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Abstract. We prove that every one-dimensional real Ambrosio-Kirchheim
current with zero boundary (i.e. a cycle) in a lot of reasonable spaces (including

all finite-dimensional normed spaces) can be represented by a Lipschitz curve
parameterized over the real line through a suitable limit of Cesàro means of
this curve over a subsequence of symmetric bounded intervals (viewed as cur-

rents). It is further shown that in such spaces, if a cycle is indecomposable,
i.e. does not contain “nontrivial” subcycles, then it can be represented again
by a Lipschitz curve parameterized over the real line through a limit of Cesàro
means of this curve over every sequence of symmetric bounded intervals, that

is, in other words, such a cycle is a solenoid.

1. Introduction

The paper is aimed at studying the notion of so-called solenoids or solenoidal
vector charges, i.e. one-dimensional currents (in the classical sense of Whitney in
a Euclidean spaces or in the sense of metric currents of Ambrosio-Kirchheim in
a generic metric space) with zero boundary given by a limit of Cesàro means of
some Lipschitz curve parameterized over the real line (viewed as currents as well).
This notion is well related to the subject of optimal transportation, though in a
quite indirect way. Namely, one of the topics close to the optimal transportation
is weak KAM theory and the existence of Mather’s minimal measures. The strong
analogy between Mather’s theory of minimal measures in Lagrangian dynamics
and the optimal mass transportation theory has been shown by L.C. Evans and
further explored by many researchers. In the study of Mather’s minimal measures
recently the result on decomposition of one-dimensional cycles (currents without
boundary) into “elementary” cycles represented by Lipschitz curves has proved to
be very helpful [2, 4]. The “elementary” cycles used in such a decomposition are
exactly solenoids. For normal currents in a Euclidean space such a result has been
first proven in [14]. In [11] an analogous decomposition result has been proven
for Ambrosio-Kirchheim metric currents in arbitrary metric spaces. Namely, it has
been shown that if T is a metric current in a complete metric space E with, say,
a compact support (we just mention this case for simplicity), and has ∂T = 0 (i.e.
is a cycle), then there is a finite positive measure η over the space Lip1(R;E) of
1-Lipschitz curves in E parameterized over the real line such that for η-a.e. θ there
is a limit

Sθ = lim
t→+∞

1

2t
[[θx[−t, t]]]
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in the weak sense of metric currents, where [[σ]] stands for the current associated
with the curve σ, while

T =

∫
Lip1(R;E)

Sθ dη(θ),

M(T ) =

∫
Lip1(R;E)

M(Sθ) dη(θ) = η(Lip1(R;E)),

M(T ) standing for the mass of T , so that in particular, Sθ is a metric current of
unit mass for η-a.e. θ ∈ Lip1(R;E), and, further, we may assume θ(R) ⊂ suppSθ ⊂
suppT for η-a.e. θ. The currents Sθ associated to curves θ are usually called, fol-
lowing [14], elementary solenoids. A closely related object is that of an asymptotic
cycle introduced by S. Schwartzman in [12] and further studied in [13]. The latter
appears quite natural as well in the study of the problem of representation of ho-
mology classes of manifolds (see [7, 9, 8, 6]). Last but not least one has to mention
the applications of a decomposition of every cycle in solenoids in the problems of
approximation of a given vector field by some vector field with better properties
(i.e. harmonic approximation), see [5] and references therein.

What has been mentioned above well justifies the interest in a more profound
study of solenoids, i.e. cycles T satisfying

T = lim
t→+∞

1

2t
[[θx[−t, t]]]

in the weak sense of currents for some curve θ ∈ Lip1(R;E). Even a weaker notion
seems to be interesting, namely, we say that a current T is represented by some curve
θ ∈ Lip1(R;E), if the above limit exists just for some increasing subsequence of t (it
is worth making the following comparison: if the notion of a solenoid is directly re-
lated to that of a Schwartzman asymptotic cycle, then the set of cycles represented
by the same curve corresponds in a similar way to the notion a Schwartzman bal-
anced cluster [7]). In this paper we show that in a lot of reasonable spaces including
all finite-dimensional normed ones every cycle (i.e. a real one-dimensional metric
current without boundary), up to normalization by its mass, is represented by some
curve. We further show that if a cycle T represented by a curve is indecomposable,
i.e. intuitively, does not contain subcycles different from λT , λ ∈ [0, 1], then it is a
solenoid. The results we provide seem in fact to be interesting already in classical
settings (E being a Euclidean space or a smooth connected Riemannian manifold,
the cycles being intended in the sense of classical Whitney currents, i.e. elements of
some space dual to a space of smooth differential forms), but the use of the theory of
Ambrosio-Kirchheim currents gives us the possibility to obtain some generalization
to more general, and not even finite-dimensional, metric spaces. However, we are
not interested in providing the most general results here and limit ourselves mainly
to illustrating the described phenomena. Thus when possible we provide the results
for the settings where they are easier to obtain (say, in finite-dimensional normed
spaces rather than in general metric spaces) and provide only those generalizations
to metric space settings which are almost “free of charge” by the use of the theory
of Ambrosio-Kirchheim currents. Such generalizations, when they seem to be too
technical, are located in the appendix.

2. Notation and preliminaries

The metric spaces are always in the sequel assumed to be complete. A metric
space will be called connected by rectifiable arcs, if every couple of points in this
space can be connected by a Lipschitz curve of finite length. The parametric length
of a Lipschitz curve θ : [a, b] → E will be denoted by ℓ(θ). If d is the distance of the
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metric space E, we let

d∗(x, y) := inf{ℓ(θ) : θ : [a, b] → E Lipschitz curve, θ(a) = x, θ(b) = y}.
For a compact set K ⊂ E, we let diam ∗K to stand for the diameter of K with
respect to the distance d∗. It is worth recalling that d∗ ≥ d. The metric space is
called quasiconvex, if d∗(x, y) ≤ Cd(x, y) for some C > 0 and for all {x, y} ⊂ E.

For a set D ⊂ E of a metric space E with distance d we employ the usual
notation Dc := E \ D, dist (x,D) := inf{d(x, y) : y ∈ D} whenever x ∈ E, and
(D)ε := {x ∈ E : dist (x,D) < ε}.

The notation Lip(X,Y ) (resp. Lipk(X,Y ) and Lipb(X,Y )) for metric spaces X
and Y stands for the set of all Lipschitz maps (resp. all Lipschitz maps with Lipschitz
constant k, the set of bounded Lipschitz maps) f : X → Y . We omit the reference
to Y in case Y = R and write just Lip(X), Lipk(X), Lipb(X) respectively.

