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Abstract

We consider shape optimization problems of the form

min
{
J(Ω) : Ω ⊂ X, m(Ω) ≤ c

}
,

where X is a metric measure space and J is a suitable shape functional. We adapt the
notions of γ-convergence and weak γ-convergence to this new general abstract setting
to prove the existence of an optimal domain. Several examples are pointed out and
discussed.
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1 Introduction

Shape optimization problems, though a classical research field starting with isoperimetric
type problems, received a lot of attention from the mathematical community in the recent
years, especially for their applications to Mechanics and Engineering. In particular spectral
optimization problems, where one is interested in minimizing some suitable function of the
spectrum of a differential operator under various types of constraints, have been widely
investigated. We refer for instance to the monographs [2, 14, 15] and to the survey paper
[4], where the state of the art is described, together with some problems that are still open.
We also refer to [3] for a different type of problems, where internal obstacles are considered.

The ambient space for shape optimization problems in the literature is usually the
Euclidean space Rd, or sometimes a smooth Riemannian manifold (as for instance in [17]).
Some examples that we illustrate in Section 7 however require a more general framework;
this is for instance the case when one looks for optimal domains in a Finsler space, in a
Carnot-Carathéodory space, or in an infinite dimensional Gaussian space.

In the present paper we consider the very general framework of metric measure spaces
and we show that, under suitable conditions, spectral optimization problems admit an
optimal domain as a solution. The spectrum we consider is the one of the metric Laplacian,
which requires the definition of the related Sobolev spaces; the key assumption we make on
the metric measure space X to develop our theory is the compact embedding of the Sobolev
space H1(X,m) into L2(X,m), which is satisfied in all the examples which motivated our
study.

In Section 2 we recall the theory of Sobolev spaces over a metric measure space, following
the approach introduced in [8]. In Section 3 we study boundary value problems for the
metric Laplacian, together with their properties. In Section 4 we give our main existence
theorem and in Section 7 we show how some interesting examples fall into our framework.
Section 6 contains an abstract theory of capacity in metric measure space that could be
used as an alternative approach.
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2 Sobolev spaces on metric measure spaces

We work in a separable metric space (X, d) endowed with a finite regular Borel measure m
such that every open set has a non-zero measure.

Definition 2.1. Let u : X → R be a measurable function. An upper gradient g for u is
a Borel function g : X → [0,+∞], such that for all points x1, x2 ∈ X and all continuous
rectifiable curves, c : [0, l] → X parametrized by arc-length, with c(0) = x1, c(l) = x2, we
have

|u(x2)− u(x1)| ≤
∫ l

0
g(c(s))ds,

where the left hand side is intended as +∞ if |u(x1)| or |u(x2)| is +∞.

Following the original notation in [8], for u ∈ L2(X,m) we set

|u|1,2 = inf
{

lim inf
j→∞

‖gj‖L2

}
, ‖u‖1,2 = ‖u‖L2 + |u|1,2

where the infimum above is taken over all sequences (gj), for which there exists a sequence
uj → u in L2 such that, for each j, gj is an upper gradient for uj . We define the Sobolev
space H = H1(X,m) as the class of functions u ∈ L2(X,m) such that the norm ‖u‖1,2 is
finite. In [8, Theorem 2.7] it was proved that the space H1(X,m), endowed with the norm
‖ · ‖1,2, is a Banach space. Moreover, in the same work, the following notion of a gradient
was introduced .

Definition 2.2. The function g ∈ L2(X,m) is a generalized upper gradient of u ∈ L2(X,m),
if there exist sequences (gj)j≥1 ⊂ L2(X,m) and (uj)j≥1 ⊂ L2(X,m) such that

uj → u in L2(X,m), gj → g in L2(X,m),

and gj is an upper gradient for uj, for every j ≥ 1.

For each u ∈ H1(X,m) there exists a unique generalized upper gradient gu ∈ L2(X,m),
such that

‖u‖1,2 = ‖u‖L2 + ‖gu‖L2 ;

moreover, for each generalized upper gradient g of u, we have gu ≤ g. The function gu is
called minimal generalized upper gradient. It is the metric space analogue of the modulus
of the weak gradient |∇u|, when X is a bounded open set of the Euclidean space and
u ∈ H1(X), the usual Sobolev space on X. Moreover, under some mild conditions on the
metric space X and the measure m, the minimal generalized upper gradient has a pointwise
expression (see [8]). In fact, for any Borel function u, one can define

Lip u(x) = lim inf
r→0

sup
d(x,y)=r

|u(x)− u(y)|
r

,

with the convention Lip u(x) = 0, whenever x is an isolated point. If the measure met-
ric space (X, d,m) satisfies some standard assumptions (doubling and supporting a weak
Poincaré inequality), then the function Lip u is the minimal generalized upper gradient
(see [8, Theorem 6.1]. This notion of weak differentiability is flexible enough to allow the
generalization of some of the notions, typical for the calculus in the Euclidean space, to
the measure metric space setting. For example, in a natural way, one can define harmonic
functions, solutions of the Poisson equation on an open set and some shape functionals on
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the subsets Ω ⊂ X as the Dirichlet energy E(Ω) and the first eigenvalue of the Dirichlet
Laplacian λ1(Ω):

E(Ω) = inf
{1

2

∫
g2
u dm(x) +

1

2

∫
u2 dm(x)−

∫
u dm(x) :

u ∈ L2(X,m), u = 0 m-a.e. on X \ Ω
}
, (2.1)

λ1(Ω) = inf
{∫ g2

udx∫
u2dx

: u 6= 0, u ∈ L2(X,m), u = 0 m-a.e. on X \ Ω
}
. (2.2)

Our main existence results concerning the functionals defined above will be proved in
Sections 4 and 7. Even if the Cheeger framework of Sobolev spaces over a metric measure
space is sufficient for our purposes, we notice that the framework and the results remain
valid in the following more general abstract setting.

Consider a linear subspace H ⊂ L2(X,m) such that:

(H1) H is a Riesz space (u, v ∈ H ⇒ u ∨ v, u ∧ v ∈ H),

(H2) H has the Stone property (u ∈ H ⇒ u ∧ 1 ∈ H).

Suppose that we have a mapping D : H → L2(X,m) such that:

(D1) Du ≥ 0, for each u ∈ H,

(D2) D(u+ v) ≤ Du+Dv, for each u, v ∈ H,

(D3) D(αu) = |α|Du, for each u ∈ H and α ∈ R,

(D4) D(u ∨ v) = Du · I{u>v} +Dv · I{u≤v}.

Remark 2.3. In the above hypotheses on H and D, we have that D(u ∧ v) = Dv · I{u>v} +
Du · I{u≤v} and D(|u|) = Du. Moreover, the quantity

‖u‖H =
(
‖u‖2L2 + ‖Du‖2L2

)1/2
,

defined for u ∈ H, is a norm on H which makes the inclusion i : H ↪→ L2 continuous.

Clearly, one can take as H the Sobolev space H1(X,m) and as Du the minimal gen-
eralized upper gradient gu. In this case, the conditions H1, H2, D1, D2, D3, D4 are
satisfied (see [8]).

Furthermore, we assume that:

(H1) (H, ‖ · ‖H) is complete,

(H2) the inclusion i : H ↪→ L2 is compact,

(H3) the norm of the gradient is l.s.c. with respect to the L2 convergence, i.e. for each
sequence un bounded in H and convergent in the strong L2 norm to a function
u ∈ L2(X,m), we have that u ∈ H and∫

X
|Du|2dm ≤ lim inf

n→∞

∫
X
|Dun|2dm.
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All the results that we present are valid in the general setting of a Banach space H and
a gradient operator D : H → L2 satisfying H1, H2, D1, D2, D3, D4, H1, H2 and H3. In
fact, from now on, we will use the notation H instead of H1(X,m) and Du instead of gu,
keeping in mind that D is not a linear operator. We notice that H can be chosen to be any
closed Riesz subspace of H1(X,m). For example, one can consider the space H1

0 (X,m),
defined as the closure, with respect to the norm ‖ · ‖1,2, of the Lipschitz functions with
compact support in X. Notice that the different choices of H lead to different functionals
λ1 and E (see Section 7 for more details).

3 Elliptic operators on measure metric spaces

Throughout this section we will assume that H is a linear subspace of L2(X,m) such that
the conditions H1, H2, D1, D2, D3, D4, H1, H2 and H3 are satisfied. In the first sub-
section we select a suitable set of domains on which to develop a theory of boundary value
problems, analogous to the Euclidean one. Note that we do not assume that the continuous
functions are dense in the Sobolev space H. Nevertheless, this is true for most of the choices
of H. In those cases we can work with quasi-open sets as we will see in Section 7.

Our definition of a Sobolev function, which has 0 as a boundary value, slightly differs
from the classical one. However, from the point of view of the shape optimization problems
we consider, this difference is unessential (see Theorem 6.10).

Definition 3.1. For each Borel set Ω ⊂ X we define the space of Sobolev functions with
zero boundary values as

H0(Ω) = {u ∈ H : u = 0 m-a.e. on X \ Ω}.

We say that a function u ∈ L2(X,m) is a solution of the elliptic boundary value problem
formally written as {

−∆u+ au = f,

u|∂Ω = 0,
(3.1)

with f ∈ L2(X,m) and a > 0, if u is a minimizer of the functional

F a,fΩ (u) =
1

2

∫
X
|Du|2dm+

a

2

∫
X
|u|2dm−

∫
X
fudm+ χH0(Ω)(u),

where the characteristic function χH0(Ω) is defined on L2(X,m) as

χH0(Ω)(u) =

{
0 if u ∈ H0(Ω),

+∞ otherwise.
(3.2)

In particular, any solution of (3.1) is in H.

