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1. Introduction

The study of both existence and uniqueness of large solutions for nonlinear
partial differential equations with absorption goes back to the pioneering papers
by Keller ([25]) and Osserman ([32]). Starting from there a huge literature has
been devoted to the study of such a problems in particular for their connection
to several branches of mathematics as Differential Geometry, Probability, and
Control Theory (see for instance [31, 19, 27, 26]).

From the mathematical point of view the main idea is that, roughly, the
existence of solutions (to a certain PDE) that blow up on the boundary of a
domain is strictly related to the absorption role played by suitable lower order
terms. Far to provide a complete list of references we refer to [18, 34, 33, 22,
17, 39, 21, 29, 30, 36] and references therein for a review on the subject. To be
a bit more precise, let Ω be a bounded domain of RN with Lipschitz boundary.
The existence of a large solution for problem{

∆pu = uq in Ω,

u = +∞ on ∂Ω,
(1.1)

can be proved provided q > p− 1 (see for instance [18]).
For a general increasing and continuous nonlinearity f , with f(0) = 0, prob-

lem {
∆pu = f(u) in Ω,

u = +∞ on ∂Ω,
(1.2)

has a solution if and only f satisfies the so-called Keller-Osserman condition;∫ ∞
1

1

F (s)
1
p

ds < +∞ , (1.3)

with F (s) =
∫ s

0
f(t) dt.

In this paper we deal with both existence and uniqueness of solutions to the
1-Laplace problem with absorption

∆1u := div

(
Du

|Du|

)
= f(u) in Ω

u = +∞ on ∂Ω

(1.4)

under different conditions on both f and Ω. The study of problems involving 1-
Laplace type operators arises, for instance, in the study of image restoration as
well as in some optimal design problems in the theory of torsion (see for instance
[24, 40, 8] and references therein for a review on the main applications). A
systematic mathematical study of this type of problems began with the works
[5, 6] and a comprehensive treatment of the 1-Laplace diffusive term can be
found in the monograph [8].

2



We will call our solutions Large Solutions in order to be consistent with the
existing literature, though, as we will see, the boundary condition u = +∞
should be understood in a very weak sense (see also Remark 3.2 later). In
fact, as we will see, depending on the assumptions (to be specified later) on f
and Ω, very different situations occur: large solutions turn out to be, in many
cases, globally bounded and they can be regarded as maximal solutions for the
equation in (1.4). Anyway, depending, respectively, on the boundary regularity
of Ω and on the behavior of f , then the value +∞ can be attained at some
points (Remark 4.1) of ∂Ω or maximality can be lost (Remark 4.3). We want
to stress that this range of phenomena is intrinsic to the 1-Laplacian operator.
In fact, as first observed in Osher and Sethian’s celebrated paper [38] (see also
the monograph [37]), the 1-Laplacian operator is closely related to the mean
curvature operator in the following way: consider the surface given by the level
set {u(x) = k}; then its unit normal is formally given by n(x) = Du

|Du| . Therefore,

the mean curvature of the surface at the point x is formally given by

H(x) = div(n)(x) = div

(
Du

|Du|

)
(x);

i.e. the 1-Laplacian operator. This relationship clearly shows that the behavior
at the boundary ∂Ω of the solutions to (1.4) might depend on the mean curvature
of the boundary itself, and in particular, as we will see, on its boundedness.

Though both Neumann and Dirichlet 1-Laplace type problems with absorp-
tion terms have been considered (see for instance [16] and references therein)
we want to stress that, as a by-product of our arguments, existence and unique-
ness for suitable nonhomogeneous Dirichlet boundary value problems will also
be obtained (see Remark 4.4), some of these, to our knowledge, being missed in
the existing literature.

Let us describe the structure of the paper. After a preliminary section where
we recall some basic definitions and results, and we define the notation we shall
use throughout the paper, in Section 3 we define a notion of solution to (1.4) for
the case of Ω having a Lipschitz boundary and under very general assumptions
on the nonlinearity f . We prove that, if it exists, this type of solution is maximal
among all distributional solutions and, as a consequence, we obtain uniqueness
for such solutions.

In Section 4 we give the existence result for solutions to problem (1.4). The
formal idea is the following one: after the change of variables v = f(u), then,
using the homogeneity of the 1-Laplacian operator, (1.4) formally transforms
into  ∆1v = v in Ω

v = +∞ on ∂Ω
(1.5)

We show that this procedure is correct in case of the domain satisfying a uniform
interior ball condition or being a convex body.

Existence and uniqueness of solutions to (1.5) can be immediately derived
from the recent work [36], where the main issue is the study of both existence
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and uniqueness of large solutions for parabolic problems without lower order
absorption terms whose model is

ut = ∆pu in QT ,

u = u0 on {0} × Ω,

u = +∞ on (0, T )× ∂Ω,

(1.6)

where u0 ∈ L1
loc(Ω) is a nonnegative function and Ω is a bounded open subset

of RN with smooth boundary and 1 ≤ p < 2. In this case, the näıve idea is
that, clearly, the term ut plays itself an absorption role of growth of order1 and
this allows to avoid, for instance, the interior blow up of the approximating
solutions, at least, for small p.

The results about (1.5) allow us to show that (1.4) has a unique solution in
the case of f being an increasing function defined on R with f−1 locally Lipschitz
continuous in ]0,+∞[. This assumption takes the place of the Keller-Osserman
condition for higher growth operators. As a matter of fact, the 1-Laplacian is
singular enough to play an absorption role by itself, thanks to its homogeneity
property. So that, though, as we said, solutions can attain the values +∞ on
the boundary, essentially no assumptions are needed on the behavior of f(s) at
infinity.

Finally, in Section 5 we prove a stability result. Solutions to (1.4), in the
case of Ω being of class C2 and under natural Keller-Osserman type conditions
on f (that will be specified later), can be obtained through a stability procedure
by taking the limit as p→ 1+ in (1.2).

Summarizing, the different hypotheses on f we will use are the following:

(H1). f is increasing.

(H2). f is increasing, with f−1 increasing and locally Lipschitz continuous in
]0,+∞[.

(H3). f is continuous and increasing, f(0) = 0 and it verifies f(s) ≥ csq for some
c, q > 0.

We sum up here the results obtained. The least assumption on the bounded set
Ω is to have a Lipschitz boundary.

• (H1) gives uniqueness of large solutions (Corollary 3.2). It is moreover a
sharp condition (Remark 4.3).

