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Abstract

In this paper we consider integral functionals of the form

F(v, Ω) =

ˆ
Ω

F (x, Dv(x)) dx

with convex integrand satisfying p growth conditions with respect to the
gradient variable.
As a novel feature, the dependence of the integrand on the x-variable is
allowed to be through a Sobolev function. We prove local higher differ-
entiability results for local minimizers of the functional F, establishing
uniform higher differentiability estimates for solutions to a class of auxil-
iary problems, constructed adding singular higher order perturbations to
the integrand. Furthermore, we prove a dimension free higher integrabil-
ity result for the gradient of local minimizers, by the use of a weighted
version of the Gagliardo-Nirenberg interpolation inequality.

AMS Classifications. 49N15; 49N60; 49N99.
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1 Introduction and Statement of Results

We prove higher differentiability results for minimizers of convex variational
integrals of the form

F(v,O) =
ˆ
O

F (x,Dv(x)) dx (1.1)

with convex integrand F satisfying p growth conditions with respect to the gra-
dient variable. The functionals F are defined for Sobolev maps v ∈W1,r(Ω,RN ),
r > 1, and open subsets O of a fixed bounded and open subset Ω of Rn. Our
main concern is the multi–dimensional vectorial case n, N ≥ 2, but our results
remain new also in the scalar case N = 1.
There exists a wide literature concerning the regularity of minimizers of the
functional F(v,O) in case the integrand F is assumed to satisfy the following

1



assumptions

c1|ξ|p ≤ F (x, ξ) ≤ c2(µ2 + |ξ|2)
p
2

ν(µ2 + |ξ|2)
p−2
2 |η|2 ≤ 〈DξξF (x, ξ)η, η〉

|F (x1, ξ)− F (x2, ξ)| ≤ ω(|x1 − x2|)(µ2 + |ξ|2)
p−2
2

(1.2)

for some positive constants c1, c2, ν, a parameter µ ≥ 0, for every ξ, η ∈ RN×n
and where the dependence on the x-variable is Hölder continuous with some
exponent α, i.e.

ω(ρ) = min{ρα, 1} (α, 1]. (1.3)

For an exhaustive treatment of the regularity of F -minimizers under the as-
sumptions at (1.2), also in case F is quasiconvex with respect to the gradient
variable, we refer the interested reader to [21, 22] and the references therein.
In the last few years, the study of the regularity has been successfully carried
out under weaker assumptions on the function ω(ρ), which, roughly speaking,
measures the continuity of the integrand F with respect to the x-variable. In
particular, in [18] (see also [13, 14]), a partial C0,α regularity result has been
established relaxing the assumption (1.2)3 in a continuity assumption of the
type

lim
ρ→0

ω(ρ) = 0.

Very recently, the result of [18] has been extended in [4] to functionals that have
discontinuous dependence on the x-variable, through a VMO coefficient.

Our aim here is to study the regularity of the gradient of the F - minimizers
of the functional F(v,O), relaxing both the assumptions at (1.2)1 and (1.2)3.
More precisely, we will deal with degenerate functionals and we will replace the
Hölder continuous dependence of the integrand with respect to the x-variable
at (1.2)3 with a suitable Sobolev regularity assumption. A simple model case
of the functionals we have in mind is

I(v,O) =
ˆ
O

a(x)f(Dv) dx

where a(x) lies in a suitable Sobolev class and that can be unbounded. Since our
goal is to obtain the regularity at level of the gradient of the minimizer (not of
the function itself as in the above quoted papers), with respect to the hypotheses
of [4], we have to assume a slightly stronger regularity for the integrand F with
respect to x, still dealing with the case of discontinuous coefficients.
In order to state the results precisely, we shall briefly introduce and discuss our
hypotheses.
Let F : RN×n → R be an integrand satisfying for an exponent p ≥ 2, a function
g such that g

p
p−1 +1(x) ∈ W1,n(Ω) and a constant L > 0 , the following set of

hypotheses:

ξ 7→ F (x, ξ) is a strictly convex C2 function for a.e. x ∈ Ω (H1)

1
g(x)
|ξ|p ≤ F (x, ξ) ≤ g(x)|ξ|p (H2)
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One can easily see that the convexity assumption (H1) and the growth condition
(H2) imply

|DξF (x, ξ)| ≤ c(p)g(x)|ξ|p−1 (H3)

Concerning the dependence on the x-variable we shall assume that

x 7→ F (x, ξ) is weakly differentiable for every ξ ∈ RN×n (H4)

and
|DxDξF (x, ξ)| ≤ L|Dg(x)||ξ|p−1 . (H5)

The convexity assumption on the integrand F can be expressed as the following
degenerate ellipticity condition on the matrix DξξF

〈DξξF (x, ξ)η, η〉 ≥ 1
g(x)
|ξ|p−2|η|2 (H6)

for all ξ ∈ RN×n , η ∈ RN×n.
Let us give the definition of local minimizer:

Definition 1.1. A mapping u ∈W1,1
loc(Ω,RN ) is a local F–minimizer if F (Du) ∈

L1
loc(Ω) and ˆ

suppϕ

F (x,Du) dx ≤
ˆ

suppϕ

F (x,Du+Dϕ) dx

for any O b Ω and any ϕ ∈ C∞0 (O,RN ).

By virtue of our assumptions on the integrand F , a local F–minimizer minimizer
u solves the corresponding Euler Lagrange system

ˆ
Ω

〈DξF (x,Du), Dϕ〉 dx = 0

for every ϕ ∈ C∞0 (O,RN ).
Remark that assumptions (H3) and (H6) implies the following

|Du|p + |DξF (x,Du)|
p
p−1 ≤ g̃(x)〈DξF (x,Du), Du〉 (1.4)

with g̃ = g(1 + g
p
p−1 ). The assumption (H1) implies that we are dealing with

the genuine anisotropic case, since the ratio between the eigenvalues can be
unbounded and the matrix DξξF satisfies a degenerate ellipticity condition.
The function g

p
p−1 +1 appearing in the right hand side of inequality (1.4), that

measures the degree of degeneracy of our problem, is assumed to belong to
the Sobolev class W1,n(Ω). It is well known that W1,n(Ω) ( VMO, i.e. the
following condition

lim
r→0

sup
ρ≤r

ˆ
Bρ(x0)

|gp
′+1(x)− (gp

′+1)ρ,x0 | = 0,

holds for every ball Br(x0) b Ω , ( see [9]), where we denoted by p′ = p
p−1

the Hölder conjugate exponent of p. We also have, through the classical Moser
Trudinger inequality, that gp

′+1 is exponentially integrable, i.e.
ˆ

Ω

exp(λg
(p′+1)n
n−1 ) dx < +∞

3



for some constant λ > 0, depending on the W1,n- norm of gp
′+1. Hence, com-

bining Hölder’s inequality in Orlicz-Sobolev spaces with the requirement that
F (Du) ∈ L1

loc(Ω), we obtain that
ˆ

Ω′
|Du|p log−

n−1
(p′+1)n (e+ |Du|) dx <∞ (1.5)

i.e. the gradient of a local minimizer belongs to the Orlicz-Zygmund class
Lp log−

n−1
(p′+1)n Lloc(Ω; RN×n).

