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Abstract

We consider a motion of non-closed planar curves with infinite length. The motion is
governed by a steepest descent flow for the geometric functional which consists of the sum
of the length functional and the total squared curvature. We call the flow shortening-
straightening flow. In this paper, first we prove a long time existence result for the
shortening-straightening flow for non-closed planar curves with infinite length. Then we
show that the solution converges to a stationary solution as time goes to infinity. Moreover
we give a classification of the stationary solution.
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1. Introduction

There are various studies about the steepest descent flow for geometric functional
defined on closed curves, for example, the shortening flow ([1], [4], [5]), the straightening
flow for curve with fixed total length ([7], [11], [12]), and the straightening flow for curve
with fixed local length ([6], [9]). In this paper, we consider the steepest descent flow called
shortening-straightening flow.

Let γ be a planar curve, κ be the curvature, and s denote the arc-length parameter of
γ. For γ, we consider the following geometric functional

E(γ) = λ2L(γ) + E(γ),(1.1)

where

L(γ) =
∫
γ

ds, E(γ) =
∫
γ

κ2 ds,

and λ is a given non-zero constant. The steepest descent flow for (1.1) is given by the
system

∂tγ = (−2∂2sκ− κ3 + λ2κ)ν,(1.2)
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where ν is the unit normal vector of the curve pointing in the direction of the curvature.
The functional L(γ) denotes the length functional of γ. We call the steepest descent flow
for length functional the curve shortening flow. On the other hand, the functional E is
well known as the total squared curvature or one dimensional Willmore functional. The
steepest descent flow for the functional is called the curve straightening flow. Thus we
call (1.2) the shortening-straightening flow in this paper.

We mention the known results of shortening-straightening flow. In 1996, it has been
proved by A. Polden ([10]) that the equation (1.2) admits smooth solutions globally
defined in time, when the initial curve is closed and has finite length (i.e., compact without
boundary). Furthermore, G. Dziuk, E. Kuwert, and R. Schätzle ([3]) extended the result
of [10] to closed curves with finite length in Rn.

We are interested in the following problem: “What is the dynamics of non-closed planar
curve with infinite length governed by shortening-straightening flow?” In this paper, we
prove that there exists a long time solution of shortening-straightening flow starting from
smooth planar curve with infinite length. Moreover we show that the solution converges to
a stationary solution as t→ ∞. Namely, we consider the following initial value problem:{

∂tγ = (−2∂2sκ− κ3 + λ2κ)ν,

γ(x, 0) = γ0(x).
(SS)

The initial curve γ0 is a smooth non-closed planar curve with infinite length. Moreover we
assume that γ0 is allowed to have self-intersections but must be close to an axis in a C1

sense as |x| → ∞. More precisely, γ0(x) = (ϕ0(x), ψ0(x)) : R → R2 satisfies the following
assumptions:

|γ0′(x)| ≡ 1,(1.3)

∂mx κ0 ∈ L2(R) for all m ≥ 0,(1.4)

lim
x→∞

ϕ0(x) = ∞, lim
x→−∞

ϕ0(x) = −∞, lim
|x|→∞

ϕ′
0(x) = 1,(1.5)

ψ0(x) = O(x−α) for some α >
1

2
as |x| → ∞, ψ′

0 ∈ L2(R),(1.6)

We state the main result of this paper in a concise form:

Theorem 1.1. Let γ0(x) be a planar curve satisfying (1.3)–(1.6). Then there exist a
family of smooth planar curves γ(x, t) : R× [0,∞) → R2 satisfying (SS). Moreover, there
exist sequences {tj}∞j=1 and {pj}∞j=1 and a smooth curve γ̂ : R → R2 such that γ(·, tj)− pj
converges to γ̂(·) as tj → ∞ up to a reparametrization. The curve γ̂ satisfies E(γ̂) < ∞
and the curvature κ̂ is a solution of

2∂2s κ̂+ κ̂3 − λ2κ̂ = 0.

Generally, in order to prove a long time existence of a steepest descent flow for a
functional, we have to make use of a priori boundedness which proceeds from the func-
tional. Thus the functional must be bounded at least for an initial state. However our
functional E is unbounded, because we consider planar curves with infinite length. This
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is a difficulty of our problem. One of the contribution of Theorem 1.1 is to prove a long
time existence of the steepest descent flow for the unbounded functional E. In order to
overcome the difficulty we mentioned above, we construct the solution of (SS) by making
use of Arzelà-Ascoli’s theorem. To define a sequence approximating a solution of (SS),
we need to solve a certain compact case with fixed boundary.

Concerning the classification of stationary state, one of the types is a straight line.
This is corresponding to a trivial stationary state. On the other hand, the other one
corresponds to a non-trivial stationary state. We give not only a classification but also
a characterization of them (see Theorem 3.2). Although a dynamical aspect of solution
of (SS) is an open problem, to classify and to characterize the stationary state is an
important step to comprehend the dynamics.

The paper is organized as follows: In Section 2, we prove that, for a non-closed planar
curve with finite length, there exists a unique long time classical solution of (1.2) with
certain boundary conditions. Furthermore we show that the solution converges to a
stationary solution along a sequence of time {tj}j with tj → ∞. In Section 3, we prove (i)
a long time existence of solution of (SS) and a certain asymptotic profile of the solution
as |x| → ∞ (Theorem 3.1), (ii) a subconvergence of the solution to a stationary solution,
(iii) a classification of the stationary solutions (Theorem 3.2), and (iv) a characterization
of a dynamical aspect of the solution of (SS) (Theorem 3.3).

2. Compact case with fixed boundary

Let Γ0(x) : [0, L] → R2 be a smooth planar curve and k0(x) denote the curvature. Let
Γ0(x) satisfy

|Γ0
′(x)| ≡ 1, Γ0(0) = (0, 0), Γ0(L) = (R, 0), k0(0) = k0(L) = 0,(2.1)

where L > 0 and R > 0 are given constants. We consider the following initial boundary
value problem:

∂tγ = (−2∂2sκ− κ3 + λ2κ)ν,

γ(0, t) = (0, 0), γ(L, t) = (R, 0), κ(0, t) = κ(L, t) = 0,

γ(x, 0) = Γ0(x)

(CSS)

The purpose of this section is to prove the following theorem:

Theorem 2.1. Let Γ0 be a smooth planar curve satisfying the condition (2.1). Then there
exists a unique classical solution of (CSS) for any time t > 0.

2.1. Short time existence

First we show a short time existence of solution to (CSS). Let

γ(x, t) = Γ0(x) + d(x, t)ν0(x),(2.2)

where d(x, t) : [0, L] × [0,∞) → R is an unknown scalar function and ν0(x) is the unit
normal vector of Γ0(x), i.e., ν0(x) = RΓ0

′(x) =
(
0 −1
1 0

)
Γ0

′(x). Under the formulation
(2.2), the boundary conditions γ(0, t) = (0, 0) and γ(L, t) = (R, 0) are reduced to

d(0, t) = d(L, t) = 0.(2.3)
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With the aid of Frenet-Serret’s formula Γ0
′′ = k0ν0 and ν0

′ = −k0Γ0
′, we have

∂xγ = (1− k0d)Γ0
′ + ∂xdν0,

R∂xγ = −∂xdΓ0
′ + (1− k0d)ν0,

∂2xγ = (−k0′d− 2k0∂xd)Γ0
′ + (∂2xd+ k0 − k0

2d)ν0,

κ =
∂2xγ ·R∂xγ

|∂xγ|3
=
∂xd(k0

′d+ 2k0∂xd) + (1− k0d)(∂
2
xd+ k0 − k0

2d)

{(1− k0d)2 + (∂xd)2}3/2
.

Thus the condition κ(0, t) = κ(L, t) = 0 implies

∂2xd(0, t) = ∂2xd(L, t) = 0.(2.4)

Let s = s(x, t) denote the arc length parameter of γ(x, t). Since

s(x, t) =

∫ x

0

|∂xγ(x, t)| dx =

∫ x

0

{
(1− k0(x)d(x, t))

2 + (∂xd(x, t))
2
}1/2

dx,

we have

∂s

∂x
:= |γd| =

{
(1− k0(x)d(x, t))

2 + (∂xd(x, t))
2
}1/2

.(2.5)

Combining the relation (2.5) with

∂

∂s
=

∂/∂x

∂s/∂x
,

we obtain

∂

∂s
=

∂x
|γd|

.

Then we see that

∂2sκ =
∂x
|γd|

(
∂x
|γd|

(
∂xd(∂xk0d+ 2k0∂xd) + (1− k0d)(∂

2
xd+ k0 − k0

2d)

|γd|3

))
.

This is reduced to

∂2sκ =
1

|γd|5
∂2xα3 −

7

|γd|6
∂x |γd| ∂xα3 +

{
− 3

|γd|6
∂2x |γd|+

15

|γd|7
(∂x |γd|)2

}
α3,

where

α3 = ∂xd(∂xk0d+ 2k0∂xd) + (1− k0d)(∂
2
xd+ k0 − k0

2d).

Setting

α1 = ∂xk0d+ k0∂xd,

α2 = ∂xd∂
2
xd+ α1(k0d− 1),

α4 = ∂xd∂
3
xd+ (∂2xd)

2 + α1
2 + ∂xα1(k0d− 1),
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we have

∂x |γd| =
α2

|γd|
, ∂2x |γd| = − α2

2

|γd|3
+

α4

|γd|
.

Thus ∂2sκ is written as

∂2sκ =
1

|γd|5
∂2xα3 −

1

|γd|7
(7α2∂xα3 + 3α3α4) +

18

|γd|9
α2

2α3.

Since κ = α3/ |γd|3 and

∂tγ = ∂tdν0,

we have

∂td =

{
− 2

|γd|4
∂2xα3 +

14

|γd|6
α2∂xα3 +

6

|γd|6
α3α4 −

36

|γd|8
α2

2α3 −
α3

3

|γd|8
+
λ2α3

|γd|2

}
1

1− k0d

= − 2

|γd|4
∂4xd+ Φ(d).

Setting A(d) = (−2/ |γd|4)∂4x, the problem (CSS) is written in terms of d as follows:
∂td = A(d)d+ Φ(d),

d(0, t) = d(L, t) = d′′(0, t) = d′′(L, t) = 0,

d(x, 0) = d0(x) = 0.

(2.6)

We find a smooth solution of (2.6) for a short time. To do so, we need to show the operator
A0 := A(d0) is a sectorial operator. Since A0 = −2∂4x, first we consider the boundary
value problem {

∂4xφ+ µφ = f,

φ(0) = φ(L) = φ′′(0) = φ′′(L) = 0,
(2.7)

where µ is a constant. The solution of (2.7) is written as

φ(x) =

∫ L

0

G(x, ξ)f(ξ) dξ,(2.8)

where G(x, ξ) is a Green function given by

G(x, ξ) =


1

(2µ∗)3
(g1(ξ)g2(x) + g3(ξ)g4(x)) for 0 ≤ x ≤ ξ,

1

(2µ∗)3
(g1(x)g2(ξ) + g3(x)g4(ξ)) for ξ < x ≤ L.

(2.9)
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Here the functions g1, g2, g3, g4, and constants K0, K1, K2, µ∗ are given by

g1(ζ) = cosµ∗ζ sinhµ∗ζ − sinµ∗ζ coshµ∗ζ,

g2(ζ) = eµ∗ζ cosµ∗ζ −
K1

K0

cosµ∗ζ sinhµ∗ζ +
K2

K0

sinµ∗ζ coshµ∗ζ,

g3(ζ) = cosµ∗ζ sinhµ∗ζ + sinµ∗ζ coshµ∗ζ,

g4(ζ) = −eµ∗ζ sinµ∗ζ +
K1

K0

sinµ∗ζ coshµ∗ζ +
K2

K0

cosµ∗ζ sinhµ∗ζ,

K0 = 2 cos2 µ∗L sinh2 µ∗L+ 2 sin2 µ∗L cosh2 µ∗L,

K1 =
e2µ∗L − cos 2µ∗L

2
, K2 = −sin 2µ∗L

2
, µ∗ =

µ1/4

√
2
.

