that

'Llif?o Capp,q (KZ) = Capp,q(K)
whenever (K;)$2, is a decreasing sequence of compact sets whose intersection

set is K. We say that Cap, , is an outer capacity if for every E' C X we have
Cap,, ,(E) = inf{Cap,, ,(U): E C U C X, U open}.

(iii) Any outer capacity satisfying properties (i) and (ii) of Theorem 5.2 is
called a Choquet capacity. (See Appendix II in Doob [9].)

We recall that if A C X, then T'4 is the family of curves in I'joy that
intersect A and Fjg is the family of all curves in I'jec; such that the Hausdorff
one-dimensional measure H;(|y|NA) is positive. The following lemma will be
useful later in this paper.

Lemma 5.4. If F C X is such that Cap, ,(F) =0, then Mod, 4(I'r) = 0.

Proof. We follow Shanmugalingam [27]. We can assume without loss of gen-
erality that g # p. Since Cap, ,(F') = 0, for each positive integer i there exists
a function v; € A(F) such that 0 < v; <1 and such that ||vi||N1)L<p,q) < 27%,
Let u, := Y., v;. Then u,, € NLE®? (X, p) for each n, u,(x) is increasing
for each x € X, and for every m > n we have

n

||un - 'U/m”NLL(pyq) < Z H’UiHNLL(p,q) <27 — 0, as m — oo.
i=m-+1

Therefore, the sequence {u,}52; is a Cauchy sequence in NLLE® (X, p).

Since {u,}52; Cauchy in NLLE? (X, p), it follows that it is Cauchy in
LP9(X, 11). Hence by passing to a subsequence if necessary, there is a function
w in LP9(X, u) to which the subsequence converges both pointwise p-almost
everywhere and in the L(®% norm. By choosing a further subsequence, again
denoted by {u;}5°, for simplicity, we can assume that

i = | Lo (x) + 1Gii+1] L (x,0) < 275,
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where g; ; is an upper gradient of u; — u; for ¢ < j. If g is an upper gradient
of uy, then ug = uq + (ug —uq) has an upper gradient go = g1 + g12. In general,

i—1

u; = up + Z(Uk+1 — ug)
k=1
has an upper gradient
i—1
9i = g1+ ng,k-i-l
k=1

for every i > 2. For j < i we have
i—1 i—1
lgi = gillowa xpy <D Narrrillooooy < D272
k=j k=j
<2172 5 0as j — oo.

Therefore, {g;}32, is also a Cauchy sequence in L9 (X, u), and hence
converges in the L("% norm to a nonnegative Borel function g. Moreover, we
have

||gj - g||L(P,q)(X,H) < 21-2
for every j > 1.
We define u by u(x) = lim;_, u;(2) wherever the definition makes sense.

Since u; — u p-almost everywhere, it follows that u = u u-almost everywhere
and thus u € LP9( X, p). Let

E={zxeX: lim u(z)=o0}.
1—> 00

The function u is well defined outside of E. In order for the function u to
be in the space NV (X, 1), the function u has to be defined on almost all
paths by Proposition 4.4. To this end, it is shown that the p, g-modulus of
the family I'g is zero. Let I'y be the collection of all paths from [yt such
that fwg = 00. Then we have via Theorem 3.4 that Mod, ,(I'1) = 0 since
g € LPU(X, p).

Let I'; be the family of all curves from I'.ecy such that lim SUP; 00 f,y lg; —
g| > 0. Since ||g; — gl|zr.a (X, ) < 2'7% for all j > 1, it follows via Theorem
3.6 that Mod, ,(T'2) = 0.