Regularity results for scalar minimizers of functionals, as well as for solutions of
partial differential equations, with exponentially integrable degeneracy can be
found in [5, 6, 7, 25, 26, 19] where higher integrability results have been obtained
in the scale of Orlicz-Zygmund classes by means of Gehring–type inequalities
(see Theorem 2.4 in Section 2). With the use of Young’s inequality in Orlicz
spaces, one can easily check that there exist two positive constants, both de-
pending on the norm of the function gp

′+1 in the exponential class Exp n
n−1

(Ω),
such that ˆ

Ω

|Du|r dx− c1 ≤
ˆ

Ω

F (x,Du(x)) dx ≤
ˆ

Ω

|Du|q dx− c1 (1.6)

with r < p < q. Therefore assumption (H2), together with the exponential
integrability of gp

′+1, entails an integral version of the well-known (p, q) growth
conditions, introduced in the celebrated papers by Marcellini (see in particular
[29, 30, 31]) and that have since attracted much attention.
The regularity of minimizers of functionals satisfying (p, q) growth conditions
has been widely investigated, both in the scalar and in the vectorial setting (see
for example [1, 2, 3, 11, 12, 15, 16, 27, 28, 32]).
In particular, the higher differentiability of the gradient is usually deduced by
means of difference quotient methods. A different approach has been introduced
in [8] and it is based on establishing higher differentiability estimates for solu-
tions to a class of auxiliary problems, constructed adding singular higher order
perturbations to the integrand.
The main idea here is to treat the regularity of minimizers of degenerate func-
tionals with the tools needed to deal with functionals satisfying (p, q) growth
condition.

In fact, with arguments similar to those in [8], we show that the Sobolev
regularity of the coefficient is a sufficient condition to establish a higher differ-
entiability result for the gradient of the minimizers. More precisely, we have the
following

Theorem 1.2. Let F : Ω × RN×n → R be an integrand satisfying the as-
sumptions (H1)–(H6) for an exponent 2 ≤ p < n and a function g such that
gp
′+1 ∈W1,n(Ω). If u ∈W1,1

loc(Ω,RN ) is a local F–minimizer, then

Vp(Du) ∈W1,s
loc(Ω,RN×n)

where s is any exponent such that s < 2 and where Vp(Du) is defined as

Vp(Du) := |Du|
p−2
2 Du.
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Furthermore, there exists a radius R0 = R0(n,N,L, p) such that whenever
B2R ⊂ BR0 b Ω we have the Caccioppoli type inequality

ˆ
BR

1
g
|D(V (Du))|2 dx ≤ c

R6

(ˆ
Ω

(|g|2 + |D(g2)|)n dx
) 6
n
(ˆ

B2R

F (x,Du) dx
)

for a constant c = c(n,N,L, p).

As far as we know, no higher differentiability results are available for mini-
mizers of functionals that depend on the x-variable through a Sobolev function.
Nevertheless, we’d like to mention that in [24] the authors deal with function-
als depend on the x-variable through a coefficient that belongs to a fractional
Sobolev space but satisfies also a Hölder’s condition with arbitrarily small ex-
ponent.
Moreover, in [10], the higher differentiability of solutions to a non degenerate
Beltrami equation with a Sobolev coefficient is achieved in the two dimensional
setting.
A continuity result for solutions of linear elliptic equations with Sobolev coeffi-
cients has been established in [33].
Our results here don’t cover the case p = 2 = n which requires different tools
and that will be treated in a forthcoming paper.

We remark that as a consequence of the Sobolev imbedding, Theorem 1.3
yields that the gradient of a F -mimimizer belongs to the space L

np̃
n−2 , for ev-

ery p̃ < p. Hence, in case p > n − 2, the gradient of a F -mimimizer belongs
to Lp̃+2, for every p̃ < p. Here, in case F (x, ξ) = F̃ (x, |ξ|) combining a suit-
able weighted version of the Gagliardo Nirenberg interpolation inequality (see
Lemma 2.3 below) with a local boundedness result for F -mimimizers, we show
that this higher integrability persists for F -minimizers without any restriction
on the growth exponent p. More precisely, we have the following

Theorem 1.3. Let F : Ω × RN×n → R satisfy the conditions (H1)– (H6) for
an exponent 2 ≤ p < n and a function g such that gp

′+1 ∈W1,n(Ω). Suppose in
addition that F (x, ξ) = F̃ (x, |ξ|). If u ∈ W1,1

loc(Ω,RN ) is a local F–minimizer,
then

Du ∈ Lp̃+2
loc (Ω,RN×n)

for every p̃ < p. Furthermore, there exists a radius R̄ = R̄(n,N,L, p) such that
whenever B2R ⊂ BR̄ b Ω we have the following inequality

ˆ
BR

2

1
g
|Du|p+2 dx ≤ c||u||2L∞(BR)

(ˆ
Ω

(|g|2 + |D(g2)|)n dx
) 6
n
(ˆ

B2R

F (x,Du) dx
)

for a constant c = c(n,N,L, p,R).

The higher integrability exponent of the gradient of a F -minimizer is dimension–
free since we are going to prove that the minimizers are locally bounded. Dimension–
free higher integrability exponents have been established in [8] for a priori
bounded minimizer of autonomous integrals, satisfying nonstandard growth con-
ditions and in [23] for the second gradient of the F -minimizer, but under much
more severe growth conditions (i.e. (H2), (H6) with p = 2 and Lipschitz con-
tinuous dependence with respect to x.).
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The plan of the paper is the following. We have collected standard preliminary
material in Section 2, which at the same time serves as our reference for notation.
The proofs of the higher differentiability result stated in Theorem 1.2 and of
the higher integrability result stated in Theorem 1.3 are presented in Sections
3 and 4, respectively.

2 Preliminaries

For matrices ξ, η ∈ RN×n we write 〈ξ, η〉 := trace(ξT η) for the usual inner
product of ξ and η, and |ξ| := 〈ξ, ξ〉 12 for the corresponding euclidean norm.
When a ∈ RN and b ∈ Rn we write a⊗ b ∈ RN×n for the tensor product defined
as the matrix that has the element arbs in its r-th row and s-th column. Observe
that |a⊗ b| = |a||b|, where |a|, |b| denote the usual euclidean norms of a in RN ,
b in Rn, respectively.
When F : Ω× RN×n → R is sufficiently differentiable we write

DξF (x, ξ)[η] :=
d
dt

∣∣∣
t=0

F (x, ξ+tη) and DξξF (x, ξ)[η, η] :=
d2

dt2

∣∣∣
t=0

F (x, ξ+tη)

for ξ, η ∈ RN×n.
We recall the definition of the auxiliary function Vp as

Vp(ξ) = V (ξ) := |ξ|
p−2
2 ξ.

For later reference, we note that, for a C2 map w and for p ≥ 2, a routine
calculation yields ∣∣∣D[V (Dw)

]∣∣∣2 ≤ p2

4
|Dw|p−2|D2w|2 (2.1)

Now, we state an iteration lemma, which is very well-known, in a version suitable
for our purposes.