• (H2) is a sufficient condition for existence of solutions in case Ω satisfies
a uniform interior ball condition or it is a convex body (Theorem 4.5).
Therefore, (H2) can be considered as the corresponding Keller-Osserman
condition for p = 1.

• If Ω is a C2 domain, then (H3) is enough to prove that solutions to (1.2)
(which exist for small p’s since (H3) implies (1.3)) converge to the solution
to (1.4) as p→ 1+.
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2. Preliminaires and notations

In this section we collect the main notation and some useful results we will
use in our analysis.

2.1. Functions of bounded variations and some generalizations

Let Ω be an open subset of RN . A function u ∈ L1(Ω) whose gradient Du in
the sense of distributions is a vector valued Radon measure with finite total mass
in Ω is called a function of bounded variation. The class of such functions will
be denoted by BV (Ω) and |Du| will denote the total variation of the measure
Du.

A measurable set E ⊂ RN is said to be of finite perimeter in Ω if χE ∈
BV (Ω). In this case, the perimeter of E in Ω is defined as Per(E,Ω) :=
|DχE |(Ω). We shall use the notation Per(E) := Per(E,RN ). For sets of finite
perimeter E one can define the essential boundary ∂∗E, which is a countably
(N − 1)-rectifiable set with finite HN−1 measure, where HN−1 is the (N − 1)-
dimensional Hausdorff measure. Moreover, the outer unit normal νE(x) exists
at HN−1 almost all points x of ∂∗E. It holds that the measure |DχE | coincides
with the restriction of HN−1 to ∂∗E.

For further information and properties concerning functions of bounded vari-
ation and sets of finite perimeter we refer to [4], [20] or [43].

We consider the following truncature functions. For k > 0, let Tk(s) :=
max(min(−k, s), k). Given any function u and a, b ∈ R we shall use the notation
[u ≥ a] = {x ∈ RN : u(x) ≥ a}, and similarly for the sets [u > a], [u ≤ a],
[u < a], etc., while the symbol u E will indicate the restriction of the function
u to the measurable set E ⊂ RN .

Given a real function f(s), we define its positive part as f+(s) = max(0, f(s)).
For our purposes, we need to consider the function spaces

TBV (Ω) :=
{
u ∈ L1(Ω) : Tk(u) ∈ BV (Ω), ∀ k > 0

}
,

TBVloc(Ω) :=
{
u ∈ L1

loc(Ω) : Tk(u) ∈ BV (Ω), ∀ k > 0
}
,

and to give a sense to the Radon-Nikodym derivative (with respect to the
Lebesgue measure) ∇u of Du for a function u ∈ TBVloc(Ω).

Lemma 2.1. [7, Lemma 1] For every u ∈ TBVloc(Ω) there exists a unique
measurable function v : Ω→ RN such that

∇Tk(u) = vχ[|u|<k] LN − a.e., ∀ k > 0. (2.1)

Thanks to this result we define ∇u for a function u ∈ TBVloc(Ω) as the
unique function v which satisfies (2.1). Obviously, if w ∈ W 1,1

loc (Ω), then the
generalized gradient turns out to coincide with the classical distributional one.
This notation will be used throughout in the sequel.

We denote by P the set of nondecreasing Lipschitz continuous functions
S : [0,+∞[→ R satisfying S′(s) = 0 for |s| large enough. We recall the following
result.
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Lemma 2.2. [7, Lemma 2] If u ∈ TBV (Ω), then S(u) ∈ BV (Ω) for every
S ∈ P. Moreover, ∇S(u) = S′(u)∇u LN -a.e.

2.2. A generalized Green’s formula

We shall need several results from [10] (see also [8]). Let

X(Ω) =
{
z ∈ L∞(Ω;RN ) : div(z) ∈ L1(Ω)

}
If z ∈ X(Ω) and w ∈ BV (Ω) ∩ L∞(Ω) we define the functional (z,Dw) :

C∞0 (Ω)→ R by the formula

〈(z,Dw), ϕ〉 := −
∫

Ω

wϕdiv(z) dx−
∫

Ω

w z · ∇ϕdx. (2.2)

In [10] it is proved that (z,Dw) is a Radon measure in Ω verifying

(z,Dw)(Ω) =

∫
Ω

z · ∇w dx ∀ w ∈W 1,1(Ω) ∩ L∞(Ω).

Moreover, for all w ∈ BV (Ω)∩L∞(Ω), (z,Dw) is absolutely continuous with
respect to the total variation of Dw and it holds,

(z,Dw)(B) =

∫
Ω

θ(z,Dw)|Dw| ≤ ‖z‖∞|Dw|(B), (2.3)

for any Borel set B ⊆ Ω, where θ(z,Dw) is the Radon-Nikodym derivative of
(z,Dw) with respect to |Dw|.

We will use the following result which is derived again from the work in [10].

Lemma 2.3. Let w ∈ BV (Ω) ∩ L∞(Ω) and z ∈ X(Ω). Then,

(a) Coarea formula [10, Proposition 2.7.(ii)]:

(z,Dw)(B) =

∫ ∞
−∞

(z,Dχ[w>λ])(B) dλ , for any Borel set B ⊂ Ω.

(b) Let α be an increasing function. Then, a slight modification of [10, Propo-
sition 2.8] shows that if α(w) ∈ BV (Ω) ∩ L∞(Ω), then

θ(z,D(α(w)))(x) = θ(z,Dw)(x) , |Dw| − a.e. in Ω.

In [10], a weak trace on ∂Ω of the normal component of z ∈ X(Ω), denoted by
[z, ν], is defined. Moreover, the following Green’s formula, relating the function
[z, ν] and the measure (z,Dw), for z ∈ X(Ω) and w ∈ BV (Ω) ∩ L∞(Ω) is
established ∫

Ω

w div(z) dx+ (z,Dw)(Ω) =

∫
∂Ω

[z, ν]w dHN−1. (2.4)
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3. Definition and uniqueness of large solutions

Throughout this section, f is considered to be an increasing function and Ω
is a bounded set in RN with Lipschitz boundary. We give the following definition
of distributional solution to the equation in (1.4) which is the natural extension
to the classical one (see [5, 8, 36] and references therein).

Definition 3.1. We say that u ∈ TBV (Ω) is a distributional solution of

div

(
Du

|Du|

)
= f(u)

if there exists z ∈ X(Ω), with ‖z‖∞ ≤ 1, such that f(u) = divz in D′(Ω) and
(z,DTk(u)) = |DTk(u)| as measures, for any k > 0.

