
Existence of isoperimetric regions in non-compact Riemannian

manifolds under Ricci or scalar curvature conditions

Andrea Mondino1, Stefano Nardulli2

abstract. We prove existence of isoperimetric regions for every volume in non-compact Riemannian
n-manifolds (M, g), n ≥ 2, having Ricci curvature Ricg ≥ (n− 1)k0g and being locally asymptotic to
the simply connected space form of constant sectional curvature k0; moreover in case k0 = 0 we show
that the isoperimetric regions are indecomposable. We also discuss some physically and geometrically

relevant examples. Finally, under assumptions on the scalar curvature we prove existence of
isoperimetric regions of small volume.
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1 Introduction

If (M, g) is a compact Riemannian n-manifold, then standard techniques of geometric measure theory
ensure existence of isoperimetric regions (roughly speaking Ω ⊂ M is an isoperimetric region if its
boundary has least area among the boundaries of regions having the same volume of Ω; for the precise
notions see Section 2).

In case M is non-compact the question of existence of isoperimetric regions is completely non-trivial
and the few known existence results are quite specific. A simple example where existence fails is the
right hyperbolic paraboloid Mλ defined by the equation z = λxy: here there is no isoperimetric region
for any value of the area (see [54]). More dramatically, it can happen that isoperimetric regions exist
just for some value of the area (see [17] where a complete study of isoperimetry in the case of quadrics of
revolution is performed). Nevertheless there are some cases when the existence of isoperimetric regions
for every volume is known:

1. (M, g) is complete non-compact but its isometry group acts co-compactly (see [46], [43], or [29] in
the context of sub-Riemannian contact manifolds).

2. (M, g) is connected complete non-compact but with finite volume (this is an easy consequence of
Theorem 2.1 in [55]).

3. The non-compact non simply connected surfaces constructed in [33].
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4. In several cases when (M, g) is a cone, the isoperimetric regions exist for every volume and are
characterized (see [47], [55]); for warped products see [11].

5. If (M, g) is a a complete plane with non-negative curvature (see [53]).

The reason for the non-existence of isoperimetric regions for a fixed volume v > 0 is explained clearly by
Theorem 2.1 in [55] (recalled in Theorem 4.1): the lack of compactness in the variational problem is due
to the fact that the minimizing sequences might split into a part converging nicely to an isoperimetric
region, and in another part of positive volume going to infinity. The diverging part of the minimizing
sequences was studied by the second author in [50] using the theory of Cm,α-pointed convergence of
manifolds developed by Petersen [52] (see Section 2). In the present paper we adopt this second point of
view.

The main goal of the present work is to add, to the previous list, a class of manifolds admitting
isoperimetric regions for all volumes. This is the content of the next theorem.

Theorem 1.1. Let (Mn, g) be an n ≥ 2 dimensional complete Riemannian manifold such that

1. (Mn, g) is C0-locally asymptotic to the simply connected n-dimensional space form of constant
sectional curvature k0 ≤ 0, i.e., for every diverging sequence of points pj the sequence of pointed
manifolds (M, g, pj) converges in C0 topology to (Mn

k0
, x0) (x0 is any point in Mn

k0
),

2. Ricg ≥ (n− 1)k0g,

3. V (B(p, 1)) ≥ v0 > 0 for every p ∈M .

Then for every v > 0 there exists an isoperimetric region Ωv of volume v such that

P(Ωv) = IM (v).

Moreover if k0 = 0 (i.e. Ricg ≥ 0 and (M, g) is C0-locally asymptotically euclidean) then the isoperimetric
regions are indecomposable.

Roughly speaking, the last sentence says that the isoperimetric regions are connected if k0 = 0. For
the precise notion of indecomposability see Section 2; see Definition 2.3 for the concept of C0-pointed
convergence of manifolds.

To our knowledge, this is the first existence result valid for all volumes and all dimensions in the
non-compact case under just geometric curvature assumptions and asymptotic conditions on the ambient
manifold.