For metric currents we use the same notation as in [10] (i.e. almost identical
to that of [1], with the only exception of the notation for the mass measure). In
particular, Dk(E) = Lipb(E)× (Lip(E))k stands for the space of metric k-forms, its
elements (i.e. k-forms) being denoted by f dπ, where f ∈ Lipb(E), π ∈ (Lip(E))k,
Mk(E) stands for the space of k-dimensional metric currents, M(T ) stands for the
mass of a current T , and µT stands for the mass measure associated to this current.
The one-dimensional current associated to a Lipschitz curve θ : [a, b] → E will be
denoted by [[θ]], namely,

[[θ]](f dπ) :=

∫ b

a

f(θ(t)) dπ(θ(t))

for every f dπ ∈ D1(E). Recall that M([[θ]]) ≤ ℓ(θ). The weak topology in Mk(E)
is defined by the family of seminorms {T 7→ |T (ω)| : ω ∈ Dk(E)}. We write S ≤ T
for currents {S, T} ⊂ Mk(E), when M(S) + M(T − S) = M(T ). T ∈ Mk(E) is
called a cycle, if ∂T = 0, and if T and S are cycles and T ≤ S, we say that T is a
subcycle of S.

The current T ∈ Mk(T ) will be called tight if so is the measure µT , and, similarly,
the sequence {Tj} ⊂ Mk(T ) will be called tight if so is the sequence of measures
{µTj}. All the measures considered in the sequel, unless explicitly stated otherwise,
are assumed to be finite positive Borel measures over a metric space E where they
are defined. Recall that it is consistent with Zermelo-Fraenkel set theory to assume
that all such measures are tight (and hence, in particular, all the metric currents
are tight); and it is always true when E is a Polish (i.e. complete separable metric)
space. The narrow topology on measures is defined by duality with the space Cb(E)
of continuous bounded functions.

3. Cycles and curves

Before introducing the concept of a solenoid we study the following weaker notion.

Definition 3.1. We say that a cycle T ∈ M1(E) is represented by a curve θ ∈
Lip1(R;E), if there is a sequence sk ↗ +∞ with

T = lim
k→+∞

1

2sk
[[θx[−sk, sk]]].

in the weak sense of currents.

Note that this definition makes sense since

∂T = lim
k→+∞

1

2sk
∂[[θx[−sk, sk]]] = lim

k→+∞

1

2sk
(−δ−sk + δsk) = 0.

We also remark that the same curve θ ∈ Lip1(R;E) may represent different cycles
(corresponding to different diverging sequences {sk}). Finally, it is clear that for a
cycle T ∈ M1(E) represented by some curve one hasM(T ) ≤ 1. We will show that in
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a lot of reasonable metric spaces (including, of course, all finite-dimensional normed
spaces) every cycle with bounded support, normalized by its mass, is represented
by some curve. In fact, the main idea, as well as the main difficulty, is in the proof
of this result for finite-dimensional normed spaces which we provide in this section.
Since this section is mainly propaedeutic, we are not interested in obtaining the
most general representation result, and will be satisfied with the finite-dimensional
one. Some easy generalizations to infinite-dimensional spaces are given in section A.

Theorem 3.2. For every cycle T ∈ M1(E) with bounded support in a finite-
dimensional normed space E one has that T/M(T ) is represented by some curve.

Proof. Combine Corollary 3.8, Lemma 3.9 and Lemma 3.6 below. �

The rest of the section contains the technical assertions used in the proof of
Theorem 3.2. The complete metric space E here and in the sequel is supposed to
be generic (i.e. not necessarily finite-dimensional normed) unless otherwise explicitly
stated. We will first make the following useful observations.

Remark 3.3. If T ∈ M1(E), M(T ) = 1, is represented by some curve, then since

M(T ) ≤ lim inf
k→+∞

1

2sk
M([[θx[−sk, sk]]]) ≤ lim sup

k→+∞

1

2sk
M([[θx[−sk, sk]]]) ≤ 1 = M(T ),

we have that

µT = lim
k→+∞

1

2sk
µ[[θx[−sk,sk]]]

in the narrow sense of measures, so that in particular the sequence of measures
{ 1
2sk

µ[[θx[−sk,sk]]]} is uniformly tight.

Remark 3.4. If T ∈ M1(E), M(T ) = 1, is represented by some curve, and B ⊂ E is
a Borel set, then denoting Tj :=

1
2sj

[[θx[−sj , sj ]]], one has for each subsequence of j

such that {µTj (B)} is convergent, the relationship

(3.1) lim
j

µTj (B) = lim
j

1

2sj
L1(θ−1(B) ∩ [−sj , sj ]).

In fact,

µTj (B) ≤ 1

2sj
L1(θ−1(B) ∩ [−sj , sj ]),

µTj (B
c) = M(Tj)− µTj (B) ≤ 1

2sj
L1(θ−1(Bc) ∩ [−sj , sj ])

= 1− 1

2sj
L1(θ−1(B) ∩ [−sj , sj ]),

which means ∣∣∣∣µTj (B)− 1

2sj
L1(θ−1(B) ∩ [−sj , sj ])

∣∣∣∣ ≤ 1−M(Tj),

and minding that limj M(Tj) = 1 we get (3.1).

Remark 3.5. If

T = lim
k→+∞

1

2sk
[[θx[−sk, sk]]].

in the weak sense of currents for some θ ∈ Lip1(R;E) and some sequence sk ↗ +∞,
then

T = lim
k→+∞

1

2tk
[[θx[−tk, tk]]]
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again in the weak sense of currents, whenever tk/sk → 1. In fact, assuming without
loss of generality that tk > sk, we get

M
(

1

2tk
[[θx[−tk, tk]]]−

1

2sk
[[θx[−sk, sk]]]

)
≤ M

(
1

2tk
[[θx[−tk,−sk] ∪ [sk, tk]]]

)
+

∣∣∣∣ 1

2tk
− 1

2sk

∣∣∣∣M ([[θx[−sk, sk]]])

≤ 1

2tk
2|tk − sk|+

∣∣∣∣ 1

2tk
− 1

2sk

∣∣∣∣ 2sk → 0

as k → +∞, which shows the claim.

The following statement holds true.