Proposition 3.2. For each Borel set Ω ⊂ X, the problem (3.1) has a unique solution
wΩ,a,f ∈ H. Moreover, if f ≥ 0, then wΩ,a,f ≥ 0 m-a.e. on X.

Proof. Suppose that wn is a minimizing sequence for F a,fΩ in H0(Ω). Moreover, we can
assume that for each n > 0

1

2

∫
X
|Dwn|2dm+

a

2

∫
X
|wn|2dm−

∫
X
fwndm ≤ 0,

and thus
1

2

∫
X
|Dwn|2dm+

a

4

∫
X
|wn|2dm ≤

1

a

∫
X
f2dm,
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from which we deduce that the sequence wn is bounded in H:

‖wn‖H ≤ Ca‖f‖L2(X,m)

for a suitable constant Ca. By the compact inclusion of H in L2(X,m), we have that up
to a subsequence

wn
L2

−−−→
n→∞

w ∈ H.

By the semicontinuity of the H norm with respect to the convergence in L2(X,m), we have
that

F a,fΩ (w) ≤ lim inf
n→∞

F a,fΩ (wn),

and thus we have the existence of a minimizer. The uniqueness follows by the inequality

D

(
u+ v

2

)
≤ 1

2
Du+

1

2
Dv,

and the strict convexity of the L2 norm. In the case when f ≥ 0, we have the inequality
F a,fΩ (|u|) ≤ F a,fΩ (u), for each u ∈ H and so, by the uniqueness of the minimizer, we have
that wΩ,a,f ≥ 0.

Remark 3.3. From the proof of Proposition 3.2 we obtain, for any f ∈ L2(X,m) and a > 0,
the estimates

‖wΩ,a,f‖H ≤ Ca‖f‖L2(X,m), (3.3)∣∣F a,fΩ (wΩ,a,f )
∣∣ ≤ Ca‖f‖2L2(X,m). (3.4)

In the following, we will always denote with wΩ,a,f the unique solution of (3.1). Since
we will often consider the case a = 1, f = 1, we adopt the notation

wΩ := wΩ,1,1, FΩ = F 1,1
Ω . (3.5)

For a ∈ (0,+∞) and f ∈ L2(X,m), we have comparison principles, for the family of
solutions wΩ,a,f of the problem (3.1), which are analogous to those in the Euclidean space.

Proposition 3.4. Assume that f ≥ 0. Then the solutions of (3.1) satisfy the following
inequalities:

(a) If ω and Ω are Borel sets in X such that ω ⊂ Ω, then wω,a,f ≤ wΩ,a,f .

(b) If 0 < a < A, then wΩ,a,f ≥ wΩ,A,f .

(c) If f, g ∈ L2(X,m) are such that f ≤ g, then wΩ,a,f ≤ wΩ,a,g.

Proof. (a) We write, for simplicity, u = wω,a,f and U = wΩ,a,f . Consider the functions
u ∨ U ∈ H0(Ω) and u ∧ U ∈ H0(ω) so that

χH0(ω)(u ∧ U) = χH0(ω)(u) = 0, χH0(Ω)(u ∨ U) = χH0(Ω)(U) = 0.

Moreover, by the minimizing property of u and U , we have

F a,fω (u ∧ U) ≥ F a,fω (u),

F a,fΩ (u ∨ U) ≥ F a,fΩ (U).
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We write X = {u > U} ∪ {u ≤ U} to obtain

1

2

∫
{u>U}∩ω

|DU |2dm+
a

2

∫
{u>U}∩ω

|U |2dm−
∫
{u>U}∩ω

fU dm ≥

≥ 1

2

∫
{u>U}∩ω

|Du|2dm+
a

2

∫
{u>U}∩ω

|u|2dm−
∫
{u>U}∩ω

fu dm,

1

2

∫
{u>U}∩Ω

|Du|2dm+
a

2

∫
{u>U}∩Ω

|u|2dm−
∫
{u>U}∩Ω

fu dm ≥

≥ 1

2

∫
{u>U}∩Ω

|DU |2dm+
a

2

∫
{u>U}∩Ω

|U |2dm−
∫
{u>U}∩Ω

fU dm.

Since {u > U} ⊂ ω ⊂ Ω, we can conclude that

1

2

∫
{u>U}

|DU |2dm+
a

2

∫
{u>U}

|U |2dm−
∫
{u>U}

fU dm =

=
1

2

∫
{u>U}

|Du|2dm+
a

2

∫
{u>U}

|Du|2dm−
∫
{u>U}

fu dm,

and then
F a,fω (u ∧ U) = F a,fω (u),

F a,fΩ (u ∨ U) = F a,fΩ (U).

By the uniqueness of the minimizer, we have u = u ∧ U and U = u ∨ U . Then u ≤ U
m-a.e. in X.

(b) Let u = wΩ,a,f and U = wΩ,A,f . As before, we consider the functions u ∨ U ∈ H0(Ω)
and u ∧ U ∈ H0(Ω). We have

F a,fΩ (u ∨ U) ≥ F a,fΩ (u), FA,fΩ (u ∧ U) ≥ FA,fΩ (U).

We write X = {u < U} ∪ {u ≥ U} to obtain

1

2

∫
{u<U}

|DU |2dm+
a

2

∫
{u<U}

|U |2dm−
∫
{u<U}

fUdm

≥ 1

2

∫
{u<U}

|Du|2dm+
a

2

∫
{u<U}

|u|2dm−
∫
{u<U}

fudm,

1

2

∫
{u<U}

|Du|2dm+
A

2

∫
{u<U}

|u|2dm−
∫
{u<U}

fudm

≥ 1

2

∫
{u<U}

|DU |2dm+
A

2

∫
{u<U}

|U |2dm−
∫
{u<U}

fUdm.

Combining the two inequalities, we have

0 ≥

(
1

2

∫
{u<U}

|Du|2dm+
a

2

∫
{u<U}

|u|2dm−
∫
{u<U}

fudm

)

−

(
1

2

∫
{u<U}

|DU |2dm+
a

2

∫
{u<U}

|U |2dm−
∫
{u<U}

fUdm

)
≥ A− a

2

∫
{u<U}

(|U |2 − |u|2)dm ≥ 0.

Therefore we have, ∫
{u<U}

(|U |2 − |u|2) dm = 0,

and, in conclusion, u ≥ U m-a.e. on X.
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(c) Let u = wΩ,a,f and U = wΩ,a,g. As in the previous two points, we consider the functions
u ∨ U, u ∧ U ∈ H0(ω), and write

F a,gΩ (u ∨ U) ≥ F a,gΩ (U), F a,fΩ (u ∧ U) ≥ F a,fΩ (u).

We decompose the metric space X as {u > U} ∪ {u ≤ U} to obtain

1

2

∫
{u>U}

|Du|2dm+
a

2

∫
{u>U}

u2dm−
∫
{u>U}

gudm

≥ 1

2

∫
{u>U}

|DU |2dm+
a

2

∫
{u>U}

U2dm−
∫
{u>U}

gUdm,

1

2

∫
{u>U}

|DU |2dm+
a

2

∫
{u>U}

U2dm−
∫
{u>U}

fUdm

≥ 1

2

∫
{u>U}

|Du|2dm+
a

2

∫
{u>U}

u2dm−
∫
{u>U}

fudm.

Then, we have

0 ≥ 1

2

∫
{u>U}

|Du|2dm+
a

2

∫
{u>U}

u2dm−
∫
{u>U}

fudm

−

(
1

2

∫
{u>U}

|DU |2dm+
a

2

∫
{u>U}

U2dm−
∫
{u>U}

fUdm

)
≥
∫
{u>U}

(g − f)udm−
∫
{u>U}

(g − f)Udm =

∫
{u>U}

(g − f)(u− U)dm ≥ 0.

Thus, we obtain the equality

1

2

∫
{u>U}

|Du|2dm+
a

2

∫
{u>U}

u2dm−
∫
{u>U}

fudm

=
1

2

∫
{u>U}

|DU |2dm+
a

2

∫
{u>U}

U2dm−
∫
{u>U}

fUdm,

and, in terms of the functional F a,fΩ ,

F a,fΩ (u) = F a,fΩ (u ∧ U).

By the uniqueness of the minimizer of F a,fΩ , we conclude that U ≥ u m-a.e.

We now prove a result, analogous to the strong maximum principle for elliptic operators
in the Euclidean space. To prove this result we need the following lemma, which is similar
to [9, Proposition 3.1].

Lemma 3.5. Fix an arbitrary u ∈ H0(Ω) and consider the sequence of functionals defined
on L2(X,m)

Fn(v) =
1

2

∫
X
|Dv|2dm+

n

2

∫
X
|v − u|2dm+ χH0(Ω)(v).

Each of these functionals has a unique minimizer un ∈ H0(Ω). The sequence of minimizers
un is convergent to u in strongly in L2(X,m); more precisely, we have

‖un − u‖2L2(X) ≤
C

n
.
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Proof. For each n ≥ 1, we have

n

2

∫
X
|un − u|2dm ≤ Fn(un) ≤ Fn(u) =

1

2

∫
X
|Du|2dm,

which concludes the proof.

The following proposition replaces the classical “strong maximum principle” in the
general metric space framework.

Proposition 3.6. Let Ω ⊂ X be a Borel set and let wΩ be the solution of the problem (3.1)
with a = 1 and f = 1. Then for each u ∈ H0(Ω), we have {u 6= 0} ⊂ {wΩ > 0} m-a.e..