Remark 1.1. Notice that the class of manifolds satisfying the assumptions of Theorem 1.1 contains many
geometrically and physically relevant examples: Eguchi-Hanson and more generally ALE gravitational in-
stantons (these manifolds are the building blocks of the Euclidean quantum gravity theory of Hawking),
asymptotically hyperbolic Einstein manifolds (these spaces play a crucial role in the AdS/CFT correspon-
dence in quantum field theory) and Bryant type solitons (which are special but fundamental solutions to
the Ricci flow). For a deeper discussion about these spaces see Section 5.

In order to prove Theorem 1.1 in Section 4, in Section 3 we prove some general properties of the
isoperimetric regions and of the isoperimetric profile function of a non-compact Riemannian manifold.
Using the results of Section 3 we are also able to perform a finer analysis of the minimizing sequences for
the perimeter under the volume constraint in case the manifold has non-negative Ricci tensor, Ric ≥ 0:
roughly speaking either they converge to an isoperimetric region or they diverge, but they cannot split
into a converging and a diverging part. For the precise statement see Theorem 4.2.

The previous existence theorem is based on assumptions on the Ricci curvature; actually, as the
following theorem points out, if one is interested in the existence of isoperimetric regions of small volume
it is enough to ask conditions on the scalar curvature.

Theorem 1.2. Let (M, g) be an n ≥ 2 dimensional Riemannian manifold of C2,α-bounded geometry and
let S ∈ R. Suppose that (M, g) satisfies the following assumptions:
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1. for every ε > 0 there exists a compact subset Kε ⊂⊂M such that the scalar curvature

Scalg(p) ≤ S + ε ∀p ∈M\Kε,

2. there exists a point p̄ ∈M such that Scalg(p̄) > S.

Then there exists a small v0 > 0 such that for any 0 < v ≤ v0 there exists an isoperimetric region of
volume v0. Moreover such an isoperimetric region is a pseudo-bubble having center of mass in a point p̄v
which is converging in Hausdorff distance sense, as v → 0, to the set of points of global maximum of the
scalar curvature Scalg.

For the concept of C2,α-bounded geometry see Definition 2.7, for the precise notions of pseudo-bubble
and center of mass see Definitions 2.11 and 2.12.

Theorem 1.2 is also interesting in connection with Theorem 1.1. Indeed, if the Riemannian mani-
fold (M, g) satisfies the assumptions of Theorem 1.1 and moreover there exists a point p̄ ∈ M where
Scalg(p̄) > n(n − 1)k0 then Theorem 1.1 ensures existence of isoperimetric regions for every volume,
and Theorem 1.2 says that these isoperimetric regions, for small volumes, are pseudo-bubbles centered
near the points of maximal scalar curvature. For the existence and the characterization of isoperimetric
regions of large volume in manifolds which are asymptotically globally Euclidean see [28] (see also [26]
and [27]).

The article is organized in the following way: in Section 2 we recall the notions and the known results
used throughout the paper, in Section 3 we prove some general properties of the isoperimetric profile
function of a non-compact Riemannian manifold, in Section 4 we prove the main theorems (we also give
an alternative proof of Theorem 1.1 in the case k0 = 0 using the second variation or using differential
inequalities) and we conclude in Section 5 with a discussion of the examples of manifolds satisfying the
assumptions of Theorem 1.1.
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2 Notation and preliminaries

Let (Mn, g) be a smooth complete Riemannian n-manifold. The n-dimensional and k-dimensional Haus-
dorff measures of a set Ω ⊂M will be denoted by V (Ω) and Hk(Ω), respectively. For any measurable set
Ω ⊂M we denote with P(Ω) the perimeter of Ω defined by

P(Ω) := sup

{∫
Ω

divX dHn+1 : |X|∞ ≤ 1

}
,

where X is a smooth vector field with compact support in M , |X|∞ is the sup-norm, and divX is the
divergence of X.