Lemma 2.1. Let Φ: [R2 , R] → R be a bounded nonnegative function on the
interval [R2 , R] where R > 0. Assume that for all R

2 ≤ r < s ≤ R we have

Φ(r) ≤ ϑΦ(s) +A+
B

(s− r)2
+

C

(s− r)α
+

D

(s− r)β

where ϑ ∈ (0, 1), A, B, C, D ≥ 0 and 0 < α < β are constants. Then there
exists a constant c = c(ϑ, β) such that

Φ
(
R

2

)
≤ c

(
A+

B

R2
+

C

Rα
+

D

Rβ

)
See for instance [22], pp. 191–192, for a proof that can easily be adapted to
cover the above statement too.
Let P be an increasing function from P (0) = 0 to lim

t→∞
P (t) = ∞ and continu-

ously differentiable on (0,∞). The Orlicz class generated by the function P (t)
consists of the functions h for which there exists a constant λ = λ(h) > 0 such
that

P

(
|h|
λ

)
∈ L1(Ω).
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In particular, the Orlicz-Zygmund classes Ls logα L, 1 < s < ∞, α ∈ R, are
Orlicz classes generated by a function P (t) ' ts logα(e+ t) as t→∞.
For α > 0, the dual Orlicz space to L logα L(Ω) is the space Exp 1

α
(Ω), generated

by a function Q(t) ' exp(t
1
α )−1, as t→∞. For α > 0, the following elementary

inequalities hold true

sp1 ≤ sp log−α(e+ s) ≤ sp ≤ sp logα(e+ s) ≤ sp2 ∀s ≥ 1 (2.2)

where p1 < p < p2. The following Sobolev imbedding Theorem in the Orlicz-
Sobolev setting can be found in [17]

Theorem 2.2. Let h ∈W 1,1
0 (Ω) be a function such that |Dh| ∈ Ln log−σ L(Ω),

some 0 ≤ σ < 1. Then
h ∈ EXP n

n+σ−1
(Ω)

Obviously, Theorem 2.2 in case σ = 0 gives back the Moser-Trudinger em-
bedding Theorem.
Now, we give a weighted version of the classical Gagliardo Nirenberg interpola-
tion inequality

Lemma 2.3. Let p > 1. For η ∈ C1
c (Ω) with η ≥ 0, g ∈ W1,n

0 with g ≥ 1 and
u ∈W1,1 ∩ L∞ such that

|D(V (Du)|
√
g

∈ L2(Ω) ,

we have ˆ
Ω

η2 1
g
|Du|p+2 dx ≤ c(p+ 1)2

ˆ
Ω

η2 1
g
|u|2|D(V (Du))|2 dx

+ c

ˆ
Ω

η2|u|2 |Dg|
2

g3
|Du|p dx+ c

ˆ
Ω

|u|2 1
g
|∇η|2|Du|p dx (2.3)

for an absolute positive constant c.

Proof. Integration by parts yieldsˆ
Ω

η2 1
g
|Du|p+2 dx =

=
ˆ

Ω

〈
η2 1
g
|Du|pDu,Du

〉
dx = −

ˆ
Ω

D

[
η2 1
g
Du|Du|p

]
· udx

≤ (p+ 1)
ˆ

Ω

η2 1
g
|u||Du|p|D2u|dx+

ˆ
Ω

η2|u||Du|p+1 |Dg|
g2

dx

+ 2
ˆ

Ω

η|u||∇η|1
g
|Du|p+1 dx = I1 + I2 + I3 (2.4)

We estimate I1 by using the Young’s inequality as follows

I1 ≤
1
16

ˆ
Ω

η2 1
g
|Du|p+2 dx+ c(p+ 1)2

ˆ
Ω

η2 1
g
|u|2|Du|p−2|D2u|2 dx (2.5)

Similarly, we have

I2 ≤
1
16

ˆ
Ω

η2 1
g
|Du|p+2 dx+ c

ˆ
Ω

η2|u|2 |Dg|
2

g3
|Du|p dx (2.6)
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and
I3 ≤

1
16

ˆ
Ω

η2 1
g
|Du|p+2 dx+ c

ˆ
Ω

|u|2 1
g
|∇η|2|Du|p dx (2.7)

Hence, inserting (2.5), (2.6) and (2.7) in (2.4), we get
ˆ

Ω

η2 1
g
|Du|p+2 dx ≤ 3

16

ˆ
Ω

η2 1
g
|Du|p+2 dx

+ c(p+ 1)2

ˆ
Ω

η2 1
g
|u|2|Du|p−2|D2u|2 dx

+ c

ˆ
Ω

η2|u|2 |Dg|
2

g3
|Du|p dx+ c

ˆ
Ω

|u|2 1
g
|∇η|2|Du|p dx

Reabsorbing the first integral in the right hand side by the left hand side in
previous estimate, we conclude with

ˆ
Ω

η2 1
g
|Du|p+2 dx ≤ c(p+ 1)2

ˆ
Ω

η2 1
g
|u|2|Du|p−2|D2u|2 dx

+ c

ˆ
Ω

η2|u|2 |Dg|
2

g3
|Du|p dx+ c

ˆ
Ω

|u|2 1
g
|∇η|2|Du|p dx (2.8)

i.e. the thesis.

We conclude this section with an higher integrability result for the gradient
of a local F–minimizer in the scale of Orlicz-Zygmund classes.

Theorem 2.4. Let F : Ω × RN×n → R satisfy the conditions (H1)– (H6) for
a function g such that g

p
p−1 +1 ∈ W1,n, and an exponent 2 ≤ p < n. If u ∈

W1,1
loc(Ω,RN ) is a local F–minimizer, then

|Du| ∈ Lploc logα L(Ω),

for every α > 0.

The proof can be easily obtained through the same arguments of [5, 19, 25].

3 Proof of Theorem 1.2

Our aim is to show that V (Du) ∈W1,p̃
loc(Ω), ∀p̃ < 2. Before proceeding with the

proof, we need to carry out an approximation procedure, which is essentially
based on the arguments contained in [8]. Here we give a weighted version, which
takes into account the degeneracy of the integrand.
Fix a subdomain with a smooth boundary Ω′ b Ω and take k ∈ N, so large that
we have the continuous embedding Wk,2(Ω′) ↪→ C2(Ω′). For a smooth kernel
φ ∈ C∞c (B1(0)) with φ ≥ 0 and

´
B1(0)

φ = 1, we consider the corresponding
family of mollifiers (φε)ε>0 and put ũε := φε ∗ u on Ω′ for each positive ε <
dist (Ω′, ∂Ω). By (1.5) and (2.2) we have that Du ∈ Lp̃ for every p̃ < pand
hence

ũε → u as ε↘ 0 strongly in W1,p̃(Ω′) ∀p̃ < p. (3.1)
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Moreover we record that, for a suitable function ε̃ = ε̃(ε) with ε̃↘ 0 as ε↘ 0,
also

ε̃

ˆ
Ω′
|Dkũε|2 → 0 as ε↘ 0. (3.2)

For small ε > 0, we let uε ∈ Wk,2(Ω′) ∩W1,p
ũε

(Ω′) denote a minimizer to the
functional

v 7→
ˆ

Ω′

(
F (x,Dv) +

ε̃

2
|Dkv|2

)
on the Sobolev class Wk,2(Ω′) ∩W1,p

ũε
(Ω′). The existence of uε is easily estab-

lished by the direct method. Next two Lemmas are suitable versions for our
purposes of Lemma 8 and Lemma 9 in [8]. We give it here for the sake of
completeness.

Lemma 3.1. For each ϕ ∈Wk,2(Ω′) ∩W1,p
0 (Ω′),

0 =
ˆ

Ω′

(
〈DξF (x,Duε), Dϕ〉+ ε̃〈Dkuε, D

kϕ〉
)
. (3.3)

Furthermore, uε ∈W2k,2
loc (Ω′).

Proof. The minimality of uε yields the weak form of the Euler–Lagrange system
(3.3) by straight forward means since by our choice of k we have that Duε and
Dϕ ∈ L∞(Ω′). The additional regularity of uε then follows from standard
elliptic regularity theory if we notice that (3.3) can be rewritten as

∆kuε =
(−1)k

ε̃

(
div DξF (x,Duε)

)
(3.4)

where the composition of k Laplacians on the left–hand side acts row–wise, and
as usual is understood in the distributional sense on Ω′. Since by our choice
of k, uε ∈ C2(Ω′), the right–hand side of (3.4) belongs in particular to L2(Ω′)
from which we deduce uε ∈W2k,2

loc (Ω′).