By virtue of (2.8) and (2.9), we see that the solution of (2.7) satisfies a priori estimate

∥φ∥W 4
p (0,L)

≤ C ∥f∥Lp(0,L)(2.10)

for any p ≥ 1. Using the a priori estimate (2.10), we show that the operator A0 generates
an analytic semigroup on Lp(0, L). Moreover we can verify that A0 : h4+4θ

B ([0, L]) →
h4θB ([0, L]) is an infinitesimal generator of an analytic semigroup on h4θB ([0, L]), where
0 < θ < 1/4 (for example, see [8]). Here hαB([0, L]) is a little Hölder space with boundary
condition:

hαB([0, L]) =

{
{u ∈ hα([0, L]) | u(0) = u(L) = u′′(0) = u′′(L) = 0} if α > 2,

{u ∈ hα([0, L]) | u(0) = u(L) = 0} if 0 < α < 2.

(2.11)

Since the equation in (2.6) is a fourth order quasilinear parabolic equation, we shall prove
a short time existence of (2.6) as follows. Letting B(d) := A(d)−A0, the system (2.6) is
written as 

∂td = A0d+B(d)d+ Φ(d),

d(0, t) = d(L, t) = d′′(0, t) = d′′(L, t) = 0,

d(x, 0) = d0(x) = 0.

(2.12)

And then, we find a solution of (2.12) for a short time by using contraction mapping
principle. Indeed, making use of the maximal regularity property and continuous inter-
polation spaces, we see that there exists a unique classical solution of (2.12), i.e., (2.6), in
the class C([0, T ];h4+4θ

B ([0, L])) ∩ C1([0, T ];h4θB ([0, L])), where T > 0 is sufficiently small.
And then we obtain the regularity by a standard bootstrap argument (see [8]). Then we
obtain the following:

Lemma 2.1. Let Γ0 be a smooth curve satisfying (2.1). Then there exists a constant
T > 0 such that the problem (2.6) has a unique smooth solution for 0 ≤ t < T .

Lemma 2.1 implies the existence of unique solution of (CSS) for a short time:

Theorem 2.2. Let Γ0(x) be a smooth curve satisfying (2.1). Then there exist a constant
T > 0 and a smooth curve γ(x, t) such that γ(x, t) is a unique classical solution of the
problem (CSS) for 0 ≤ t < T .

6



2.2. Long time existence

Next we shall prove a long time existence of solution to (CSS). Let us set

F λ = 2∂2sκ+ κ3 − λ2κ.

Then the gradient flow (1.2) is written as

∂tγ = −F λν.

Lemma 2.2. Under (1.2), the following commutation rule holds:

∂t∂s = ∂s∂t − κF λ∂s.

Lemma 2.2 gives us the following:

Lemma 2.3. Let γ(x, t) satisfy (1.2). Then the curvature κ(x, t) of γ(x, t) satisfies

∂tκ = −∂2sF λ − κ2F λ(2.13)

= −2∂4sκ− 5κ2∂2sκ+ λ2∂2sκ− 6κ(∂sκ)
2 − κ5 + λ2κ3.

Furthermore, the line element ds of γ(x, t) satisfies

∂tds = κF λds = (2κ∂2sκ+ κ4 − λ2κ2)ds.(2.14)

Here we introduce the following notation for a convenience.

Definition 2.1. ([2]) We use the symbol qr(∂lsκ) for a polynomial with constant coeffi-
cients such that each of its monomials is of the form

N∏
i=1

∂jis κ with 0 ≤ ji ≤ l and N ≥ 1

with

r =
N∑
i=1

(ji + 1).

By virtue of Lemmas 2.2 and 2.3, we have

Lemma 2.4. For any j ∈ N, the following formula holds:

∂t∂
j
sκ = −2∂j+4

s κ− 5κ2∂j+2
s κ+ λ2∂j+2

s κ+ λ2qj+3(∂jsκ) + qj+5(∂j+1
s κ).(2.15)

Proof. The case j = 0 in (2.15) has been already proved in Lemma 2.3, where q5(∂sκ) =
−6κ(∂sκ)

2 − κ5 and q3(κ) = κ3. Next suppose that the formula (2.15) holds for j − 1.
Then we have

∂t∂
j
sκ = ∂s∂t∂

j−1
s κ− κF λ∂jsκ

= ∂s
{
−2∂j+3

s κ− 5κ2∂j+1
s κ+ λ2∂j+1

s κ+ λ2qj+2(∂j−1
s κ) + qj+4(∂jsκ)

}
− κ(2∂2sκ+ κ3 − λκ2)∂jsκ

= −2∂j+4
s κ− 5κ2∂j+2

s κ+ λ2∂j+2
s κ+ λ2qj+3(∂jsκ) + qj+5(∂j+1

s κ).
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From the boundary condition of (CSS), we see that the curvature κ satisfies the fol-
lowing:

Lemma 2.5. Let κ(x, t) be the curvature of γ(x, t) satisfying (CSS). Then, for any
m ∈ N, it holds that

∂2ms κ(0, t) = ∂2ms κ(L, t) = 0.(2.16)

Proof. First we show the case where m = 1, 2. Differentiating the boundary condition
γ(0, t) = (0, 0) and γ(L, t) = (R, 0) with respect to t, we have ∂tγ(0, t) = ∂tγ(L, t) = 0.
From κ(0, t) = κ(L, t) = 0 and the equation (1.2), we see that ∂2sκ(0, t) = ∂2sκ(L, t) = 0.
Since ∂tκ(0, t) = ∂tκ(L, t) = 0, the equation (2.13) yields ∂4sκ(0, t) = ∂4sκ(L, t) = 0.

Next, suppose that ∂2ns κ(0, t) = ∂2ns κ(L, t) = 0 holds for any natural numbers 0 ≤ n ≤
m. Lemma 2.4 gives us

∂t∂
2m−2
s κ = −2∂2m+2

s κ− 5κ2∂2ms κ+ λ2∂2ms κ+ λ2q2m+1(∂2m−2
s κ) + q2m+3(∂2m−1

s κ).

Since any monomials of q2m+1(∂2m−2
s κ) and q2m+3(∂2m−1

s κ) contain at least one of the
terms ∂2ls κ (l = 0, 1, 2, · · · , m− 1), we obtain ∂2m+2

s κ(0, t) = ∂2m+2
s κ(L, t) = 0.

Let us define Lp norm with respect to the arc length parameter of γ. For a function
f(s) defined on γ, we write

∥f∥Lp
s
=

{∫
γ

|f(s)|p ds
} 1

p

,

∥f∥L∞
s
= sup

s∈[0,L(γ)]
|f(s)|,

where L(γ) denotes the length of γ.
In the following, we make use of the following interpolation inequalities:

Lemma 2.6. Let γ(x, t) be a solution of (CSS). Let u(x, t) be a function defined on γ
and satisfy

∂2ms u(0, t) = ∂2ms u(L, t) = 0

for any m ∈ N. Then, for integers 0 ≤ p < q < r, it holds that

∥∂qsu∥L2
s
≤ ∥∂psu∥

r−q
r−p

L2
s

∥∂rsu∥
q−p
r−p

L2
s
.(2.17)

Moreover, for integers 0 ≤ p ≤ q < r, it holds that

∥∂qsu∥L∞
s
≤

√
2 ∥∂psu∥

2(r−q)−1
2(r−p)

L2
s

∥∂rsu∥
2(q−p)+1
2(r−p)

L2
s

.(2.18)

Proof. Making use of Lemma 2.5, for any positive integer n, we have

∥∂ns u∥
2
L2
s
=

∫
γ

(∂ns u)
2 ds = −

∫
γ

∂n−1
s u · ∂n+1

s u ds ≤
∥∥∂n−1

s u
∥∥
L2
s

∥∥∂n+1
s u

∥∥
L2
s
.
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This implies that log ∥∂ns u∥L2
s
is convex with respect to n > 0. Thus we obtain the

inequality (2.17).
Next we turn to (2.18). By Lemma 2.5, we see that ∂2ms u(0) = ∂2ms u(L) = 0 for

any m ∈ N. Thus the intermediate theorem implies that there exists at least one point
0 < ξ < L such that ∂2m+1

s u(ξ) = 0 for each m ∈ N. Hence, for each non-negative integer
n, there exists a point 0 < ξ < L such that ∂ns u(ξ) = 0. Then we have

(∂ns u(s))
2 =

∫ s

ξ

{
(∂ns u(τ))

2}′
dτ ≤ 2 ∥∂ns u∥L2

s

∥∥∂n+1
s u

∥∥
L2
s
.

Hence we get

∥∂ns u∥L∞
s
≤

√
2 ∥∂ns u∥

1
2

L2
s

∥∥∂n+1
s u

∥∥ 1
2

L2
s
.(2.19)

Combining (2.17) with (2.19), we obtain (2.18).

By virtue of Lemma 2.5, we are able to apply Lemma 2.6 to κ(x, t) for any n ∈ N.
Making use of boundedness of the energy functional at γ = Γ0, we derive an estimate for
∥κ∥L2

s
:

Lemma 2.7. The following estimate holds:

∥κ∥2L2
s
≤ ∥k0∥2L2(0,L) + λ2 (L(Γ0)−R) .(2.20)

Proof. Since the equation in (CSS) is the steepest descent flow for E(γ) = ∥κ∥2L2
s
+λ2L(γ),

we have

∥κ∥2L2
s
+ λ2L(γ) ≤ ∥k0∥2L2(0,L) + λ2L(Γ0).

Clearly it holds that L(γ) ≥ R. Therefore we obtain (2.20).

In order to use the energy method, we prepare the following:

Lemma 2.8. For any j ∈ N, it holds that

d

dt

∥∥∂jsκ∥∥2

L2
s
= −2

∥∥∂j+2
s κ

∥∥2

L2
s
− 2λ2

∥∥∂j+1
s κ

∥∥2

L2
s

(2.21)

+ λ2
∫
γ

q2j+4(∂jsκ) ds+

∫
γ

q2j+6(∂j+1
s κ).

Proof. By virtue of Lemma 2.4, we have

d

dt

∥∥∂jsκ∥∥2

L2
s
=

∫
γ

2∂jsκ∂t∂
j
sκ ds+

∫
γ

(∂jsκ)
2κF λ ds

=

∫
γ

2∂jsκ
{
−2∂j+4

s κ− 5κ2∂j+2
s κ+ λ2∂j+2

s κ+ λ2qj+3(∂jsκ) + qj+5(∂j+1
s κ)

}
ds

+

∫
γ

κ∂jsκ(2∂
2
sκ+ κ3 − λκ2) ds.

9



By integrating by parts, we get∫
γ

κ2∂jsκ∂
j+2
s κ ds = −

∫
γ

{
2κ∂sκ∂

j
sκ∂

j+1
s κ+ κ2(∂j+1

s κ)2
}
ds.

Consequently we obtain (2.21).

Using Lemmas 2.7 and 2.8, we derive the estimate for the derivative of ∥∂jsκ∥2L2
s
with

respect to t.

Lemma 2.9. For any j ∈ N, we have

d

dt

∥∥∂jsκ∥∥2

L2
s
≤ C ∥κ∥4j+6

L2
s

+ C ∥κ∥4j+10
L2
s

.

Proof. By Lemma 2.8, we shall estimate the right hand side of (2.21). First we focus on
the term

∫
γ
q2j+4(∂jsκ) ds. By Definition 2.1, we have

q2j+4(∂jsκ) =
∑
m

Nm∏
l=1

∂cml
s κ

with all the cml less than or equal to j and

Nm∑
l=1

(cml + 1) = 2j + 4

for every m. Hence we have

∣∣q2j+4(∂jsκ)
∣∣ ≤ ∑

m

Nm∏
l=1

|∂cml
s κ| .