Proof. Considering |u| instead of u, we can restrict our attention only to nonnegative func-
tions. Moreover, by taking u ∧ 1, we can suppose that 0 ≤ u ≤ 1. Consider the family of
functionals (Fn)n∈N, introduced in Lemma 3.5, together with the corresponding minimizers
(un)n∈N. Observe that un is also a minimizer of the functional

F ′n(v) =
1

2

∫
X
|Dv|2dm+

n

2

∫
X
v2dm− n

∫
X
vudm+ χH0(Ω)(v).

Consider the sequence of functionals

Gn(v) =
1

2

∫
X
|Dv|2dm+

1

2

∫
X
v2dm− n

∫
X
vudm+ χH0(Ω)(v);

each of them has a unique minimizer vn. Since nwΩ is the unique minimizer of the functional

F
(n)
Ω (v) =

1

2

∫
X
|Dv|2dm+

1

2

∫
X
v2dm− n

∫
X
vdm+ χH0(Ω)(v),

we have, by the weak maximum principle (Proposition 3.4), that nwΩ ≥ vn ≥ un. Thus,
the inclusion {un > 0} ⊂ {wΩ > 0} holds m-a.e. for each n and, passing to the limit as
n→∞, we obtain {wΩ > 0} ⊃ {u > 0}.

Corollary 3.7. Let Ω ⊂ X be a Borel set and let wΩ be the solution of the problem (3.1)
with a = 1 and f = 1. Then, we have

(a) H0(Ω) = H0({wΩ > 0}),

(b) λ1(Ω) = λ1({wΩ > 0}),

(c) E(Ω) = E({wΩ > 0}).
Definition 3.8. We say that the Borel set Ω ⊂ X is an energy set, if the solution wΩ of
(3.1) with a = 1 and f = 1 is such that m(Ω \ {wΩ > 0}) = 0.

Proposition 3.6 allows us to associate to each energy set Ω a unique function wΩ ∈ H.
This identification will allow us to import some of the Banach space properties of H into
the family of energy sets. In particular, in the next section we will introduce a notion of
convergence for this class of domains.

Remark 3.9. For each u ∈ H the set Ω = {u > 0} is an energy set. In fact, {wΩ > 0} ⊂
{u > 0} since wΩ ∈ H0(Ω), while for the opposite inclusion we use Proposition 3.6, by which
we have that {u > 0} = {u+ 6= 0} ⊂ {wΩ > 0}. We will give a precise characterization of
the energy sets in Section 6 (see Remark 6.7).

Remark 3.10. Suppose that F is a functional defined on the family of closed linear subspaces
of H. If Ω is a solution of the shape optimization problem

min
{
F (H0(Ω)) : Ω ⊂ X, Ω Borel, m(Ω) ≤ c

}
, (3.6)

then {wΩ > 0} is also a solution of the same problem (3.6), i.e. there exists a solution
which is an energy set.
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4 The γ and weak-γ convergences

Throughout this section we will assume that all the properties H1, H2, D1, D2, D3, D4,
H1,H2 and H3 are satisfied. We introduce a suitable topology on the class of energy sets,
which allows us to prove the main existence result Theorem 5.3.

Definition 4.1. We say that a sequence of energy sets Ωn γ-converges to the energy set Ω
if wΩn converges to wΩ strongly in L2(X,m).

Definition 4.2. We say that a sequence of energy sets Ωn weak-γ-converges to the energy
set Ω if the sequence (wΩn)n≥1 is strongly convergent in L2(X,m) and its limit w ∈ H is
such that {w > 0} = Ω.

Remark 4.3. The family of energy set is sequentially compact with respect to the weak γ
convergence. In fact, by (3.3) and the compact inclusion of H in L2(X,m), we have that
each sequence of energy sets has a weak-γ convergent subsequence.

Proposition 4.4. Suppose that a sequence of energy sets Ωn weak-γ-converges to Ω and
suppose that (un)n≥0 ⊂ H is a sequence bounded in H and strongly convergent in L2(X,m)
to a function u ∈ H. If un ∈ H0(Ωn) for every n, then u ∈ H0(Ω).

Proof. First, taking |un|, we can suppose un ≥ 0 for every n ≥ 1. Moreover, by considering
the sequence un ∧ 1, we can also suppose that 0 ≤ un ≤ 1. For each n, k ≥ 1 we define on
L2(X,m) the functional

Fn,k(v) =
1

2

∫
Ωn

|Dv|2dm+
1

2

∫
Ωn

|v|2dm−
∫

Ωn

vdm+
k

2

∫
Ωn

|v − un|2dm+ χH0(Ωn)(v).

Denote by ukn ∈ H0(Ωn) the (unique) minimizer of Fn,k. By Lemma 3.5, we have that

ukn
L2(X,m)−−−−−→
k→∞

un.

Moreover, as in the proof of Proposition 3.6, we have the inequality ukn ≤ (k + 1)wΩn .
Observe that, since the sequence (wΩn)n≥1 is weakly convergent in H it is also bounded

in the norm of H. Then, for each k ≥ 1, the sequence (ukn)n≥1 is also bounded in H(X) and

so, by extracting a subsequence, we can suppose that ukn
L2

−−−→
n→∞

uk, for some uk ∈ H(X).

Moreover, uk ∈ H0(Ω), since, passing to the limit as n→∞, we have uk ≤ (k + 1)w.
By the fact that ukn is the minimizer of Fn,k, we have

Fn,k(u
k
n) ≤ Fn,k(un) =

1

2

∫
Ωn

|Dun|2dm+
1

2

∫
Ωn

|un|2dm−
∫

Ωn

undm ≤ C,

where the last inequality is due to the hypothesis that un is bounded in H. On the other
hand

Fn,k(u
k
n) =

1

2

∫
Ωn

|Dukn|2dm+
1

2

∫
Ωn

|ukn|2dm−
∫

Ωn

ukndm+
k

2

∫
Ωn

|ukn − un|2dm

≥ 1

2

∫
Ωn

|DwΩn |2dm+
1

2

∫
Ωn

|wΩn |2dm−
∫

Ωn

wΩndm+
k

2

∫
Ωn

|ukn − un|2dm.

Putting the both inequalities together, we have

k

∫
Ωn

|ukn − un|2dm ≤ C − FΩn(wΩn) ≤ C ′,
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where the last inequality is due to the boundedness of the sequence (wΩn)n≥1 in H. In
conclusion, writing C instead of C ′, we have∫

X
|ukn − un|2dm ≤

C

k
,

and passing to the limit as n→∞,∫
X
|uk − u|2dm ≤ C

k
.

Thus, we found a sequence (uk)k≥0 ⊂ H0(Ω) convergent in L2(X,m) to u. Then u ∈ H0(Ω)
by Definition 3.1.

We note that Proposition 4.4 is sufficient for the proof of the existence results Theorem
5.7 and Theorem 6.12 (see Remark 4.3 and Proposition 5.8). In order to prove the more
general Theorem 5.3, we need a make a more careful analysis of the relations between the γ
and the weak-γ convergences. From here to the end of this section, we present an argument
which allows us to avoid the notion of capacitary measures, which in the Euclidean setting
are the closure of the energy sets with respect to the γ-convergence (see [10], [9], [5], [6]).

Lemma 4.5. Consider a sequence Ωn of energy sets, which weak-γ converges to the energy
set Ω. Suppose that for each n ≥ 1 we have that Ω ⊂ Ωn. Then w = wΩ.

Proof. For a given Borel set A ⊂ X, consider the sequence of functionals

F
(A)
Ωn

(u) =
1

2

∫
A∩Ωn

|D(u+ wΩn)|2dm+
1

2

∫
A∩Ωn

|u+ wΩn |2dm

−
∫
A∩Ωn

(u+ wΩn)dm+ χH0(Ωn∩A)(u),

F
(Ac)
Ωn

(u) =
1

2

∫
Ac∩Ωn

|D(u+ wΩn)|2dm+
1

2

∫
Ac∩Ωn

|u+ wΩn |2dm

−
∫
Ac∩Ωn

(u+ wΩn)dm+ χH0(Ωn∩Ac)(u),

defined on L2(X,m) = L2(A,m)⊕ L2(Ac,m). If u, v ∈ H0(Ωn), then we have

F
(A)
Ωn

(u) + F
(Ac)
Ωn

(v) =

{
∞ if u /∈ H0(A) or v /∈ H0(Ac),

FΩn(u+ v + wn) otherwise.

Then, by the uniqueness of the minimizer of FΩn , we have that F
(A)
Ωn

and F
(Ac)
Ωn

admit
unique minimizers, both equal to 0. We can assume, up to a subsequence, that there are
functionals F (A) and F (Ac) on L2(X,m) such that

F
(A)
Ωn

Γ−→ F (A) and F
(Ac)
Ωn

Γ−→ F (Ac),

where the Γ-convergence is for the functionals defined on the metric space L2(X,m). Ob-

serve that for each un
L2(X,m)−−−−−→ u, we have

lim inf
n→∞

F
(A)
Ωn

(un) ≥ G(A)(u),

where we defined

G(A)(u) =
1

2

∫
A
|D(u+ w)|2dm+

1

2

∫
A
|u+ w|2dm−

∫
A

(u+ w)dm+ χH0(Ω∩A)(u),

G(Ac)(u) =
1

2

∫
Ac

|D(u+ w)|2dm+
1

2

∫
Ac

|u+ w|2dm−
∫
Ac

(u+ w)dm+ χH0(Ω∩Ac)(u).
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As a consequence, we have

F (A)(u) ≥ G(A)(u) and F (Ac)(u) ≥ G(Ac)(u).