A measurable subset Ω ⊂ M is of finite perimeter if P(Ω) < ∞ and we denote with τM the family
of all finite perimeter subsets of M . A finite perimeter set Ω is said indecomposable if there do not
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exist disjoint non-empty finite perimeter sets Ω1,Ω2 of positive volume such that Ω = Ω1 ∪ Ω2, and
P(Ω) = P(Ω1) + P(Ω2) (for more details see [2]).

The isoperimetric profile of M is the function IM : (0, V (M))→ [0,+∞) given by

IM (v) := inf{P(Ω) : Ω ∈ τM , V (Ω) = v}.

If there exists a finite perimeter set Ω ∈ τM satisfying V (Ω) = v and IM (v) = P(Ω), such an Ω will
be called an isoperimetric region, and we say that IM (v) is achieved. A minimizing sequence of sets
of volume v is a sequence of finite perimeter sets {Ωk}k∈N such that V (Ω) = v for all k ∈ N and
limk→∞ P(Ωk) = IM (v). Recall that a sequence {Ωk}k∈N converges in the finite perimeter sense to a
set Ω if χΩk → χΩ in L1

loc(M) and limk→∞ P(Ωk) = P(Ω), where χΩk and χΩ denote the characteristic
functions of Ωk and Ω, respectively.

Of course the existence of isoperimetric regions does not always occur in general, but if an isoperimetric
region does exist, then the following classical regularity theorem holds (for the proof see [44]).

Proposition 2.1 (Regularity). Let (Mn, g) be a smooth Riemannian n-manifold and v ∈]0, V ol(M)[.
Assume that the isoperimetric profile is achieved at v by an open subset Ω ⊂M : P(Ω) = IM (v). Then

1. ∂Ω is the disjoint union of a regular part ∂Ωr and a singular one ∂Ωs. For each point p ∈ Ωr
there exists a neighborhood Up ⊂ M such that ∂Ω ∩ Up is a smooth hypersurface of constant mean
curvature. Moreover the Hausdorff dimension of ∂Ωs is less than or equal to n− 8. In particular,
if n < 8 then ∂Ωs = ∅.

2. ∂Ω is orientable and ∂Ωr is equipped with a smooth outward pointing unit normal vector field ν.

This result was first obtained in the Euclidean setting by Gonzalez, Massari and Tamanini [31] who
treated interior regularity, and by Grüter [34], who studied regularity near boundary points. Morgan [45]
generalized their results to the setting of Riemannian manifolds by using the paper of Almgren [1], which
is Proposition 2.1.

Remark 2.2. In case the manifold Mn and the metric g are not smooth but regular enough there are
still good regularity properties of isoperimetric regions. Indeed the standard interior Allard-type C1,α

regularity of (almost) minimizing boundaries away from a set of Hausdorff dimension at most 8 holds.
This was shown by J. Taylor in [58] (this part of the discussion in her paper applies to n-dimensional
manifolds). When the manifold is C2 and the metric is Lipschitz, then this follows also from the work of
R. Schoen and L. Simon [56] (for almost minimizing currents this was pointed out by B. White in [59]
pag. 498). When the manifold is C4 and the metric C3 so that the Nash embedding Theorem provides
an isometric embedding of (M, g) into a high dimensional Euclidean space, then this also follows directly
from upon applying the Euclidean regularity theory as in [57].

Now, in order to state the generalized existence theorem of the second author (a tool used throughout
the paper), we recall the basics of the theory of Cm,α-pointed convergence of manifolds (for more details
see [52]).

Definition 2.3. Let m ∈ N, α ∈ [0, 1], (M, g) be a Cm+1,α-manifold with the Cm,α-metric g and let
p ∈ M . A sequence of pointed smooth complete Riemannian n-manifolds is said to converge in the
pointed Cm,α-topology to the manifold (M, g, p), and we write (Mi, gi, pi)→ (M, g, p), if for every R > 0
we can find a domain ΩR with B(p,R) ⊆ ΩR ⊆ M , a natural number νR ∈ N, and Cm+1,α-embeddings
Fi,R : ΩR → Mi for large i ≥ νR such that B(pi, R) ⊆ Fi,R(ΩR) and F ∗i,R(gi) → g on ΩR in the Cm,α

topology.