Sinceu € LP9(X,p) and E = {z € X : u(x) = oo}, it follows that u(E) =0
and thus Modrg = 0. Therefore, Mod,, ,(T'1 UT', UFE) = 0. For any path ~ in
the family I'yee; \ (T UT2 UT'S), by the fact that v is not in T'f, there exists

a point y in |y|\ E. For any point  in ||, since g; is an upper gradient of u;,
it follows that

i) — uily) < Jus(@) — wi ()] < / o
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Therefore,

ui(x) < ui(y) +/gi.

v
Taking limits on both sides and using the fact that « is not in I'y U I's, it
follows that

lim () < lim wi(y) + / g=uly) + / g< oo,
11— 00 11— 00 ,Y ,Y

and therefore z is not in E. Thus 'y € I'1 UT, UT}, and Mod,, 4(I's) = 0.
Therefore, g is a p, ¢-weak upper gradient of u, and hence u € NV (X, ).
For each z not in E, we can write u(z) = lim; ,oo ui(z) < oco. If F'\ E is

nonempty, then
n

ulp\E > Un|p\E = Zvi|F\E =n
i=1
for arbitrarily large n, yielding that u|p\ g = oo. But this impossible, since
is not in the set E. Therefore F' C E, and hence I'r C I'g. This finishes the
proof of the lemma. O

Next, we prove that (N2 (X, ), || - || y1.0(r.0) ) is @ Banach space.

Theorem 5.5. Suppose 1 <p < oo and 1 < q < oco. Then (NLLP'Q()Q W), |-
|| yi.0) 8 a Banach space.

Proof. We follow Shanmugalingam [27]. We can assume without loss of gener-
ality that ¢ # p. Let {u;}32, be a Cauchy sequence in N (X, 1). To show
that this sequence is convergent in N7 (X, p), it suffices to show that some
subsequence is convergent in [N 1’LM(X , 1b). Passing to a further subsequence
if necessary, it can be assumed that

i1 = will[ Lo (x,p) + 1gsi+1ll L0 (x) <272
where g¢; ; is an upper gradient of u; — u; for i < j. Let
Ej={z€ X :|uj1(z) —u;(z)] > 277}.
Then 27|u;41 — uj| € A(E;) and hence
Capp,q(Ej)l/p < 2j‘|“j+1 — ujl|[y1.era < 277,

Let F; = UiijEk. Then
Capp)q(Ej)l/p < anpnq(Ek)l/p < 21_j.
k=j

Let F' = N32, F;. We notice that Cap, ,(F') = 0. If z is a point in X \ F, there
exists j > 1 such that x is not in F; = Uzoszk. Hence for all k£ > j, = is
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not in Ej. Thus, |ugs1(z) — ug(x)| < 27" for all k > j. Therefore, whenever
I > k > j we have that

lug () — w ()] < 217F.
Thus, the sequence {uy(z)}32, is Cauchy for every x € X \ F. For every
x € X\ F, let u(x) = lim;_, o u;(z). For k < m,

m—1

Uy = Uk + Z (Unt1 — Un).
n==k

Therefore for each z in X \ F,
(18) u(@) = ug(@) + D (ny1 (@) = up(2)).
n==k
Noting by Lemma 5.4 that Mod, ,(I'r) = 0 and that for each path 7 in

Lrect \I'p equation (18) holds pointwise on ||, we conclude that Y7, g i1
is a p, g-weak upper gradient of u — uy. Therefore,

oo
||u - ukHL(p,q)(X,u) + Z ||gn7n+1||L(p*q)(X,/L)

||’u’_ukHN1,L(p,q) <
n==k
o]
< ||U - Uk”];(mq)(x,u) + Z 2—2n
n=~k

< Ju— up o (x +272F = 0 as k — o

Therefore, the subsequence converges in the norm of N**"* (X, 1) to u. This
completes the proof of the theorem. O

6. DENSITY OF LIPSCHITZ FUNCTIONS IN N2 (X 1)

6.1. Poincaré inequality. Now we define the weak (1, LP:?)-Poincaré in-
equality. Podbrdsky in [26] introduced a stronger Poincaré inequality in the
case of Banach-valued Newtonian Lorentz spaces.

Definition 6.1. The space (X,d,u) is said to support a weak (1,LP9)-
Poincaré inequality if there exist constants C > 0 and o > 1 such that for
all balls B with radius r, all y-measurable functions v on X and all upper
gradients g of u we have

1 19XoB||Lra(x 1)
19 — — dpy < Cr—/————~
19) u(B)/Blu us|dp < Or p(oB)/P
Here
1 /
up = ——— [ u(x)du(x
o wWB) Jp (=) dyu(z)

whenever u is a locally u-integrable function on X.
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In the above definition, we can equivalently assume via Lemma 3.9 and
Corollary 2.8 that g is a p, g-weak upper gradient of u. When p = ¢, we have
the weak (1, p)-Poincaré inequality. For more about the Poincaré inequality
in the case p = ¢, see Hajtasz-Koskela [14] and Heinonen-Koskela [17].