Setting

Qm =
Nm∏
l=1

|∂cml
s κ| ,

it holds that ∫
γ

∣∣q2j+4(∂jsκ)
∣∣ ds ≤ ∑

m

∫
γ

Qm ds.

We now estimate any term Qm by Lemma 2.6. After collecting derivatives of the same
order in Qm, we can write

Qm =

j∏
i=0

∣∣∂isκ∣∣αmi with

j∑
i=0

αmi(i+ 1) = 2j + 4.(2.22)

10



Then ∫
γ

Qm ds =

∫
γ

j∏
i=0

∣∣∂isκ∣∣αmi ds ≤
j∏

i=0

(∫
γ

∣∣∂isκ∣∣αmi ds

)1/λi

≤
j∏

i=0

∥∥∂isκ∥∥αmi

L
αmiλi
s

,

where the value λi are chosen as follows: λi = 0 if αmi = 0 (in this case the corresponding
term is not present in the product) and λi = (2j + 4)/(αmi(i + 1)) if αmi ̸= 0. Clearly,
αmiλi =

2j+4
i+1

≥ 2j+4
j+1

> 2 and by the condition (2.22),

j∑
i=0,λi ̸=0

1

λi
=

j∑
i=0,λi ̸=0

αmi(i+ 1)

2j + 4
= 1.

Let ki = αmiλi − 2. The fact αmiλi > 2 implies ki > 0. Then we have∥∥∂isκ∥∥L
αmiλi
s

=
∥∥∂isκ∥∥ki

L∞
s

∥∥∂isκ∥∥2

L2
s
,∥∥∂isκ∥∥ki

L∞
s
≤ 2

ki
2

∥∥∂j+1
s κ

∥∥ 2i+1
2j+2

ki

L2
s

∥κ∥
2j+1−2i

2j+2
ki

L2
s

,∥∥∂isκ∥∥2

L2
s
≤

∥∥∂j+1
s κ

∥∥ 2i
j+1

L2
s
∥κ∥

2j+2−2i
j+1

L2
s

.

These imply ∥∥∂isκ∥∥L
αmiλi
s

≤ 2
ki
2

∥∥∂j+1
s κ

∥∥σmi

L2
s
∥κ∥1−σmi

L2
s

with

σmi =
i+ 1

2
− 1

αmiλi

j + 1
.

Multiplying together all the estimates,∫
γ

Qm ds ≤
j∏

i=0

2
ki
2

∥∥∂j+1
s κ

∥∥αmiσmi

L2
s

∥κ∥αmi(1−σmi)

L2
s

(2.23)

≤ C
∥∥∂j+1

s κ
∥∥∑j

i=0 αmiσmi

L2
s

∥κ∥
∑j

i=0 αmi(1−σmi)

L2
s

.

Then we compute

j∑
i=0

αmiσmi =

j∑
i=0

αmi(i+
1
2
)− 1

λi

j + 1
=

∑j
i=0 αmi(i+

1
2
)− 1

j + 1

and using again the rescaling condition in (2.22),

j∑
i=0

αmiσmi =

∑j
i=0 αmi(i+ 1)− 1

2

∑j
i=0 αmi − 1

j + 1

=
2j + 4− 1

2

∑j
i=0 αmi − 1

j + 1
=

4j + 6−
∑j

i=0 αmi

2(j + 1)
.

11



Since
j∑

i=0

αmi ≥
j∑

i=0

αmi
i+ 1

j + 1
=

2j + 4

j + 1
,

we get

j∑
i=0

αmiσmi ≤
2j2 + 4j + 1

(j + 1)2
= 2− 1

(j + 1)2
< 2.

Hence, we can apply the Young inequality to the product in the last term of inequality
(2.23), in order to get the exponent 2 on the first quantity, that is,∫

γ

Qm ds ≤
δm
2

∥∥∂j+1
s κ

∥∥2

L2
s
+ Cm ∥κ∥βL2

s
≤ δm

∥∥∂j+1
s κ

∥∥2

L2
s
ds+ Cm ∥κ∥βL2

s
,

for arbitrarily small δm > 0 and some constant Cm > 0. The exponent β is given by

β =

j∑
i=0

αmi(1− σmi)
1

1−
∑j

i=0 αmiσmi

2

=
2
∑j

i=0 αmi(1− σmi)

2−
∑j

i=0 αmiσmi

=
2
∑j

i=0 αmi − 4j+6−
∑j

i=0 αmi

j+1

2− 4j+6−
∑j

i=0 αmi

2(j+1)

= 2
2(j + 1)

∑j
i=0 αmi − 4j − 6 +

∑j
i=0 αmi

4j + 4− 4j − 6 +
∑j

i=0 αmi

= 2
(2j + 3)

∑j
i=0 αmi − 2(2j + 3)∑j
i=0 αmi − 2

= 2(2j + 3).

Therefore we conclude ∫
γ

Qm ds ≤ δm
∥∥∂j+1

s κ
∥∥2

L2
s
+ Cm ∥κ∥4j+6

L2
s

.

Repeating this argument for all the Qm and choosing suitable δm whose sum over m is
less than one, we conclude that there exists a constant C depending only on j ∈ N such
that ∫

γ

q2j+4(∂jsκ) ds ≤
∥∥∂j+1

s κ
∥∥2

L2
s
+ C ∥κ∥4j+6

L2
s

.

Reasoning similarly for the term q2j+6(∂j+1
s κ), we obtain∫

γ

q2j+6(∂j+1
s κ) ds ≤

∥∥∂j+2
s κ

∥∥2

L2
s
+ C ∥κ∥4j+10

L2
s

.

Hence, from (2.21), we get

∂t
∥∥∂jsκ∥∥2

L2
s
= −2

∥∥∂j+2
s κ

∥∥2

L2
s
− 2λ2

∥∥∂j+1
s κ

∥∥2

L2
s

+ λ2
∫
γ

q2j+4(∂jsκ) ds+

∫
γ

q2j+6(∂j+1
s κ)

≤ −λ2
∥∥∂j+1

s κ
∥∥2

L2
s
+ C ∥κ∥4j+6

L2
s

−
∥∥∂j+2

s κ
∥∥2

L2
s
+ Cε ∥κ∥4j+10

L2
s

≤ C ∥κ∥4j+6
L2
s

+ C ∥κ∥4j+10
L2
s

,

where C depends only on j.
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Next we estimate the local length of γ(x, t).

Lemma 2.10. Let γ(x, t) be a solution of (CSS) for 0 ≤ t < T . Then there exist positive
constants C1 and C2 such that the inequalities

1

C1(Γ0, T )
≤ |∂xγ(x, t)| ≤ C1(Γ0, T ),(2.24)

|∂mx |∂xγ(x, t)|| ≤ C2(Γ0, T )(2.25)

hold for any (x, t) ∈ [0, L]× [0, T ] and integer m ≥ 1.

Proof. First we prove (2.24). Since

∂x∂tγ = ∂x
(
−2∂2sκ− κ3 + λ2κ

)
ν +

(
−2∂2sκ− κ3 + λ2κ

)
∂xν,

and ∂xν = |∂xγ| ∂sν = − |∂xγ|κ∂sγ, we have

∂t |∂xγ| =
∂xγ · ∂x∂tγ

|∂xγ|
= −κ

(
−2∂2sκ− κ3 + λ2κ

)
|∂xγ| .(2.26)

Thus |∂xγ| satisfies the initial value problem
du

dt
= F (κ)u,

u(0) = 1,
(2.27)

where

F (κ) = −κ
(
−2∂2sκ− κ3 + λ2κ

)
.

Since Lemmas 2.7 and 2.9 implies that there exists a constant C such that

|F (κ)| ≤ C

for any (x, t) ∈ [0, L]× [0, T ]. Hence, for any (x, t) ∈ [0, L]× [0, T ], we have

e−C1T ≤ |∂xγ(x, t)| ≤ eC1T .

Next we turn to the proof of (2.25). Here we have

∂mx F (κ)− |∂xγ|m ∂ms F (κ) = P (|∂xγ| , · · · , ∂m−1
x |∂xγ| , F (κ), · · · , ∂m−1

s F (κ)).(2.28)

Suppose that there exist constants Cj(T,Γ0) such that

sup
(x,t)∈[0,L]×[0,T ]

∣∣∂jx |∂xγ|∣∣ ≤ Cj(T,Γ0)

for any 0 ≤ j ≤ m− 1. Then (2.28) implies

|∂mx F (κ)| < C.
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Differentiating the equation (2.26) with respect to x, we have

∂t∂
m
x |∂xγ| = F (κ)∂mx |∂xγ|+

m∑
j=1

mCj∂
j
xF (κ)∂

m−j
x |∂xγ| .

Thus ∂mx |∂xγ| satisfies {
∂tv = F (κ)v +G,

v(0) = 0.
(2.29)

We can check that there exists a constant C2(T,Γ0) such that |v| ≤ C2. This gives us the
conclusion of Lemma 2.10.

Then we prove that the system (CSS) has a unique global solution in time.

Theorem 2.3. Let Γ0 be a smooth planar curve satisfying the condition (2.1). Then there
exists a unique classical solution of (CSS) for any time t > 0.

Proof. Suppose not, then there exists a positive constant T̃ such that γ(x, t) does not
extend smoothly beyond T̃ . It follows from Lemmas 2.7 and 2.9 that

∥∂ms κ∥
2
L2
s
≤ ∥∂mx k0∥

2
L2(0,L) + CT̃

holds for any 0 ≤ t ≤ T̃ and m ∈ N. This yields that there exists a constant C such that

∥∂ms γ∥L2
s
≤ C(2.30)

for t ∈ [0, T̃ ]. We have already known

∂mx γ − |∂xγ|m ∂ms γ = P (|∂xγ| , · · · , ∂m−1
x |∂xγ| , γ, · · · , ∂m−1

s γ).(2.31)

By virtue of (2.30), (2.31), and Lemma 2.10, we see that there exists a constant C such
that

∥∂mx γ∥L2(0,L) ≤ C

for any t ∈ [0, T̃ ] and m ∈ N. Then γ(x, t) extends smoothly beyond T̃ by Theorem 2.2.
This is a contradiction. We complete the proof.

2.3. Convergence to a stationary solution

Finally we shall prove that the solution γ(x, t) converges to a stationary solution as
t→ ∞. For this purpose, we rewrite the equation (1.2) in terms of γ as follows:

∂tγ = −2∂4sγ +
(
λ2 − 3

∣∣∂2sγ∣∣2) ∂2sγ − 3∂s

(∣∣∂2sγ∣∣2) ∂sγ.(2.32)

Since the arc length parameter s depends on t, the following rules hold:

∂t∂s = ∂s∂t −Gλ∂s,(2.33)

∂tds = Gλds,(2.34)

where Gλ = ∂s∂tγ · ∂sγ. In previous section, we prove that the initial-boundary value
problem for (2.32) has a unique classical solution γ(x, t) for any t > 0. The solution γ
has the following property:
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Lemma 2.11. Let γ(x, t) be the solution of (CSS). Then, for any positive integer m, it
holds that

∂2ms γ(0, t) = ∂2ms γ(L, t) = 0.(2.35)

Proof. First we prove that the relation

∂ns γ = qn−1(∂n−2
s κ)ν + qn−1(∂n−2

s κ)∂sγ(2.36)

holds for any integers n ≥ 2. Since ∂2sγ = κν, we see that (2.36) holds for n = 2. Suppose
that (2.36) holds for any integers 2 ≤ n ≤ k, where k > 2 is some integer. Then we have

∂k+1
s γ = ∂s{qk−1(∂k−2

s κ)}ν + qk−1
s (∂k−2

s κ)∂sν + ∂s{qk−1(∂k−2
s κ)}∂sγ + qk−1

s (∂k−2
s κ)∂2sγ

=
{
∂s{qk−1(∂k−2

s κ)}+ κqk−1
s (∂k−2

s κ)
}
ν +

{
∂s{qk−1(∂k−2

s κ)} − κqk−1
s (∂k−2

s κ)
}
∂sγ

= qk(∂k−1
s κ)ν + qk(∂k−1

s κ)∂sγ.