Remark 3.1. Observe that if u ∈ TBV (Ω) is a distributional solution of (1.4)
in the sense of Definition 3.1, then u Ω′ is a distributional solution of (1.4)
for all Ω′ ⊂ Ω with Lipschitz boundary. In fact it suffices to take z′ := z Ω′

since, by the fact that (z,DTk(u)) = |DTk(u)| as measures and (2.3), then
(z,DTk(u))(B) = |DTk(u)|(B) for any Borel set B ⊂ Ω; in particular for B =
Ω′. Then, again by (2.3), (z′, DTk(u) Ω′) = |DTk(u) Ω′ |.

Here is our definition of large solution for problem (1.4).

Definition 3.2. We say that u ∈ TBV (Ω) is a (large) solution to (1.4) if there
exists z ∈ X(Ω), with ‖z‖∞ ≤ 1, such that

f(u) = divz , in D′(Ω) , (3.1)

(z,DTk(u)) = |DTk(u)| , as measures for any k > 0 and (3.2)

[z, ν] = 1 , for a.e. x ∈ ∂Ω (3.3)

Remark 3.2. Let us make some comments about Definition 3.2. First of all,
we note that in case that v ∈ BV (Ω) ∩ L∞(Ω), then, by (2.3), condition (3.2)
is equivalent to

(z,Dv) = |Dv| as measures. (3.4)

Secondly, observe that a large solution is nothing but a distributional solution
verifying the boundary condition (3.3). Observe that, since ‖z‖∞ ≤ 1, then (3.3)
forces the vector field z to be parallel to the outward unit exterior normal to the
boundary and to have its biggest possible magnitude at the boundary. This is
the mild way in which condition “u = +∞” must be understood. Also observe
that solutions to Dirichet problems involving the 1-Laplacian as the diffusion
term do not verify, in general, the boundary condition in a classical trace sense
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(see e.g. [6], [35]). Usually, if the Dirichlet constraint is “u = g at ∂Ω”, with
g ∈ L1(∂Ω), then this condition transforms into

[z, ν] ∈ sign (Tk(g)− Tk(u)) , HN−1 at ∂Ω

for any k > 0, where sign is the multivalued sign function.
We finally note that, for the parabolic case without absorption studied in [36],

the condition at the boundary for a large solution is the same as (3.3). Moreover,
this condition produces solutions to be maximal as the following result shows.

Theorem 3.1. Let f : R→ R be an increasing function. If u is a large solution
of (1.4) and u is a distributional solution of (1.4), then u ≥ u for a.e. x ∈ Ω

Proof. By definition, there exist z, z ∈ X(Ω) such that

f(u) = divz , (3.5)

f(u) = divz. (3.6)

We multiply (3.5) by −(Tk(u)−Tk(u))+, and integrate by parts in Ω. We obtain

−
∫

Ω

(Tk(u)− Tk(u))+f(u)
(3.3)
=

∫
Ω

(z,D(Tk(u)− Tk(u))+)

−
∫
∂Ω

(Tk(u)− Tk(u))+ dHN−1 .

Similarly, ∫
Ω

(Tk(u)− Tk(u))+f(u) = −
∫

Ω

(z,D(Tk(u)− Tk(u))+)

+

∫
∂Ω

[z, ν](Tk(u)− Tk(u))+ dHN−1 .

Adding both equalities we get,∫
Ω

(Tk(u)− Tk(u))+(f(u)− f(u)) = −
∫

Ω

(z − z,D(Tk(u)− Tk(u))+)

−
∫
∂Ω

(1− [z, ν])(Tk(u)− Tk(u))+ dHN−1.

Finally, since in view of estimate (2.3),

(z − z,D(Tk(u)− Tk(u))+)(B) ≥ 0,

for any borel set B ⊆ Ω and using that ‖z‖∞, ‖z‖∞ ≤ 1, we get∫
Ω

(Tk(u)− Tk(u))+(f(u)− f(u)) dx ≤ 0.

Therefore, letting k →∞ and since f is increasing, we obtain the desired result.

Note that, in particular, if we apply Theorem 3.1 to two large solutions we get
the following result:

Corollary 3.2. If f is an increasing function, there exists at most one large
solution of (1.4).
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4. Existence result with a general absorption term

In this section we address to the analysis of (1.4) under different regularity
conditions on the domain Ω.

In order to do that, we first address to the case of f(s) = s; i.e: problem
(1.5). The existence of solutions to (1.5) (and uniqueness in the case of Ω
having a smooth boundary, see Section 4.1) will follow in a quite standard way
from some recent tools available in the literature. On the other hand, if Ω
is a convex body, then the solutions can be explicitly constructed even if the
domain does not satisfy any further regularity condition (i.e. a uniform interior
ball condition).

This permits to obtain existence of solutions to (1.4) under very general
conditions on the absorption term f . Our analysis shows that the sufficient
condition on f in (1.4) for obtaining a solution is that f is increasing in R and
f−1 is increasing and Lipschitz in the domain of the solution to (1.5).

We begin with the following definition and example of existence of large
solutions for a very specific class of domains:

Definition 4.1. We say that a bounded convex set E of class C1,1 is calibrable
if there exists a vector field ξ ∈ L∞(RN ,RN ) such that ‖ξ‖∞ ≤ 1, (ξ,DχE) =
|DχE | as measures, and

−divξ = λEχE in D′(RN )

for some constant λE. In this case [2, page 6], λE = Per(E)
|E| and integrating by

parts in E it is easily seen that [ξ, νE ] = −1, HN−1 − a.e in ∂E.

As it is proved in [2, Theorem 9], a bounded and convex set E is calibrable
if and only if the following condition holds:

(N − 1)‖HE‖∞ ≤ λE =
Per(E)

|E|
,

where HE denotes the (HN−1-a.e. defined) mean curvature of ∂E. In particular,
if E = BR(0), for some R > 0, then E is calibrable.

Example 4.1. If Ω is a calibrable set, then v = Per(Ω)
|Ω| is the large solution to

(1.5). It suffices to take the restriction to Ω of the vector field in the definition
of calibrability; i.e.: z := −ξ Ω, since

(z,Dv)(Ω)
(2.4)
= −

∫
Ω

(
Per(Ω)

|Ω|

)2

dx

+

∫
∂Ω

−[ξ, νΩ]
Per(Ω)

|Ω|
dHN−1 = 0 = |Dv|(Ω).