Remark 2.4. Whitney proved (see for instance Theorem 2.9 in [37]) that if α is a Cr differentiable
structure on a topological manifold M , r ≥ 1, then for every r < s ≤ ∞ there exists a compatible Cs

differentiable structure β ⊂ α, and β is unique up to Cs diffeomorphism. Therefore the assumption that
M is a Cm+1,α-manifold is somehow unnecessary, but we will keep it for coherence with the literature.

Now let us recall the notions of bounded geometry and Cm,α-bounded geometry.
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Definition 2.5. A complete Riemannian n-manifold (M, g) has bounded geometry if the following
holds:

1. There exists a constant k ∈ R such that Ricg ≥ k(n− 1)g,

2. The volume of unit balls is uniformly bounded below: infp∈M V (B(p, 1)) ≥ v0 > 0.

Remark 2.6. Notice that if (M, g) has positive injectivity radius, InjM > 0, then the second condition
above is satisfied. Indeed Croke proved (see Proposition 14 in [21] and the discussion at page 2 in [22];
see also [8] ) that there exists a constant Cn (depending only on n = dimM) such that if r ≤ InjM

2 then
V ol(B(p, r)) ≥ Cnrn for every p ∈M .

Definition 2.7. A complete Riemannian n-manifold (M, g) has Cm,α-bounded geometry if it has
bounded geometry and moreover the following holds: For every diverging sequence of points (pj)j∈N there
exists a subsequence (pjl)l∈N and a pointed Cm+1,α-manifold (M∞, g∞, p∞) with Cm,α-metric such that
the sequence of pointed manifolds (M, g, pjl)→ (M∞, g∞, p∞) in Cm,α topology.

Now we recall the generalized existence theorem of the second author (Theorems 1 and 2 in [50]).

Theorem 2.8. Let (M, g) be a Riemannian n-manifold with C1,α-bounded geometry in the sense of
Definition 2.7. Then for every volume v ∈]0, V (M)[ there are a finite number of limit manifolds at
infinity (precisely the manifolds at infinity are C2,α with C1,α metric) such that their disjoint union with
M contains an isoperimetric region of volume v and perimeter IM (v).

More precisely for every volume v ∈]0, V (M)[ there exist N ∈ N, positive volumes {vi}i∈{1,...N}, N
sequences of points (pi,j), i ∈ {1, ...N}, j ∈ N, N limit manifolds (Mi,∞, gi,∞, pi,∞)i∈{1,...N} (precisely
Mi,∞ are C2,α-manifolds with C1,α-Riemannian metric gi,∞), and finite perimeter sets Di,∞ ⊆ Mi,∞
such that

1. ∀h 6= l, dist(ph,j , pl,j)→ +∞, as j → +∞,

2. (M, g, pi,j)→ (Mi,∞, gi,∞, pi,∞) in C1,α topology,

3. v =
∑N
i=1 vi,

4. the volume in metric gi,∞ of Di,∞ equals vi: Vgi,∞(Di,∞) = vi,

5. the perimeter in metric gi,∞, Pgi,∞(Di,∞) = IMi,∞(vi); that is Di,∞ is an isoperimetric region in
Mi,∞ for its own volume vi,

6. IMi,∞(vi) ≥ IM (vi),

7. IM (v) =
∑N
i=1 Pgi,∞(Di,∞) =

∑N
i=1 IMi,∞(vi),

8. the subset D of the disjoint union
⋃̊N
i=1Mi,∞ defined as D = ∪Ni=1Di,∞ is an isoperimetric region

in volume v in the manifold
⋃̊N
i=1Mi,∞.

Remark 2.9. The assumption about C1,α bounded geometry was used in the proof of the previous theorem
in [50] to ensure that the manifolds at infinity are at least C2,α with C1,α metric. Actually if one assumes
a priori that the pointed C0-limits are smooth Riemannian manifolds, then the same generalized existence
theorem holds. This is because the C0-convergence of the metric tensors ensures the converge of the
volume and of the perimeter (this is clear on smooth sets, so by approximation it holds on all finite
perimeter sets).