Lemma 3.2. As ε↘ 0, we have that
ˆ

Ω′
|Duε −Du|p̃ dx→ 0, ∀p̃ < p

and ˆ
Ω′
F (x,Duε) dx→

ˆ
Ω′
F (x,Du) dx.

Proof. By the minimality of uε, we have that there exists ε0 > 0 such that
ˆ

Ω′

(
F (x,Duε) +

ε̃

2
|Dkuε|2

)
≤
ˆ

Ω′

(
F (x,Dũε) +

ε̃

2
|Dkũε|2

)
(3.5)

for all 0 < ε ≤ ε0. Now, by Theorem 2.4, the duality between the spaces
L logα L and EXP 1

α
and standard properties of mollifiers we obtain that

lim
ε↘0

ˆ
Ω′
F (x,Dũε) ≤

ˆ
Ω′
F (x,Du) (3.6)
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Fatou’s Lemma allows us to conclude thatˆ
Ω′
F (x,Dũε)→

ˆ
Ω′
F (x,Du) as ε↘ 0. (3.7)

In view of (3.2), (3.6) and (3.7), inequality (3.5) implies

lim sup
ε↘0

ˆ
Ω′

(
F (x,Duε) +

ε̃

2
|Dkuε|2

)
≤
ˆ

Ω′
F (x,Du). (3.8)

By the left inequality in the assumption (H2) we have that F (x, ξ) ≥ 1
g(x) |ξ|

p

for all ξ ∈ RN×n. Therefore estimate (3.8) and Hölder’s inequality imply

ˆ
Ω′
|Duε|p̃ ≤

(ˆ
Ω′
g

p̃
p−p̃

) p−p̃
p
(ˆ

Ω′

1
g
|Duε|p

) p̃
p

≤ c(n, p)
(ˆ

Ω′
exp(g

(p′+1)n
n−1 )

) p−p̃
p
(ˆ

Ω′

1
g
|Duε|p

) p̃
p

≤ c(n, p)
(ˆ

Ω′
exp(g

(p′+1)n
n−1 )

) p−p̃
p
(ˆ

Ω′
F (x,Du)

) p̃
p

(3.9)

Hence by the assumption on g and Theorem 2.2, the family (Duε) is bounded in
Lp̃(Ω′), ∀p̃ < p, and since uε = ũε in the sense of trace on ∂Ω′ a standard lower
semicontinuity result together with the minimality of u allow us to conclude
that

lim inf
ε↘0

ˆ
Ω′
F (x,Duε) ≥

ˆ
Ω′
F (x,Du).

By virtue of (3.8), this implies that
ˆ

Ω′

ε̃

2
|Dkuε|2 → 0 (3.10)

and ˆ
Ω′
F (x,Duε)→

ˆ
Ω′
F (x,Du) ,

as ε ↘ 0. In order to conclude the proof, it is sufficient to note that, by the
assumption (H6), standard calculations imply that

ˆ
Ω′

1
g(x)

(
|Dũε|2 + |Duε|2

) p−2
2 |Dũε −Duε|2

≤ c

ˆ
Ω′

(
F (x,Dũε)− F (x,Duε)− 〈DξF (x,Duε), Dũε −Duε〉

)
.

Here we have by Lemma 3.1,
ˆ

Ω′
〈DξF (x,Duε), Dũε −Duε〉 = −ε̃

ˆ
Ω′
〈Dkuε, D

kũε −Dkuε〉. (3.11)

Hence using with Hölder’s inequality, (3.2) and (3.10), it follows that
ˆ

Ω′

1
g(x)

(
|Dũε|2 + |Duε|2

) p−2
2 |Dũε −Duε|2 → 0 as ε↘ 0.

10



Because p ≥ 2, we conclude by well-known means that
ˆ

Ω′

1
g(x)
|Dũε −Duε|p → 0,

and therefore also ˆ
Ω′
|Duε −Du|p̃ → 0, ∀p̃ < p,

by a simple use of Hölder’s inequality, as in (3.9). This concludes the proof.

We are now ready to embark on the core of the proof of Theorem 1.2.

Proof. Fix B2R = B2R(x0) ⊂ Ω′, radii R ≤ r < s ≤ 2R ≤ 2 and a smooth

cut-off function ρ satisfying 1Br ≤ ρ ≤ 1Bs and |Diρ| ≤
(

2
s−r

)i
for each i ∈ N.

According to Lemma 3.1, we can test the Euler–Lagrange system (3.3) with
ϕ = ρ2kD2

juε for each direction 1 ≤ j ≤ n:

0 =
ˆ

Ω′

〈
DξF (x,Duε), D2

jDuε

〉
ρ2k +

ˆ
Ω′

〈
DξF (x,Duε), D2

juε ⊗D
(
ρ2k
)〉

+ε̃
ˆ

Ω′

〈
Dkuε, D

k
(
D2
juερ

2k
)〉

=: I + II + III. (3.12)

Integration by parts yields

I = −
ˆ

Ω′

(
ρ2k
〈
Dj

(
DξF (x,Duε)

)
, DjDuε

〉
+ 2kρ2k−1Djρ

〈
DξF (x,Duε), DjDuε

〉)
= −

ˆ
Ω′

(
ρ2kDξξF (x,Duε)

[
DjDuε, DjDuε

]
+ρ2k〈DxjDξF (x,Duε), DjDuε〉

)
−
ˆ

Ω′

(
2k
〈
ρ2k−1DjρDξF (x,Duε), DjDuε

〉)
≤ −

ˆ
Ω′
ρ2k 1

g(x)
|Duε|p−2|DjDuε|2 + c(L)

ˆ
Ω′
ρ2k|Dxjg||Duε|p−1|DjDuε|

+c(p, k)
ˆ

Ω′
ρ2k−1|Djρ|g(x)|Duε|p−1|DjDuε|,

where we used (H6), (H3) and (H5). Hence, using Young’s inequality in the last
two integrals, we obtain

I ≤ −
ˆ

Ω′

ρ2k

g(x)
|Duε|p−2|DjDuε|2 +

1
2

ˆ
Ω′

ρ2k

g(x)
|Duε|p−2|DjDuε|2

+ c(p, k)
ˆ

Ω′
ρ2(k−1)|Djρ|2g3(x)|Duε|p

+ c(p, L)
ˆ

Ω′
ρ2kg(x)|Dg|2|Duε|p. (3.13)

By virtue of (H3) and Cauchy–Schwarz’ inequality, we get

II ≤ c(p, k)
ˆ

Ω′
g(x)|Duε|p−1ρ2k−1|Dρ||D2

juε| ≤ c(p, k)
ˆ

Ω′
g3(x)|Duε|pρ2(k−1)|Dρ|2

11



+
1
4

ˆ
Ω′

ρ2k

g(x)
|Duε|p−2|DjDuε|2. (3.14)

In order to estimate III, we argue as in [8] writing

III = ε̃

ˆ
Ω′

〈
Dkuε, DjD

k
(
ρ2kDjuε

)
−Dk

(
Dj

(
ρ2k
)
Djuε

)〉
and integrating the first term by parts,

III = −ε̃
ˆ

Ω′

(〈
DjD

kuε, D
k
(
ρ2kDjuε

)〉
− ε̃
ˆ

Ω′

〈
Dkuε, D

k
(
Dj

(
ρ2k
)
Djuε

)〉)
=: III1 + III2.