Lemma 3.6. Let E be a quasiconvex metric space, and {Tj} ⊂ M1(E) be a tight
sequence of cycles represented by some curves, limj Tj = T in the weak sense of
currents. Then T is represented by some curve.

Proof. Since

Tj = lim
k→+∞

1

2sjk
[[θjx[−sjk, s

j
k]]]

for some θj : R → E with Lip θj ≤ 1, we define the curve θ : R → E inductively as
follows.

Let K ⊂ E be such a compact set that µTj (K
c) ≤ 1/4. Note that for every ε > 0

and for each j ∈ N the set θ−1
j ((K)ε) ⊂ R is unbounded both from above and from

below. In fact, suppose the contrary, i.e. that the latter set is bounded, say, from
above, i.e. θj(t) ̸∈ (K)ε for all t > t̄jε. Then

µTj (K) ≤ µTj ((K)ε) ≤ lim inf
k→+∞

1

2sjk
µ[[θjx[−sjk,s

j
k]]]

((K)ε)

≤ lim inf
k→+∞

1

2sjk
L1({t ∈ [−sjk, s

j
k] : θj(t) ∈ (K)ε})

≤ lim inf
k→+∞

1

2sjk
L1({t ∈ [−sjk, t̄

j
ε] : θj(t) ∈ (K)ε})

≤ lim
k→+∞

|t̄jε + sjk|
2sjk

=
1

2
,

which contradicts the choice of K (the latter provides µTj (K) > 3/4).

Let Kj
ν ⊂ E be such a compact set that

1

2sjk
µ[[θjx[−sjk,s

j
k]]]

((Kj
ν)

c) +
1

2sjk
µ[[∂(θjx[−sjk,s

j
k]]])

((Kj
ν)

c) ≤ 1/ν,

and Kν ⊂ E be such a compact set that µTj (K
c
ν) ≤ 1/ν, and define

X :=
∪
j,ν

Kj
ν ∪

∪
ν

Kν .

Let dw stand for the distance over {Tj} provided by lemma A.1 from [11], and
denote by ∥ · ∥0 the Kantorovich-Rubinstein norm metrizing the narrow topology
on positive finite Borel measures over X̄ (see [3][theorem 8.3.2]).

Set ε := 1. Let r1 := s11 and θ coincide with θ1 over [−r1, r1]. For each j ∈ N we
choose

α−
j > diam ∗((K)ε ∪ {θj(−rj)})

such that θj(−rj − α−
j ) ∈ (K)ε and an

α+
j > diam ∗((K)ε ∪ {θj(rj)})
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such that θj(rj + α+
j ) ∈ (K)ε (note that in the case (ii) we may simply take α−

j =

α+
j > diam ∗K). Let now rj+1 := sj+1

k with k such that

sj+1
k > 22rj+α−

j +α+
j and dw

(
Tj+1,

1

2sj+1
k

[[θjx[−sj+1
k , sj+1

k ]]]

)
≤ 1

j
,∥∥∥∥∥µTj+1 −

1

2sj+1
k

µ[[θjx[−sj+1
k ,sj+1

k ]]]

∥∥∥∥∥
0

≤ 1

j
,

and let θ

(a) coincide with θj+1 over [−rj+1,−rj − α−
j ] ∪ [rj + α+

j , rj+1], while

(b) θx[−rj − α−
j ,−rj ] be an arbitrary curve with Lipschitz constant bounded

by 1 connecting θj+1(−rj − α−
j ) with θj(−rj) (such a curve exists since

d∗(θj+1(−rj − α−
j ), θj(−rj)) < α−

j by the choice of α−
j ),

(c) and, analogously, θx[rj , rj + α+
j ] be an arbitrary curve with Lipschitz con-

stant bounded by 1 connecting θj(rj) with θj+1(rj + α+
j ).

Clearly, with this construction

(3.2) T = lim
j→+∞

Tj = lim
j→+∞

1

2rj
[[θjx[−rj , rj ]]]

in distance dw. But the sequence {µTj} is precompact in the narrow topology of

measures, hence in the norm ∥ · ∥0, hence so is the sequence { 1
2rj

µ[[θjx[−rj ,rj ]]]}, and
therefore, the latter is uniformly tight by the Prokhorov theorem for nonnegative
measures (theorem 8.6.4 from [3]). Thus, by lemma A.1 from [11], the convergence
in (3.2) is also in the weak topology of currents. But

M
(

1
2rj+1

([[θx[−rj+1, rj+1]]]− [[θjx[−rj+1, rj+1]]])
)

= 1
2rj+1

M
(
([[θx[−rj − α−

j , rj + α+
j ]]]− [[θjx[−rj − α−

j , rj + α+
j ]]])

)
≤ 2L1

(
[−rj − α−

j , rj + α+
j ]
)
/2rj+1

=
(
2rj + α−

j + α+
j

)
/rj+1 → 0

as j → +∞, and hence

T = lim
j→+∞

1

2rj
[[θx[−rj , rj ]]],

in the weak sense of currents, which shows the thesis. �

The following auxiliary statements have been used in the proof of the above
Theorem 3.2.

Lemma 3.7. Let T ∈ M1(E), where E is a metric space connected by rectifiable
arcs, be of the form

T =
m∑
i=1

αi[[θi]],

where M(T ) =
∑m

i=1 αiℓ(θi) = 1, αi > 0, i = 1, . . . ,m, and each θi is a simple
closed curve, so that, in particular, ∂T = 0. Then T is represented by some curve.

Proof. Let each θi, i = 1, . . . ,m, be parameterized by arclength over [0, ℓ(θk)].
Choose an x0 ∈ E and let σi stand for the Lipschitz curves parameterized by
arclength and connecting x0 to θi(0), and σ̃i stand for the same curves covered in
the opposite direction (i.e. σ̃i(t) := σi(ℓ(σi)− t), t ∈ [0, ℓ(σi)], and, finally, set

d :=
m∑
i=1

2ℓ(σk).
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Define now inductively

t0 := 0, tk+1 := (2k + 1)tk + d.