We next follow with the proof of the existence of a large solutions to (1.5)
when the domain Ω is smooth enough.
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4.1. The case of the domain verifying a uniform interior ball condition

Let Ω satisfying a uniform interior ball condition: i.e. there exists sΩ > 0
such that for every x ∈ Ω with dist(x, ∂Ω) < sΩ, there is zx ∈ ∂Ω such that
|x− zx| = dist(x, ∂Ω) and B(x0, sΩ) ⊂ Ω with x0 := zx + sΩ

x−zx
|x−zx| . In the same

way, one can define the uniform exterior ball condition by replacing Ω with
RN \Ω. As is proved in [3, Corollary 3.14] a domain with compact boundary is
of class C1,1 if and only if it satisfies both a uniform interior ball condition and
an exterior one. This result is implicitly used in Section 5. From now on, sΩ

will denote the radius of the uniform interior ball condition corresponding to Ω.
In [36] an operator A associated to the elliptic problem


−div

(
Dv

|Dv|

)
= w in Ω

v = +∞ on ∂Ω ,

(4.1)

is defined. More precisely, we have the following:

Definition 4.2. We say that (v, w) ∈ A iff v, w ∈ L1(Ω), v ∈ TBV (Ω) and
there exists z ∈ X(Ω) with ‖z‖∞ ≤ 1, w = −divz in D′(Ω) such that

[z, ν] = 1 , HN−1 − a.e in ∂Ω

and
(z,DS(v))(Ω) = |DS(v)|(Ω) , for all S ∈ P. (4.2)

The following result holds true ([36, Theorem 5.2.]):

Theorem 4.1. The operator A is m-completely accretive in L1(Ω) with dense
domain.

Theorem 4.2. Let Ω satisfy a uniform interior ball condition. Then, there
exists a unique large solution v ∈ BV (Ω) ∩ L∞(Ω) to (1.5).

Proof. By the definition of m-accretivity (we do not enter into the details, see
for instance [15],[13]) and as a consequence of Theorem 4.1, we get that for any
w ∈ L1(Ω), there exists a unique solution of

−div

(
Dv

|Dv|

)
= w − v in Ω

v = +∞ on ∂Ω ,

(4.3)

in the sense that (v, w− v) ∈ A. We just take now w = 0 and we get the result
by observing that, by [36, Remark 5.3], v ∈ BV (Ω) ∩ L∞(Ω).
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4.2. The case of a convex domain

Let us consider Ω being a nontrivial convex body in RN ; i.e. a compact
convex subset of RN with a nonempty interior.

We recall the approach and several results given in [1] which we gather
together in the next theorem:

Theorem 4.3 ([1], Proposition 2.4 and Remark 2.3). Consider the prob-
lem

(P )λ := min
F⊆Ω

Per(F )− λ|F |

Then, there is a unique convex set K ⊆ Ω of class C1,1 (the Cheeger set, which
is moreover calibrable, see [1, 14] for details) which is a solution of (P )λK with

λD := Per(D)
|D| for any D ⊆ Ω. For any λ > λK there is a unique minimizer Ωλ

of (P )λ, which is moreover convex, and the function λ→ Ωλ is increasing and
continuous and Ωλ → Ω as λ→∞.

Let K be the Cheeger set contained in Ω defined in the previous result.
For each λ ∈ (0,+∞) let Ωλ be the minimizer of problem (P )λ. We take
Ωλ = ∅ for any λ < λK . Using the monotonicity of Ωλ and the fact that
|Ω \ ∪{Ωλ : λ > 0}| = 0 we may define the variational mean curvature as

HΩ(x) :=

{
− inf{λ : x ∈ Ωλ} if x ∈ Ω

0 if x ∈ RN \ Ω.
(4.4)

In [11] (see also [23, Theorem 2.3]) it is established that, if Ω is a set of finite
perimeter, then ‖HΩ‖1 = Per(Ω) and∫

Ωλ

HΩ(x) dx = −Per(Ωλ) .

Thanks to this result, in [2, Lemma 7] the authors are able to construct a
vector field ξΩ ∈ X(RN ) with ‖ξΩ‖∞ ≤ 1 such that divξΩ = −HΩ in L1(RN ),
and

(ξΩ, DχΩλ)(RN ) = Per(Ωλ) , for any λ > 0.

We next follow the construction of the solution to the Cauchy problem for
the Total Variation Flow build up in [2, Theorem 17] and [1, Remark 2.5] in
order to obtain a maximal solution to (1.5).

Theorem 4.4. Let Ω be a non-trivial convex body and let HΩ be the variational
mean curvature given by (4.4). Then, v(x) := −HΩ(x) is a large solution to
(1.5). Moreover, if ‖HΩ‖∞ < +∞, then, Ω is of class C1,1.

Proof. First of all, we have that v ∈ TBV (Ω) since, for λ ≤ k,

Per([Tk(v) ≥ λ],Ω) = Per([v ≥ λ],Ω) = Per(Ωλ),

11



which is finite. Then, by the coarea formula ([4, Theorem 3.40]),

|DTk(v)|(Ω) =

∫ k

0

Per([Tk(v) ≥ λ],Ω) dλ < +∞.

Let ξΩ be the vector field obtained above and let us take z := −ξΩ. Obviously
[v ≤ λ] = Ωλ ⊆ Ω and z ∈ X(Ω). Moreover, the same computations as in [2,
Theorem 17] show that

[z, νΩ] = 1 , HN−1−a.e on ∂Ω , and (4.5)

[z, νΩλ ] = 1 , HN−1−a.e on ∂Ωλ. (4.6)

Finally, by Lemma 2.3[a],

(z,DTk(v))(Ω) =

∫ ∞
0

(z,Dχ[Tk(v)≥λ])(Ω) dλ

= −
∫ k

0

∫
(∂∗[v≥λ])∩Ω

[z, ν[v≥λ]]dHN−1 dλ

=

∫ k

0

∫
(∂∗[v≥λ])∩Ω

[z, ν[v≤λ]]dHN−1 dλ

=

∫ k

0

∫
(∂∗[v≥λ])∩Ω

[z, νΩλ ]dHN−1 dλ

(4.6)
=

∫ k

0

Per([v ≥ λ],Ω)dλ = |DTk(v)|(Ω) .