Suppose that A = {w > wΩ} and Ac = {w ≤ wΩ}. Then the functionals G(A) and G(Ac)

have unique minimizers (wΩ − w)IA ∈ H1
0 (A) and (wΩ − w)IAc ∈ H1

0 (Ac). Consider the
functions (wΩ − wΩn)IAn , where An = {wΩn > wΩ}. Since An ⊂ A and Ω ⊂ Ωn, we have
that (wΩ − wΩn)IAn ∈ H0(Ωn) ∪H0(A)

F
(A)
Ωn

(IAn(wΩ − wΩn)) =
1

2

∫
A
|D(wΩ ∧wOn)|2dm+

1

2

∫
A
|wΩ ∧wOn |2dm−

∫
A
wΩ ∧wOndm,

By the definition of the Γ-limit and the fact that

wΩ ∧ wΩn

L2(X,m)−−−−−→
n→∞

wΩ ∧ w,

we have

F (A) ((wΩ − w)IA) ≤ lim infn→∞ F
(A)
Ωn

((wΩ − wΩn)IAn)

≤ 1
2

∫
A |D(wΩ ∧ w)|2dm+ 1

2

∫
A |wΩ ∧ w|2dm−

∫
AwΩ ∧ wdm

= G(A)((wΩ − w)IA) = G(A)(wΩ − w).

(4.1)

Recall that, since wΩ −w is a minimizer for G(A), we have the opposite inequality, and
so the equality

F (A)(wΩ − w) = G(A)(wΩ − w).

From the other side 0 is a minimizer for F (A), and so we have

F (A)(wΩ − w) ≥ F (A)(0) ≥ G(A)(0) ≥ G(A)(wΩ − w).

Thus, we obtain the following equality

G(A)(0) = G(A)(wΩ − w),

from which, by the uniqueness of the minimizer, the proof of the lemma is concluded.

Proposition 4.6. Suppose that the sequence Ωn of energy sets weak-γ converges to Ω and
let w = limn→∞wΩn, where the limit is strong in L2(X,m). Then we have w ≤ wΩ.

Proof. For each wΩn consider the energy set Ωε
n = {wΩn > ε}. Then we have a simple

expression for wΩε
n
:

wΩε
n

= (wΩn − ε) ∨ 0.

(Otherwise, we would have a contradiction with the uniqueness of the minimizer of FΩn .)
But then, by the dominated convergence theorem, for a certain subsequence, we have

wΩε
n
−−−→
n→∞

(w − ε) ∨ 0.

By extracting a further subsequence, we can suppose

wΩε
n∪Ω

L2

−−−→
n→∞

wε,
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for some wε ∈ H. Moreover, again by the dominated convergence theorem, we have that
vεn → vε in L2(X), where

vεn = 1− 1

ε
(wΩn ∧ ε),

vε = 1− 1

ε
(w ∧ ε),

and, as a consequence

vεn ∧ wΩε
n∪Ω

L2(X)−−−−→
n→∞

vε ∧ wε.

Observe that
vεn = 0 on Ωε

n, wΩε
n∪Ω = 0 on X \ (Ωε

n ∪ Ω),

and so we have
vεn ∧ wΩε

n∪Ω = 0 on X \ Ω,

that is vεn ∧ wΩε
n∪Ω ∈ H0(Ω) and so the limit vε ∧ wε ∈ H0(Ω). Since vε = 1 on X \ Ω, we

have that wε ∈ H0(Ω). Then, by the preceding lemma and the maximum principle, we have
that wε ≤ wΩ. From the other side, passing to the limit in the inequality wΩε

n
≤ wΩε

n∪Ω,
we have

(w − ε) ∨ 0 ≤ wε ≤ wΩ,

for each ε > 0. In conclusion, since (w − ε) ∨ 0
L2

−−−→
ε→0

w, we have w ≤ wΩ as required.

Now we can prove the following result, which is analogous to Lemma 4.10 of [4].

Proposition 4.7. Suppose that (Ωn)n≥1 is a sequence of energy sets which weak-γ-converges
to the energy set Ω. Then, there exists a sequence of energy sets (Ω′n)n≥1 γ-converging to
Ω such that for each n ≥ 1 we have that Ωn ⊂ Ω′n.

Proof. Consider, for each ε > 0, the sequence of minimizers wΩn∪Ωε , where Ωε = {wΩ > ε}.
We can suppose that for each (rational) ε > 0 the sequence is convergent in L2(X,m) to a
positive function wε ∈ H.

Consider the function vε = 1− 1
ε (wΩ ∧ ε) which is equal to 0 on Ωε and to 1 on X \Ω.

Then we have that wΩn∪Ωε ∧vε is supported on Ωn. Then the L2-limit (which exists thanks
to the dominated convergence theorem) wε ∧ vε is supported on Ω. In conclusion, we have
that wε is supported on Ω and, by the maximum principle and the proposition above, we
have wε ≤ wΩ.

From the other side, again by the maximum principle, we have (wΩ− ε)∨ 0 ≤ wε. Now
we can conclude by a diagonalization argument.

5 Functionals defined on the class of energy sets

We denote with EX the family of energy sets in X. Suppose that

J : EX → [0,+∞],

is a functional on the family of energy sets such that:

(J1) J is lower semicontinuous (shortly, l.s.c.) with respect to the γ-convergence, that is

J(Ω) ≤ lim inf
n→∞

J(Ωn) whenever Ωn
γ−→ Ω.
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(J2) J is monotone decreasing with respect to the inclusion, that is

J(Ω1) ≥ J(Ω2) whenever Ω1 ⊂ Ω2.

Lemma 5.1. If J verifies the hypothesis (J1) and (J2) above, then J is l.s.c. with respect
to the weak-γ-convergence.

Proof. Suppose that Ωn
weak−γ−−−−−→
n→∞

Ω. By Proposition 4.7, there exists a sequence of energy

sets (Ω′n)n≥1 such that Ω′n
γ−−−→

n→∞
Ω and Ωn ⊂ Ω′n. Thus we have

J(Ω) ≤ lim inf
n→∞

J(Ω′n) ≤ lim inf
n→∞

J(Ωn).

Lemma 5.2. The map m : Ω 7→ m(Ω), defined on the family of energy sets EX , is l.s.c.
with respect to the weak-γ-convergence.

Proof. Consider a weak-γ converging sequence Ωn
weak−γ−−−−−→
n→∞

Ω and the function w ∈ H such

that {w > 0} = Ω and wΩn → w in L2(X,m). Up to a subsequence, we can assume that
wΩn(x)→ w(x) for each x ∈ X. Then by Fatou lemma

m(Ω) =

∫
X

1{w>0}dm ≤ lim inf
n

∫
X

1{wΩn>0}dm = lim inf
n

m(Ωn)

as required.

Theorem 5.3. Suppose that J : EX → [0,+∞) is a functional on the family of energy
sets which verifies the hypothesis (J1) and (J2). Then for each c ≤ m(X), there exists an
energy set Ωc of measure at most c which is a solution of the problem

J(Ωc) = inf{J(Ω) : m(Ω) ≤ c, Ω ∈ EX}. (5.1)

Proof. Suppose that (Ωn)n≥1 is a minimizing sequence of energy sets of measure at most c.
There is a weak-γ-converging subsequence which we still denote in the same way, i.e.

Ωn
weak−γ−−−−−→
n→∞

Ω.

By Lemma 5.1 and Lemma 5.2, we have

m(Ω) ≤ lim inf
n→∞

m(Ωn) ≤ c,

J(Ω) ≤ lim inf
n→∞

J(Ωn).

Then Ω is the desired minimizer of J .

Remark 5.4. Let J : B(X) → R be a functional, defined on the family of Borel sets B(X)
of X, of the form J(Ω) = F (H0(Ω)), where F is a functional defined on the closed linear
subspaces of H. Then, in view of Corollary 3.7 and Remark 3.9, J is uniquely determined
by its restriction on the energy sets EX ⊂ B(X). In particular, if Ω ∈ EX is a solution of
the shape optimization problem (5.1), then it is also a solution of

min
{
J(Ω) : Ω ∈ B(X), m(Ω) ≤ c

}
. (5.2)

The functionals λk and E, from Definition 5.5 and Definition 5.6 below, are of this form.
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The main functionals we are interested in are generalizations of the first eigenvalue of
the Dirichlet Laplacian and the Dirichlet energy of an open set in Rd. Before we continue,
we restate Definitions 2.1 and 2.2 with the generic operator D instead of the generalized
weak upper gradient and the space H instead of the Sobolev space H1(X,m).

Definition 5.5. For each Borel set Ω ∈ B(X) the “first eigenvalue of the Dirichlet Lapla-
cian” on Ω is defined as

λ1(Ω) = inf
{∫

Ω
|Du|2dm : u ∈ H0(Ω),

∫
Ω
u2dm = 1

}
. (5.3)

More generally, we can define λk(Ω), for each k > 0, as

λk(Ω) = inf
K⊂H0(Ω)

sup
{∫

Ω
|Du|2dm : u ∈ K,

∫
Ω
u2dm = 1

}
, (5.4)

where the infimum is over all k-dimensional linear subspaces K of H0(Ω).