Obviously tk → +∞ (since tk ≥ kd) and tk+1/tk = d/tk +(2k +1) → ∞ as k → ∞.
Let θki stand for a Lipschitz curve defined as the composition of the curves σi with
θi covered nk

i times and then with σ̃i, where nk
i := ⌊αi2

ktk⌋. Clearly,
ℓ(θki ) = 2ℓ(σi) + nk

i ℓ(θi),

while [[θki ]] = nk
i [[θi]]. We then define θ over each interval [tk, tk+1] as the composition

of the curves θki , i = 1, . . . ,m, and parameterized with velocity not greater than
one, which is possible because

ℓ(θx[tk, tk+1]) =
m∑
i=1

ℓ(θki ) =
m∑
i=1

(2ℓ(σi) + nk
i ℓ(θi))

= d+
m∑
i=1

nk
i ℓ(θi) ≤ d+ 2ktk

m∑
i=1

αiℓ(θi)

= d+ 2ktk = tk+1 − tk.

Now, bearing in mind that

[[θx[tk, tk+1]]] =
m∑
i=1

nk
i [[θi]],

we have

M
(
T − [[θx[tk, tk+1]]]

2ktk

)
= M

(
m∑
i=1

(
αi −

nk
i

2ktk

)
[[θi]]

)

=
1

2ktk
M

(
m∑
i=1

(αi2
ktk − ⌊αi2

ktk⌋)[[θi]]

)

≤ 1

2ktk

m∑
i=1

ℓ(θi) → 0

as k → ∞. But then

M
(
[[θx[tk, tk+1]]]

tk+1
− [[θx[tk, tk+1]]]

2ktk

)
=

tk+1 − 2ktk
tk+1

M
(
[[θx[tk, tk+1]]]

2ktk

)
=

tk + d

tk+1
M
(
[[θx[tk, tk+1]]]

2ktk

)
=

tk + d

tk+1
(M(T ) + o(1)) → 0

as k → ∞. Finally,

M
(
[[θx[0, tk])

tk+1

)
≤ tk

tk+1
→ 0,

so that we have

M
(
T − [[θx[0, tk+1]]]

tk+1

)
→ 0

as k → ∞. Extending the definition of θ to the whole R defining θ(t) for t < 0 in a
symmetric way, we will have

M
(
T − [[θx[−tk+1, tk+1]]]

2tk+1

)
→ 0,

which shows the statement. �
Corollary 3.8. For every polyhedral current T ∈ M1(E) in a finite-dimensional
normed space E having ∂T = 0 one has that T/M(T ) is represented by some curve.



8 VLADIMIR GEORGIEV AND EUGENE STEPANOV

Proof. Represent T/M(T ) as in the statement of the Lemma 3.7 and apply the
latter. �

Lemma 3.9. Let E be a finite-dimensional normed space. Then for every cycle
T ∈ M1(E) with bounded support there is a sequence of polyhedral currents Tν ∈
M1(E) with ∂Tν = 0, uniformly bounded supports and such Tν ⇀ T weakly in the
sense of currents, while M(Tν) → M(T ) as ν → ∞.

Proof. We denote by F(T ) the flat norm of T defined by

F(T ) := inf{M(A) +M(B) : A ∈ Mk(E), B ∈ Mk+1(E), A+ ∂B = T}.

By lemma C.1 from [10] there are polyhedral currents T ′
ν ∈ M1(E) with uniformly

bounded supports and such that F(T ′
ν − T ) → 0, while M(T ′

ν) → M(T ) as ν → ∞.
In particular,

T = T ′
ν +Aν + ∂Bν

with Aν ∈ M1(E), Bν ∈ M2(E) and M(Aν) → 0, M(Bν) → 0 as ν → ∞. Since

∂Aν = −∂T ′
ν

is polyhedral, by Lemma 3.10 below we may choose A′
ν ∈ M1(E) polyhedral with

∂A′
ν = ∂Aν and M(A′

ν) ≤ M(Aν). Define now

Tν := T ′
ν +A′

ν .

One has that Tν are polyhedral and

∂Tν = ∂T ′
ν + ∂A′

ν = ∂T ′
ν + ∂Aν = ∂T = 0.

We have also

T = Tν +Aν −A′
ν + ∂Bν ,

and since M(Aν − A′
ν) ≤ 2M(Aν) → 0, we conclude F(Tν − T ) → 0. It remains to

observe that

|M(T )−M(Tν)| ≤ |M(T )−M(T ′
ν)|+ |M(T ′

ν)−M(Tν)|
≤ |M(T )−M(T ′

ν)|+M(A′
ν) ≤ |M(T )−M(T ′

ν)|+M(Aν) → 0

as ν → ∞. �

Lemma 3.10. Let E be a finite-dimensional normed space, and let A ∈ M1(E).
Then there exists an A′ ∈ M1(E) such that ∂A′ = ∂A and M(A′) ≤ M(A). More-
over, if ∂A is a finite sum of signed Dirac masses, then one may choose A′ polyhe-
dral.

Proof. We refer to theorem A.1 from [10] for the existence of an A′ ∈ M1(E)
which provides the minimum of the mass functional T 7→ M(T ) among all T ∈
M1(E) satisfying ∂T = ∂A, so that, in other words, M(A′) be the classical Monge-
Kantorovich cost of optimal transportation the measure (∂A)+ to (∂A)− (where
φ± stand for the positive and negative parts of a finite signed Borel measure φ
respectively). The same theorem applied in the case when ∂A is a finite sum of
signed Dirac masses, shows that one can choose A′ so that µA′ be concentrated
over geodesics (i.e. segments) connecting these masses, that is, in this case one may
choose A′ polyhedral. �

4. Indecomposable cycles

In this section we will be interested in the following notion.

Definition 4.1. We say that a cycle T ∈ M1(E) is indecomposable, if S ≤ T with
∂S = 0 implies S = λT for some λ ∈ [0, 1].
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We will study now the representation of indecomposable cycles by curves. The
following observation makes sometimes calculations (or just writing them) a bit
easier.

Remark 4.2. If T ∈ M1(E) is an indecomposable cycle represented by a curve and
M(T ) = 1, then

T = lim
sj→+∞

1

2sj
[[θx[−sj , sj ]]],

implies

T = lim
sj→+∞

1

sj
[[θx[0, sj ]]] = lim

sj→+∞

1

sj
[[θx[−sj , 0]]].

In fact, denoting

T1 : = lim
sj→+∞

1

sj
[[θx[0, sj ]]],

T2 := lim
sj→+∞

1

sj
[[θx[−sj , 0]]],

we have T = (T1 + T2)/2, while by construction M(Ti) ≤ 1, i = 1, 2, which implies
M(T1) = M(T2) = 1, because M(T ) = 1. Thus T1/2 ≤ T which means T1/2 = λT
since T is indecomposable, and hence

1

2
= M(T1/2) = λM(T ),

so that λ = 1/2, i.e. T1 = T , and analogously we get T2 = T .