Together with (2.3), this proves that v is a large solution to (1.5). By
Corollary 3.2, it is its unique solution. Finally, suppose by contradiction that
‖HΩ‖∞ < C. Then, Ωλ = Ω for all λ ≥ C. Since Ωλ is a solution to (Pλ),
we proceed as in [2, Proposition 2.7] to show that the mean curvature of Ω is
bounded which, together with its convexity, proves that Ω is C1,1.

Remark 4.1. Let us emphasize the following qualitative property of large so-
lutions. Observe that, as a corollary of Theorem 4.4 in case Ω is a nontrivial
convex body which is not C1,1, then the large solution to (1.5) is not bounded.
Heuristically, this means that the large solution takes the values +∞ at those
points in the boundary of the convex body which do not have a finite mean cur-
vature (e.g. at the “corners”).
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4.3. Existence of solutions: the general case

We next show that the existence of solutions to (1.5) permits us to show
existence of a large solution of (1.4) in the case of Ω being either a domain
satisfying a uniform interior ball condition or a convex body.

Theorem 4.5. Let f be an everywhere defined increasing function such that
f−1 is locally Lipschitz continuous in ]0,+∞[ . Then, there exists a large solu-
tion of (1.4).

Proof. Let v ∈ TBV (Ω) be a large solution to (1.5) obtained in Theorems 4.2
and 4.4 under different conditions on Ω. Then, there exists z ∈ X(Ω) such that

divz = v , in D′(Ω) ,

(z,DTk(v)) = |DTk(v)| , as measures for any k > 0 and

[z, ν] = 1 , for a.e. x ∈ ∂Ω .

Now, we take a ball BR, sufficiently large such that Ω ⊂ BR and we let
vR(x) := N

R to be the unique large solution to (1.5) in BR as seen in Example
4.1. Then, by Remark 3.1, vR is a distributional solution to (1.5) in Ω. By
Theorem 3.1, then v(x) ≥ vR(x) = N

R , a.e. x ∈ Ω.

So that, if we take u := f−1(v), by chain’s rule in BV ([4, Theorem 4.4]),
u ∈ TBV (Ω). First of all,

divz = f(u) , in D′(Ω).

Secondly, since Tk(u) = f−1(Tf(k)(v)), by Lemma 2.3(b)

(z,DTk(u)) = θ(z,DTk(u))|DTk(u)| = θ(z,DTf(k)(v))|DTk(u)| (3.2)
= |DTk(u)| ,

as measures, which, coupled with [z, ν] = 1 shows that u is a large solution of
(1.4).

Remark 4.2. Observe that the previous theorem shows that there exist solutions
to (1.4) with nonlinearities which do not verify condition (1.3) for any p ≥ 1.
One can take for instance f(s) = log(1 + s).

Remark 4.3. Let C ∈ R be a constant and Ω be C1,1. We consider now the
case of f ≡ C. A trivial integration by parts shows that for divz = v and

[z, ν] = 1 to hold, then, necessarily C = Per(Ω)
|Ω| . Then, Ω must be a calibrable

set and f = Per(Ω)
|Ω| . In this case, large solutions exist. In fact, v = C̃ for any

constant C̃ is a large solution to (1.4) in the sense of Definition 3.2. However,
since f is not increasing, Theorem 3.1 does not hold. In this sense, we can
say that there is not a maximal solution to (1.4), consistent with the case of
the p−Laplacian for p > 1. With the same analysis, it can be proved that if

f is constant in a nontrivial interval around Per(Ω)
|Ω| , then, large solutions are

not unique. Therefore, the strict monotonicity is also a necessary condition for
obtaining uniqueness of large solutions.
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Remark 4.4. Let g : ∂Ω→ R. With the additional hypothesis (with respect to
those in Theorem 4.5) on f that f ◦ g ∈ L1(∂Ω) and a similar proof of Theo-
rems 4.5 and 3.1, one can easily obtain existence and uniqueness of solutions to
problem  ∆1u = f(u) in Ω

u = g on ∂Ω ,
(4.7)

with g ∈ L1(∂Ω) from the unique solutions (see [6]) to problem ∆1v = v in Ω

v = f(g) on ∂Ω ,

in the sense that u ∈ BV (Ω) and there exists z ∈ X(Ω) such that

f(u) = divz , in D′(Ω) ,

(z,Du) = |Du| , as measures and

[z, ν] ∈ sign(Tk(g)− Tk(u)) , HN−1 a.e. x ∈ ∂Ω,

for any k > 0. To our knowledge, problem (4.7) has not been studied in the
literature in this generality.

5. Existence of solutions obtained as limit for p → 1+

Here we want to show a stability type approach to the existence of a large
solution for the 1-Laplace equation with absorption. The result has a proper
independent interest as it highlights the direct connection with standard large
solutions associated to p-Laplace type problems with absorption. To perform
the analysis we have to restrict our assumptions on both the domain and the
nonlinearity f . Let Ω be a bounded domain of class C2.

Concerning f we assume (H3), that is f(0) = 0, f is continuous and increas-
ing and there exists q > 0 and c > 0 such that

f(s) ≥ csq (5.1)

for any s ∈ [0,∞).
We want to take the limit when p→ 1+ in problem{

∆pup = f(up) in Ω,

up = +∞ on ∂Ω,
(5.2)

to obtain a large solution of
div

(
Du

|Du|

)
= f(u) in Ω

u = +∞ on ∂Ω .

(5.3)
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As q is fixed, without loss of generality we can always think about p < 1 + q
in order for the Keller-Osserman condition to be satisfied for any p near 1.

The following stability result will be proved along this section and it is the
main result in it.

Theorem 5.1. Let f verify (H3). Then, there is a sequence of solutions to
(5.2), {up}p ⊂ W 1,p

loc (Ω) such that up converges in L1
loc(Ω), as p → 1+, to the

unique solution to (5.3).

Remark 5.1. Observe that we work on very general conditions on the nonlin-
earity f which do not guarantee uniqueness of solutions to (5.2) (for instance
we do not assume condition (5.5) below). Anyway, thanks to Corollary 3.2
uniqueness is achieved in the limit as p goes to one.

We first recall the notion of weak solution to (5.2).

Definition 5.1. A function up ∈W 1,p
loc (Ω)∩L∞loc(Ω) is a weak solution to Prob-

lem (5.2) if Tk(up) = k on ∂Ω, for any k > 0, and∫
ω

|∇up|p−2∇up · ∇v +

∫
ω

f(up)v = 0 (5.4)

for any v ∈W 1,p
0 (ω) and ω ⊂⊂ Ω.