Definition 5.6. For each Borel set Ω ∈ B(X) the Dirichlet Energy of Ω is defined as

E(Ω) = inf
{1

2

∫
Ω
|Du|2dm+

1

2

∫
Ω
u2dm−

∫
Ω
udm : u ∈ H0(Ω)

}
. (5.5)

Proposition 5.7. For each energy set Ω ⊂ X of positive measure, there is a function
uΩ ∈ H0(Ω) with ‖uΩ‖L2 = 1 and such that

∫
Ω |Du|

2dm = λ1(Ω). More generally, for each
k > 0, there are functions u1, . . . , uk ∈ H0(Ω) such that:

(a) ‖uj‖L2 = 1, for each j = 1, . . . , k,

(b)
∫
X uiuj = 0, for each 1 ≤ i < j ≤ k,

(c)
∫
X |Du|

2dm ≤ λk(Ω), for each u = α1u1 + · · ·+ αkuk, where α2
1 + · · ·+ α2

k = 1.

Proof. Suppose that (un)n≥1 ⊂ H0(Ω) is a minimizing sequence for λ1(Ω) such that ‖un‖L2 =
1. Then (un)n≥1 is bounded with respect to the norm of H and so, there is a subsequence,
still denoted in the same way, which strongly converges in L2(X,m) to some function u ∈ H:

un
L2(X,m)−−−−−→
n→∞

u ∈ H.

We have that ‖u‖L2 = 1 and∫
Ω
|Du|2dm ≤ lim inf

n→∞

∫
Ω
|Dun|2dm = λ1(Ω).

Thus, u is the desired function. The proof in the case k > 1 is analogous.

Proposition 5.8. For any k > 0, consider the functional λk : EX → R defined by (5.4). It
is decreasing with respect to the set inclusion and lower semicontinuous with respect to the
weak-γ-convergence.

Proof. It is clear that λk is decreasing with respect to the inclusion since ω ⊂ Ω implies

H0(ω) ⊂ H0(Ω). We now prove the semicontinuity. Let Ωn
wγ−−−→
n→∞

Ω, that is wΩn

L2(X)−−−−→
n→∞

w

and Ω = {w > 0}. We can suppose that the sequence λk(Ωn) is bounded by some positive
constant Ck. Let for each n > 0 the functions un1 , . . . , u

n
k ∈ H0(Ωn) satisfy the conditions

(a), (b) and (c) from Proposition 5.7. Then, we have that up to a subsequence we can
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suppose that unj converges in L2(X,m) to some function uj ∈ H1(X,m). Moreover, by
Proposition 4.4, we have that uj ∈ H0(Ω), ∀j = 1, . . . , k. Consider the linear subspace
K ⊂ H0(Ω) generated by u1, . . . , uk. Since u1, . . . , uk are mutually orthogonal in L2(X,m),
we have that dimK = k and so

λk(Ω) ≤ sup
{∫

Ω
|Du|2dm : u ∈ K,

∫
Ω
u2dm = 1

}
.

It remains to prove that for each u ∈ K such that ‖u‖L2 = 1, we have∫
X
|Du|2dm ≤ lim inf

n→∞
λk(Ωn).

In fact, we can suppose that u = α1u1 + · · · + αkuk, where α2
1 + · · · + α2

k = 1 and so, u is
the strong limit in L2(X,m) of the sequence un = α1u

n
1 + · · ·+ αku

n
k ∈ H0(Ωn). Thus, we

obtain ∫
X
|Du|2dm ≤ lim inf

n→∞

∫
X
|Dun|2dm ≤ lim inf

n→∞
λk(Ωn)

as required.

Proposition 5.9. The Dirichlet energy functional E : EX → R introduced in Definition
5.6, satisfies conditions (J1) and (J2).

Proof. The condition (J1) is obvious in view of Definition 5.6. The lower semicontinuity,
follows from the lower semicontinuity of the L2-norm of the gradient (condition H3).

In view of Proposition 5.8 and for λk defined as in (5.4), there is a large class of func-
tionals J which depend on the spectrum

λ(Ω) := (λ1(Ω), λ2(Ω), . . . ) ∈ RN, (5.6)

and which satisfy the conditions of Theorem 5.3. In fact, consider a function

Φ : [0,+∞]N → [0,+∞],

which satisfies the following conditions:

(Φ1) If z ∈ [0,+∞]N and (zn)n≥1 ⊂ [0,+∞]N is a sequence such that for each j ∈ N

z(j)
n −−−→n→∞

z(j),

where z
(j)
n indicates the jth component of zn, then

Φ(z) ≤ lim inf
n→∞

Φ(zn).

(Φ2) If z
(j)
1 ≤ z(j)

2 , for each j ∈ N, then Φ(z1) ≤ Φ(z2).

Then, the functional J : EX → R, defined as

J(Ω) = Φ(λ(Ω)),

satisfies the conditions (J1) and (J2), where for any Borel set Ω ∈ B(X), λ(Ω) is as in
(5.6). In particular, the shape optimization problem

min{Φ(λ(Ω)) : Ω ∈ B(X), m(Ω) ≤ c}, (5.7)

has a solution. Analogously, by Proposition 5.9, the problem

min{E(Ω) : Ω ∈ B(X), m(Ω) ≤ c}, (5.8)

has a solution which is an energy set. We restate the considerations above in the following
result.
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Theorem 5.10. Suppose that (X, d) is a separable metric space with a finite Borel mea-
sure m. Suppose that H ⊂ L2(X,m) and D : H → L2(X,m) satisfy the hypothesis
H1, H2, D1, D2, D3, D4,H1,H2 and H3. Then the shape optimization problems (5.7) and
(5.8) have solutions which are energy sets.

Corollary 5.11. Consider a separable metric space (X, d) and a finite Borel measure m
on X. Let H1(X,m) denote the Sobolev space on (X, d,m) and let Du = gu be the minimal
generalized upper gradient of u ∈ H1(X,m). Under the assumption that the inclusion
H1(X,m) ↪→ L2(X,m) is compact, we have that the problems (5.7) and (5.8) have solutions,
which are energy sets.

Remark 5.12. There are various assumptions that can be made on the measure metric space
(X, d,m) in order to have that the inclusion H1(X,m) ↪→ L2(X,m) is compact. A detailed
discussion on this topic can be found in [18, Section 8]. For the sake of completeness, we
state here a result from [18]:

Consider a separable metric space (X, d) of finite diameter equipped with a finite Borel
measure m such that:

(a) there exist constants Cm > 0 and s > 0 such that for each ball B(x0, r0) ⊂ X, each
x ∈ B(x0, r0) and 0 < r ≤ r0, we have that

m(B(x, r))

m(B(x0, r0))
≥ Cm

rs

rs0
;

(b) (X, d,m) supports a weak Poincaré inequality, i.e. there exist CP > 0 and σ ≥ 1 such
that for each u ∈ H1(X,m) and each ball B = B(x, r) ⊂ X we have

1

|B|

∫
B

∣∣∣∣u(y)− 1

|B|

∫
B
udm

∣∣∣∣ dm(y) ≤ CP r

(
1

|B(x, σr)|

∫
B(x,σr)

g2
udm

)1/2

.

Then, the inclusion H1(X,m) ↪→ L2(X,m) is compact.

6 Quasi-open sets and energy sets

In this section we introduce the notions of capacity, quasi-open sets and quasi-continuous
functions in the general setting given by a linear subspace H ⊂ L2(X,m) and operator
D : H 7→ L2(X,m), satisfying the assumptions H1, H2, D1, D2, D3, D4, H1, H2, H3
from Section 2 and H4, defined below. All these notions are deeply studied in the Euclidean
case and some of the results we present have Euclidean analogues. Thus, where possible,
we will limit ourselves to state the results and give precise references (mainly, we will refer
to [15]) for their proofs in Rd.

The optimization problems that appear in this setting, are the exact analogues of the
ones studied in the Euclidean space. We will show that for a large class of shape functionals
the results from Section 5 apply also in this context (see Theorem 6.10).

In order to have a capacity theory, analogous to the one in the Euclidean space, we
make a further assumption on the Banach space (H, ‖ · ‖H):

(H4) the linear subspace H∩C(X), where C(X) denotes the set of real continuous functions
on X, is dense in H with respect to the norm ‖ · ‖H .
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Definition 6.1. We define the capacity (that depends on H and D) of an arbitrary set
Ω ⊂ X as

cap(Ω) = inf
{
‖u‖2H : u ∈ H, u ≥ 0 on X, u ≥ 1 in a neighbourhood of Ω

}
. (6.1)

We will say that a property P holds quasi-everywhere (shortly q.e.), if the set on which it
does not hold has zero capacity.

Remark 6.2. If u ∈ H is such that u ≥ 0 on X and u ≥ 1 on Ω ⊂ X, then ‖u‖2H ≤ m(Ω).
Thus, we have that cap(Ω) ≥ m(Ω) and, in particular, if the property P holds q.e, then it
also holds m-a.e.

Definition 6.3. A function u : X → R is said to be quasi-continuous if there exists a
decreasing sequence of open sets (ωn)n≥1 such that:

• cap(ωn) −−−→
n→∞

0,

• On the complementary ωcn of ωn the function u is continuous.

Definition 6.4. We say that a set Ω ⊂ X is quasi-open if there exists a sequence of open
sets (ωn)n≥1 such that

• Ω ∪ ωn is open for each n ≥ 1,

• cap(ωn) −−−→
n→∞

0.

The following two Propositions contain the fundamental properties of the quasi-continuous
functions and the quasi-open sets.

Proposition 6.5. Suppose that a function u : X → R is quasi-continuous. Then we have
that:

(a) the level set {u > 0} is quasi-open,

(b) if u ≥ 0 m-a.e., then u ≥ 0 q.e. on X.

Proof. See [15, Proposition 3.3.41] for a proof of (a) and [15, Proposition 3.3.30] for a proof
of (b).