We estimate these terms by use of Cauchy-Schwarz’ inequality, Leibniz’ product
formula and the assumptions on Diρ (simplifying also by use of s− r ≤ 1):

III1 ≤ −ε̃
ˆ

Ω′
ρ2k|DjD

kuε|2 +
ckε̃

(s− r)k

ˆ
Ω′
ρk|DjD

kuε|
k−1∑
i=0

|DiDjuε|

≤ −2ε̃
3

ˆ
Ω′
ρ2k|DjD

kuε|2 +
ckε̃

(s− r)2k

ˆ
B2R

(k−1∑
i=0

|DiDjuε|
)2

≤ −2ε̃
3

ˆ
Ω′
ρ2k|DjD

kuε|2 +
ckε̃

(s− r)2k

ˆ
B2R

k−1∑
i=0

|DiDjuε|2

for a (new) constant ck. Likewise,

III2 ≤
ε̃

3

ˆ
Ω′
ρ2k|DjD

kuε|2 +
ckε̃

(s− r)2k+2

ˆ
B2R

(
k−1∑
i=0

|DiDjuε|2 + |Dkuε|2
)
,

where we remark that the increased power of the factor (s − r) is due to the
presence of an additional Dj-derivative on ρ2k in III2. Collecting the above
bounds and adjusting the constant ck we arrive at

III ≤ − ε̃
3

ˆ
Ω′
ρ2k|DjD

kuε|2 +
ckε̃

(s− r)2k+2

ˆ
B2R

(
k−1∑
i=0

|DiDjuε|2 + |Dkuε|2
)
.

(3.15)
Inserting the bounds (3.13), (3.14), (3.15) in (3.12) and using the properties of
ρ we get for each 1 ≤ j ≤ n:

1
4

ˆ
Ω′

ρ2k

g(x)
|Duε|p−2|DjDuε|2 +

ε̃

3

ˆ
Ω′
ρ2k|DjD

kuε|2

≤ c(p, k)
(s− r)2

ˆ
Bs\Br

g3(x)|Duε|p

+ c(p, L)
ˆ

Ω′
ρ2k|Dg|2g(x)|Duε|p

+
cε̃

(s− r)2k+2

ˆ
B2R

(
k−1∑
i=0

|DjD
iuε|2 + |Dkuε|2

)
.

12



Adding up these inequalities over j ∈ {1, . . . , n} and adjusting the constants
we arrive at

ˆ
Ω′

ρ2k

g(x)
|Duε|p−2|D2uε|2 +

4ε̃
3

ˆ
Ω′
ρ2k|Dk+1uε|2

≤ c(n, p, k)
(s− r)2

ˆ
Bs\Br

g3|Duε|p + c(n,L, p)
ˆ

Ω′
ρ2kg(x)|Dg|2|Duε|p

+
A(ε)

(s− r)2k+2
, (3.16)

where A(ε) is independent of r, s and where by virtue of (3.10) in Lemma 3.2,
through the Gagliardo Nirenberg interpolation inequality,

A(ε)→ 0 as ε↘ 0.

Omitting the second term on the left–hand side, the above inequality simplifies
to

ˆ
Ω′

ρ2k

g(x)
|Duε|p−2|D2uε|2 ≤

c(n, p, k)
(s− r)2

ˆ
Bs\Br

g3|Duε|p

+c(n, p, L)
ˆ

Ω′
ρ2kg|Dg|2|Duε|p +

A(ε)
(s− r)2k+2

. (3.17)

Now, elementary calculations imply that∣∣∣∣D(ρk 1
√
g
V (Duε)

)∣∣∣∣2
≤ c

[
ρ2k 1

g
|Duε|p−2|D2uε|2 + ρ2k 1

g3
|Dg|2|V (Duε)|2 + k2ρ2k−2 1

g
|Dρ|2|V (Duε)|2

]
,

where c is a constant depending on p but independent of ε . Integrating previous
estimate over the set Ω′ and using (3.17) we get

ˆ
Ω′

∣∣∣∣D(ρk 1
√
g
V (Duε)

)∣∣∣∣2
≤ c(n, p, k)

(s− r)2

ˆ
Bs\Br

g3|Duε|p + c(n, p, L)
ˆ

Ω′
ρ2kg|Dg|2|Duε|p

+
c(p, k)

(s− r)2

ˆ
Bs\Br

1
g
|Duε|p + c(p)

ˆ
Ω′
ρ2k 1

g3
|Dg|2|Duε|p

+
Ã(ε)

(s− r)2k+2
, (3.18)

where we set Ã(ε) = cA(ε). Since g ≥ 1, inequality (3.18) simplifies to

ˆ
Ω′

∣∣∣∣D(ρk 1
√
g
V (Duε)

)∣∣∣∣2
≤ c1(n, p, k)

(s− r)2

ˆ
Bs\Br

g3|Duε|p + c2(n, p, L)
ˆ

Ω′
ρ2kg|Dg|2|Duε|p

+
Ã(ε)

(s− r)2k+2
. (3.19)
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Sobolev imbedding Theorem and the definition of V (Du) yield(ˆ
Ω′
ρ

2kn
n−2

1
g

n
n−2
|Duε|

pn
n−2

)n−2
n

=
(ˆ

Ω′
ρ

2kn
n−2

1
g

n
n−2
|V (Duε)|

2n
n−2

)n−2
n

≤ C2
S

ˆ
Ω′

∣∣∣∣D(ρk 1
√
g
V (Duε)

)∣∣∣∣2 (3.20)

for a constant CS = CS(n,N). Combining (3.19) and (3.20), we obtain
ˆ

Ω′
ρ

2kn
n−2

1
g

n
n−2
|Duε|

pn
n−2

≤ c1(n, p, k,N)

(s− r)
2n
n−2

(ˆ
Bs\Br

g3|Duε|p
) n
n−2

+ c2(n, p, L,N)
(ˆ

Ω′
ρ2kg|Dg|2|Duε|p

) n
n−2

+

(
Ã(ε)

(s− r)2k+2

) n
n−2

=: I + II +

(
Ã(ε)

(s− r)2k+2

) n
n−2

. (3.21)

Hölder’s inequality yields

II ≤ c2(n, p, L,N)
(ˆ

Ω′
g
n
2 |Dg|n

) 2
n−2
ˆ

Ω′
ρ

2kn
n−2

1
g

n
n−2
|Duε|

np
n−2

≤ c2(n, p, L,N)
(ˆ

Ω′
gn|Dg|n

) 2
n−2
ˆ

Ω′
ρ

2kn
n−2

1
g

n
n−2
|Duε|

np
n−2 (3.22)

where we used again that g ≥ 1. Now, since the assumption on g implies
g2 ∈ W1,n(Ω), the absolute continuity of the integral allows us to choose Ω′

such that (ˆ
Ω′
gn|Dg|n

) 2
n−2

<
1

4c2(n, p, L,N)
(3.23)

in order to have that

II ≤ 1
4

(ˆ
Ω′
ρ

2kn
n−2

1
g

n
n−2
|Duε|

np
n−2

)n−2
n

. (3.24)

For the estimation of I, we use Hölder’s and Young’s inequalities as follows

I ≤ c1

(s− r)
2n
n−2

(ˆ
Bs\Br

g4n

) 1
n−2

(ˆ
Bs\Br

1
g
|Duε|p

) n
2(n−2)

·

(ˆ
Bs\Br

1
g

n
n−2
|Duε|

np
n−2

) 1
2

≤
ˆ
Bs\Br

1
g

n
n−2
|Duε|

np
n−2

+
c1

(s− r)
4n
n−2

(ˆ
Bs\Br

g4n

) 2
n−2

(ˆ
Bs\Br

1
g
|Duε|p

) n
n−2

(3.25)
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for a new constant c1 = c1(n, p, k,N), independent of ε. Inserting (3.25) and
(3.24) in (3.21) we getˆ