This implies (2.36). Then, along the same line as in the proof of Lemma 2.5, we obtain
the conclusion.

By virtue of Lemma 2.11, we can apply Lemma 2.6, i.e., interpolation inequalities, to
∂2sγ. Using the interpolation inequalities, we first prove the following estimate:

Lemma 2.12. There exist positive constants C1 and C2 depending only on λ such that∥∥∂4sγ∥∥L2
s
≤ ∥∂tγ∥L2

s
+ C1

∥∥∂2sγ∥∥5

L2
s
+ C2

∥∥∂2sγ∥∥L2
s
.

Proof. From (2.32), we have

∥∂tγ∥2L2
s
=

∫
γ

∣∣∣−2∂4sγ +
(
λ2 − 3

∣∣∂2sγ∣∣2) ∂2sγ − 3∂s

(∣∣∂2sγ∣∣2) ∂sγ∣∣∣2 ds
≥ 2

∥∥∂4sγ∥∥2

L2
s
− 2

∥∥∥(λ2 − 3
∣∣∂2sγ∣∣2) ∂2sγ∥∥∥2

L2
s

− 2
∥∥∥3∂s (∣∣∂2sγ∣∣2) ∂sγ∥∥∥2

L2
s

.

It follows from interpolation inequalities that∥∥∥(λ2 − 3
∣∣∂2sγ∣∣2) ∂2sγ∥∥∥2

L2
s

≤ 2λ4
∥∥∂2sγ∥∥2

L2
s
+ 18

∥∥∥∣∣∂2sγ∣∣2 ∂2sγ∥∥∥2

L2
s

≤ 2λ4
∥∥∂2sγ∥∥2

L2
s
+ 18

∥∥∂2sγ∥∥4

L∞
s

∥∥∂2sγ∥∥2

L2
s

≤ 2λ4
∥∥∂2sγ∥∥2

L2
s
+ 72

∥∥∂4sγ∥∥L2
s

∥∥∂2sγ∥∥5

L2
s

≤ ε
∥∥∂4sγ∥∥2

L2
s
+ C(1/ε)

∥∥∂2sγ∥∥10

L2
s
+ 2λ4

∥∥∂2sγ∥∥2

L2
s
.

Similarly we have∥∥∥∂s (∣∣∂2sγ∣∣2) ∂sγ∥∥∥2

L2
s

≤ 4
∥∥∂2sγ∥∥2

L∞
s

∥∥∂3sγ∥∥2

L2
s

≤ 4
√
2
∥∥∂4sγ∥∥3/2

L2
s

∥∥∂2sγ∥∥5/2

L2
s
≤ ε

∥∥∂4sγ∥∥2

L2
s
+ C(1/ε)

∥∥∂2sγ∥∥10

L2
s
.
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Letting ε =
1

4
, we obtain

∥∥∂4sγ∥∥2

L2
s
≤ ∥∂tγ∥2L2

s
+ C1

∥∥∂2sγ∥∥10

L2
s
+ C2

∥∥∂2sγ∥∥2

L2
s
.

In order to derive the estimate of ∥∂ns γ∥L2
s
for n ≥ 5, we prepare the following:

Lemma 2.13. For any n ∈ N, it holds that

∂t∂
n
s γ = ∂ns ∂tγ −

n−1∑
j=0

∂js(G
λ∂n−j

s γ).

Using Lemma 2.13, we prove the estimate of ∥∂n+4
s γ∥L2

s
for any n ∈ N:

Lemma 2.14. For any n ∈ N, the following estimate holds:∥∥∂n+4
s γ

∥∥
L2
s
≤ ∥∂ns ∂tγ∥L2

s
+ C

∥∥∂2sγ∥∥2n+5

L2
s

+ C
∥∥∂2sγ∥∥L2

s
.(2.37)

Proof. We have already proved the case n = 0 by Lemma 2.12. Let n ≥ 1 fix arbitrarily.
By (2.32), we have

∥∂ns ∂tγ∥
2
L2
s
=

∥∥∥−2∂n+4
s γ + ∂ns

{(
λ2 − 3

∣∣∂2sγ∣∣2) ∂2sγ}− 3∂ns

{
∂s

(∣∣∂2sγ∣∣2) ∂sγ}∥∥∥2

L2
s

≥ 2
∥∥∂n+4

s γ
∥∥2

L2
s
− 2

∥∥∥∂ns {(λ2 − 3
∣∣∂2sγ∣∣2) ∂2sγ}∥∥∥2

L2
s

− 2
∥∥∥3∂ns {∂s (∣∣∂2sγ∣∣2) ∂sγ}∥∥∥2

L2
s

:= 2
∥∥∂n+4

s γ
∥∥2

L2
s
− 2I1 − 2I2.

Concerning I1, first we have∥∥∂ns ∂2sγ∥∥2

L2
s
≤ C

∥∥∂n+4
s γ

∥∥ 2n
n+2

L2
s

∥∥∂2sγ∥∥ 4
n+2

L2
s

≤ ε
∥∥∂n+4

s γ
∥∥2

L2
s
+ C

∥∥∂2sγ∥∥2

L2
s
.

Furthermore since

∂ns

(∣∣∂2sγ∣∣2 ∂2sγ) = 2
n∑

j=0

nCj∂
n−j+2
s γ

j∑
k=0

jCk∂
k+2
s γ · ∂j−k+2

s γ,

it follows from interpolation inequalities that

∥∥∥∂ns (∣∣∂2sγ∣∣2 ∂2sγ)∥∥∥2

L2
s

≤ C

n∑
j=0

j∑
k=0

∥∥∂n−j+2
s γ(∂k+2

s γ · ∂j−k+2
s γ)

∥∥2

L2
s

≤ C
n∑

j=0

j∑
k=0

∥∥∂n−j+2
s γ

∥∥2

L2
s

∥∥∂k+2
s γ

∥∥2

L∞
s

∥∥∂j−k+2
s γ

∥∥2

L∞
s

≤ C
∥∥∂n+4

s γ
∥∥ 2n+2

n+2

L2
s

∥∥∂2sγ∥∥ 4n+10
n+2

L2
s

≤ ε
∥∥∂n+4

s γ
∥∥2

L2
s
+ C

∥∥∂2sγ∥∥4n+10

L2
s

.
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Thus we have

I1 ≤ (λ2 + 1)ε
∥∥∂n+4

s γ
∥∥2

L2
s
+ C

∥∥∂2sγ∥∥4n+10

L2
s

+ C
∥∥∂2sγ∥∥2

L2
s
.

Next we estimate I2. Since

∂ns

{
∂s

(∣∣∂2sγ∣∣2) ∂sγ} = 2
n∑

j=0

nCj∂
n−j+1
s γ

j∑
k=0

jCk∂
k+2
s γ · ∂j−k+3

s γ,

we obtain

I2 ≤ C
n∑

j=0

j∑
k=j

∥∥∂n−j+1
s γ(∂k+2

s γ · ∂j−k+3
s γ)

∥∥2

L2
s

≤ C
n∑

j=0

j∑
k=j

∥∥∂n−j+1
s γ

∥∥2

L2
s

∥∥∂k+2
s γ

∥∥2

L∞
s

∥∥∂j−k+3
s γ

∥∥2

L∞
s

≤ C
∥∥∂n+4

s γ
∥∥ 2n+2

n+2

L2
s

∥∥∂2sγ∥∥ 4n+10
n+2

L2
s

≤ ε
∥∥∂n+4

s γ
∥∥2

L2
s
+ C

∥∥∂2sγ∥∥4n+10

L2
s

.

Letting ε > 0 sufficiently small, we complete the proof.

By virtue of Lemma 2.13, we show that ∂tγ satisfies the similar property to Lemma
2.11.

Lemma 2.15. Let γ(x, t) be a solution of (CSS). Then it holds that

∂2ms ∂tγ(0, t) = ∂2ms ∂tγ(L, t) = 0(2.38)

for any non-negative integer m.

Proof. By virtue of Lemma 2.13, we have already known that

∂t∂
n
s γ = ∂ns ∂tγ −

n−1∑
j=0

∂js(G
λ∂n−j

s γ),(2.39)

where

Gλ = ∂2s

(∣∣∂2sγ∣∣2)− 2
∣∣∂3sγ∣∣2 + (

3
∣∣∂2sγ∣∣2 − λ2

) ∣∣∂2sγ∣∣2(2.40)

= ∂2sγ · ∂4sγ +
(
3
∣∣∂2sγ∣∣2 − λ2

) ∣∣∂2sγ∣∣2 .
Moreover Lemma 2.5 gives us

∂t∂
2m
s γ(0, t) = ∂t∂

2m
s γ(L, t) = 0.(2.41)

Since

∂js(G
λ∂n−j

s γ) =

j∑
k=0

jCk∂
k
sG

λ∂2m−k
s γ,
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Lemma 2.13 and (2.40) yield that

∂js(G
λ∂n−j

s γ) = 0(2.42)

at x = 0, L for any t > 0 and non-negative integer j ≤ n. By (2.39), (2.41), and (2.42),
we complete the proof.

By virtue of Lemma 2.15, we are able to apply Lemma 2.6 to ∂tγ.
In the rest of this section, we shall use the notation∫

γ

u · v ds = ⟨u,v⟩ ,

where u and v are functions defined on γ. By way of Lemma 2.15, we obtain the following:

Lemma 2.16. For any n ∈ N, it holds that

∥∂ns ∂tγ∥L2
s
→ 0 as t→ ∞.(2.43)

Proof. To begin with, we have∫ ∞

0

∥∂tγ∥2L2
s
dt = −

∫ ∞

0

∂t

(∫
γ

κ2 ds+ λ2L(γ)
)
dt =

[∫
γ

κ2 ds+ λ2L(γ)
]t=0

t=∞
< +∞.

Next it follows from (2.34) that

∂t ∥∂tγ∥2L2
s
= 2 ⟨∂tγ, ∂t(∂tγ)⟩+

⟨
∂tγ,G

λ∂tγ
⟩
.(2.44)

Making use of (2.32), Lemma 2.13, and the relation ∂tγ · ∂sγ = 0, we obtain

∂tγ · ∂t(∂tγ) =− 2∂t · ∂4sγ + 2∂tγ ·
3∑

j=0

∂js(G
λ∂4−j

s γ) + (λ2 − 3
∣∣∂2sγ∣∣2)∂tγ · (∂2s∂tγ − 2Gλ∂2sγ)

− 3∂t(
∣∣∂2sγ∣∣2)∂tγ · ∂2sγ − 3∂s(

∣∣∂2sγ∣∣2)∂tγ · ∂s∂tγ.

By integrating by parts, (2.44) is reduced to

∂t ∥∂tγ∥2L2
s
= −4

∥∥∂2s∂tγ∥∥2

L2
s
+ 4

3∑
j=0

⟨
∂tγ, ∂

j
s(G

λ∂4−j
s γ)

⟩(2.45)

− 2
⟨
λ2 − 3

∣∣∂2sγ∣∣2 , |∂s∂tγ|2 − 2|Gλ|2
⟩
+
⟨
6∂t(

∣∣∂2sγ∣∣2) + |∂tγ|2 , Gλ
⟩

:= −4
∥∥∂2s∂tγ∥∥2

L2
s
+ 4I1 − 2I2 + I3.