The following auxiliary result will be used in our construction.

Proposition 4.3. Let T ∈ M1(E) be an indecomposable cycle represented by a
curve θ ∈ Lip1(R;E), M(T ) = 1, and

T = lim
sj→+∞

1

sj
[[θx[0, sj ]]],

for some {sj} ⊂ R and θ ∈ Lip1(R;E). Let {rj} ⊂ R be such that rj ≤ sj+1 and
rj = αsj+1 + o(sj+1) as j → +∞ for some α > 0. Then

T = lim
rj→+∞

1

rj
[[θx[0, rj ]]].

Proof. In view of Lemma 4.4 we may suppose that for a subsequence of rj (not
relabeled)

lim
rj→+∞

1

rj
[[θx[0, rj ]]] := T ′.

We have then

(4.1) lim
j→+∞

1

sj+1
[[θx[0, rj ]]] = lim

j→+∞

rj
sj+1

· 1

rj
[[θx[0, rj ]]] = αT ′,

so that

(4.2) lim
j→+∞

(
1

sj+1
[[θx[0, sj ]]]−

1

sj+1
[[θx[0, rj ]]]

)
= T − αT ′.

On the other hand,

M
(

1

sj+1
[[θx[0, sj+1]]]−

1

sj+1
[[θx[0, rj ]]]

)
=

1

sj+1
M ([[θx[0, sj+1]]]− [[θx[0, rj ]]])

=
1

sj+1
M ([[θx[rj , sj+1]]])

≤ sj+1 − rj
sj+1

→ 1− α
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as j → +∞. Thus M(T − αT ′) ≤ 1− α, which gives

M(αT ′) +M(T − αT ′) ≤ α+ (1− α) = 1 = M(T ),

that is, αT ′ ≤ T . This implies αT ′ = λT for some λ ∈ [0, 1], since T is indecom-
posable.

We show now M(T ′) = 1. In fact, one has M(T ′) ≤ 1. But

1

sj+1
(M ([[θx[0, rj ]]]) +M ([[θx[rj , sj+1]]])) ≤

1

sj+1
(ℓ (θx[0, rj ]) + ℓ (θx[rj , sj+1]))

=
1

sj+1
ℓ (θx[0, sj+1]) ,

and hence keeping in mind

1 = lim inf
j

M
(

1

sj+1
[[θx[0, sj+1]]]

)
≤ lim inf

j

1

sj+1
ℓ (θx[0, sj+1]) ≤ 1,

we get

(4.3) M
(

1

sj+1
[[θx[0, rj ]]]

)
+M

(
1

sj+1
[[θx[rj , sj+1]]]

)
≤ 1 + o(1)

as j → ∞. We have then

(4.4) lim
j

M
(

1

sj+1
[[θx[0, rj ]]]

)
= M(αT ′).

In fact, recalling (4.1) and supposing that for some sequence of j (not relabeled)
one has

lim
j

M
(

1

sj+1
[[θx[0, rj ]]]

)
< M(αT ′),

we get passing to the limit in (4.3) while taking into account (4.1) and (4.2), that

1 = M(T ) ≤ M (αT ′) +M (T − αT ′) < 1,

which is a contradiction showing (4.4). But from (4.4) we get

lim
j

1

rj
M ([[θx[0, rj ]]]) = M(T ′).

as rj → +∞. Thus

M ([[θx[0, sj+1]]]) ≤ M ([[θx[0, rj ]]]) + (sj+1 − rj)

= M(T ′)rj + (sj+1 − rj) + o(rj)

= M(T ′)rj + (sj+1 − rj) + o(sj+1),

which gives

1 = M(T ) ≤ M
(

1

sj+1
[[θx[0, sj+1]]]

)
= 1 + (M(T ′)− 1)

rj
sj+1

+ o(1),

and passing to a limit as j → +∞, we get M(T ′)− 1 ≥ 0, i.e. M(T ′) = 1.
It suffices now to notice that

αM(T ′) = α = λM(T ) = λ,

and therefore T ′ = T as claimed. �
The following lemma has been used in the above proof.

Lemma 4.4. Under the conditions of Proposition 4.3 the sequence of measures
{µRj} corresponding to currents

Rj :=
1

rj
[[θx[0, rj ]]],

is uniformly tight (so that the sequence {Rj} is compact in the weak topology of
currents).
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Proof. Note that for Tj := [[θx[0, sj+1]]]/sj+1 one has limj Tj ⇀ T in the weak sense
of currents and limj µTj = µT in the narrow sense of measures (by Remark 3.3
with [0, sj+1] instead of [−sj , sj ]), and hence the sequence {µTj} is uniformly tight.

Therefore, for every ε > 0 there is a K̃ ⊂ E compact such that µTj (K̃
c) ≤ ε. Note

also that

lim
j

µTj (K̃
c) = lim

j

1

sj+1
L1(θ−1(K̃c) ∩ [0, sj+1])

whenever the first limit exists (by Remark 3.4 with [0, sj+1] instead of [−sj , sj ]).
We have then

µRj (K̃
c) ≤ 1

rj
L1(θ−1

j (K̃c) ∩ [0, rj ])

≤ sj+1

rj
· 1

sj+1
L1(θ−1

j (K̃c) ∩ [0, sj+1]),

hence for some k ∈ N one has

µRj (K̃
c) ≤ 2

sj+1

rj
µTj (K̃

c) ≤ Cε

for all j ≥ k and for some C > 0 independent of j and ε. Letting K̂ to be such a
compact set that

µRj (K̂
c) ≤ Cε, j = 1, . . . , k − 1,

then for K := K̂ ∪ K̃ one has µRj (K
c) ≤ Cε so that the sequence {Rj} is compact

in the weak topology of currents by compactness theorem 5.2 from [1]. �

5. Solenoids

Let us introduce now another definition.

Definition 5.1. A cycle T ∈ M1(E) is called solenoid, if there exists a curve
θ ∈ Lip1(R;E) such that

T = lim
s→+∞

1

2s
[[θx[−s, s]]],

the limit being taken over all s ∈ R. The set of all solenoids T ∈ M1(E) will be
denoted by Sol(E).

Clearly, being a solenoid is stronger than just being representable by a curve.
The following result holds true.