Recall also the following useful result (see Theorem 3 in [50]).

Theorem 2.10. Let (M, g) be a complete Riemannian manifold with bounded geometry in the sense of
Definition 2.5. Then isoperimetric regions are bounded.
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Now we recall the notion of pseudo-bubble which will be useful to study the existence of isoperimetric
regions of small volume. Call UpM the fiber over p of the unit tangent bundle (also called the sphere
bundle) of the Riemannian manifold (M, g).

Definition 2.11. A pseudo-bubble is a hypersurface ΨB embedded in M such that there exists a point
p ∈ M and a function w belonging to C2,α(UpM w Sn−1,R), such that ΨB is the graph of w in normal
polar coordinates centered at p, i.e.

ΨB = {expp(w(θ)θ), θ ∈ UpM}

and the mean curvature H(w) = H0 + φ of the normal graph is a real constant H0 plus a function φ,
where φ is a first spherical harmonic function on UpM w Sn−1.

Recall also the notion of Riemannian center of mass.

Definition 2.12. Let Σ ⊂ M be an embedded compact hypersurface in the n-dimensional Riemannian
manifold (M, g) and let µ the induced volume measure on Σ. Consider the function EΣ : M → [0,+∞[

EΣ(x) :=

∫
Σ

d2(x, y)dµ(y),

where d is the Riemannian distance on M . The center of mass of Σ is the minimum point of EΣ in
M .

Notice that, since Σ is compact, by the Dominated Convergence Theorem, the function EΣ is continuous
and coercive, hence the existence of a minimum is guaranteed. Notice also that although uniqueness of
this minimum point does not hold in general, it does in the cases we are interested, namely pseudo-bubbles
of small diameter.

3 Some general properties of the isoperimetric profile valid for
(possibly non-compact) manifolds of bounded geometry

Some classical properties of the isoperimetric profile for compact manifolds are also valid for non-compact
manifolds (sometimes assuming bounded geometry) This section is devoted to prove some of them.

Proposition 3.1. Let (M, g) be a Riemannian manifold with C2,α-bounded geometry. Then the isoperi-
metric profile IM :]0, V (M)[→ [0,+∞[ is absolutely continuous and twice differentiable almost everywhere.

Proof. See Corollary 1 in [50].

The following theorem is stated and proved in [46] (Theorem 3.4-3.5) in case of a compact ambient
manifold but, as was pointed out to the authors by C. Rosales, the same proof holds for manifolds which
are merely complete.

Proposition 3.2. Let (M, g) be a smooth, complete, connected n-dimensional Riemannian manifold and
assume the following lower bound on the Ricci curvature:

Ric(M,g)(., .) ≥ (n− 1)k0g(., .) k0 ∈ R.

For a given volume v ∈]0, V (M)[, let Ω ⊂ M be an isoperimetric region of volume v and perimeter
PM (Ω). Then

PM (Ω) ≤ P0(Bv)

where P0(Bv) is the perimeter of a ball Bv of volume v in the simply connected space form M0 of constant
curvature k0. Suppose further that for some volume v0, IM (v0) = IM0(v0). Then M has constant sectional
curvature k0 and all metric balls of volume v0 contained in M are isometric to BM0(v0), the metric ball
of volume v0 contained in M0.
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Proof. Fix a volume v0 ∈]0, V (M)[ and take any metric ball BM (v0) ⊂ M of volume v0. Since the
proof of Theorem 3.5 in [46] (stated for compact M) relies only on the part of M inside the metric ball,
the same argument holds for complete (possibly non-compact) M . It follows that

(1) PM (BM (v0)) ≤ P0(BM0
(v0))

where BM0(v0) is the ball of volume v0 in the space form of constant sectional curvature k0, moreover if
equality holds then BM (v0) is isometric to BM0

(v0).
Since BM (v0) is a competitor in M between regions of volume v0 while BM0

(v0) is minimizer in M0,
we have

IM (v0) ≤ PM (BM (v0)) ≤ P0(BM0
(v0)) = IM0

(v0).