A measure p is said to be doubling if there exists a constant C' > 1 such
that

n(2B) < Cp(B)
for every ball B = B(xz,r) in X. A metric measure space (X,d,u) is called
doubling if the measure p is doubling. Under the assumption that the measure
w is doubling, it is known that (X, d, u) is proper (that is, closed bounded
subsets of X are compact) if and only if it is complete.

Now we prove that if 1 < ¢ < p, the measure p is doubling, and the space
(X,d, ) carries a weak (1, LP?)-Poincaré inequality, the Lipschitz functions
are dense in NV (X, ).

In order to prove that we need a few definitions and lemmas.

Definition 6.2. Suppose (X,d) is a metric space that carries a doubling
measure p. For 1 < p < oo and 1 < ¢ < oo, we define the noncentered
maximal function operator by

llux Bl Lea(x )
M, u(x) = sup ———————=
p,q ( ) B3% M(B)l/p

where v € LP9(X, ).

Lemma 6.3. Suppose (X, d) is a metric space that carries a doubling measure
p. If 1 < g < p, then M, , maps LP(X,p) to LP>°(X, p) boundedly and
moreover,

)\lim Nu({z e X : My qu(z) > A}) =0.
—00

Proof. We can assume without loss of generality that 1 < ¢ < p. For every R >
0 let sz?q be the restricted maximal function operator defined on LP7(X, 1)
by
[uxB||Lra(x,pm)
ME u(z) = sup — b
- B>z, diam(B)<R p(B)H/r
Denote Gy = {z € X : My qu(x) > A} and G = {z € X : M u(z) > A}.
It is easy to see that Gfl C Gf"’ if0 < Ry < Ry < 00 and Gf” — G as
R — oo.
Fix R > 0. For every # € GE, X\ > 0, there exists a ball B(y,,r,) with
diameter at most R such that x € B(y.,r,) and such that

HuXB(yw’Tm) | |ip,q(X,u) > APM(B(:U:M TJC))

We notice that B(y,,r,) C G&. The set G is covered by such balls and
then by Heinonen [15, Theorem 1.2] it follows that there exists a countable
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disjoint subcollection {B(z;,7;)}$2; such that the collection {B(x;, 5r;)}2,
covers Gf. Hence,

ZNJ x175rz < O (ZN x“ri)))
i=1
C
< v (Z ||uXB(zi,Ti)

i=1

w(GY)

IN

C
I[),pvq(X,u)> S ﬁ | ‘UXGf\? | |IL),P,<I(X7M) .

The last inequality in the sequence was obtained by applying Proposition 2.4.
(See also Chung-Hunt-Kurtz [5, Lemma 2.5].)
Thus,

C
M(Gfb) < ﬁ”uXG};HI[),pJJ(X#) < EHU’XGAHZE,p,q(x,H)

for every R > 0. Since G = Jp-o GY, we obtain (by taking the limit as
R — o)
C
pG) < o luxe B
The absolute continuity of the p,g-norm (see the discussion after Definition
2.1), the p, g-integrability of u and the fact that G — 0 p-almost everywhere
as A — oo yield the desired conclusion. O

Question 6.4. Is Lemma 6.3 true when p < ¢ < c0?
The following proposition is necessary in the sequel.

Proposition 6.5. Suppose 1 < p < 0o and 1 < g < oco. If u is a nonnegative
function in NYE" (X, 1), then the sequence of functions uj, = min(u, k), k €
N, converges in the norm of NV (X, ) to u as k — oo.

Proof. We notice (see Lemma 3.16) that u; € LP4(X, ). That lemma also
yields easily uy € NVE""(X, i) and moreover ||uy||y1.ra < |[ul|y1,zra for
all £ > 1.