Existence and uniqueness of nonnegative solutions up to this problem are studied
in [18] (see also [34]). In particular, existence is obtained (see [34, Theorem
3.3]) under the condition on f to be an increasing and continuous function with
f(0) = 0 and satisfying (1.3). Under more restrictions on f (see [34, Corollary
4.5]) it is shown that the solution satisfies

lim
x→∂Ω

up(x)

Ψ−1
p (dist(x, ∂Ω))

= 1 (5.5)

uniformly, where

Ψp(t) :=

∫ +∞

t

1

(p′F (s))
1
p

ds .

Here p′ = p
p−1 is the conjugate exponent of p. In [34] it is proved that (5.5)

yields uniqueness. Note that, if we proceed in a formal way from (5.5) and we
let p → 1+ we obtain that the limit solution when p → 1+ must be a bounded
function. However, this argument is purely formal. Moreover, we want to show
that this is in fact the case for any nonlinearity f verifying (H3) (which does not
imply, in general, the condition on f needed for (5.5) to be true (see condition
(A3) in [34]).

In order to perform our stability argument, we will need some careful local
a priori estimates on the solutions up to (5.2). Since we need these estimates
to be nondegenerate as p approaches 1, we have to explicit all the constants
appearing in the calculations in order to control them. For the sake of simplicity,
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throughout this section C will indicate any positive constant (that may change
his value from line to line) that could depend on N , Ω, but not on p; if needed we
will also use symbols as, for instance, CN,|Ω| in order to stress the dependence
of the constant on N and |Ω|.

As we already mentioned, without loss of generality, we can suppose p small
enough. Note that, if p < 3

2 , then we can apply a controlled Sobolev inequality

that reads as follows: let v ∈W 1,p
0 (Ω), then∫

Ω

|∇v|p ≥
(

2N − 3

3N − 2

)2(∫
Ω

|v|p
∗
) p
p∗

, (5.6)

for any p ∈ (1, 3
2 ) with p∗ being the Sobolev conjugate of p (see for instance [9]).

5.1. Basic a priori estimates

In order to obtain local estimates we need to construct suitable cut-off func-
tions. To do this we will use a technical lemma whose proof can be found in
[28, Lemma 1.1].

Lemma 5.2. Let f be an increasing function such that f(0) = 0, and satisfying
(5.1), and let K be a positive constant. Then there exists a smooth function
ϕ : [0, 1] 7→ [0, 1], with ϕ(0) = ϕ′(0) = 0, ϕ(1) = 1, such that

tp
ϕ′(σ)p

ϕ(σ)p−1
≤ 1

K
tf(t)ϕ(σ) + 1,

for any σ ∈ [0, 1], t ≥ 0.

Remark 5.2. Observe that, a priori, ϕ can depend on p. In fact, Lemma 5.2 is
nothing but a generalization of Young’s Inequality. In the model case in which

f(s) = csq, with q > p− 1, then ϕ(σ) = σ
p(q+1)
q−p+1 .

For 0 < r < R ≤ 1, we will consider cut-off functions ξ on balls Br ⊂ BR ⊂⊂
Ω, that is, smooth functions in C1

0 (BR), such that 0 ≤ ξ ≤ 1 and ξ ≡ 1 on Br.
Observe that, if we set η := ϕ(ξ), where ϕ is given by Lemma 5.2, then η is a
cut-off function for Br as well in BR.

Local energy estimate. Here we prove a local estimate for ∇up in (Lploc(Ω))N .

Theorem 5.3. Let up be a weak solutions to (5.2). Then∫
Br

|∇up|p ≤ Cr,R . (5.7)

Proof. Let ξ be a cut-off function for Br in BR such that

|∇ξ| ≤ C

R− r
,
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ϕ be as in Lemma 5.2, and consider the cut-off function η := ϕ(ξ). We can take
v = upη as test in (5.4) and we obtain∫

BR

|∇up|pη +

∫
BR

f(up)upη =

∫
BR

|∇up|p−2∇up∇ξϕ′(ξ)up.

Now, also using Young’s inequality, we have∣∣∣∣∫
BR

|∇up|p−2∇up∇ξϕ′(ξ)up
∣∣∣∣

≤
∫
BR

|∇up|p−1|∇ξ|ϕ′(ξ)up ≤
C

R− r

∫
BR

|∇up|p−1ϕ(ξ)
p−1
p

ϕ′(ξ)

ϕ(ξ)
p−1
p

up

≤ Cε

p′(R− r)

∫
BR

|∇up|pη +
C

εp−1p(R− r)

∫
BR

ϕ′(ξ)p

ϕ(ξ)p−1
upp

≤ 1

2

∫
BR

|∇up|pη +
C

(R− r)

∫
BR

ϕ′(ξ)p

ϕ(ξ)p−1
upp ,

where, in the last inequality, we also choose ε = (R−r)
2C .

Therefore, we have

1

2

∫
BR

|∇up|pη +

∫
BR

f(up)upη ≤
C

(R− r)

∫
BR

ϕ′(ξ)p

ϕ(ξ)p−1
upp . (5.8)

Now, we apply Lemma 5.2 with t = up and K = R−r
C , in order to obtain

C

(R− r)

∫
BR

ϕ′(ξ)p

ϕ(ξ)p−1
upp ≤

∫
BR

f(up)upη +
C

R− r
|BR|,

which, together with (5.8), yields the desired result since η ≡ 1 on Br.

We will also need the following global BV bound on the truncations of up.

Lemma 5.4. Let up be a weak solution of (5.2). Then∫
Ω

|∇Tk(up)| dx ≤ C(kf(k))
1
p . (5.9)

Proof. Fix k ∈ [0,+∞[ and let Ωp,k := {x ∈ Ω : up(x) ≤ k}. First we prove
that Ωp,k ⊂⊂ Ω. In fact, suppose by contradiction that this is not the case.
So that, the exist x ∈ ∂Ω ∩ Ωp,k and a sequence {xn} ⊂ Ωp,k, with xn that
converges to x. Now, since up(xn) ≤ k we deduce that

Ψp(up(xn)) ≥ Ψp(k),

that is
Ψp(up(xn))

dist(xn, ∂Ω)
≥ Ψp(k)

dist(xn, ∂Ω)
,
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where the right hand side of the previous inequality diverges as xn approaches
x. This is a contradiction since

lim
xn→x

Ψp(up(xn))

dist(xn, ∂Ω)
= 1,

as proved in [34, Theorem 4.4].