If IM (v0) = IM0
(v0) then all metric balls of volume v0 contained in M are isometric to BM0

(v0). Covering
of M with metric balls of volume v0, we conclude that M has constant sectional curvature k0.

Now, using geometric differential inequalities, we are going to prove two useful properties of the
isoperimetric profile of a manifold with C2,α-bounded geometry. First recall that given a function f :
R→ R, one denotes

(2) D2f(x0) := lim sup
h→0+

f(x0 + h) + f(x0 − h)− 2f(x0)

h2
, ∀x0 ∈ R.

The following theorem for compact manifolds is due to Bayle (see [7] Theorem 2.2.1).

Theorem 3.3. Let (Mn, g) be a complete n-dimensional Riemannian manifold, of C2,α-bounded geometry
with n ≥ 2. Let us assume that

Ricg ≥ (n− 1)k0 g, k0 ∈ R.

Then the normalized isoperimetric profile Y(M,g) := I
n
n−1

M satisfies the following second order differential
inequality

(3) ∀v > 0 D2Y(M,g)(v) ≤ −nk0 Y(M,g)(v)
2−n
n ,

with equality in the case of the simply connected space form of constant sectional curvature k0; moreover
if equality holds for a certain v0, then all the isoperimetric regions with volume v0 have totally umbilic
boundary along which the Ricci curvature, evaluated on unit normal directions, equals (n− 1)k0.

Proof. The proof of Bayle relies on the Ricci curvature lower bound and on the fact that for every v ∈
]0, V (M)[ the isoperimetric profile IM (v) is achieved by a region with the regularity stated in Proposition
2.1. Using the Generalized Existence Theorem 2.8, for every v > 0 there exists an isoperimetric regionD =
D1 ∪Ni=2 D∞,i where D1 ⊂ M,D∞,i ⊂ M∞,i are isoperimetric regions in their own manifolds; moreover
D is an isoperimetric region in the manifold given by the disjoint union M ∪̊∞i=2M∞,i for its own volume.
Therefore, recalling Remark 2.2 and observing that the lower bound on the Ricci curvature passes to the
C2,α-limit manifolds (M∞,i, g∞,i), the argument of Bayle (see [7] Theorem 2.2.1 and the computations
on pages 45-51; see also [46] Proposition 3.3) can be repeated, bringing the desired conclusion.

Corollary 3.4. Let (M, g) be complete, non-negatively Ricci curved, Ricg ≥ 0, and of C2,α-bounded geo-
metry. Then the isoperimetric profile function IM : [0, V (M)[→ R is strictly concave. In particular, since
IM (0) = 0, IM is strictly subadditive, and this implies that every isoperimetric region is indecomposable.

Proof. Since in this case k0 = 0, by the differential inequality (3) we get

∀v > 0 D2Y(M,g)(v) ≤ 0,

so the function YM is concave (see [7] Proposition B.2.1 pag.181). Now observe that IM = Y
n−1
n

(M,g); since

the exponent is n−1
n < 1, it follows that IM is strictly concave. Of course a continuous strictly concave
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function on ]0,∞[ which is null at 0 is strictly subadditive (for the simple proof see for example [7],
Lemma B.1.4). Now let Ωv be an isoperimetric region in volume v > 0. If by contradiction Ωv = Ω1 ∪Ω2

is a decomposition of Ω, say 0 < v1 = V (Ω1) and 0 < v2 = V (Ω2), then by the assumed subadditivity of
the isoperimetric profile we reach the contradiction

IM (v) = P(Ωv) = P(Ω1) + P(Ω2) ≥ IM (v1) + IM (v2) > IM (v).