Ω′
ρ

2kn
n−2

1
g

n
n−2
|Duε|

pn
n−2 ≤ 1

4

ˆ
Ω′
ρ

2kn
n−2

1
g

n
n−2
|Duε|

np
n−2 +

ˆ
Bs\Br

1
g

n
n−2
|Duε|

np
n−2

+
c1

(s− r)
4n
n−2

(ˆ
Bs\Br

g4n

) 2
n−2

(ˆ
Bs\Br

1
g
|Duε|p

) n
n−2

+

(
Ã(ε)

(s− r)2k+2

) n
n−2

(3.26)

Reabsorbing the first integral in the right hand side by the left hand side and
using that ρ equals 1 on Br, we getˆ
Br

1
g

n
n−2
|Duε|

pn
n−2 ≤

ˆ
Ω′
ρ

2kn
n−2

1
g

n
n−2
|Duε|

pn
n−2 ≤ 4

3

ˆ
Bs\Br

1
g

n
n−2
|Duε|

np
n−2

+
c

(s− r)
4n
n−2

(ˆ
Bs\Br

g4n

) 2
n−2

(ˆ
Bs\Br

1
g
|Duε|p

) n
n−2

+

(
Ã(ε)

(s− r)2k+2

) n
n−2

(3.27)

where c denotes a constant independent of ε. We use the hole filling trick of
Widman to obtainˆ

BR

1
g

n
n−2
|Duε|

pn
n−2

≤ c

R
4n
n−2

(ˆ
B2R

g4n

) 2
n−2

(ˆ
B2R

1
g
|Duε|p

) n
n−2

+

(
Ã(ε)
R2k+2

) n
n−2

≤ c

R
4n
n−2

(ˆ
B2R

g4n

) 2
n−2

(ˆ
B2R

F (x,Duε) dx
) n
n−2

+

(
Ã(ε)
R2k+2

) n
n−2

by the use of assumption (H1). Since, by Lemma 3.2, we have that the integralˆ
B2R

F (x,Duε) dx

is bounded independently of ε, it follows that the sequence (Duε) is bounded in
L

np̃
n−2 (BR,RN×n), for all p̃ < p. So, by the arbitrariness of the ball B2R(x0) ⊂

Ω′ and a simple covering argument, we conclude that (Duε) is bounded in

L
np̃
n−2
loc (Ω′,RN×n). Therefore by passing to the limit as ε↘ 0 we get

ˆ
BR

1
g

n
n−2
|Du|

pn
n−2 ≤ c

R
4n
n−2

(ˆ
B2R

g4n

) 2
n−2

(ˆ
B2R

F (x,Du) dx
) n
n−2

(3.28)

and hence, since by the assumption on g we have g2 ∈W1,n(Ω), we get(ˆ
BR

1
g

n
n−2
|Du|

pn
n−2

)n−2
n

≤ c

R4

(ˆ
Ω

(|g|2 + |D(g2)|)n
) 4
n
ˆ
B2R

F (x,Du) dx

(3.29)
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In view of (3.17) and (3.29), it then also follows that (V (Duε)) is bounded in
W1,s

loc(Ω′,RN×n), for every s < 2 and passing to limit as ε ↘ 0 we obtain the
following estimate

ˆ
BR

1
g
|D(V (Du))|2 dx ≤ c

R6

(ˆ
Ω

(|g|2 + |D(g2)|)n dx
) 6
n
ˆ
B2R

F (x,Du) dx .

(3.30)
This concludes the proof.

As a simple consequence of previous Theorem, we have

Corollary 3.3. Let F : Ω×RN×n → R satisfy the assumptions (H1)– (H6) for
a function g such that gp

′+1 ∈ W1,n(Ω) ∩ L∞loc(Ω) and an exponent 2 < p ≤ n.
If u ∈W1,1

loc(Ω,RN ) is a local F–minimizer, then

Vp(Du) ∈W1,2
loc(Ω,RN×n)

Furthermore, there exists a radius R0 = R0(n,N,L, p) such that whenever
B2R ⊂ BR0 ⊂ Ω we have the Caccioppoli type inequality

ˆ
BR

|D(V (Du))|2 dx ≤ c

R6

(ˆ
Ω

(|g|2 + |D(g2)|)n dx
) 6
n
(ˆ

B2R

F (x,Du) dx
)

for a constant c = c(n,N,L, p, ||g||∞).

4 Proof of Theorem 1.3

The proof of the higher integrability result stated in Theorem 1.3 will be achieved
establishing first that F - minimizers are locally bounded in Ω and then using
the weighted interpolation result of Lemma 2.3. The local boundedness of min-
imizers, which could be of interest by itself, is contained in the following

Lemma 4.1. Let F : Ω× RN×n → R satisfy the conditions (H1)– (H6) for an
exponent 2 ≤ p < n and a function g such that gp

′+1 ∈ W1,n
0 (Ω). Suppose in

addition that F (x, ξ) = F̃ (x, |ξ|). If u ∈ W1,1
loc(Ω,RN ) is a local F–minimizer,

then there exists R1 = R1(n,N, p) > 0 such that for every ball BR ⊂ BR1 b Ω

sup
BR

2

|u| ≤ c(p, n,N)

R
n−p
p1

(ˆ
Ω

(|g|2 + |D(g2)|)n
)n−p

np1
(ˆ

BR

|u|
np2
n−p dx

)n−p
np2

(4.1)

for an exponent p2 < p.

Proof. The proof, which is rather technical, will be given in two steps. In
the first one, we establish uniform estimates for the minimizers of suitable ap-
proximating problems, while in the second one we conclude showing that these
estimates are preserved in passing to limit.
Step 1. The a priori estimate
Fix a subdomain with a smooth boundary Ω′ b Ω and for a smooth kernel φ ∈
C∞c (B1(0)) with φ ≥ 0 and

´
B1(0)

φ = 1, we consider the corresponding family of
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mollifiers (φε)ε>0 and put ũε := φε ∗u on Ω′ for each positive ε < dist (Ω′, ∂Ω).
Let us denote by vε the unique minimizer of the Dirichlet problem

min
v∈ũε+W 1,p

0 (Ω′)

ˆ
Ω′
Fε(x,Dv) dx (4.2)

where we set

Fε(x, ξ) =
F (x, ξ)
1 + εg

+
εg

1 + εg
|ξ|p .

It is well known (see for example [5, 25, 26]) that Fε(x, ξ) satisfies the following
bounds (uniform with respect to ε)

1
g(x)
|ξ|p ≤ Fε(x, ξ) ≤ g(x)|ξ|p (A1)

|DxDξFε(x, ξ)| ≤ c(p, L)|Dg(x)||ξ|p−1 , (A2)

and
〈DξξFε(x, ξ)η, η〉 ≥

1
g(x)
|ξ|p−2|η|2 . (A3)

One can easily check that

|DξFε(x, ξ)| ≤ c(p)g(x)|ξ|p−1 (A4)

for positive constants independent of ε. Moreover, Fε(x, ξ) satisfies the following
bounds (uniform with respect to x)

ε

1 + ε
|ξ|p ≤ Fε(x, ξ) ≤

1 + ε

ε
|ξ|p . (A5)

Fix B2R = B2R(x0) ⊂ Ω′, radii R ≤ r < s ≤ 2R ≤ 2 and a smooth cut-off
function η satisfying 1Br ≤ η ≤ 1Bs and |Dη| ≤ 2

s−r . Let us consider the
function ϕ = ηp|vε|σvε where σ is a positive exponent. Since by Theorem 2.3
in [28], vε is bounded in Ω′, we are allowed to plug ϕ as test function in the
Euler-Lagrange equation associated to the functional defined in (4.2). We get