We shall estimate the right-hand side. First, by Lemmas 2.11, 2.12, and 2.15, we have

|I2| ≤ C(1 +
∥∥∂2sγ∥∥2

L∞
s
) ∥∂s∂tγ∥2L2

s
≤ C(1 +

∥∥∂4sγ∥∥ 1
2

L2
s
) ∥∂tγ∥L2

s

∥∥∂2s∂tγ∥∥L2
s

(2.46)

≤ ε
∥∥∂2s∂tγ∥∥2

L2
s
+ C ∥∂tγ∥2L2

s
(1 + ∥∂tγ∥L2

s
).
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Next we turn to the estimate of I3. Since

∂t(
∣∣∂2sγ∣∣2) = 2∂2sγ · ∂2s∂tγ − 4

∣∣∂2sγ∣∣2Gλ,

we obtain

|I3| ≤ 12
∥∥∂2sγ∥∥L∞

s

∥∥∂2s∂tγ∥∥L2
s
∥∂s∂tγ∥L2

s
+ 24

∥∥∂2sγ∥∥2

L∞
s
∥∂s∂tγ∥2L2

s
(2.47)

+ ∥∂tγ∥L∞
s
∥∂tγ∥L2

s
∥∂s∂tγ∥L2

s

≤ C
∥∥∂4sγ∥∥ 1

4

L2
s
∥∂tγ∥

1
2

L2
s

∥∥∂2s∂tγ∥∥ 3
2

L2
s
+ C

∥∥∂4sγ∥∥ 1
2

L2
s
∥∂tγ∥L2

s

∥∥∂2s∂tγ∥∥L2
s

+
√
2 ∥∂tγ∥

9
4

L2
s

∥∥∂2s∂tγ∥∥ 3
4

L2
s

≤ ε
∥∥∂2s∂tγ∥∥2

L2
s
+ C ∥∂tγ∥2L2

s
(1 + ∥∂tγ∥L2

s
+ ∥∂tγ∥

8
5

L2
s
).

Finally we estimate the term I1. By integrating by parts, I1 is written as follows:

I1 =
2∑

j=0

⟨
(−1)j∂js∂tγ,G

λ∂4−j
s γ

⟩
+
⟨
∂tγ, ∂

3
s (G

λ∂sγ)
⟩
.(2.48)

For j = 0, 1, 2, we have∣∣⟨∂js∂tγ,Gλ∂4−j
s γ

⟩∣∣ ≤ ∥∥∂js∂tγ∥∥L2
s
∥∂s∂tγ∥L2

s

∥∥∂4−j
s γ

∥∥
L∞
s
≤ C

∥∥∂2s∂tγ∥∥ j+1
2

L2
s
∥∂tγ∥

3−j
2

L2
s

∥∥∂4sγ∥∥ 5−2j
4

L2
s

≤ ε
∥∥∂2s∂tγ∥∥2

L2
s
+ C ∥∂tγ∥2L2

s

∥∥∂4sγ∥∥ 5−2j
3−j

L2
s

.

Hence the first term in the right-hand side of (2.48) is estimated as follows:∣∣∣∣∣
2∑

j=0

⟨
(−1)j∂js∂tγ,G

λ∂4−j
s γ

⟩∣∣∣∣∣ ≤ ε
∥∥∂2s∂tγ∥∥2

L2
s
+ C ∥∂tγ∥2L2

s
(1 + ∥∂tγ∥2L2

s
).

Furthermore the equality ∂tγ · ∂sγ = 0 yields that⟨
∂tγ, ∂

3
s (G

λ∂sγ)
⟩
= −3

⟨
∂s∂tγ, ∂sG

λ∂2sγ
⟩
+
⟨
∂tγ,G

λ∂4sγ
⟩
.

Then we obtain∣∣⟨∂s∂tγ, ∂sGλ∂2sγ
⟩∣∣ ≤ ∣∣⟨∂s∂tγ · ∂2sγ, ∂2s∂tγ · ∂sγ + ∂s∂tγ · ∂2sγ

⟩∣∣
≤

∥∥∂2sγ∥∥L∞
s
∥∂s∂tγ∥L2

s

∥∥∂2s∂tγ∥∥L2
s
+
∥∥∂2sγ∥∥2

L∞
s
∥∂s∂tγ∥2L2

s

≤ ε
∥∥∂2s∂tγ∥∥2

L2
s
+ C ∥∂tγ∥2L2

s
(1 + ∥∂tγ∥L2

s
),∣∣⟨∂tγ,Gλ∂4sγ

⟩∣∣ ≤ ∥∂tγ∥L∞
s
∥∂s∂tγ∥L2

s

∥∥∂4sγ∥∥L2
s

≤
√
2
∥∥∂2s∂tγ∥∥ 3

4

L2
s
∥∂tγ∥

5
4

L2
s

∥∥∂4sγ∥∥L2
s
≤ ε

∥∥∂2s∂tγ∥∥2

L2
s
+ C ∥∂tγ∥2L2

s

∥∥∂4sγ∥∥ 8
5

L2
s
.

Hence we see that

|I1| ≤ ε
∥∥∂2s∂tγ∥∥2

L2
s
+ C ∥∂tγ∥2L2

s
(1 + ∥∂tγ∥2L2

s
).(2.49)
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Letting ε > 0 sufficiently small and using (2.45), (2.46), (2.47), and (2.49), we have the
inequality

∂t ∥∂tγ∥2L2
s
≤ −

∥∥∂2s∂tγ∥∥2

L2
s
+ C ∥∂tγ∥2L2

s
(1 + ∥∂tγ∥2L2

s
).(2.50)

This implies that ∥∂tγ∥L2
s
→ 0 as t→ +∞. In particular, ∥∂tγ∥L2

s
is bonded for any t > 0.

Then (2.50) is reduced to

∂t ∥∂tγ∥2L2
s
≤ −

∥∥∂2s∂tγ∥∥2

L2
s
+ C ∥∂tγ∥2L2

s
.(2.51)

Integrating (2.51) on [0,∞), we obtain∫ ∞

0

∥∥∂2s∂tγ∥∥2

L2
s
dt ≤ −

∫ ∞

0

∂t ∥∂tγ∥2L2
s
dt+ C

∫ ∞

0

∥∂tγ∥2L2
s
dt <∞.(2.52)

Next, suppose that∫ ∞

0

∥∥∂js∂tγ∥∥2

L2
s
dt <∞,

∥∥∂j−2
s ∂tγ

∥∥
L2
s
→ 0 as t→ ∞

hold for 2 ≤ j ≤ 2m, where m ≥ 1. From the assumption, we see that ∥∂ns γ∥L2
s
is bounded

for any t > 0 and 2 ≤ n ≤ 2m+ 2. Since

∂t
∥∥∂2ms ∂tγ

∥∥2

L2
s
=

⟨
2∂2ms ∂tγ, ∂t∂

2m
s ∂tγ

⟩
+
⟨
∂2ms ∂tγ,G

λ∂2m2 ∂tγ
⟩

= 2
⟨
∂4ms ∂tγ, ∂t∂tγ

⟩
− 2

⟨
∂2ms ∂tγ,

2m−1∑
j=0

∂js(G
λ∂2m−j

s ∂tγ)

⟩
+
⟨
∂2ms ∂tγ,G

λ∂2ms ∂tγ
⟩

:= 2I1 + 2I2 + I3,

it is sufficient to estimate the terms I1, I2, and I3. Since G
λ = ∂s∂tγ · ∂sγ, it is clear that

|I3| ≤ C
∥∥∂2ms ∂tγ

∥∥2

L2
s
.(2.53)

Concerning I2, for k = 0, 1, · · · , 2m− 1, we have∣∣⟨∂2ms ∂tγ, ∂
k
sG

λ∂2m−k
s ∂tγ

⟩∣∣ ≤ C
∥∥∂2ms ∂tγ

∥∥
L2
s

2m−1∑
l=m

∥∥∂ls∂tγ∥∥L2
s
≤

∥∥∂2ms ∂tγ
∥∥2

L2
s
+ C

2m−2∑
l=m

∥∥∂ls∂tγ∥∥2

L2
s
.

Hence we obtain

|I2| ≤
∥∥∂2ms ∂tγ

∥∥2

L2
s
+ C

2m−2∑
l=m

∥∥∂ls∂tγ∥∥2

L2
s
.(2.54)

Concerning the term I1, using (2.32) and integrating by parts, I1 is reduced to

I1 = −2
∥∥∂2m+2

s ∂tγ
∥∥2

L2
s
+ 2

⟨
∂4ms ∂tγ,

3∑
j=0

∂js(G
λ∂4−j

s ∂tγ)

⟩
+ 3

⟨
∂4m+1
s ∂tγ, ∂t(

∣∣∂2sγ∣∣2)∂sγ⟩
−
⟨
∂4m+1
s ∂tγ, (λ

2 − 3
∣∣∂2sγ∣∣2)∂s∂tγ⟩−

⟨
∂4ms ∂tγ, (λ

2 − 3
∣∣∂2sγ∣∣2) 1∑

j=0

∂js(G
λ∂2−j

s γ)

⟩
+ 6

⟨
∂4ms ∂tγ, ∂s(

∣∣∂2sγ∣∣2)Gλ∂sγ
⟩

:= −2
∥∥∂2m+2

s ∂tγ
∥∥2

L2
s
+ 2I11 + 3I12 − I13 − I14 + 6I15.
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First we estimate I12. Since

∂t(
∣∣∂2sγ∣∣2) = 2∂2s∂tγ · ∂2sγ + 4Gλ

∣∣∂2sγ∣∣2 ,
we have

|I12| ≤ 2
∣∣⟨∂4m+1

s ∂tγ, ∂
2
s∂tγ · ∂2sγ

⟩∣∣+ 4
∣∣∣⟨∂4m+1

s ∂tγ,G
λ
∣∣∂2sγ∣∣2⟩∣∣∣

= 2
∣∣⟨∂2m+2

s ∂tγ, ∂
2m−1
s (∂2s∂tγ · ∂2sγ)

⟩∣∣+ 4
∣∣∣⟨∂2m+2

s ∂tγ, ∂
2m−1
s (Gλ

∣∣∂2sγ∣∣2)⟩∣∣∣
≤ C

∥∥∂2m+2
s ∂tγ

∥∥
L2
s

2m+1∑
j=1

∥∥∂js∂tγ∥∥L2
s

≤ ε
∥∥∂2m+2

s ∂tγ
∥∥2

L2
s
+ C

∥∥∂2ms ∂tγ
∥∥2

L2
s
+ C

2m−2∑
j=1

∥∥∂js∂tγ∥∥2

L2
s
.

Along the same line, we obtain

max{|I13| , |I14| , |I15|} ≤ ε
∥∥∂2m+2

s ∂tγ
∥∥2

L2
s
+ C

∥∥∂2ms ∂tγ
∥∥2

L2
s
+ C

2m−2∑
j=1

∥∥∂js∂tγ∥∥2

L2
s
.

Finally we turn to the estimate of I11. We reduce the term I11 to

I11 = 2
2∑

j=0

⟨
∂4ms ∂tγ, ∂

j
s(G

λ∂4−j
s γ)

⟩
+ 2

⟨
∂4ms ∂tγ, ∂

3
s (G

λ∂sγ)
⟩
:= 2J1 + 2J2.

Moreover, by virtue of the relation ∂s∂tγ · ∂sγ = 0, J2 is reduced to

J2 =
⟨
∂tγ, ∂

4m+3
s (Gλ∂sγ)

⟩
=

⟨
∂tγ, ∂

4m+3
s (Gλ∂sγ)− ∂4m+3

s Gλ∂sγ
⟩

=
⟨
∂2m+2
s ∂tγ, ∂

2m+1
s (Gλ∂sγ)

⟩
−
⟨
∂tγ, ∂

4m+3
s Gλ∂sγ

⟩
:= J21 − J22.