Now we are allowed to take Tk(up)− k as test function in (5.2). Therefore,∫
Ω

|∇Tk(up)|p dx =

∫
Ωp,k

|∇Tk(up)|p dx

=

∫
Ωp,k

f(up)(k − Tk(up)) dx ≤ f(k)k|Ω|.

Finally, by Hölder’s inequality,∫
Ω

|∇Tk(up)| dx ≤
(∫

Ω

|∇Tk(up)|p dx
) 1
p

|Ω|
1
p′ ≤ C(kf(k))

1
p .

Local boundedness of the solutions. First, we prove an upper bound for solutions
to (5.2) in case the domain is a ball:

Lemma 5.5. Let Ω = BR. Then, there is a weak solution to (5.2), up ∈
W 1,p
loc (BR) ∩ L∞loc(BR) such that

up ≤ Ψ−1
p

(
1

p′N

(
R−

(
|x|p

R

) 1
p−1

))
. (5.10)

Proof. The existence and the stated regularity of the weak solution follows
from [34, Theorem 3.3]. However, we need to recall how this weak solution is
obtained (see [34] for the details). We let up,n ∈ W 1,p(Ω) to be the unique
solution to {

∆pup,n = f(up,n) in Ω
up,n = n on ∂Ω

(5.11)

Then, since the sequence {up,n} is increasing with respect to n, it converges
pointwise to a function up. This function up is a weak solution to (5.2) with the
stated regularity.

For (5.10), we closely follow the proof of [30, Lemma 4.1]. We let

F̃ (r) :=
f ◦Ψ−1

p (r)

(p′F ◦Ψ−1
p (r))

1
p′
.

Then, wp := Ψp(up) is a distributional solution to ∆pwp = F̃ (wp)[|∇wp|p − 1] in BR

wp = 0 on ∂BR

. (5.12)

18



We consider now w0
p to be the solution to

∆pw
0
p = −N

2−p

R
in BR

w0
p = 0 on ∂BR .

(5.13)

Then, w0
p is explicitly given by (see e.g. [42])

w0
p =

1

p′N

(
R−

(
|x|p

R

) 1
p−1

)
.

We next show that w0
p is a subsolution to (5.12).

In the case f(s) = csq, a direct computation shows that

F̃ (r) =
(p− 1)(q + 1)

(q + 1− p)r
.

Therefore,
∆pw

0
p + F̃ (w0

p)(1− |∇w0|p)

= −N
2−p

R
+

(q + 1)p
1
p′N

(q + 1− p)
(
R−

(
|x|p
R

) 1
p−1

) (1− 1

Np

(
|x|
R

)p′)

≥ −N
2−p

R
+

N(
R−

(
|x|p
R

) 1
p−1

) (1− 1

Np

(
|x|
R

)p′)

=
N

R


(

1− 1
Np

(
|x|
R

)p′)
(

1−
(
|x|
R

)p′) −N1−p

 ≥ 0.

From here, we can proceed exactly as in [30, Lemma 4.1] to conclude that
wp ≥ w0

p in BR. Then,

up = Ψ−1
p (wp) ≤ Ψ−1

p (w0
p) . (5.14)

In the case of a general f satisfying (5.1) we argue by comparison. We
consider the approximating solutions to problem (5.2), that is the weak solutions
up,n to problem (5.11) that exist and are unique (see for instance [34, Theorem
A]). Observe that thanks to (5.1) we have that up,n is a subsolution to problem{

−∆pvp,n + cvqp,n = 0 in Ω,

vp,n = n on ∂Ω,

so that, by standard comparison, up,n ≤ vp,n, and the bound (5.14) is obtained
as n goes to ∞ as up is the a.e. limit of up,n.
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Local BV estimate and local estimate on the vector field. We are in the position
to give the essential estimates in order to pass to the limit in the approximating
problems (5.2). We prove the following:

Theorem 5.6. Let 0 < r < R, then it holds,∫
Br

|∇up| ≤ C̃r,R, (5.15)

and for any 1 < q < p′, ∫
Br

|∇up|(p−1)q ≤ C̃r,R,q . (5.16)

Proof. Using Hölder’s inequality and (5.7), we have∫
Br

|∇up| ≤
(∫

Br

|∇up|p
) 1
p

|Br|
1
p′ ≤ C̃r,R.

Furthermore, in the same way, we have, for any q < p′,∫
Br

|∇up|(p−1)q ≤
(∫

Br

|∇up|p
) q
p′

|Br|
p′−q
p′ ≤ C̃r,R,q.

Observe that, by virtue of Theorem 5.3, the constants C̃r,R and C̃r,R,q, that in
principle do depend on p, are uniformly controlled, and so they can be chosen
to be independent of this parameter as p approaches 1.

5.2. Passage to the limit

Observe that, from both the L∞loc bound on up and (5.15) we deduce that,
in particular, the sequence {up} is locally bounded in W 1,1(Ω), so that we can
find a subsequence, not relabeled, such that up converges in L1

loc(Ω) and a.e. in
Ω to a function u ∈ L1

loc(Ω). As a first step, we need to explicit the L∞ bound
on up in order to obtain a global bound on the limit u .

Global L∞ bound on u. Let sΩ denote the radius given by the uniform interior
ball condition. Then, we can cover Ω with interior balls with radius bigger than
or equal to sΩ. By Lemma 5.5, we have that

up ≤ Ψ−1
p

(
1

p′N

(
sΩ −

(
|x− x0|p

sΩ

) 1
p−1

))
for any x ∈ BsΩ(x0) ⊂ Ω.

Let us consider, without loss of generality, the case f(s) = sq. Reasoning as
before, the result for a general f satisfying (5.1) will easily follow by comparison.
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In this case we have,

Ψ−1
p (s) =

((
(q + 1)

p′

) 1
p p

(q + 1− p)s

) p
q+1−p

.

Then,

up ≤

 (q + 1)
1
p pp′

1
p′N

(q + 1− p)
(
sΩ −

(
|x−x0|p
sΩ

) 1
p−1

)


p
q+1−p

p→1+

→
(

(q + 1)N

q sΩ

) 1
q

,

that is,

u ≤
(

(q + 1)N

q sΩ

) 1
q

, a.e x ∈ Ω.