Theorem 5.2. Let E be a quasiconvex metric space, and T ∈ M1(E) be an indecom-
posable cycle represented by a curve θ ∈ Lip1(R;E), M(T ) = 1. Then T ∈ Sol(E).

Proof. Let

T = lim
j

S′
j , where S′

j :=
1

s′j
[[θx[0, s′j ]]],

the limit being, as usual, in the weak sense of currents, for some sequence s′j ↗ +∞.
We will assume limj s

′
j/s

′
j+1 = 0 since otherwise there is nothing to prove. In fact,

if limj s
′
j/s

′
j+1 = α > 0 for some subsequence of {s′j}, then for every increasing

sequence {rj}, up to passing to a further subsequence of {s′j} (not relabeled) we
may consider any subsequence of {rj} (again not relabeled) such that rj ∈ [s′j , s

′
j+1],

and hence lim infj rj/s
′
j+1 ≥ α > 0, which by Proposition 4.3 means that

T = lim
j→+∞

1

rj
[[θx[0, rj ]]]

for every subsequence of {rj}, and hence, for the whole sequence {rj}.
The proof will be achieved in two steps.
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Step 1. Consider a compact set K such that µT (K
c) ≤ 1/8. Fix an arbitrary

ε > 0. We have then that for every j ∈ N there is a point sj ∈ [3s′j+1/4, s
′
j+1] such

that θ(sj) ∈ (K)ε. In fact, otherwise

µS′
j+1

((K)ε) =
1

s′j+1

µ[[θx[0,s′j+1]]]
((K)ε)

≤ 1

s′j+1

L1({t ∈ [0, s′j+1] : θ(t) ∈ (K)ε})

=
1

s′j+1

L1({t ∈ [0, 3s′j+1/4] : θ(t) ∈ (K)ε}) ≤
3

4
,

thus, passing to a limit as j → ∞, we have

µT (K) ≤ µT ((K)ε) ≤ lim inf
j

µS′
j+1

((K)ε) ≤
3

4
,

which, recalling that M(T ) = 1, contradicts the assumption µT (K
c) ≤ 1/8.

Choosing a subsequence of {sj} (not relabeled) such that sj/s
′
j+1 converge as

j → ∞ to some α > 0, we have by Proposition 4.3 that

T = lim
sj→+∞

1

sj
[[θx[0, sj ]]].

and θ(sj) ∈ (K)ε for all j ∈ N. Without loss of generality we also will assume
θ(0) ∈ (K)ε. Note that by construction one still has limj sj/sj+1 = 0.

Step 2. Fix a d > diam ∗(K)ε. Define a new curve σ : [0,+∞) → E as follows.
Let σ coincide with θ over [0, s1]. For every j ∈ N we let σ′

j ∈ Lip1([0, d
′
j ];E)

to be an arcwise parameterized curve connecting σ(sj) with σ(0) = θ(0), with
d′j := d∗(σ(sj), σ(0)), set

d′′j := d∗(σ(sj), θ(sj+1))

nj :=

⌊
sj+1 − d′′j
sj + d′j

⌋
δ′′j := sj+1 − nj(sj + d′j),

and σ′′
j ∈ Lip1([0, δ

′′
j ];E) to be a curve connecting σ(sj) with θ(sj+1) with velocity

bounded by one (which is possible since δ′′j ≥ d′′j ). Observe that clearly d′j ≤ d and
d′′j ≤ d, while

δ′′j ≤ sj + d′j + d′′j ≤ sj + 2d.

Define now σ over [sj , sj+1] as a composition of σ′
j with θx[0, sj ] repeated nj times

and then connected by σ′′
j to σ(sj+1) := θ(sj+1). This inductively defines σ over

[0,+∞). Extending σ to (−∞, 0) symmetrically σ over the whole R.
Consider now an arbitrary increasing sequence {ri}, limi ri = +∞. For every

i ∈ N we find a j = j(i) such that ri ∈ [sj(i+1)−1, sj(i+1)] and calculate

lim
ri→+∞

1

ri
[[σx[0, ri]]].

Clearly j(i) → +∞ when i → +∞. For the sake of brevity of notation we write
j := j(i+ 1)− 1. We consider several cases.

Case 1. limi ri/sj = +∞. Then, if ri ∈ [sj+1 − δ′′j , sj+1] for a subsequence of i,
one has

lim
sj+1→+∞

1

sj+1
[[σx[0, sj+1]]] = lim

sj→+∞

1

sj
[[θx[0, sj ]]] = T,

because
1

ri
[[σx[0, ri]]] =

ni

ri
[[θx[0, sj ]]] + ∆i,



METRIC CYCLES, CURVES AND SOLENOIDS 13

where

∆i =
1

ri

(
[[σx[0, sj ]]] + nj [[σ

′
j ]] + [[σ′′

j x[0, ri − sj+1 + δ′′j ]]]
)
,

so that

M(∆i) ≤
sj
ri

+
njd

′
j

ri
+

d′′j
ri

≤ sj
ri

+
njd

ri
+

d

ri
→ 0

as j → ∞, while limj sjnj/sj+1 = 1.
Otherwise, setting

ρi :=

⌊
ri

sj + d′j

⌋
,

we get

1

ri
[[σx[0, ri]]] =

ρj
ri
[[θx[0, sj ]]] +Ri

with

M(Ri) ≤
sj
ri

+
ρid

′
j

ri
+

sj + d′j
ri

≤ 2sj
ri

+
ρid

ri
+

sj + d

ri
→ 0

as i → ∞, and keeping in mind that limi sjρi/ri = 1, we get that the above limit is
T .

Case 2. limi ri/sj =: α > 1. Consider first for simplicity the case ri = nsj for
some n ∈ N. Then

1

ri
[[σx[0, ri]]] =

(n− 1)

nsj
[[θx[0, sj ]]] +

1

sj
[[σx[0, sj ]]] +R′

i,

where

M(R′
i) ≤

nd′j
ri

≤ nd

ri
→ 0

as i → ∞. Thus, keeping in mind that

lim
sj→+∞

1

sj
[[σx[0, sj ]]] = lim

sj→+∞

1

sj
[[θx[0, sj ]]] = T,

we have

lim
i

1

ri
[[σx[0, ri]]] =

(
1− 1

n

)
lim
j
[[θx[0, sj ]]] +

1

n
lim
j
[[σx[0, sj ]]] = T.