Since

J21 =
⟨
∂2m+2
s ∂tγ, ∂

2m+1
s Gλ∂sγ

⟩
+

2m∑
j=0

⟨
∂2m+2
s ∂tγ, ∂

j
sG

λ∂2m+1−j
s γ

⟩
,

and

J22 =
⟨
∂2m+2
s (∂tγ · ∂sγ), ∂2m+1

s Gλ
⟩

=
⟨
∂2m+2
s ∂tγ, ∂

2m+1
s (Gλ∂sγ)

⟩
+

2m+1∑
j=0

⟨
∂js∂tγ, ∂

2m+1
s Gλ∂2m+3−j

s γ
⟩
,

J2 is written as follows:

J2 =
2m∑
j=0

⟨
∂2m+2
s ∂tγ, ∂

j
sG

λ∂2m+1−j
s γ

⟩
−

2m+1∑
j=0

⟨
∂js∂tγ, ∂

2m+1
s Gλ∂2m+3−j

s γ
⟩
:= K1 +K2.
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Here we have

|K1| ≤ C
∥∥∂2m+2

s ∂tγ
∥∥
L2
s

2m+1∑
j=0

∥∥∂js∂tγ∥∥L2
s

≤ ε
∥∥∂2m+2

s ∂tγ
∥∥2

L2
s
+ C

∥∥∂2ms ∂tγ
∥∥2

L2
s
+ C

2m−2∑
j=0

∥∥∂js∂tγ∥∥2

L2
s
,

and

|K2| ≤
2m+1∑
j=0

∣∣⟨∂js∂tγ · ∂2m+3−j
s γ, ∂2m+1

s (∂s∂tγ · ∂sγ)
⟩∣∣

≤ C
2m+1∑
j=1

∥∥∂js∂tγ∥∥L2
s
·
2m+2∑
k=1

∥∥∂ks ∂tγ∥∥L2
s

≤ ε
∥∥∂2m+2

s ∂tγ
∥∥2

L2
s
+ C

∥∥∂2ms ∂tγ
∥∥2

L2
s
+ C

2m−2∑
l=0

∥∥∂ls∂tγ∥∥2

L2
s
.

Hence we obtain

|J2| ≤ ε
∥∥∂2m+2

s ∂tγ
∥∥2

L2
s
+ C

∥∥∂2ms ∂tγ
∥∥2

L2
s
+ C

2m−2∑
l=0

∥∥∂ls∂tγ∥∥2

L2
s
.(2.55)

Along the same line, we get

|J1| ≤ ε
∥∥∂2m+2

s ∂tγ
∥∥2

L2
s
+ C

∥∥∂2ms ∂tγ
∥∥2

L2
s
+ C

2m−2∑
l=0

∥∥∂ls∂tγ∥∥2

L2
s
.(2.56)

The estimates (2.55) and (2.56) imply

|I11| ≤ ε
∥∥∂2m+2

s ∂tγ
∥∥2

L2
s
+ C

∥∥∂2ms ∂tγ
∥∥2

L2
s
+ C

2m−2∑
l=0

∥∥∂ls∂tγ∥∥2

L2
s
.(2.57)

Therefore, letting ε > 0 sufficiently small, we see that

∂t
∥∥∂2ms ∂tγ

∥∥2

L2
s
≤ −

∥∥∂2m+2
s ∂tγ

∥∥2

L2
s
+ C

∥∥∂2ms ∂tγ
∥∥2

L2
s
+ C

2m−2∑
l=0

∥∥∂ls∂tγ∥∥2

L2
s
.(2.58)

Integrating (2.58) with respect to t on [0,∞), we have∫ ∞

0

∥∥∂2m+2
s ∂tγ

∥∥2

L2
s
dt <∞.

This completes the proof.

Making use of Lemmas 2.12, 2.14, and 2.16, we prove the following:
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Theorem 2.4. Let γ be a solution of (CSS). Then there exist a sequence {ti}∞i=0 with
ti → ∞ and a planar curve γ̂ such that γ(·, ti) converges to γ̂(·) up to a reparametrization
in the C∞ topology as ti → ∞ . Moreover γ̂ is a stationary solution of (CSS).

Proof. Since it holds that

R ≤ L(γ(·, t)) ≤ 1

λ2

{∫ L

0

k20 dx−
∫
γ

κ2 ds

}
+ L(γ0) < C,

we reparameterize γ by its arc length, i.e., γ = γ(s, t). By virtue of Lemmas 2.12, 2.14,
and 2.16, we see that

∥∂ns γ(·, t)∥L2
s
<∞(2.59)

for any integers n ≥ 2. From Lemma 2.6, the inequality (2.59) yields

∥∂ns γ(·, t)∥L∞
s
<∞.

Thus ∂ns κ is uniformly bounded with respect to t for any non-negative integers n. Fur-
thermore it follows from (2.59) that

|∂ns κ(s1, t)− ∂ns κ(s2, t)| ≤
∣∣∣∣∫ s1

s2

∂n+1
s κ(s, t) ds

∣∣∣∣ ≤ C |s1 − s2| ,

for each n ∈ N, where the constant C is independent of t. Thus ∂ns κ is equi-continuous with
respect to t. Thus, there exist a sequence {t1,j}∞j=1 and κ̂(x) such that κ(·, t1,j) uniformly
converges to κ̂(·) as t1,j → ∞. Similarly, for each n ∈ N, there exists a subsequence
{tn,j}∞j=1 ⊂ {tn−1,j}∞j=1 such that ∂ns κ(·, t) uniformly converges to ∂n· κ̂(·) as tn,j → ∞. By
virtue of the diagonal method, we see that there exist a sequence {ti}∞i=1 and a function
κ̂(·) such that κ(·, ti) converges to κ̂(·) in the C∞ topology. Since γ(·, t) is fixed at the
boundary, a curve γ̂ with curvature κ̂ is uniquely determined. Moreover, by Lemma 2.16,
∂tγ(·, t) uniformly converges to 0 as t→ ∞. Therefore the curve γ̂ is a stationary solution
of (CSS).

3. Non compact case

Let γ0(x) = (ϕ0(x), ψ0(x)) : R → R2 be a smooth curve, and κ0 denote the curvature.
Let γ0(x) satisfy the following conditions:

|γ0′(x)| ≡ 1(A1)

∂mx κ0 ∈ L2(R) for all m ≥ 0,(A2)

lim
x→∞

ϕ0(x) = ∞, lim
x→−∞

ϕ0(x) = −∞, lim
|x|→∞

ϕ′
0(x) = 1,(A3)

ψ0(x) = O(x−α) for some α >
1

2
as |x| → ∞, ψ′

0 ∈ L2(R).(A4)

The definition of γ0 and (A1) imply that γ0 has infinite length. From (A2), we see that γ0
approaches a straight line as |x| → ∞. Furthermore (A3) and (A4) yield that the straight
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line is given by the axis. Indeed, by (A2) and (A3), for sufficiently small ρ > 0, there
exists a constant M > 0 such that

sup
|x|∈(M,∞)

||ϕ′
0(x)| − 1| < ρ, sup

|x|∈(M,∞)

|ψ0(x)| < ρ, sup
|x|∈(M,∞)

|ψ′
0(x)| < ρ.(3.1)

To begin with, we prove that the shortening-straightening flow starting from γ0 has a
classical solution for any finite time. As the first step, we shall construct an “approximate
solution”. For this purpose, it starts from the definition of a cut-off function ηr(x) ∈
C∞

c (R):

ηr(x) = 1 for any |x| ∈ [0, r − 1],

0 < ηr(x) < 1 for any |x| ∈ (r − 1, r),

ηr(x) = 0 for any |x| ∈ [r,+∞).

Using the cut-off function, we define a curve Γ0,r : [−r, r] → R2 as

Γ0,r(x) = (ϕ0(x), ηr(x)ψ0(x))
∣∣∣
x∈[−r,r]

,

and we consider the following initial-boundary value problem:
∂tγ = (λ2κ− 2∂2sκ− κ3)ν,

γ(−r, t) = (ϕ0(−r), 0), γ(r, t) = (ϕ(r), 0), κ(−r, t) = κ(r, t) = 0,

γ(x, 0) = Γ0,r(x).

(SSr)

We are able to verify that the compatibility condition of (SSr) holds.

Lemma 3.1. Let r > M . Then Γ0,r(x) is smooth and satisfies

Γ0,r(−r) = (ϕ0(−r), 0), Γ0,r(r, 0) = (ϕ0(r), 0), κ0,r(−r) = κ0,r(r) = 0,(3.2)

where κ0,r denotes the curvature of Γ0,r.

Proof. Let r > M . By the definition of ηr, it is clear that Γ0,r is smooth and Γ0,r(−r) =
(ϕ0(−r), 0), Γ0,r(r, 0) = (ϕ0(r), 0) hold. Furthermore, since the curvature κ0,r(x) is written
as

R(ϕ′
0(x), ∂xηr(x)ψ0(x) + ηr(x)ψ

′
0(x)) · (ϕ′′

0(x), ∂
2
xηr(x)ψ0(x) + 2η′r(x)ψ

′
0(x) + ηr(x)ψ

′′
0(x))∣∣Γ′

0,r(x)
∣∣3 ,

we observe that κ0,r(−r) and κ0,r(r) vanish.

Concerning (SSr), we obtain the following:

Lemma 3.2. Let r > M . Then there exists a unique classical solution of (SSr) for any
time t > 0. Moreover, there exists a sequence {ti}∞i=0 with ti → ∞ such that the solution
converges to a stationary solution of (SSr) as ti → ∞ up to a reparametrization.

Proof. Lemma 3.1 and Theorem 2.3 gives us the conclusion.
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In what follows, let γr(x, t) denote the solution of (SSr), and κr(x, t) be the curvature
of γr(x, t). In order to construct a solution of (SS), we apply Arzelà-Ascoli’s theorem to
{γr}r>M . The point is to prove that κr is uniformly bounded with respect to r.

Lemma 3.3. There exists a positive constant C being independent of r such that

sup
r∈(M,∞)

∥κr(t)∥L2
s
< C(3.3)

for any t > 0.

Proof. Let r > M . First recall that the inequality

∥κr∥2L2
s
≤ ∥κ0,r∥2L2

s
+ λ2 {L(Γ0,r)− (ϕ0(r)− ϕ0(−r))}(3.4)

holds. Concerning the first term of the right-hand side of (3.4), it holds that

∥κ0,r∥2L2
s
=

∫ r

−r

|κ0,r(x)|2 |∂xΓ0,r(x)| dx

=

∫ −r+1

−r

|κ0,r(x)|2 |∂xΓ0,r(x)| dx+
∫ r−1

−r+1

|κ0(x)|2 dx+
∫ r

r−1

|κ0,r(x)|2 |∂xΓ0,r(x)| dx

≤ ∥κ0∥2L2(R) +

∫ −r+1

−r

|κ0,r(x)|2 |∂xΓ0,r(x)| dx+
∫ r

r−1

|κ0,r(x)|2 |∂xΓ0,r(x)| dx.

By virtue of Frenet-Serret’s formula, (A1), and (A2), we see that ϕ(m), ψ(m) ∈ L2(R) for
any integer m ≥ 2. Combining the fact with the expression of κ0,r, we see that∫

[−r,−r+1]∪[r−1,r]

|κ0,r(x)|2 |∂xΓ0,r(x)| dx < C,

where the constant C depends only on γ0. This yields that

∥κ0,r∥2L2
s
< ∥κ0∥2L2(R) + C

holds for any r > M .
In order to obtain the conclusion, we turn to a estimate of the second term in the

right-hand side of (3.4). Let us fix b ∈ (M, r − 1) arbitrarily. Then we have

L(Γ0,r)− (ϕ0(r)− ϕ0(−r))(3.5)

= {L1(Γ0,r)− (ϕ0(b)− ϕ0(−b))}+
{
L+

2 (Γ0,r)− (ϕ0(r)− ϕ0(b))
}

+
{
L−

2 (Γ0,r)− (ϕ0(−b)− ϕ0(−r))
}
,

where

L1(Γ0,r) =

∫ b

−b

|∂xΓ0,r(x)| dx = 2b,

L+
2 (Γ0,r) =

∫ r

b

|∂xΓ0,r(x)| dx,

L−
2 (Γ0,r) =

∫ −b

−r

|∂xΓ0,r(x)| dx.
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The first term in the right hand side of (3.5) is bounded independently of r. In the
following, we focus on the second term.