Proposition 6.6. (a) For each function u ∈ H, there is a quasi-continuous function ũ
such that u = ũ m-a.e.. We say that ũ is a quasi-continuous representative of u ∈ H.
If ũ and ũ′ are two quasi-continuous representatives of u ∈ H, then ũ = ũ′ q.e.

(b) If un
H−−−→

n→∞
u, then there is a subsequence (unk

)k≥1 ⊂ H such that, for the quasi-

continuous representatives of unk
and u, we have

ũnk
(x) −−−→

n→∞
ũ(x),

for q.e. x ∈ X.

Proof. See [15, Theorem 3.3.29] for a proof of (a), and [15, Proposition 3.3.33] for a proof
of (b).
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Remark 6.7. We note that, in view of Proposition 6.6, each energy set Ω is a quasi-open
set up to a set of measure zero. In fact, by the definition of energy set, we have that
Ω = {wΩ > 0} m-a.e. and choosing the quasi-continuous representative of wΩ we have
the thesis. In the cases H = H1(X,m) and H = H1

0 (X,m), we have also the converse
implication. In fact, suppose that Ω is a quasi-open set and that ωn is a sequence of
open sets, as in Definition 6.4. For each n ≥ 0, consider the functions wn = wΩ∪ωn and
vn ∈ H such that ‖vn‖2H ≤ 2cap(ωn), 0 ≤ vn ≤ 1 and vn ≥ 1 on ωn. Notice that, taking
u(x) = d(x,X \Ω) in Remark 3.9, we have that {wn > 0} = Ω∪ωn. Consider the function
(1 − vn) ∧ wn ∈ H1

0 (Ω). By Proposition 3.6, we have that Ω \ {vn = 1} ⊂ {wΩ > 0} and
since

m({vn = 1}) ≤ ‖vn‖2H ≤ 2cap(ωn)→ 0,

we obtain that {wΩ > 0} = Ω.

Remark 6.8. We consider the following relations of equivalence on the Borel measurable
functions

u
cp∼ v, if u = v q.e., u

m∼ v, if u = v m-a.e.

We define the space

Hcp := {u : X → R : u quasi-cont., u ∈ H}/ cp∼, (6.2)

and recall that
Hcp := {u : X → R : u ∈ H}/ m∼ . (6.3)

Then the Banach spaces Hcp and H, both endowed with the norm ‖ · ‖H , are isomorphic.
In fact, in view of Proposition 6.5 and Proposition 6.6, it is straightforward to check that
the map [u]cp 7→ [u]m is a bijection, where [u]cp and [u]m denote the classes of equivalence

of u related to
cp∼ and

m∼, respectively. In the sequel we will not make a distinction between
H and Hcp.

For each Ω ⊂ X we define the space

Hcp
0 (Ω) := {u ∈ H : u = 0 q.e. on X \ Ω}, (6.4)

which, by Theorem 6.6 (b), is a closed linear subspace of Hcp, different from the previously
defined

H0(Ω) = {u ∈ H : u = 0 m-a.e. on X \ Ω}. (6.5)

We note that the inclusion Hcp
0 (Ω) ⊂ H0(Ω) holds for each subset Ω ⊂ X and, in general,

it is strict. The following Proposition explains the connection between H0(Ω) and Hcp
0 (Ω).

Proposition 6.9. For each Borel set Ω, there is a quasi-open set Ω̃ such that:

(a) Ω̃ ⊂ Ω m-a.e. ,

(b) H0(Ω) = Hcp
0 (Ω̃).

Moreover, if Ω̃ and Ω̃′ are two quasi-open sets for which (a) and (b) hold, then Ω̃ = Ω̃′ q.e..

Proof. Consider a countable dense subset (uk)
∞
k=1 = A ⊂ H0(Ω). Then Ω̃ is the desired

quasi-open set, where

Ω̃ :=
⋃
u∈A
{u 6= 0} = {w > 0} and w =

∞∑
k=1

|uk|
2k‖uk‖H

.
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In fact, let u ∈ H0(Ω). Then, there is a sequence (un)n≥1 ⊂ A such that un
H−−−→

n→∞
u

and, by Proposition 6.6 (b), u = 0 q.e. on X \ Ω̃ and so, we have the first part of the thesis.
Suppose that Ω̃ = {w > 0} and Ω̃′ = {w′ > 0} be two quasi-open sets satisfying (a) and
(b). Then, w′ ∈ H0(Ω) = Hcp

0 (Ω̃) and so, Ω̃′ = {w′ > 0} ⊂ Ω̃ q.e. and analogously, Ω̃ ⊂ Ω̃′

q.e.

For some shape functionals working with energy sets or quasi-open sets makes no
difference. In fact, suppose that F is a decreasing functional on the family of closed
linear subspaces of H. Then we can define the functional J on the family of Borel
sets, by J(Ω) = F (H0(Ω)), and the functional J̃ on the class of quasi-open sets, by
J̃(Ω) = F (Hcp

0 (Ω)). The following result shows that the shape optimization problems
with measure constraint, related to J and J̃ , are equivalent.

Theorem 6.10. Let F be a functional on the family of closed linear spaces of H, which is
decreasing with respect to the inclusion. Then, we have that

inf
{
F (H0(Ω)) : Ω Borel, m(Ω) ≤ c

}
(6.6)

= inf
{
F (Hcp

0 (Ω)) : Ω quasi-open, m(Ω) ≤ c
}
.

Moreover, if one of the infima is achieved, then the other one is also achieved.

Proof. We first note that by Corollary 3.7 and Remark 6.7, the infimum in the l.h.s. of
(6.6) can be considered on the family of quasi-open sets. Since F is a decreasing functional,
we have that for each quasi-open Ω ⊂ X

F (H0(Ω)) ≤ F (Hcp
0 (Ω)).

On the other hand, by Proposition 6.9, there exists Ω̃ such that m(Ω̃) < m(Ω) and
F (H0(Ω)) = F (Hcp

0 (Ω̃)) and so, we have that the two infima are equal.
Let Ωcp be a solution of the problem

min {F (Hcp
0 (Ω)) : Ω quasi-open, m(Ω) ≤ c} .

Then we have that

F (H0(Ωcp)) ≤ F (Hcp
0 (Ωcp)) = inf {F (H0(Ω)) : Ω Borel, m(Ω) ≤ c} ,

and so the infimum on the l.h.s. in (6.6) is achieved, too.
Let Ωm be a solution of the problem

min {F (H0(Ω)) : Ω Borel, m(Ω) ≤ c} ,

and let Ω̃m ⊂ Ωm a.e. such that Hcp
0 (Ω̃m) = H0(Ωm). Then the infimum in the r.h.s. in

(6.6) is achieved in Ω̃m. In fact, we have

F (Hcp
0 (Ω̃m)) = F (H0(Ωm)) = inf {F (Hcp

0 (Ω)) : Ω quasi-open, m(Ω) ≤ c} ,

which concludes the proof.

Definition 6.11. For each quasi-open set Ω ⊂ X, we define

λ̃k(Ω) = min
K⊂H̃0(Ω)

max
06=u∈K

∫
Ω |Du|

2dm∫
Ω u

2dm
, (6.7)

where the minimum is over the k-dimensional subspaces K of H̃0(Ω), and

Ẽ(Ω) = inf
{1

2

∫
Ω
|Du|2dm+

1

2

∫
Ω
|u|2dm−

∫
Ω
u dm : u ∈ H̃0(Ω)

}
. (6.8)
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Theorem 6.12. In a separable metric space (X, d) with a finite Borel measure m on X,
consider the linear subspace H ⊂ L2(X,m) and the (nonlinear) operator D : H → L2(X,m)
satisfying conditions H1, H2, D1, D2, D3, D4, H1, H2, H3 and H4. Then the shape
optimization problem

min{Ẽ(Ω) : Ω quasi-open, m(Ω) ≤ c}, (6.9)

has a solution. Moreover, if Φ : [0,+∞]N → R is a function satisfying the conditions (Φ1)
and (Φ1) of Section 5, then the following shape optimization problem:

min{Φ(λ̃(Ω)) : Ω quasi-open, m(Ω) ≤ c}, (6.10)

where λ̃(Ω) denotes the infinite vector (λ̃1(Ω), λ̃2(Ω), . . . ) ∈ [0,+∞]N, also has a solution.

Proof. By Theorem 5.10, we have that the problem (5.7) has a solution. Since the func-
tionals λk and λ̃k are induced by a decreasing functional on the subspaces of H, we can
apply Theorem 6.10 and so, problem (6.10) also has a solution. The proof that (6.9) has a
solution is analogous.

Corollary 6.13. Consider a separable metric space (X, d) and a finite Borel measure m
on X. Let H1(X,m) denote the Sobolev space on (X, d,m) and let Du = gu denote the
minimal generalized upper gradient for any u ∈ H1(X,m). Suppose that m is doubling and
that the space (X, d,m) supports a weak Poincaré inequality. Under the condition that the
inclusion H1(X,m) ↪→ L2(X,m) is compact, we have that the problems (6.10) and (6.9)
have solutions. In particular, if X has finite diameter, then (6.10) and (6.9) have solutions.

Proof. Since m is doubling and (X, d,m) supports a weak Poincaré inequality of type (1, 2),
we can apply [8, Theorem 4.24]. Thus we have that the locally Lipschitz functions are
dense in H1(X,m) and so, condition H4 is satisfied. Now the existence is a consequence of
Theorem 6.12. The last claim follows from Remark 5.12.