4 Existence and properties of isoperimetric regions

4.1 Proof of Theorem 1.1

Recall that the isoperimetric regions in the n-dimensional simply connected space form Mn
k0

of constant
sectional curvature k0 are metric balls (no matter where the center is). Therefore it is clear that, applying
the generalized existence Theorem 2.8 (recall also Remark 2.9) to a manifold (Mn, g) satisfying the
assumptions of Theorem 1.1, there is at most one component of the generalized isoperimetric region D
placed in the manifold Mn

k0
at infinity. More precisely, fixing a positive volume v > 0 and considering D

as a generalized isoperimetric region for the volume v given in 8 of Theorem 2.8, we have that

(4) D = D1 ∪D∞ where D1 ⊂M and D∞ ⊂Mn
k0
,

with v = v1 + v∞ where v1 = VM (D1) and v∞ := VMnk0
(D∞). Since both D∞ ⊂ Mn

k0
and D1 ⊂ M are

isoperimetric regions for their own volume, we have that

D∞ ⊂ Mn
k0

is a metric ball: D∞ = BMnk0
(v∞),(5)

D1 ⊂ M is bounded,(6)

where BMnk0
(v∞) is a metric ball in Mn

k0
of volume v∞ and the second statement is ensured by Theorem

2.10.
If D∞ = ∅ the conclusion follows, so we can assume that D∞ 6= ∅ and v∞ := VMnk0

(D∞) > 0.

Let us consider a metric ball BM (v∞) ⊂ M of volume v∞ placed at positive distance from D1 (this is
possible thanks to (6) and the assumed asymptotic behaviour of (M, g)). By formula (1) in the proof of
Proposition 3.2, we have that

(7) PM (BM (v∞)) ≤ PMnk0
(D∞).

Therefore if we move all the volume v∞ which stays in the manifold at infinity Mn
k0

in any metric ball
contained in the original manifold M , we do not increase the perimeter and

IM (v) = PM (D1) + PMnk0
(D∞) ≥ PM (D1) + PM (BM (v∞)) = PM (D1 ∪BM (v∞)),

where we used 7 of Theorem 2.8 for the first equality and the fact that D1 and BM (v∞) are at positive
distance for the final equality.

Since D1 and BM (v∞) are disjoint, then V (D1 ∪ BM (v∞)) = v1 + v∞ = v and we conclude that
D1 ∪ BM (v∞) is an isoperimetric region in M for the volume v. Since v > 0 was arbitrary the theorem
is proved.

The indecomposability of the isoperimetric regions in case Ricg ≥ 0 is ensured by Corollary 3.4. 2

4.2 The case Ricg ≥ 0

Since the asymptotically locally euclidean manifolds with non-negative Ricci tensor are particularly in-
teresting for the applications (see Section 5), in this subsection we give an alternative proof of Theorem
1.1 in this case. Moreover, if Ricg ≥ 0, it is possible to do a finer analysis on the minimizing sequences:
roughly speaking either they converge to an isoperimetric region or they diverge, but they cannot split
into a converging part and a diverging part.
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4.2.1 An alternative proof of Theorem 1.1 in the case Ricg ≥ 0

Let (Mn, g) satisfy the hypothesis of Theorem 1.1 with k0 = 0, so that Ricg ≥ 0 and the manifold is
C0-locally asymptotic to Rn. For a fixed v > 0, we want to show that there exists an isoperimetric
region in M of volume v. Theorem 2.8 (recall also Remark 2.9) ensures the existence of a generalized
isoperimetric region

D = D1 ∪D∞ where D1 ⊂M and D∞ ⊂ Rn

are such that VM (D1) = v1, VRn(D∞) = v∞ with v1 + v∞ = v and D1 (resp. D∞) is an isoperimetric
region in M (resp. in Rn) for its own volume v1 (resp. v∞).

The structure of the proof is the following: first we show that D is connected, so either D = D1 or
D = D∞, then we prove that it must be D = D1.