0 =
ˆ

Ω′
DξFε(x,Dvε)Dϕdx

=
ˆ

Ω′
ηp|vε|σ〈DξFε(x,Dvε), Dvε〉dx

+ σ

ˆ
Ω′
ηp〈DξFε(x,Dvε), Dvε〉|vε|σ dx

+ p

ˆ
Ω

ηp−1|vε|σ〈DξFε(x,Dvε), vε ⊗∇η〉dx

:= I + II + III (4.3)

Then we estimate I and II thanks to the ellipticity assumption (A3):

I + II ≥ (σ + 1)
ˆ

Ω′
ηp

1
g(x)
|vε|σ|Dvε|p dx (4.4)
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We can estimate |III| by using the growth condition on the first derivatives of
Fε expressed by the inequality (A4) and Young’s inequality as follows

|III| ≤ c(p)
ˆ

Ω′
ηp−1g(x)|vε|σ+1|Dvε|p−1|∇η|dx

≤ c(p)
ˆ

Ω′
ηp−1g(x)|vε|σ+1|Dvε|p−1|∇η|dx

≤ 1
2

(σ + 1)
ˆ

Ω′
ηp

1
g(x)
|vε|σ|Dvε|p dx

+
c(p)

(σ + 1)p−1

ˆ
Ω′
g2p−1(x)|∇η|p|vε|σ+p dx (4.5)

Inserting estimates (4.4) and (4.5) in (4.3) and reabsorbing we have that

(σ + 1)
ˆ

Ω′
ηp

1
g(x)
|vε|σ|Dvε|p dx

≤ c(p)
(σ + 1)p−1

ˆ
Ω′
g2p−1(x)|∇η|p|vε|σ+p dx . (4.6)

We can write previous inequality as follows
ˆ

Ω′
ηp

1
g(x)
|vε|σ|Dvε|p dx

≤ c(p)
(σ + 1)p(s− r)p

ˆ
Bs\Br

g2p−1(x)|vε|σ+p dx , (4.7)

by the use of the properties of η. Now, we calculate∣∣∣∣∣D
(
η

1

g
1
p (x)

|vε|
σ
p vε

)∣∣∣∣∣
p

≤ c(p)ηp
|Dg|p

gp+1
|vε|σ+p + c(p)

(
σ + p

p

)p
ηp

1
g(x)
|vε|σ|Dvε|p

+ c(p)|∇η|p 1
g(x)
|vε|σ+p

Integrating previous inequality over Ω′ and using (4.7), we get

ˆ
Ω′

∣∣∣∣∣D
(
η

1

g
1
p (x)

|vε|
σ
p vε

)∣∣∣∣∣
p

dx

≤ c(p)
(s− r)p

(σ + p)p

(σ + 1)p

ˆ
Bs\Br

g2p−1(x)|vε|σ+p dx

+ c(p)
ˆ

Ω′
ηp
|Dg|p

gp+1
|vε|σ+p dx+ c(p)

ˆ
Ω′
|∇η|p 1

g(x)
|vε|σ+p dx (4.8)

Sobolev imbedding Theorem yields

ˆ
Ω′

(
ηp

1
g(x)
|vε|σ+p

) n
n−p

18



≤ c(p, n,N)

(s− r)
np
n−p

(
σ + p

σ + 1

) np
n−p

(ˆ
Bs\Br

g2p−1(x)|vε|σ+p dx

) n
n−p

+ c(p, n,N)
(ˆ

Ω′
ηp
|Dg|p

gp+1
|vε|σ+p dx

) n
n−p

:= A+B (4.9)

where we used that, since g(x) ≥ 1, one has 1
g ≤ g2p−1 and that σ+p

σ+1 > 1. We
estimate B using Hölder’s inequality as follows

B ≤ c(p, n,N)
(ˆ

Ω′

(
ηp

1
g(x)
|vε|σ+p

) n
n−p

dx
)(ˆ

BR

(
|Dg|p

gp

)n
p

dx

) p
n−p

We choose R < R1 = R1(n, p,N) such that(ˆ
BR1

|Dg|n

gn
dx

) p
n−p

<
1

2c(n, p,N)

and hence

B ≤ 1
2

ˆ
Ω′

(
ηp

1
g(x)
|vε|σ+p

) n
n−p

dx (4.10)

In order to estimate A, we interpolate as follows

1
σ + p

=
ϑ

n(σ+p)
n−p

+
1− ϑ
np1
n−p

,

for a fixed p1 < p. We find

ϑ =
n

n− p
− p(σ + p)

(σ + p− p1)(n− p)

that is positive and strictly less than 1 for σ > p2−n(p−p1)
n−p . Hence we can use

Hölder’s and Young’s inequalities as follows

A ≤ c(p, n,N)

(s− r)
np
n−p

(
σ + p

σ + 1

) np
n−p

(ˆ
Bs\Br

g2p−1(x)|vε|σ+p dx

) n
n−p

≤ c(p, n,N)

(s− r)
np
n−p

(
σ + p

σ + 1

) np
n−p

(ˆ
Bs\Br

(
1
g
|vε|σ+p

) n
n−p

dx

)ϑ

·

(ˆ
Bs\Br

gχ(x)|vε|
np1
n−p dx

) (1−ϑ)(σ+p)
p1

≤ 1
8

ˆ
Bs\Br

(
1
g
|vε|σ+p

) n
n−p

dx

+

[
c(p, n,N)

(s− r)
np
n−p

(
σ + p

σ + 1

) np
n−p
] 1

1−ϑ
(ˆ

Bs\Br
gχ(x)|vε|

np1
n−p

)σ+p
p1

(4.11)
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where in order to simplify the notation we set χ = (2p+ 1− ϑ) np1
(1−ϑ)(n−p)(σ+p) .

Inserting estimates (4.11) and (4.10) in (4.9), we get

ˆ
Ω′

(
ηp

1
g
|vε|σ+p

) n
n−p

≤ 1
2

ˆ
Ω′

(
ηp

1
g
|vε|σ+p

) n
n−p

dx+
1
8

ˆ
Bs\Br

(
1
g
|vε|σ+p

) n
n−p

dx

+

[
c(p, n,N)

(s− r)
np
n−p

(
σ + p

σ + 1

) np
n−p
] 1

1−ϑ
(ˆ

Bs\Br
gχ(x)|vε|

np1
n−p

)σ+p
p1

(4.12)

Reabsorbing the first integral in the right hand side by the left hand side and
using the hole filling trick of Widman, we get

ˆ
BR

2

(
1
g
|vε|σ+p

) n
n−p

dx

≤

[
c(p, n,N)

R
np
n−p

(
σ + p

σ + 1

) np
n−p
] 1

1−ϑ (ˆ
BR

gχ(x)|vε|
np1
n−p

)σ+p
p1

(4.13)

Recalling that 1− ϑ = pp1
(σ+p−p1)(n−p) we obtain

ˆ
BR

2

(
1
g
|vε|σ+p

) n
n−p

dx


n−p

n(σ+p)

≤

[
c(p, n)

R
np
n−p

(
σ + p

σ + 1

) np
n−p
]σ+p−p1

σ+p
(n−p)2
npp1 (ˆ

BR

gχ(x)|vε|
np1
n−p dx

)n−p
np1

Hölder’s inequality yieldsˆ
BR

2

(
1
g
|vε|σ+p

) n
n−p

dx


n−p

n(σ+p)

≤

[
c(p, n)

R
np
n−p

(
σ + p

σ + 1

) np
n−p
]σ+p−p1

σ+p
(n−p)2
npp1

·
(ˆ

BR

gχ
p2

p2−p1 (x)
) (n−p)(p2−p1)

np1p2
(ˆ

BR

|vε|
np2
n−p dx

)n−p
np2

(4.14)

where p1 < p2 < p.