The case of a generic α > 1 follows by applying Proposition 4.3 (with σ instead of
θ and nsj instead of sj). �

Theorem 5.2 implies that if E is the space where every tight cycle with bounded
support is represented by a curve (a fairly general collection of such spaces including
of course, all finite-dimensional vector spaces, are provided by Theorem 3.2, Propo-
sition A.1 and Corollary A.2), then every indecomposable tight cycle in M1(E) with
bounded support is, up to normalization by its mass, a solenoid.

Note that Theorem 5.2 gives only sufficient conditions for a cycle to be a solenoid.
In fact, solenoids are not necessarily indecomposable as the following example shows.

Example 5.3. Let {z1, z2, z3} ⊂ E := R2 be vertices of an equilateral triangle with
side 3, and let Ti ∈ M1(R2) be a cycle represented by the oriented unit circumference
Si with center zi, having density 1/6π, i = 1, . . . , 3 (for definiteness, assume that
the orientation of all the three cycles are, say, clockwise). In this way, defined
T := T1 + T2 + T3 we get M(T ) = 1. We show now that T is a solenoid (although,
clearly it is not indecomposable: in fact, Ti ≤ T and Ti ̸= λT for all λ ∈ [0, 1]). We
further abuse slightly the notation and let Si stand both for the cycle (as a metric
current), i.e. the oriented circumference (so that Ti = Si/6π), and its support, i.e.
the circumference itself, the exact meaning being always clear from the context.
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We have to define a curve θ ∈ Lip1(R;E) such that the limit

(5.1) lim
sm→+∞

1

2sm
[[θx[−sm, sm]]] = T,

for all sequences sm ↗ +∞. For this purpose denote by bibj the segment of length
1 on the side zizj of the triangle △z1z2z3 such that its endpoints bi and bj are the
intersections of Si and Sj with the segment zizj respectively.

For the intervals ∆k := [k2, (k + 1)2] consider the partition

∆k = [k2, k2 + 1] ∪ εk1 ∪ γ12
k ∪ εk2 ∪ γ23

k ∪ εk3 ∪ [(k + 1)2 − 1, (k + 1)2],

where εk1, εk2, εk3 are three open intervals of equal lengths

|εk1| = |εk2| = |εk3|

and γk1, γk2 are closed intervals of length 1. Then we have

(5.2) |εkj | =
(k + 1)2 − k2

3
− 4 =

2k

3
+O(1)

as k → +∞.
Then we consider the curve θ ∈ Lip1([0,+∞);E) such that

(i) θxεkj covers the circumference Sj in the clockwise direction starting from
bj with the unit velocity for the time 2πnkj , where nkj := ⌊|εkj |/2π⌋, and
then staying in the point bj for the rest of the time |εkj | − 2πnj ,

(ii) θxγ12
k covers b1b2 starting from b1 and ending at b2 with unit velocity,

(iii) θxγ23
k covers b2b3 starting from b2 and ending at b3 with unit velocity,

(iv) θx[k2, k2 + 1] and θx[(k + 1)2 − 1, (k + 1)2] cover b3b1 starting from b3 and
ending at b1 with constant velocity 1/2.

Of course this can be done only for k ≫ 1, i.e. for k ≥ k0 for some k0 ∈ N, and we
define θx∆k for all k ≤ k0 in an arbitrary way so as to have θ ∈ Lip1([0,+∞);E).
Finally, let θx(−∞, 0] be defined symmetrically. This gives a θ ∈ Lip1(R;E).

To verify (5.1) we first show it for the case sm := m2 ∈ N. One has

[[θx[0,m2]]] = [[θx[0, k20]]] +
3∑

j=1

m∑
k=k0

[[θxεkj ]] +Rm,

where M(Rm) ≤ 5(m− k0), and therefore,

lim
m

1

m2
[[θx[0,m2]]] =

3∑
j=1

lim
m

1

m2

m∑
k=k0

[[θxεkj ]]

=
3∑

j=1

lim
m

1

m2

m∑
k=k0

nkjSj =
3∑

j=1

Sj

(
lim
m

1

m2

m∑
k=k0

nkj

)

=
3∑

j=1

Sj

(
lim
m

1

m2

m∑
k=k0

2k

3
· 1

2π

)
=

1

6π

3∑
j=1

Sj = T,

where the limits of currents are intended in the weak sense. Since θx(−∞, 0] is
defined symmetrically, then one has

lim
m

1

2m2
[[θx[−m2,m2]]] = lim

m

1

m2
[[θx[0,m2]]] = T,

which is exactly (5.1) for the particular case being verified.
Take now an arbitrary sequence sm ↗ +∞ and let km be such that sm ∈

[k2m, (km + 1)2). Then

lim
m

1

2sm
[[θx[−sm, sm]]] = lim

m

1

2sm
[[θx[−k2m, k2m]]],
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because M([[θx[−sm, k2m]]]) = M([[θx[k2m, sm]]]) ≤ (km + 1)2 − k2m = o(k2m) = o(sm)
as m → ∞. But

lim
m

1

2sm
[[θx[−k2m, k2m]]] = lim

m

1

2k2m
[[θx[−k2m, k2m]]] = T,

which concludes the proof of (5.1).

Appendix A. Some easy generalizations to infinite-dimensional spaces

We provide here a couple of easy, though quite technically looking results gener-
alizing Theorem 3.2 to not necessarily finite-dimensional spaces. We are not really
interested in obtaining the most general results, since the main idea is well illus-
trated by Theorem 3.2, and thus we limit ourselves here to provide some fairly
general results that are almost “free of charge” by using the theory of metric cur-
rents.

Proposition A.1. Let E be a Banach space with metric approximation property.
For every tight cycle T ∈ M1(E) with bounded support one has that T/M(T ) is
represented by some curve.

Proof. When E is a finite-dimensional normed space, the result is given by Theo-
rem 3.2. Suppose that E is a Banach space with metric approximation property.
Let {Tn} be a sequence of currents over finite-dimensional subspaces En of E be
provided by lemma A.6 from [11] (minding the remark A.7 from the same paper),
namely, Tn ⇀ T in the weak sense of currents, M(Tn) → M(T ) as n → ∞, and
∂Tn = 0. Thus each Tn (as a cycle over a finite-dimensional normed space) is rep-
resented by some curve in Lip1(R;En), hence in Lip1(R;E), and again applying
Lemma 3.6 we get the result. �

Of course the above Proposition A.1 provides a rather wide class of spaces where
every cycle is (up to a normalization by its mass) represented by some curve, which
includes all finite-dimensional normed spaces, Hilbert spaces and a lot of reasonable
Banach spaces (for instance, Lebesgue spaces). However, if we are interested in
generic metric spaces without any linear structure, the following corollary might be
helpful. To formulate it, we recall that a closed subset X ⊂ Y of a metric space Y
is called a 1-Lipschitz neighborhood retract, if there is an open U ⊂ Y satisfying
X ⊂ U and a map p ∈ Lip1(Ū ,X) such that p(x) = x for all x ∈ X.