From (3.1), for any r > M , we see that Γ0,r(x) is expressed as a variation of line
in the interval [b, r]. Here we derive a variational formula for L in a general case. Let
Γ(x) : [b, r] → R2 be a straight line. For φ ∈ C∞((−ε0, ε0);C∞[b, r]) with φ(x, 0) ≡ 0 and
φ(r, ε) ≡ 0, we consider a variation

Γ(x, ε) = Γ(x) + φ(x, ε),

where Γ(b, ε) is on the straight line orthogonally intersecting with Γ(x) at x = b for any
ε > 0. Concerning the variation, it holds that

L(Γ(·, ε)) = L(Γ(·)) + d

dε
L(Γ(·, ε))

∣∣
ε=0

ε+
d2

dε2
L(Γ(·, ε))

∣∣
ε=θ

ε2,(3.6)

where |θ| < |ε|. Concerning the first variation, we have

d

dε
L(Γ(·, ε)) =

∫ r

b

{Γ′(x) + φ′(x, ε)} · φ′
ε(x, ε)

|Γ′(x) + φ′(x, ε)|
dx.(3.7)

Integrating by parts and letting ε = 0, (3.7) is reduced to

d

dε
L(Γ(·, ε))

∣∣∣∣
ε=0

=

[
∂xΓ(x)

|∂xΓ(x)|
· φε(x, 0)

]r
b

−
∫ r

b

(
Γ′(x)

|Γ′(x)|

)′

· φε(x, 0) dx = 0.

For Γ(x) is a straight line. Next, concerning the second variation, we have

d2

dε2
L(Γ(·, ε)) =

∫ r

b

{
|φ′

ε(x, ε)|
2

|Γ′(x, ε)|
− (Γ′(x, ε) · φ′

ε(x, ε))
2

|Γ′(x, ε)|3

}
dx.

Here, in particular, we set

Γ(x) = (ϕ0(x), 0), φ(x, ε) =

(
0,

2ε

ε0
ηr(x)ψ0(x)

)
.(3.8)

Since Γ(x, ε0/2) = Γ0,r(x), the relation (3.6) gives us the following:

L+
2 (Γ0,r)− {ϕ0(r)− ϕ0(b)} ≤ ε0

2

2

∫ r

b

|φ′
ε(x, θ)|

2

|Γ′(x, θ)|
dx.(3.9)

Under (3.8), we have |Γ′(x, θ)| > 1− ρ. Thus the right hand side of (3.9) is estimated as
follows: ∫ r

b

|φ′
ε(x, θ)|

2

|Γ′(x, θ)|
dx ≤ C

∫ r

b

{
|ψ0(x)|2 + |ψ′

0(x)|
2
}
dx.

Consequently we see that

L+
2 (Γ0,r)− {ϕ0(r)− ϕ0(b)} ≤ C

∫ ∞

b

{
|ψ0(x)|2 + |ψ′

0(x)|
2
}
dx.(3.10)
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Along the same line as above, we find

L−
2 (Γ0,r)− {ϕ0(−b)− ϕ0(−r)} ≤ C

∫ −b

−∞

{
|ψ0(x)|2 + |ψ′

0(x)|
2
}
dx.(3.11)

Combining the estimates (3.10)-(3.11) with condition (A3), we obtain

sup
r∈(M,∞)

{L(Γ0,r)− {ϕ0(r)− ϕ(−r)}} <∞.

This implies supr∈(M,∞) ∥κr∥L2
s
<∞.

Making use of Lemma 3.3, we obtain a estimate for ∥∂ms κr∥L2
s
:

Lemma 3.4. Let r > M . Then, for any m ∈ N, there exist constants C1 > 0 and C2 > 0
being independent of r such that

sup
r∈(M,∞)

∥∂ms κr(t)∥L2
s
≤ C1 + C2t.

Proof. Let r > M . Along the same line as in the proof of Lemma 2.9, we have

d

dt
∥∂ms κr∥

2
L2
s
≤ C ∥κr∥4m+6

L2
s

+ C ∥κr∥4m+10
L2
s

.

Then, Lemma 3.3 yields that

∥∂ms κr(t)∥
2
L2
s
≤ ∥∂ms κ0,r∥

2
L2
s
+ Ct.

Since ∥∂ms κ0,r∥L2
s
≤ ∥∂mx κ0∥L2(R) + C, we obtain the conclusion.

Next we show estimates on the local length of γr:

Lemma 3.5. Let T > 0 be any positive number. Then there exist positive constants C1

and C2 being independent of r such that the inequalities

1

C1(T, γ0)
≤ |∂xγr(x, t)| ≤ C1(T, γ0),(3.12)

|∂mx |∂xγr(x, t)|| ≤ C2(T, γ0)(3.13)

hold for any (x, t) ∈ [−r, r]× [0, T ] and any integer m > 1.

Proof. First we prove (3.12). Since

∂x∂tγr = ∂x
(
−2∂2sκr − κr

3 + λ2κr
)
νr +

(
−2∂2sκr − κr

3 + λ2κr
)
∂xνr,

and ∂xνr = |∂xγr| ∂sνr = − |∂xγr|κr∂sγr, we have

∂t |∂xγr| =
∂xγr · ∂x∂tγr

|∂xγr|
= −κr

(
−2∂2sκr − κr

3 + λ2κr
)
|∂xγr| .(3.14)
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Thus |∂xγr| satisfies the initial value problem
du

dt
= F (κr)u,

u(0) = 1,
(3.15)

where

F (κr) = −κr
(
−2∂2sκr − κr

3 + λ2κr
)
.

By virtue of Lemmas 2.6 and 3.4, there exists a constant C being independent of r
such that |F (κr)| ≤ C(T, γ0) for any (x, t) ∈ [−r, r] × [0, T ]. Hence, for any (x, t) ∈
[−r, r]× [0, T ], we have

e−CT ≤ |∂xγr(x, t)| ≤ eCT .

Next we turn to the proof of (3.13). Here we have

∂mx F (κr)− |∂xγr|m ∂ms F (κr) = P (|∂xγr| , · · · , ∂m−1
x |∂xγr| , F (κr), · · · , ∂m−1

s F (κr)).
(3.16)

Suppose that there exist constants Cj(T, γ0) being independent of r such that

sup
(x,t)∈[0,r]×[0,T ]

∣∣∂jx |∂xγr|∣∣ ≤ Cj(T, γ0)

holds for any 0 ≤ j ≤ m− 1. Then (3.16) implies

|∂mx F (κr)| < C,

where the constant C is independent of r. Differentiating the equation (3.14) with respect
to x, we have

∂t∂
m
x |∂xγr| = F (κr)∂

m
x |∂xγr|+

m∑
j=1

mCj∂
j
xF (κr)∂

m−j
x |∂xγr| .

Thus ∂mx |∂xγr| is a solution of {
∂tv = F (κr)v +G,

v(0) = 0.
(3.17)

Then we see that there exists a constant C2(T, γ0) being independent of r such that
|v| ≤ C2. This gives us the conclusion of Lemma 3.5.

In order to state our main result precisely, we define the following:

Definition 3.1. Let γ(x) : R → R2 be a planar curve. γ is called proper if lim
|x|→+∞

|γ(x)| =
+∞.
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We are now in a position to prove an existence of a classical solution to{
∂tγ = (−2∂2sκ− κ3 + λ2κ)ν,

γ(x, 0) = γ0(x)

for any finite time:

Theorem 3.1. Let γ0(x) be a proper planar curve satisfying (A1)–(A4). Then there
exist a family of smooth proper planar curves γ(x, t) : R × [0,∞) → R2 satisfying (SS).
Moreover the following holds:

(i) There exists a positive constant K being independent of t such that

max
{
∥∂ns κ(t)∥L2

s
, ∥∂ns κ(t)∥L∞

s

}
< K(3.18)

for any n ∈ N ∪ {0}, where κ denotes the curvature of γ.
(ii) Let e = (0, 1). As |x| → ∞,

γ(x, t) · e → 0, ∂xγ(x, t) · e → 0(3.19)

for any t > 0.

Proof. To begin with, we prove a long time existence of a classical solution of (SS) by
making use of Arzelà-Ascoli’s theorem. Let us fix N > M and T > 0 arbitrarily. First
we show that {γr}r>N is uniformly bounded on [−N,N ] × [0, T ] with respect to r. Let
r − 1 > N . For any (x, t) ∈ [−N,N ]× [0, T ], it holds that

|γr(x, t)| ≤ |γr(x, 0)|+
∫ T

0

|∂tγr(x, τ)| dτ

≤ |γ0(x)|+
∫ T

0

{
2
∥∥∂2sκr(τ)∥∥L∞

s
+ ∥κr(τ)∥3L∞

s
+ λ2 ∥κr(τ)∥L∞

s

}
dτ < C(γ0, N, T, λ)

Since

∂mx γr − |∂xγr|m ∂ms γr = P (|∂xγr| , · · · , ∂m−1
x |∂xγr| , γr, · · · , ∂m−1

s γr),

Lemma 3.5 yields that there exists a positive constant C(N, T, γ0) such that

|∂mx γr(x, t)| ≤ C(N, T, γ0).

Moreover, since ∥∂ms κr∥L2
s
<∞ for any m ∈ N, we have

|∂tγr(x, t)| ≤ C(N, T, γ0).

Next we prove an equi-continuity of {γr}r>N with respect to r. From the uniform
boundedness of {γr}r>N , we have

|γr(x, t)− γr(y, τ)| ≤ |γr(x, t)− γr(y, t)|+ |γr(y, t)− γ(y, τ)|

≤
∫ x

y

|∂xγr(ξ, t)| dξ +
∫ t

τ

|∂tγr(y, ρ)| dρ

≤
∫ x

y

|∂xγr(ξ, t)| dξ +
∫ t

τ

∣∣F λ(y, ρ)
∣∣ dρ ≤ C1 |x− y|+ C2 |t− τ | ,
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where the constants C1 and C2 are independent of r. Similarly we see that

|∂tγr(x, t)− ∂tγr(y, τ)| ≤ C3 |x− y|+ C4 |t− τ | ,
|∂mx γr(x, t)− ∂mx γr(y, τ)| ≤ C5 |x− y|+ C6 |t− τ | ,

wherem is any natural number. Thus the sequence {γr}r>N is equi-continuous. Therefore,
Arzelà-Ascoli’s theorem and a diagonal method imply that there exist a subsequence
{γrj}∞j=1 and a family of smooth planar curves γ defined on [−N,N ]× [0, T ] such that

sup
(x,t)∈[−N,N ]×[0,T ]

∣∣∂mx γrj(x, t)− ∂mx γ(x, t)
∣∣ → 0,

sup
(x,t)∈[−N,N ]×[0,T ]

∣∣∂tγrj(x, t)− ∂tγ(x, t)
∣∣ → 0,

as j → ∞. Since γrj satisfies (SSrj) for any j, we see that γ satisfies (SS) on [−N,N ] ×
[0, T ].