Let B, = {z € X : u(x) > k}. Since p is a Borel regular measure, there
exists an open set Oy, such that Ej, C Oy and u(O) < u(Eg) + 27%. In fact
the sequence (O)52, can be chosen such that Og41 C Oy for all k > 1. Since

pu(Ey) < (p’q w0 (X it follows that

w(00) < By + 27+ < CB0 ot

|| HLP q(X M

Thus, limg_,co #(Of) = 0. We notice that u = u, on X \ O. Thus, 2¢gx0, is

a p, g-weak upper gradient of u — up whenever g is an upper gradient for u

and ug. See Lemma 4.6. The fact that O, — () p-almost everywhere and the
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absolute continuity of the (p, ¢)-norm yield

limsup||u — ugl| y1 .00 <
k—oco

< 2limsup (||U’XOk ||L<M>(X,u) + ||gXOkHL(Pv‘1)(X,M)) =0.
k—o00
O

Counterexample 6.6. For ¢ = oo, Proposition 6.5 is not true. Indeed, let
n > 2 be an integer and let 1 < p < n be fixed. Let X = B(0,1) \ {0} C R,
endowed with the Euclidean metric and the Lebesgue measure.

Suppose first that 1 < p < n. Let u, and g, be defined on X by

up(x) = |x|17% —1 and g,(z) = (Z — 1) |x|7%

It is easy to see that up,g, € LP*°(X,m,). Moreover, (see, for instance,
Hajtasz [13, Proposition 6.4]) g, is the minimal upper gradient for w,. Thus,
u, € NYE"7 (X, m,,). For every integer k > 1, we define u, ), and g, on X
by

(@) = k if0 < |z| < (k+1)77,
Pk 2P =1 i (k+1)7r < |z <1

and
ﬂ—1) 27F i 0 < |a| < (k+1)7n
apati) = { (5= 1) 80 < el <)
0 if (k+1)r7 <|z| <1
We notice that u,, € N7 (X,m,) for all & > 1. Moreover, via [13,
Proposition 6.4] and Lemma 4.6, we see that gy 5 is the minimal upper gra-
dient for u, — u, for every £ > 1. Since g, N\, 0 on X as k — oo and
Igp. kLo (x;mn) = l9pllLroe(x;m,) = C(n,p) > 0 for all k& > 1, it follows
that u, ;. does not converge to u, in N*2*™ (X, m,) as k — occ.
Suppose now that p = n. Let w,, and g,, be defined on X by
1
||
It is easy to see that wn,,g, € LP*°(X,my). Moreover, (see, for instance,
Hajtasz [13, Proposition 6.4]) gy, is the minimal upper gradient for w,,. Thus,

Uy € NLL"’OO(X7 my,). For every integer k > 1, we define u,, ; and g, on X
by

1
up(z) =In Tl and g, (z) =

[k if 0 < |z| < ek,
Un i (%) = lnﬁ ife % <|z| <1
and
(2) = ‘71| if 0 < |z] <e®
Ik Z 00 et < |z < 1.
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We notice that u, € N“E"7(X,m,) for all k& > 1. Moreover, via [13,
Proposition 6.4] and Lemma 4.6 we see that g, j is the minimal upper gra-
dient for u, — uy for every & > 1. Since g, \, 0 on X as k — oo and
19,k Lro (xX,mn) = llgnllLroe (X,m,) = C(n) > 0 for all k > 1, it follows that
1, does not converge to u, in NVX"7 (X, m,) as k — oco.

The following lemma will be used in the paper.

Lemma 6.7. Let fi € NYX""(X, 1) be a bounded Borel function with p,q-
weak upper gradient g1 € LP1(X,u) and let fo be a bounded Borel function
with p, g-weak upper gradient go € LP4(X, ). Then f3 := fifo € NVE" (X, p)
and g3 == |filg2 + |f2]lg1 is a p, q-weak upper gradient of f5.

Proof. Tt is easy to see that f3 and g3 are in LP*9(X, ). Let Ty C T'yeet be the
family of curves on which f7 (91 + g2) = oo. Then it follows via Theorem 3.4
that Mod,, 4(I'9) = 0 because g1 + g2 € LP9(X, p).