In the general case we have,

f(u) ≤ (q + 1)N

q sΩ
, a.e x ∈ Ω. (5.17)

Convergence of the term |∇up|p−2∇up. Observe that by (5.15) and (5.9) u ∈
TBVloc(Ω). As, by what we have just showed, u ∈ L∞(Ω) we deduce that
u ∈ BV (Ω).

Furthermore, let ω ⊂⊂ Ω. We have that |∇up|p−2∇up is weakly relatively
compact in L1(ω;RN ). This is an easy consequence of (5.16). In particular, we
may assume that there exists zω ∈ L1(ω,RN ) such that

|∇up|p−2∇up ⇀ zω , as p→ 1+ weakly in L1(ω,RN ).

Following the proof of [5, Lemma 1], we can prove that ‖zω‖∞ ≤ 1. Moreover,
by a diagonal argument we can find z ∈ L∞(Ω,RN ) with ‖z‖∞ ≤ 1 and a
subsequence (not relabeled) such that

|∇up|p−2∇up ⇀ z , as p→ 1+ weakly in L1
loc(Ω,RN ).

On the other hand, taking ϕ ∈ C∞0 (ω) in (5.4) and letting p → 1+ we obtain
that

divz = f(u) in D′(ω).

Finally, using (5.17), we deduce that

divz = f(u) in D′(Ω).

We now use the lower semicontinuity in L1(Ω) (see for instance [10]) of the
energy functional defined by

Fk(v) :=


∫

Ω

|Dv|+
∫
∂Ω

|k − v| dHN−1 if v ∈ BV (Ω)

+∞ otherwise
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As we already pointed out, Lemma 5.4 allows us to deduce the relative strong
compactness in L1(Ω) of Tk(up), so that, reasoning as in Lemma 5.4 and using
Young’s inequality, we have that∫

Ω

|DTk(u)|+
∫
∂Ω

|k − Tk(u)| dHN−1 ≤ lim inf
p→1+

∫
Ω

|DTk(up)|

≤ lim inf
p→1+

1

p

∫
Ω

|DTk(up)|p + lim
p→1+

|Ω|
p′

= lim inf
p→1+

1

p

∫
Ω

f(up)(k − Tk(up)) dx =

∫
Ω

f(u)(k − Tk(u)) dx

=

∫
Ω

divz(k − Tk(u)) dx =

∫
Ω

−(z,DTk(u)) +

∫
∂Ω

[z, ν](k − Tk(u)) dHN−1

≤
∫

Ω

|DTk(u)|+
∫
∂Ω

|k − Tk(u)| dHN−1.

From here, since the measures |DTk(u)| are supported in Ω, letting k ≥
f−1( (q+1)N

qsΩ
) we obtain that

(z,Du)(Ω) = |Du|(Ω) and

[z, ν] = 1 , HN−1 − a.e. in ∂Ω.

Therefore, by (2.3) and Remark 3.2, u is a large solution of (5.3) in the sense
of Definition 3.2.

Remark 5.3. Observe that, a straightforward modification of our arguments in
Section 4 allows us to easily extend the result of existence and uniqueness of
large solutions to a larger class of nonhomogeneous problems of the type

−div

(
Du

|Du|

)
+ f(u) = g(x) in Ω

u = +∞ on ∂Ω ,

with g ∈ L1(Ω) (cfr. with (4.3)). On the other hand, in order to deal with the
stability result contained in the last section we have to restrict the class of data g
to Lm(Ω), with m > N in order to get locally bounded approximating solutions.

We would like to conclude by showing that the upper bounds obtained in
(5.17) and (5.19) are or can be taken to be the optimal ones in some particular
cases.

Remark 5.4. Let us consider, as a model, the case of f(s) = uq for some
q > 1

N−1 . With a small modification of our argument we can show that, in this
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case, we can find an optimal upper bound for u. In fact, if we take w̃0
p to be the

solution to 
∆pw̃

0
p = −N

2−p

R

(
q + 1

q + 1− p

) 1
p′

in BR

w̃0
p = 0 on ∂BR

(5.18)

and we follow the proof of Lemma 5.5, using q > 1
N−1 , we get that for p suffi-

ciently close to 1,

up ≤ Ψ−1(w̃0
p)

p→1+

→
(
N

R

) 1
q

.

Therefore, in this case the procedure to bound the approximate solutions ends
up with the exact constant as it can be deduced by Remark 4.1 together with the
existence result given by Theorem 4.5. As a second example, the bound is optimal
also for the exponential case f(s) = es (whose solution exists and it unique as,
in view of Remark 5.3, we can subtract and add the constant 1 in order to

satisfy our assumptions on f). In fact, in this case, Ψ−1
p (r) = log

(
(p−1)pp−1

rp

)
and F̃ (r) = p−1

r . Then, a direct computation shows that

up(r) ≤ log

 p2p−1Np

(p− 1)p−1

(
sΩ − |x|

p

sΩ

1
p−1

)p
 p→1+

−→ log

(
N

sΩ

)
(5.19)
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Vazquez, An L1−theory of existence and uniqueness of nonlinear elliptic
equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 241–273.

[13] Ph. Bénilan, M. G. Crandall, Completely Accretive Operators, In Semi-
groups Theory and Evolution Equations, Ph. Clement et al. editors, Marcel
Dekker, 1991, pp. 41–76.

[14] V. Caselles, A. Chambolle, M. Novaga, Uniqueness of the Cheeger set of a
convex body, Pacific J. Math. 232 (1) (2007) 77–90.

[15] M. G. Crandall, T. M. Liggett, Generation of Semigroups of Nonlinear
Transformations on General Banach Spaces, Amer. J. Math. 93 (1971)
265–298.

[16] F. Demengel, On some nonlinear equation involving the 1-Laplacian and
trace map inequalities, Nonlinear Anal. 48 (2002) 1151–1163.

[17] J. I. Dı́az, M. Lazzo, P. G. Schmidt, Large solutions for a system of elliptic
equations arising from fluid dynamics, SIAM J. Math. Anal. 37 (2005)
490–513.

[18] G. Diaz, R. Letelier, Explosive solutions of quasilinear elliptic equations:
existence and uniqueness, Nonlinear Anal. 20 (1993) 97–125.

[19] E. B. Dynkin, A probabilistic approach to one class of nonlinear differential
equations, Probab. Theory Related Fields 89 (1991) 89–115.

24



[20] L. C. Evans, R. F. Gariepy, Measure Theory and Fine Properties of
Functions, Studies in Advanced Math: CRC Press, 1992.
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