We can verify that γ is defined on R × [0,∞). Indeed, let {Rj}∞j=1 be a sequence
with Rj > M and Rj → ∞ as j → ∞. Set Qj = (−Rj, Rj) × [0, Rj). Then there
exist a subsequence {γr1j}∞j=1 ⊂ {γr}r>R1 and a planar curve γ defined on Q1 such that
γr1j → γ as j → ∞. Moreover γ satisfies (SS) on Q1. Next, for {γr1j}r1j>R2 , there exists
a subsequence {γr2j}∞j=1 ⊂ {γr1j}r1j>R2 such that γr2j → γ in Q2 as j → ∞. Similarly
we observe that, for any m ∈ N, there exists a subsequence {γrmj

}∞j=1 ⊂ {γrm−1j
}rm−1j>Rm

such that γrmj
→ γ in Qm as j → ∞. Letting {γrnn}∞n=1, we see that γ is defined on

R× [0,∞) and satisfies (SS) on (−R,R)× [0, R) for any R > M .
Next we shall prove that γ(x, t) is a smooth proper curve for any t > 0. Let R > M

fix arbitrarily and define a strip domain as follows:

S(R) := {(x1, x2) | −R ≤ x1 ≤ R}.(3.20)

Then there exists r > R such that

−ϕ0(−r) < −R < R < ϕ0(r).(3.21)

For such r > R, we observe that

H1(γr(t) ∩ S(R)) ≥ 2R.(3.22)

For the curve γr is fixed at the both (ϕ0(−r), 0) and (ϕ0(r), 0). Since γr(x, t) converges
to γ(x, t) smoothly along a sequence {rj}j, the inequality (3.22) implies that

H1(γ(t) ∩ S(R)) ≥ 2R(3.23)

for any R > 0.
Next we turn to the estimate (3.18). By virtue of Lemma 3.3, we see that there exists

a constant C0 > 0 being independent of r and t such that

∥κr(t)∥L2
s
< C0.(3.24)
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The inequality is equivalent to ∥∥∂2sγr(t)∥∥L2
s
< C0.(3.25)

Combining Lemmas 2.12, 2.14, and 2.16 with the inequality (3.25), we observe that there
exists a constant Cn > 0 being independent of r and t such that∥∥∂n+2

s γr(t)
∥∥
L2
s
< Cn,(3.26)

where n is any non-negative integer. The inequality (3.26) yields that

∥∂ns κr(t)∥L2
s
< Cn(3.27)

holds for each non-negative integer n. By using Lemma 2.6, we obtain

max
{∥∥∂n+2

s γr(t)
∥∥
L∞
s
,
∥∥∂n+2

s κr(t)
∥∥
L∞
s

}
< C̃n(3.28)

for each n, where C̃n is independent of r and t. Therefore we obtain (3.18).
Finally we prove (3.19). Let T > 0 fix arbitrarily. First we prove that γ(x, t) · e

converges to 0 as |x| → ∞ for any 0 < t ≤ T , where e = (0, 1). Then, by virtue of Lemma
3.5, we have

d

dt
∥γ(t) · e∥2L2(R) = 2

∫ ∞

−∞
(∂tγ(x, t) · e)(γ(x, t) · e) dx

= 2

∫ ∞

−∞
(∂tγ(x, t) · e) |∂xγ(x, t)|

1
2 · (γ(x, t) · e) |∂xγ(x, t)|−

1
2 dx

≤ 2

{∫
γ

|∂tγ(x, t) · e|2 ds
} 1

2
{∫ ∞

−∞
|ψ(x, t)|2 |∂xγ(x, t)|−1 dx

} 1
2

≤ C ∥∂tγ(t)∥L2
s
∥γ(t) · e∥L2(R) .

Using Lemmas 3.3 and 3.4, we obtain the following:

d

dt
∥γ(t) · e∥2L2(R) ≤ ∥γ(t) · e∥2L2(R) + C,(3.29)

where C depends only on γ0 and T . The inequality (3.29) implies that γ(x, t) · e satisfies

∥γ(t) · e∥2L2(R) ≤
(
∥γ0 · e∥2L2(R) + C

)
eT(3.30)

for any 0 < t ≤ T . Therefore we see that γ(x, t) · e → 0 as |x| → ∞ for any 0 < t ≤ T .
Next we prove a convergence of ∂xγ(x, t) · e as |x| → ∞. Making use of Lemma 3.5, we
have the following:

d

dt
∥∂xγ(t) · e∥2L2(R) = 2

∫ ∞

−∞
(∂x∂tγ(x, t) · e)(∂xγ(x, t) · e) dx

= 2

∫ ∞

−∞
(∂s∂tγ(x, t) · e) |∂xγ(x, t)|

1
2 · (∂xψ(x, t)) |∂xγ(x, t)|

1
2 dx

≤ 2

{∫
γ

|∂s∂tγ(x, t) · e|2 ds
} 1

2
{∫ ∞

−∞
|∂xψ(x, t)|2 |∂xγ(x, t)| dx

} 1
2

≤ C ∥∂s∂tγ(t)∥L2
s
∥∂xγ(t) · e∥L2(R) .

31



Figure 1: An example of a curve whose curvature is given by (3.34).

Along the same line as above, we see that ∂xγ(x, t) · e → 0 as |x| → ∞ for any 0 < t ≤
T .

In the rest of this paper, we prove that the solution of (SS) obtained by Theorem 3.1
converges to a stationary solution as t→ ∞. Moreover we see that the stationary solution
is a line or a borderline elastica (see Figure 1):

Theorem 3.2. Let γ(x, t) : R × [0,∞) → R2 be a solution of (SS) obtained by Theorem
3.1. Then there exist sequences {tj}∞j=1 and {pj}∞j=1 and a smooth proper curve γ̂ : R → R2

such that γ(·, tj)−pj converges to γ̂(·) as tj → ∞ up to a reparametrization. The curvature
κ̂ satisfies

2∂2s κ̂+ κ̂3 − λ2κ̂ = 0(3.31)

and ∫
γ̂

κ̂2 ds <∞.(3.32)

Moreover κ̂ is given by either

κ̂ ≡ 0(3.33)
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or

κ̂(s) =

{
k(s− s0) for s > s0,

k(−s+ s0) for s < s0
(3.34)

for some s0 ∈ R, where k(s) is the solution of eitherdk

ds
= −

√
−k

4

4
+
λ2

2
k2 for s ∈ R,

k(0) =
√
2 |λ|

(3.35)

or dk

ds
=

√
−k

4

4
+
λ2

2
k2 for s ∈ R,

k(0) = −
√
2 |λ| .

(3.36)

Proof. From (3.18), it follows that ∂ns κ(·, t) is uniformly continuous with respect to t.
Furthermore, the fact (3.18) implies that, as |x| → ∞,∣∣∂n+2

s γ(x, t)
∣∣ → 0, |∂ns κ(x, t)| → 0(3.37)

for any t > 0. Then, along the same line as in Section 2.3, we are able to prove that

∥∂ns ∂tγ(t)∥L2
s
→ 0 as t→ ∞.(3.38)

Here we reparametrize γ by its arc length, i.e., γ = γ(s, t). Then, (3.23) implies that
γ(s, t) is defined on [0, L] × [0,∞) for any L ≥ 2R. In the following, let L ≥ 2R fix
arbitrarily. For the curve γ = γ(s, t) : [0, L]× [0,∞) → R2, first we observe that

|γ(s, t)− γ(0, t)| ≤ s ≤ L(3.39)

for any (s, t) ∈ [0, L] × [0,∞). Thus we see that γ(s, t) − γ(0, t) is uniformly bounded
with respect to t. It is easy to check that γ(s, t)− γ(0, t) is equi-continuous with respect
to t. Indeed, since it holds that

|{γ(s1, t)− γ(0, t)} − {γ(s2, t)− γ(0, t)}| ≤ |s1 − s2| ,

if |s1 − s2| < δ, then we have

|{γ(s1, t)− γ(0, t)} − {γ(s2, t)− γ(0, t)}| < ε

for any t > 0. Moreover, with the aid of (3.18), we verify that

|∂ns κ(s1, t)− ∂ns κ(s2, t)| ≤
∫ s1

s2

∣∣∂n+1
s κ(θ, t)

∣∣ dθ < C |s1 − s2| .

Therefore, by virtue of Arzelà-Ascoli’s theorem and a diagonal method, we see that there
exist a sequence {tj}∞j=1, a planar curve γ̂(·), and a function κ̂(·) such that

γ(·, tj)− γ(0, tj) → γ̂(·),(3.40)

∂ns κ(·, tj) → ∂ns κ̂(·)(3.41)
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for all n ∈ N∪{0} as tj → ∞. This implies that the curve γ̂(·) is smooth and there exists
a sequence {pj}∞j=1 ⊂ R2, with pj = γ(0, tj), such that

γ(·, tj)− pj → γ̂(·)

as tj → ∞. Furthermore, it follows from (3.38) and (3.41) that κ̂ satisfies (3.31). Since
γ(s, t) converges to γ̂ along a sequence {tj}∞j=1 on any compact set [0, L], the estimate
(3.23) yields that the limiting curve γ̂ is also a smooth proper curve. Moreover (3.32)
follows from (3.18) letting t→ ∞ along {tj}∞j=1.

Finally we derive a representation formula of κ̂. From (3.31), we obtain(
dκ̂

ds

)2

= − κ̂
4

4
+
λ2

2
κ̂2 + C,(3.42)

where C is an arbitrary constant. A standard theory of ordinary differential equations
yields that the fact (3.32) implies C = 0. Then it is clear that κ̂ ≡ 0 satisfies (3.42). If
κ̂ is non-trivial, then there exists a point s = s0 such that dκ̂/ds vanishes. Therefore we
obtain the conclusion.

Remark 3.1. Along the same line as in the proof of Theorem 3.2, we can also prove
that, for any sequences {tj}j and {pj}j ⊂ R2 with pj ∈ γ(·, tj), there exist a subsequence
{tjk} ⊂ {tj} and a stationary solution γ̂ such that γ(·, tjk) − pjk → γ̂(·) as tjk → ∞.
Indeed, the claim is proved by applying our argument to γ(·, tj).

We define an index of γ as follows:

i(γ) =

∫
γ

κ ds.

Regarding the index i(γ), we prove that i(γ) is invariant under the shortening-straightening
flow for any finite time.

Lemma 3.6. Let γ(x, t) be a solution of (SS). Then i(γ) is invariant for any finite time
t > 0.

Proof. By virtue of Lemma 2.3, we observe that

d

dt
i(γ) =

∫
γ

κt ds+

∫
γ

κ ∂tds

= −
∫
γ

∂2sF
λ ds = −

[
∂sF

λ
]∞
−∞ = −

[
2∂3sκ+ 3κ2∂sκ− λ2∂sκ

]∞
−∞ .

Since Lemma 3.4 yields that ∫
γ

(∂ms κ)
2 ds <∞

for any m ∈ N and finite time t > 0, we see that, as |x| → ∞,

∂sF
λ → 0.
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With the aid of Lemma 3.6 and Remark 3.1, we can characterize a dynamical aspect
of γ starting from γ0 with i(γ0) ̸= 0.

Theorem 3.3. Let γ0 : R → R2 be a smooth planar curve satisfying (A1)–(A4). Let
γ : R × [0,∞) → R2 be a solution of (SS) obtained by Theorem 3.1. If i(γ0) ̸= 0, then
there exists at least one sequence {tj}j with tj → ∞ such that γ(·, tj) converges to a
borderline elastica as tj → ∞.

Proof. Let {tj}j be an arbitral sequence with tj → ∞. If i(γ0) ̸= 0, then Lemma 3.6
implies that γ(·, t) always contains at least one loop part l(γ(t)). Let us define a sequence
{pj}j ⊂ R2 as

pj ∈ l(γ(tj))(3.43)

for each j ∈ N. Then, as we stated in Remark 3.1, there exist a subsequence {tjk} ⊂ {tj}
and a stationary solution γ̂ such that γ(·, tjk)−pjk → γ̂(·) as tjk → ∞. By virtue of (3.43),
the curve γ̂ can not be a straight line. Therefore Theorem 3.2 gives us the conclusion.
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