Step 2. Conclusion
Since the functional Fε satisfies (A1)–(A4), we are legitimate to use estimate
(3.29) for vε

ˆ
BR

1
g

n
n−2
|Dvε|

pn
n−2 dx ≤ C

R4

(ˆ
Ω

(|g|2 + |D(g2)|)n
) 4
n
ˆ
B2R

Fε(x,Dvε) dx

≤ C

R4

(ˆ
Ω

(|g|2 + |D(g2)|)n
) 4
n
ˆ
B2R

Fε(x,Dũε) dx
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≤ C

R4

(ˆ
Ω

(|g|2 + |D(g2)|)n
) 4
n
ˆ
B2R

g|Dũε|p dx

≤ C

R4

(ˆ
Ω

(|g|2 + |D(g2)|)n
) 5
n
(ˆ

B2R

|Dũε|
2np

2n−1 dx
) 2n−1

2n

(4.15)

by the minimality of vε and the growth condition (A1). Since 2np
2n−1 <

np
n−2 , by

Theorem 1.1 we have that Du ∈ L
2np

2n−1 and hence ũε strongly converges to u as
ε→ 0 in W 1, 2np

2n−1 . Therefore there exists a positive constant C independent of
ε such that ˆ

BR

1
g

n
n−2
|Dvε|

pn
n−2 dx ≤ C (4.16)

and then the sequence Dvε is bounded in L
np̃
n−2 (BR,RN×n), for all p̃ < p and

a standard diagonal argument give a subsequence vj = (vε)j weakly converging
to a function v, whose gradient Dv belongs to L

np̃
n−2 (BR,RN×n), for all p̃ < p.

Moreover vj = (vε)j strongly converges to v in Lγ , for every γ < np
n−2−p (if

p < n − 2) or γ is any number if p ≥ n − 2. Our next aim is to show that the
limit function v coincides with the minimizer u of the functional F(u,BR). The
lower semicontinuity of the integral and the definition of Fε imply
ˆ
BR

F (x,Dv) dx ≤ lim
ε→0

ˆ
BR

F (x,Dvε) dx ≤ lim
ε→0

ˆ
BR

Fε(x,Dvε)(1 + εg) dx

≤ lim
ε→0

ˆ
BR

Fε(x,Dvε) + lim
ε→0

ε

ˆ
BR

gFε(x,Dvε) dx

≤ lim
ε→0

ˆ
BR

Fε(x,Dvε) + lim
ε→0

ε

ˆ
BR

g2|Dvε|p dx

= lim
ε→0

ˆ
BR

Fε(x,Dvε) dx

+ lim
ε→0

ε

(ˆ
Ω

(|g|2 + |D(g2)|)n
) 3

2n
(ˆ

BR

1
g

n
n−2
|Dvε|

pn
n−2 dx

)n−2
n

= lim
ε→0

ˆ
BR

Fε(x,Dvε) dx (4.17)

where we used (4.16). Estimate (4.17), the minimality of vε, Jensen’s inequality
and Dominated Convergence Theorem yield
ˆ
BR

F (x,Dv) dx ≤ lim
ε→0

ˆ
BR

Fε(x,Dvε) dx ≤ lim
ε→0

ˆ
BR

Fε(x,Dũε) dx

≤
ˆ
BR

F (x,Du) dx (4.18)

Since v and u coincide on ∂BR in the sense of traces, by the minimimality of u,
we have ˆ

BR

F (x,Du) dx ≤
ˆ
BR

F (x,Dv) dx

and the strict convexity of F implies that v and u coincide a.e. in BR. Taking
the limit as ε → 0 in (4.14), by the use of Fatou’s Lemma and the fact that
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vj = (vε)j strongly converges to u in Lγ , for every γ < np
n−p , we get

ˆ
BR

2

(
1
g
|u|σ+p

) n
n−p

dx


n−p

n(σ+p)

≤ lim inf
ε→0

ˆ
BR

2

(
1
g
|vε|σ+p

) n
n−p

dx


n−p

n(σ+p)

≤

[
c(p, n,N)

R
np
n−p

(
σ + p

σ + 1

) np
n−p
]σ+p−p1

σ+p
(n−p)2
npp1

·
(ˆ

BR

g
χp2
p2−p1 (x)

) (n−p)(p2−p1)
np1p2

(ˆ
BR

|u|
np2
n−p dx

)n−p
np2

(4.19)

Letting σ → ∞ in (4.19), taking into account that χ → 2n and using the
assumption g2 ∈W1,n(Ω), we conclude that

sup
BR

2

|u| ≤ c(p, n,N)

R
n−p
p1

(ˆ
BR

g
2np2
p2−p1 (x)

) (n−p)(p2−p1)
np1p2

(ˆ
BR

|u|
np2
n−p dx

)n−p
np2

≤ c(p, n,N)

R
n−p
p1

(ˆ
Ω

(|g|2 + |D(g2)|)n
)n−p

np1
(ˆ

BR

|u|
np2
n−p dx

)n−p
np2

(4.20)

Now, combining Lemmas 4.1 and 2.3, we are ready to give the following

Proof of Theorem 1.3. Let BR b Ω with 2R < R̄ = min{R0, R1}, where R0, R1

are determined in Theorem 1.2 and Lemma 4.1 respectively and let η ∈ C1
c (Ω)

be a cut off function between BR
2

and BR. By the higher differentiability result
of Theorem 1.3 and Lemma 4.1, we are legitimate to apply Lemma 2.3, thus
obtaining

ˆ
Ω

η2 1
g
|Du|p+2 dx ≤ c(p)

ˆ
Ω

η2 1
g
|u|2|Du|p−2|D2u|2 dx

+ c

ˆ
Ω

η2|u|2 |Dg|
2

g3
|Du|p dx+ c

ˆ
Ω

|u|2 1
g
|∇η|2|Du|p dx (4.21)

Previous inequality obviously implies that
ˆ

Ω

η2 1
g
|Du|p+2 dx ≤ c(p)||u||2L∞(BR)

ˆ
Ω

η2 1
g
|Du|p−2|D2u|2 dx

+ c||u||2L∞(BR)

ˆ
Ω

η2 |Dg|2

g3
|Du|p dx+ c||u||2L∞(BR)

ˆ
Ω

|∇η|2|Du|p dx

≤ c(p)||u||2L∞(BR)

ˆ
Ω

η2 1
g
|Du|p−2|D2u|2 dx

+ c||u||2L∞(BR)

(ˆ
Ω

η2 |Dg|n

gn
dx
) 2
n
(ˆ

Ω

η2 1
g

n
n−2
|Du|

pn
n−2 dx

)n−2
n

+ c||u||2L∞(BR)

ˆ
Ω

|∇η|2 1
g
|Du|p dx
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Estimates (3.29) and (3.30) of Theorem 1.2 yield
ˆ
BR

2

1
g
|Du|p+2 dx

≤
c||u||2L∞(BR)

R6

(ˆ
Ω

(|g|2 + |D(g2)|)n dx
) 6
n
(ˆ

B2R

1
g
|Du|p

)
+

c||u||2L∞(BR)

R4

(ˆ
Ω

(|g|2 + |D(g2)|)n dx
) 6
n
(ˆ

B2R

1
g
|Du|p

)
+

c||u||2L∞(BR)

R2

ˆ
BR

1
g
|Du|p dx

i.e. the conclusion.
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