Corollary A.2. Let X be a quasiconvex metric space isometrically embedded in
Banach space Y with metric approximation property as a 1-Lipschitz neighborhood
retract of the latter. Then for every tight cycle T ∈ M1(X) with bounded support
one has that T/M(T ) is represented by some curve.

Proof. Assume without loss of generality M(T ) = 1. Let j : X → Y be an isometric
embedding. Then j#T is represented by some curve in Y by Proposition A.1, and
thus j#T is represented by a curve in j(X) by Lemma A.3 (applied with V̄ := j(X)).
In other words,

j#T = lim
k

1

2sk
[[θ′x[−sk, sk]]]

for some θ′ ∈ Lip1(R; j(X)) and some sequence sk ↗ +∞. Therefore,

T = lim
k

1

2sk
[[θx[−sk, sk]]],

where θ(t) := j−1(θ(t)), which concludes the proof. �

The following lemma has been used in the proof of Corollary A.2.
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Lemma A.3. Let Y be a metric space and V̄ ⊂ Y be a closed set, while V̄ is
quasiconvex, and there is an open U ⊂ Y , V̄ ⊂ U and a 1-Lipschitz map p : Ū → V̄
satisfying p(v) = v for all v ∈ V̄ . If T is represented by some curve in Y with
M(T ) = 1 and µT concentrated over V̄ , then T is represented by some curve in V̄ .
Moreover, if

T = lim
k

1

2sk
[[θ′x[−sk, sk]]],

for some θ′ ∈ Lip1(R;Y ) and some sequence sk ↗ +∞, then

T = lim
k

1

2sk
[[θx[−sk, sk]]] = T

for some θ ∈ Lip1(R; V̄ ) and the same sequence {sk}.

Proof. Let

∆ := (θ′)−1(Ū c)) = ⊔i(αi, βi),

where θ′(αi) ∈ Ū and θ′(βi) ∈ Ū . We denote then θ̄′(t) := p(θ′(t)) whenever
θ′(t) ̸∈ ∆ and define σ ∈ Lip(R; V̄ ) by setting σ(s) := θ̄(s)) whenever s ̸∈ ∆, while
over each interval (αi, βi) we let σ be a curve θi in V̄ connecting θ̄(αi)) with θ̄(βi)
parameterized over [αi, βi] and having length

ℓ(θi) ≤ CdY (θ̄(αi), θ̄(βi)) ≤ C|βi − αi|,
where dY stands for the distance in Y . Let now

f(s) :=

{
|σ̇|(s) = |θ̇i|(s), s ∈ (αi, βi),
1, otherwise.

t(s) :=

∫ s

0

f(τ) dτ, θ(t) := σ(s(t)).

It is immediate to calculate then

|θ̇|(t) :=
{

1, s ∈ (αi, βi),

| ˙̄θ|(s(t)), otherwise,

so that θ ∈ Lip1(R; V̄ ).
Denoting

Sk :=
1

2sk
[[θ′x[−sk, sk] \∆]], Tk :=

1

2tk
[[θ′x[−sk, sk] \∆]],

T ′
k :=

1

2sk
[[θ′x[−sk, sk]]],

so that Tk ∈ M1(Ū) and Sk ∈ M1(Ū) we have

M(Sk − T ′
k) ≤

L1([−sk, sk] ∩∆)

2sk
→ 0

as k → ∞, because by Remark 3.4 one has

lim sup
k

L1([−sk, sk] ∩∆)

2sk
= lim sup

k
µ 1

2sk
[[θ′x[−sk,sk]]]

(Ū c)

≤ lim sup
k

µ 1
2sk

[[θ′x[−sk,sk]]]
(U c)

≤ µT (U
c) = 0.

Further, letting tk := t(sk) and minding that

(1.1) sk ≤ tk ≤ sk + CL1([−sk, sk] ∩∆),

and thus limk tk/sk = 1, which gives

M(Sk − Tk) =

(
1− lim

k

tk
sk

)
M(Sk) = 0
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(because M(Sk) ≤ 1). Thus limk Sk = limk Tk = limk T
′
k = T in the weak sense of

currents.
We estimate now

M
(
p#Sk − 1

2sk
[[σx[−sk, sk]]]

)
≤ 1

2sk
M([[σx[−sk, sk] ∩∆]])

≤ C
1

2sk
L1([−sk, sk] ∩∆) → 0,

but then

(1.2)

M
(

1

2tk
[[θx[t(−sk), tk]]]− p#Tk

)
= M

(
1

2tk
[[σx[−sk, sk]]]− p#Tk]]

)
=

sk
tk

M
(

1

2sk
[[σx[−sk, sk]]]− p#Sk]]

)
→ 0

as k → ∞. Since also

−sk − CL1([−sk, sk] ∩∆) ≤ t(−sk) ≤ −sk,

combining this estimate with (1.1), we get

|t(−sk) + tk| ≤ CL1([−sk, sk] ∩∆),

and thus, denoting by Ik the interval with endpoints t(−sk) and −tk, we get

M
(

1

2tk
[[θx[−tk, tk]]]−

1

2tk
[[θx[t(−sk), tk]]]

)
=

1

2tk
M ([[θxIk]])

≤ sk
tk

1

2sk
L1(Ik) ≤

sk
tk

|t(−sk) + tk|
2sk

≤ sk
tk

CL1([−sk, sk] ∩∆)

2sk
→ 0

as k → ∞. Combined with (1.2), this gives

M
(

1

2tk
[[θx[−tk, tk]]]− p#Tk

)
→ 0

as k → ∞. Now, since in the weak sense of currents we have limk p#Tk =
p# limk Tk = p#T = T (because p is identity over V̄ ), then

lim
k

1

2tk
[[θx[−tk, tk]]] = T

in the weak sense of currents. Finally, since limk tk/sk = 1, then from Remark 3.5
one has

lim
k

1

2sk
[[θx[−sk, sk]]] = T

in the weak sense of currents, which completes the proof. �
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