Let I'1 ; C I'yect, ¢ = 1,2 be the family of curves for which

£((0)) — Fi(r (e < / o

¥
is not satisfied. Then Modr, ; = 0,4 = 1,2. Let I'y C I'teet be the family
of curves that have a subcurve in I'; ; UT'; 5. Then F(I';; UT'12) C F(T'y)
and thus Mod,, ,(I'1) < Mod,, 4(T'1,1 UT'1 2) = 0. We notice immediately that
Mod,, ,(ToUT;) = 0.

Fix € > 0. By using the argument from Lemma 1.7 in Cheeger [4], we see
that

|£3(7(0)) = f3(v(£(7))] <
£(7)
< /0 (f1(v()] +€)g2(v(s)) + (If2(v(5))| + €)g1(7(s)) ds

for every curve 7y in Iyt \ (o UT;). Letting e — 0 we obtain the desired
claim. O

Fix x¢ € X. For each integer j > 1 we consider the function

1 if d(xg,z) <j—1,
TIJ(I) = j - d($0,$) lf] -1< d(:l?o,z) S ja
0 if d(xo,x) > j.

Lemma 6.8. Suppose 1 < ¢ < oo. Let u be a bounded function in the
space NVE"*(X, ). Then the function v; = um; is also in NYL""(X, ),
where n; is defined as above. Furthermore, the sequence v; converges to u in
NVEU(X ).

Proof. If X is bounded, the claims of the lemma are trivial. Thus, we can
assume without loss of generality that X is unbounded. Moreover, we can
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also assume without loss of generality that v > 0. Let g € LP9(X, i) be an
upper gradient for u. It is easy to see by invoking Lemma 4.6 that h; :=
XB(20,/)\B(w0,j—1) is a p, g¢-weak upper gradient for n; and for 1 —n;. By using
Lemma 6.7, we see that v; € NV (X, 1) and that g; := uh; + gn; is a
p, g-weak upper gradient for v;. By using Lemma 6.7, we notice that Ej =
uh; + ¢g(1 —n;) is a p, g-weak upper gradient for v — v;. We have in fact

(20) 0 <u—vj <UXx\B(zo,j—1) and Ej < (u+ 9)XX\B(zo,j—1)-

for every j > 1. The absolute continuity of the (p,g)-norm when 1 < ¢ < o0
(see the discussion after Definition 2.1) together with the p, g-integrability of
u, g and (20) yield the desired claim. O

Now we prove the density of the Lipschitz functions in NV (X, 1) when
1 < g < p. The case ¢ = p was proved by Shanmugalingam. (See [27] and
[28].)

Theorem 6.9. Let 1 < ¢ < p < oo. Suppose that (X,d, ) is a doubling
metric measure space that carries a weak (1, LP?)-Poincaré inequality. Then
the Lipschitz functions are dense in NVE"* (X, ).

Proof. We can consider only the case 1 < ¢ < p because the case ¢ = p was
proved by Shanmugalingam in [27] and [28]. We can assume without loss of
generality that u is nonnegative. Moreover, via Lemmas 6.5 and 6.7 we can
assume without loss of generality that u is bounded and has compact support
in X. Choose M > 0 such that 0 < u < M on X. Let g € L?9(X, 1) be
a p,g-weak upper gradient for u. Let ¢ > 1 be the constant from the weak
(1, LP-?)-Poincaré inequality.

Let Gy :={z € X : M, 49(x) > A}. If x is a point in the closed set X \ Gy,
then for all » > 0 one has that

1 / HgXB(z crr)”Lqu(X )
IR ) U = UB(z,r d,U/ <Cr y .
HBG ) Sy 0 W(B(a, or )17
<CrM, ,9(x) < CAr.