7 Applications and examples

In the previous sections we developed a general theory which allows us to threat shape
optimization problems in a large class of metric spaces. Theorem 6.12 provides a solution
of the problem

min
{

Φ(λ̃(Ω)) : Ω ⊂ X, Ω quasi-open, m(Ω) ≤ c
}
,

where Φ is a suitable function (see assumptions (Φ1) and (Φ2) in Section 5), λ̃(Ω) is defined
through a (non-linear) gradient-like functional (see Section 6) and c > 0. In this section
we apply this result to various situations. We start discussing the classical problem when
X is a domain in Rd and continue with examples concerning more complex structures
as Finsler manifolds, Carnot-Caratheodory spaces and infinite dimensional Hilbert spaces
with Gaussian measures. We notice that for a fixed ambient space (X, d,m), the shape
functionals we consider depend on the choice of the space H. In fact, even in the case
of a regular domain X ⊂ Rd, we have that if H = H1

0 (X), then λ̃1 is the classical first
eigenvalue of the Dirichlet Laplacian, while if H = H1(X), then λ̃1, as defined in (6.11),
is the first eigenvalue of the Laplacian with mixed Dirichlet-Neumann boundary conditions
(see Section 7.1). In order to distinguish these, and other similar situations, we work with
the following notation:

λk(Ω;H) := λ̃k(Ω), E(Ω;H) = Ẽ(Ω), (7.1)
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where λ̃k and Ẽ are as in Definition 6.11 and Ω is a quasi-open set (see Definition 6.4). We
also adopt the notation

λ(Ω;H) = (λ1(Ω;H), λ1(Ω;H), . . . ) ∈ [0,+∞]N. (7.2)

7.1 Bounded domains in Rd

Consider a bounded open set D ⊂ Rd. Let H be the Sobolev space H1
0 (D) ⊂ L2(D) and D

the Euclidean norm of the weak gradient, that is Du = |∇u|. Then, for any quasi-open set
Ω ⊂ D, the space H̃0(Ω) is the usual Sobolev space H1

0 (Ω) and λk(Ω;H), defined in (7.1),
is the k-th eigenvalue of the Dirichlet Laplacian −∆ on Ω. In view of the general existence
result Theorem 6.12, we have the following:

Theorem 7.1. Consider D ⊂ Rd a bounded open set of the Euclidean space Rd and sup-
pose that Φ : RN → [0,+∞] satisfies conditions (Φ1) and (Φ2) from Section 5. Then the
optimization problem

min
{

Φ(λ(Ω)) : Ω ⊂ D, Ω quasi-open, |Ω| ≤ c
}
,

admits at least one solution, where λ(Ω) is defined in (7.2).

Remark 7.2. A different situation occurs if one considers the functional λk(Ω;H) with
H = H1(D). In fact, if we take Ω and D regular and k = 1, then λ1(Ω;H) is the first
eigenvalue of the Laplacian with Dirichlet condition on ∂Ω\∂D and Neumann condition on
∂Ω ∩ ∂D. With some mild regularity assumptions on D (for instance, D Lipschitz), which
imply the compact inclusion of H1(D) in L2(D), we obtain that the problem

min
{

Φ(λ(Ω;D)) : Ω ⊂ D, Ω quasi-open, |Ω| ≤ c
}
, (7.3)

has a solution, where Φ satisfies the assumptions (Φ1) and (Φ2) and λ(Ω;D) := λ(Ω;H1(D))
is defined as in (7.2).

Remark 7.3. Suppose that d = 2, D = (0, 1)× (0, 1) and

H =
{
u ∈ H1(D) : u(·, 0) = u(·, 1), u(0, ·) = u(1, ·)

}
.

For any quasi-open set Ω ⊂ Rd, which is (1, 0) and (0, 1)-periodic, i.e. invariant with respect
to the translations of Rd along the vectors (1, 0) and (0, 1), we define

λk,per(Ω) := λk(Ω ∩ D;H).

In view of the general existence Theorem 6.12, we have that the problem:

min
{

Φ(λper(Ω)) : Ω ⊂ Rd, Ω quasi-open and periodic, |Ω ∩ D| ≤ c
}
, (7.4)

has a solution, where as always, Φ satisfies the assumptions (Φ1) and (Φ2) and λper(Ω;D) :=
λ(Ω ∩ D;H) is as in (7.2).

7.2 Finsler manifolds

Consider a differentiable manifold M of dimension d endowed with a Finsler structure, i.e.
with a map F : TM → [0,+∞) which has the following properties:

1. F is C∞ on TM \ 0,
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2. F is absolutely homogeneous, i.e. F (x, λX) = |λ|F (x,X), ∀λ ∈ R,

3. F is strictly convex, i.e. the Hessian matrix gij(x) = 1
2

∂2

∂Xi∂Xj [F 2](x,X) is positive
definite for each (x,X) ∈ TM .

With these properties, F (x, ·) : TxM → [0,+∞) is a norm for each x ∈ M . Writing each
tangent vector in the base ( ∂

∂x1 , . . . ,
∂
∂xd

), induced by a local coordinate chart, we obtain an

isomorphism between Rd and TxM and so, we can consider the dual norm F ∗ with respect
to the standard scalar product on Rd. We define the gradient of a function f ∈ C∞(M)
as Df(x) := F ∗(x, dfx), where dfx stays for the differential of f in the point x ∈ M . The
Finsler manifold (M,F ) is also a metric space with the distance:

dF (x, y) = inf
{∫ 1

0
F (γ(t), γ̇(t)) dt : γ(0) = x, γ(1) = y

}
.

For any finite Borel measure µ on M , we define H1
0 (M,F, µ) as the closure of the set of

differentiable functions with compact support C∞c (M), with respect to the norm

‖u‖ :=
√
‖u‖2

L2(µ)
+ ‖Du‖2

L2(µ)
.

The functionals λk, E and λ are defined as in (7.1) and (7.2), on the class of quasi-open
sets, related to the H1(M,F, µ) capacity. Various choices for the measure µ are available,
according to the nature of the Finsler manifold M . For example, if M is an open subset
of Rd, it is natural to consider the Lebesgue measure µ = Ld. In this case, the non-linear
operator associated to the functional

∫
F ∗(x, dux)2dx is called Finsler Laplacian. On the

other hand, for a generic manifold M , a canonical choice for µ is the Busemann-Hausdorff
measure µF , given by the volume form

|B1(0)|
|Ix|

dx1 ∧ · · · ∧ dxd,

where B1(0) is the unit ball in Rd with respect to the Euclidean distance,

Ix = {X ∈ TxM : F (x,X) ≤ 1},

and | · | is the Lebesgue measure. The Busemann-Hausdorff measure µF is the d-Hausdorff
measure with respect to the distance dF . The non-linear operator associated to the func-
tional

∫
F ∗(x, dux)2dµF (x) is the generalisation of the Laplace-Beltrami operator. In view

of Section 6, we have existence results for the shape functionals depending on the spectrum
λ(Ω) := λ(Ω;H1(M,F, µ)) (see 7.2) and related to the Finsler Laplacian and the generalized
Laplace-Beltrami operators.

Theorem 7.4. Given a compact Finsler manifold (M,F ) with Busemann-Hausdorff mea-
sure µF and a functional Φ : [0,+∞]N → R satisfying the assumptions (Φ1) and (Φ2), the
following problems have solutions:

min
{

Φ(λ(Ω)) : µF (Ω) ≤ c, Ω quasi-open, Ω ⊂M
}
,

min
{
E(Ω) : µF (Ω) ≤ c, Ω quasi-open, Ω ⊂M

}
,

for any fixed c ≤ µF (M).
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Proof. It is easy to see that the conditions H1, H2, D1, D2, D3, D4, H1,H3 and H4 are
satisfied for the space H1(M,F, µF ) and the Finsler gradient D. It remains to prove the
compact inclusion (condition H2). It is a direct consequence of a general result for metric
measure spaces (see Remark 5.12), but it can also be obtained with a standard partition
of unity argument. In fact, let U be a coordinate neighbourhood centered in x ∈M . Since
F (y, ·) : TyM → R is a norm for each y ∈ U , we have that there exist positive constants cy
and Cy such that

cy|Y | ≤ F (y, Y ) ≤ Cy|Y |, ∀Y ∈ TyM,

where Y =
∑

j
∂
∂xj

Y j and |Y | =
√∑d

j=1 |Y j |2. Moreover, the constants cy and Cy are

continuous in y and so, there is a coordinate neighbourhood Ux centered in x and positive
constants cx, Cx such that

cx|Y | ≤ F (y, Y ) ≤ Cx|Y |, ∀Y ∈ TyM, y ∈ Ux. (7.5)

Let Uxk , k = 1, . . . ,m be a finite cover of M with coordinate neighbourhoods with constants
ck and Ck for which (7.5) holds. Let φk be a partition of unity on M such that supp(φk) ⊂
Uxk . Then the norm ‖u‖F is equivalent to the norm

∑
k ‖φku‖F . But φku has a support

in Uxk (i.e. u ∈ H1
0 (Uxk , F )) and the estimate (7.5) gives us the compact inclusion of

each H1
0 (Uxk , F ) in L2. Thus, we obtain that the inclusion of H1(M,F ) in L2 is compact.

Applying Theorem 6.12, we have the thesis.

Theorem 7.5. Consider an open set M ⊂ Rd endowed with a Finsler structure F and the
Lebesgue measure Ld. If the diameter of M with respect to the Finsler metric dF is finite,
then the following problems have solutions:

min
{

Φ(λ(Ω)) : |Ω| ≤ c, Ω quasi-open, Ω ⊂M
}
,

min{E(Ω) : |Ω| ≤ c, Ω quasi-open, Ω ⊂M},

where Φ : [0,+∞]N → R satisfies assumptions (Φ1) and (Φ2), |Ω| denotes the Lebesgue
measure of Ω and c ≤ |M |.