Hence, for s € [r/2,r] one has that

1
|u z,5) — U x,rlg / |u—u r,r|dﬂ
Blee) = BB =B (2,9)) Jpea.s) Bler)
w(B(z,r)) 1 /
< . |u — up(r|dp < CAr
w(B(z,5)) u(B(,1)) Jp@n Blar)
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whenever z is in X \ G). For a fixed s € (0,r/2) there exists an integer k > 1
such that 27 %r < 25 < 27 %*1r. Then

k—1

UB(z.5) = UB@r)| S|UB(.s) = UB@a-rn]+ D UB@a-i-1r) = Up(2-in)]
1=0

k
<CM\ (Z 2_ir> < CAr.

i=0
For any sequence r; “\, 0 we notice that (up(,,.,)){2; is a Cauchy sequence for
every point z in X \ G. Thus, on X \ G we can define the function

up(x) == }13(1) UB(z,r)-

We notice that uy(x) = u(z) for every Lebesgue point x in X \ G\.
For every z,y in X \ G we consider the chain of balls {B,;}$° where

B; = B(z,2'"d(z,vy)),i < 0 and B; = B(y,2' ~"d(z,v)),i > 0.

For every two such points x and y, we have that they are Lebesgue points for
u) by construction and hence

(oo}
|’LL)\(.13) - Uk(y)| S Z |uBi - uB1',+1| S O)\d($,y),
where C depends only on the data on X. Thus uy is CA-Lipschitz on X \ G,.
By construction it follows that 0 < uy < M on X \ G. Extend uy as a C\-
Lipschitz function on X (see McShane [25]) and denote the extension by vy.
Then vy > 0 on X since uy > 0 on X \ G. Let wy := min(vy, M). We notice
that wy is a nonnegative C'A-Lipschitz function on X since vy is. Moreover,
wy = vy =uy on X \ G, whenever A > M.
Since u = w)y p-almost everywhere on X \ G whenever A\ > M, we have

llw = wal|zra(x 0 =I1(w —wr)xe, | Lrax,p)

SHU’XGA ||LP"1(X,;L) + C(pv Q))‘M(G)\)l/p
whenever A > M. The absolute continuity of the p, g-norm when 1 < ¢ < p
together with Lemma 6.3 imply that

Jim | —wx|lzeacxu = 0.

Since u — wy = 0 p-almost everywhere on the closed set G, it follows via
Lemma 4.6 that (CA + g)x¢, is a p,g-weak upper gradient for u — wy. By
using the absolute continuity of the p,g-norm when 1 < ¢ < p together with
Lemma 6.3, we see that

Jim [[(CA+ g)xa, [[Lracx . = 0.

This finishes the proof of the theorem. O
34



Theorem 6.9 yields the following result.

Proposition 6.10. Let 1 < ¢ < p < oo. Suppose that (X, d, u) satisfies the
hypotheses of Theorem 6.9. Then Cap,, , is an outer capacity.

In order to prove Proposition 6.10, we need to state and prove the following
proposition, thus generalizing Proposition 1.4 from Bjérn-Bjorn-Shanmugalin-
gam [3].

Proposition 6.11. (See [3, Proposition 1.4]) Let 1 < p < 0o and 1 < ¢ < 0.
Suppose that (X, d, p) is a proper metric measure space. Let E C X be such
that Cappyq(E) = 0. Then for every € > 0 there exists an open set U D E with
Cap,, ,(U) <e.

Proof. We adjust the proof of Proposition 1.4 in Bjorn-Bjorn-Shanmugalingam
[3] to the Lorentz setting with some modifications. It is enough to consider the
case when ¢ # p. Due to the countable subadditivity of Cappﬂ(-)l/” we can
assume without loss of generality that E is bounded. Moreover, we can also
assume that ' is Borel. Since Cap, ,(E) = 0, we have xg € NBEPN(X )
and ||xg||y1.cr.a = 0. Let € € (0,1) be arbitrary. Via Lemma 3.9 and Corol-
lary 2.8, there exists g € LP9(X,u) such that g is an upper gradient for
xe and ||g||zr.a(x,) < €. By adapting the proof of the Vitali-Carathéodory
theorem to the Lorentz setting (see Folland [10, Proposition 7.14]) we can
find a lower semicontinuous function p € LP?(X,u) such that p > ¢ and
llo = gllLra(x,) < €. Since Cap,  (E) = 0, it follows immediately that
w(FE) = 0. By using the outer regularity of the measure p and the abso-
lute continuity of the (p,g)-norm, there exists a bounded open set VO E
such that