Proof. We first observe that the Sobolev space H1
0 (Ω, F,Ld) is in fact the space H1(M,Ld)

as defined on the measure metric space (M,dF ,Ld). Moreover, the Finsler norm of the
gradient of u is precisely the upper gradient gu of u with respect to the metric dF . To
conclude, it is enough to apply Corollary 6.13.

Remark 7.6. In the hypotheses of Theorem 7.5 and with the additional assumption that
F does not depend on x ∈ M , we can apply the symmetrization technique from [13] to
obtain that, when c > 0 is small enough, the optimal set for the problem is a ball (with
respect to the distance dF ) of Lebesgue measure c. On the other hand, if we consider a
Riemannian manifold (M, g) in Theorem 7.4, i.e. F (x,X) =

√
gij(x)XiXj , the optimal

sets for λ1, of measure c, are asymptotically close to geodesic balls as c→ 0 (see [17] for a
precise statement and hypotheses on M). We do not know if an analogous result holds for
a generic Finsler manifold.

7.3 Hilbert spaces with Gaussian measure

Consider a separable Hilbert space (H, 〈·, ·〉H) with an orthonormal base (ek)k∈N. Suppose
that µ = NQ is a Gaussian measure on H with mean 0 and covariance operator Q (positive,
of trace class) such that

Qek = λk(Q)ek,
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where 0 < · · · ≤ λn(Q) ≤ · · · ≤ λ2(Q) ≤ λ1(Q) is the spectrum of Q.
Denote with E(H) the space of all linear combinations of the functions on H which have

the form Eh(x) = ei〈h,x〉 for some h ∈ H. Then, the linear operator

∇ : E(H) ⊂ L2(H, µ)→ L2(H, µ;H), ∇Eh = ihEh,

is closable. We define the Sobolev space W 1,2(H) as the domain of the closure of ∇. Thus,
for any function u ∈W 1,2(H), we defined the gradient ∇u ∈ L2(H, µ;H).

We denote with ∇ku ∈ L2(H, µ) the components of the gradient in W 1,2(H)

∇ku = 〈∇u, ek〉H.

We have the following integration by parts formula:∫
H
∇kuv dµ+

∫
H
u∇kv dµ =

1

λk(Q)

∫
H
xkuv dµ.

If ∇ku ∈W 1,2(H), we have∫
H
∇k(∇ku)v dµ+

∫
H
∇ku∇kv dµ =

1

λk(Q)

∫
H
xk∇kuv dµ,

−
∫
H
∇k(∇ku)v dµ+

1

λk(Q)

∫
H
xk∇kuv dµ =

∫
H
∇ku∇kv dµ,

and summing (formally) over k ∈ N, we obtain∫
H

(
−Tr[∇2u] + 〈Q−1x,∇u〉H

)
v dµ =

∫
H
〈∇u,∇v〉H dµ,

where 〈Q−1x,∇u〉H :=
∑

k
1

λk(Q)xk∇ku.
Suppose that Ω ⊂ H is a Borel set. Then we have the following

Definition 7.7. Given λ ∈ R, we say that u ∈ H0(Ω) = W 1,2
0 (Ω) is a weak solution of the

equation {
−Tr[∇2u] + 〈Q−1x,∇u〉 = λu,

u ∈ H0(Ω),

if for each v ∈W 1,2
0 (Ω), we have∫

H
〈∇u,∇v〉H dµ = λ

∫
H
uv dµ.

By a general theorem (see [12]), we know that there is a self-adjoint operator A on
L2(Ω, µ) such that for each u, v ∈ Dom(A) ⊂W 1,2

0 (Ω),∫
H
Au · v dµ =

∫
H
〈∇u,∇v〉H dµ.

Then, by the compactness of the embedding W 1,2
0 (Ω) ↪→ L2(µ), A is a positive operator

with compact resolvent. Keeping in mind the construction of A, we will write

A = −Tr[∇2] + 〈Q−1x,∇〉.

The spectrum of −Tr[∇2] + 〈Q−1x,∇〉 is discrete and consists of positive eigenvalues 0 ≤
λ1(Ω) ≤ λ2(Ω) ≤ . . . for which the variational formulation (7.1) holds, i.e. λk(Ω) =
λk(Ω;H). Moreover we set λ(Ω) := λ(Ω;W 1,2(H)) as defined in (7.2).
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Theorem 7.8. Suppose that H is a separable Hilbert space with non-degenerate Gaussian
measure µ. Then, for any 0 ≤ c ≤ 1, the following optimization problem has a solution:

min
{

Φ(λ(Ω)) : Ω ⊂ X quasi-open, µ(Ω) = c
}
,

where Φ : [0,+∞]→ R is a functional satisfying the conditions (Φ1) and (Φ2) from Section
5.

Proof. Take H := W 1,2(H) and Du = ‖∇u‖H. The pair (H,D) satisfies the hypothesis
H1, . . . ,H3 andH4. In fact, the norm ‖u‖2 = ‖u‖2L2 +‖Du‖2L2 is the usual norm in W 1,2(H)
and with this norm W 1,2(H) is a separable Hilbert space and the inclusion H ↪→ L2(H, µ)
is compact (see [11, Theorem 9.2.12]). Moreover, the continuous functions are dense in
W 1,2(H), by construction. Applying Theorem 6.12 we obtain the conclusion.

7.4 Carnot-Carathéodory spaces

Consider a bounded open and connected set D ⊂ Rd and C∞ vector fields Y1, . . . , Yk on
D. Suppose that the vector fields satisfy the Hörmander’s condition, i.e. the Lie algebra
generated by Y1, . . . , Yk has dimension d in each point x ∈ Ω. Following [18] we define a
distance on D in the following way:

Definition 7.9. We say that an absolutely continuous curve γ : [a, b] → D is admissible,
if there exist measurable functions c1, . . . , ck : [a, b]→ R such that

k∑
j=1

|cj(t)|2 ≤ 1 ∀t ∈ [a, b] and γ̇(t) =
k∑
j=1

cj(t)Y (γ(t)).

The Carnot-Carathéodory distance between x, y ∈ D with respect to the vector fields Y1, . . . , Yk
is given by

ρ(x, y) = inf
{
T > 0 : ∃γ : [a, b]→ D admissible with γ(a) = x, γ(b) = y

}
.

Note that ρ is a distance on D since, in our case, there is always an admissible curve
connecting x and y. This is a direct consequence from a result due to Sussmann, [19] (for
more references and deeper discussion on this topic see [18]).

Consider the metric space (D, ρ) equipped with the d-dimensional Lebesgue measure Ld.
We define the Sobolev space on Ω with respect to the family of vector fields Y = (Y1, . . . , Yk)
as

W 1,2
Y (D) = {u ∈ L2(D) : Yju ∈ L2, ∀j = 1, . . . , k},

‖u‖1,2 =

‖u‖2L2 +
k∑
j=1

‖Yju‖2L2

1/2

,

where the derivation Yju is intended in sense of distributions. For u ∈ W 1,2
Y (D), we define

the gradient Y u = (Y1u, . . . , Yku) and set |Y u| =
(
|Y1u|2 + · · ·+ |Yku|2

)1/2 ∈ L2(D). If
u ∈ C∞(D), then |Y u| is an upper gradient for u with respect to the distance ρ. In fact, if
γ is a ρ-Lipschitz curve, then by Proposition 11.4 of [18], it is admissible and

|u(γ(b))− u(γ(a))| ≤
∫ b

a

k∑
j=1

|cj(t)(Yju)(γ(t))| dt ≤
∫ b

a
|(Y u)(γ(t))|dt.

25



Setting Du = |Y u| and H = W 1,2
Y (D), we can define the energy E(Ω) := E(Ω;H) and the

spectrum λ(Ω) = λ(Ω;H) as in (7.1) and (7.2). Below, we obtain an existence result for
the functionals of the type Φ(λ(Ω)), simply by applying Corollary 6.13. To prove that we
are really in the setting of Corollary 6.13, we start by noting that the set W 1,2

Y (D)∩C∞(Ω)

is dense in u ∈ W 1,2
Y (D) (see [18, Theorem 11.9]). Thus, we have that W 1,2

Y (D) is a subset
of the Cheeger space H1,2(D, ρ, λ) and that |Y u| is a weak upper gradient for u. In [18,
Theorem 11.7] it was shown that it is, actually, the least upper gradient of u. By the result
of Nagel, Stein and Wainger (see [16]), the Lebesgue measure is doubling with respect to
the distance ρ. Moreover, the weak Poincarè inequality holds on the space (D, ρ,Ld) (see
[18]). Thus we can apply Corollary 6.13, obtained for metric measure spaces, in the setting
of the Carnot-Caratheodory spaces:

Theorem 7.10. Consider a family Y = (Y1, . . . , Yk) of C∞ vector fields, defined on an open
neighborhood of the closure of the open connected set D ⊂ Rd, satisfying the Hörmander
condition. If D is of finite Lebesgue measure and has finite diameter with respect to the
Carnot-Caratheodory distance, then for any 0 ≤ c ≤ |D|, the following shape optimization
problems admit solutions:

min
{

Φ(λ(Ω)) : Ω ⊂ D, Ω quasi-open, |Ω| ≤ c
}
,

min
{
E(Ω) : Ω ⊂ D, Ω quasi-open, |Ω| ≤ c

}
,

where Φ : [0,+∞]N → R satisfies the assumptions (Φ1) and (Φ2) from Section 5, λ(Ω) =
λ(Ω;W 1,2

Y ) and E(Ω) are as in (7.1) and (7.2).
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