€
Ixv|Lrax,m + 10+ Dxvlzeax,w < 3

u(z) = min{1,13fl(p+ 1)}7

where the infimum is taken over all the rectifiable (including constant) curves
connecting x to the closed set X \ V. We notice immediately that 0 < u <1
on X and u = 0 on X \ V. By Bjorn-Bjorn-Shanmugalingam [3, Lemma 3.3]
it follows that u is lower semicontinuous on X and thus the set U = {z € X :
u(x) > 3} is open. We notice that for z € E and every curve connecting x to
some y € X \ V, we have

/7<p+1>z/7psz<a:)—xE<y>=1.

Thus, v =1on E and E C U C V. From [3, Lemmas 3.1 and 3.2] it follows
that (p + 1)xv is an upper gradient of uw. Since 0 < u < yy and u is lower
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semicontinuous, it follows that v € NV"" (X, 1). Moreover, 2u € A(U) and
thus

Cap,, o ()7 < 2fullyrers < 2(|Julloacx ) + 10+ Dxvlzraxm)
< 2(Ixvllerax,w + e+ Dxvllorax,w) <e
This finishes the proof of Proposition 6.11. O

Now we prove Proposition 6.10.

Proof. We start the proof of Proposition 6.10 by showing that every function
w in NLL™? (X, p) is continuous outside open sets of arbitrarily small p, ¢-
capacity. (Such a function is called p, g-quasicontinuous.) Indeed, let u be a
function in N (X, 1). From Theorem 6.9 there exists a sequence {u}524
of Lipschitz functions on X such that

|[uj — ul|y1.era < 272 for every integer j > 1.
For every integer j > 1 let
By = {r € X : Jup(e) — ;@) > 277},

Then all the sets E; are open because the all functions u; are Lipschitz.
By letting F' = N2, U2, Bk and applying the argument from Theorem
5.5 to the sequence {u;}72, which is Cauchy in N%""(X, 1), we see that
Cap,, ,(F') = 0 and the sequence {uy} converges in N (X, 1) to a function
u whose restriction on X \ F' is continuous. Thus, ||u — @||p1,cr« = 0 and
hence if we let ' = {x € X : u(z) # u(x)}, we have Cap, ,(E) = 0. Therefore
Cap,, ,(EUF) = 0 and hence, via Proposition 6.11 we have that u = @ outside
open supersets of E U F' of arbitrarily small p, g-capacity. This shows that u

is quasicontinuous.
Now we fix £ C X and we show that

Cap,, ,(E) = inf{Cap,, ,(U),E CU C X, U open}.
For a fixed € € (0,1) we choose u € A(E) such that 0 <« <1 on X and such
that
[lul|y1,ora < Capp,q(E)l/” +e.

We have that u is p, g-quasicontinuous and hence there is an open set V' such
that Cappﬁq(V)l/p < ¢ and such that u|x\y is continuous. Thus, there exists
an open set U such that U\ V ={zx € X :u(zx) >1—-e}\V D E\V. We
see that UUV = (U \ V)UV is an open set containing EUV = (E\V)UV.
Therefore,

Cap, ,(E)'/? < Cap, (UUV)Y? < Cap, (U \ V)P + Cap, (V)7
1
< T llullyrera + Cap, (V)17
1
E(Capp,q(E)l/p + 5) + €.
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Letting € — 0 finishes the proof of Proposition 6.10. O

Theorems 5.2 and 6.9 together with Proposition 6.10 and Remark 5.3 yield
immediately the following capacitability result. (See also Appendix II in Doob

[9].)

Theorem 6.12. Let 1 < ¢ < p < oo. Suppose that (X,d, ) satisfies the
hypotheses of Theorem 6.9. The set function E + Cap, (E) is a Choquet
capacity. In particular, all Borel subsets (in fact, all analytic subsets) E of X
are capacitable, that is

Cap, ,(E) = sup{Cap, ,(K) : K C E, K compact}
whenever E C X is Borel (or analytic).

Remark 6.13. Counterexample 6.6 can be used to construct a counterexample
to the density result for N12”™ in the Euclidean setting for 1 < p < n and
q = 00.
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