STEP 1 : D = D1 ⊂M or D = D∞ ⊂ Rn.
Let us start assuming dim(M) = n < 8, since in this case the proof is very short (later we will explain how
to handle the general case). As D is an isoperimetric domain in M ∪Rn, its boundary is a smooth stable
CMC hypersurface of finite area. If by contradiction D1 6= ∅ and D∞ 6= ∅, then 0 < PM (D1),PRn(D∞) <
∞ and there exist c1, c∞ ∈ R\{0} such that

(8) c1 PM (D1) = c∞ PRn(D∞).

Denote by ν1 and ν∞ the outward pointing unit normal vectors to ∂D1 and ∂D∞, and consider the
variation of D composed by varying D1 in the direction c1ν1 and varying D∞ in the direction of −c∞ν∞.
Observe that (8) implies that this is an admissible variation (it has null mean value so it is volume
preserving to first order). Since the first variation of the perimeter P of D with respect to null mean
value deformations is null (recall that ∂D is union of smooth hypersurfaces of constant mean curvature),
it is interesting to compute the second variation of P in the specified direction. The standard expression
of the second variation of the area (see for example [5], Proposition 2.5) gives

(9) P ′′(D) = P ′′M (D1) + P ′′Rn(D∞) = −c21
∫
∂D1

(
σ2

1 + Ricg(ν1, ν1)
)
− c2∞

∫
∂D∞

σ2
∞,

where σ1 (resp. σ∞) is the norm of the second fundamental form of ∂D1 (resp. ∂D∞). Now observe that
∂D∞ is an (n− 1)-dimensional Euclidean sphere of radius r∞, so∫

∂D∞

σ2
∞ = (n− 1)ωn−1r

n−3
∞ < 0

where ωn−1 is the perimeter of unit sphere in Rn. Since we are assuming that Ricg ≥ 0, we can conclude
that

(10) P ′′(∂D) ≤ −c2∞(n− 1)ωn−1r
n−3
∞ < 0,

which contradicts the stability of ∂D.
In the general case of dimension n for the ambient manifold M , we can use a classical argument

employing cutoff functions. This trick was attributed in [6] (Section 7) to P. Berard, G. Besson, S.
Gallot, proved in detail in [7] (Proposition A.0.5) and in [47] (Lemma 3.1), and used for example in [46]
in Section 2. The argument is as follows: If Ω ⊂ M is an isoperimetric region and with ∂Ωr, ∂Ωs the
regular and the singular part respectively, then by the aforementioned Proposition A.0.5 in [7] there exist
a function φε : ∂Ω→ [0, 1] for each ε > 0 with the following properties:

• φε|∂Ωr ∈ C
∞(∂Ωr, [0, 1]), with spt(φε) ⊂⊂ ∂Ωr;

• P(Ω)− ε ≤
∫
∂Ω
φεdHn−1 ≤ P(Ω),

• P(Ω)− ε ≤
∫
∂Ω
φ2
εdHn−1 ≤ P(Ω),
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•
∫
∂Ω
||∇φε||2dHn−1∫
∂Ω

φ2
εdHn−1

≤ ε.

For small ε > 0, consider the standard expression of P ′′(D) with variation field c1,εφεν1− c∞,εν∞, where
φε is as before with Ω = D1 and c1,ε, c∞,ε chosen in such a way that the variation has null mean value.
Letting ε→ 0 in this expression gives again (10), which contradicts the stability.

An alternative proof of STEP 1 :
Since the enlarged manifold M ∪ Rn has non-negative Ricci curvature and C0-bounded geometry, by
Corollary 3.4 (notice that we asked C2,α-bounded geometry just to ensure that the manifolds at infi-
nity were smooth enough to carry the regularity of isoperimetric regions and for ensuring that the lower
bound on the Ricci tensor is preserved in the limit; both facts are clearly true if the limit manifolds are
isometric to the Euclidean n-dimensional space) the isoperimetric regions are indecomposable, so either
D = D1 ⊂M or D = D∞ ⊂ Rn.

STEP 2 : D = D1 ⊂M .
By Step 1, either D = D1 ⊂ M or D = D∞ ⊂ Rn. If D = D1 we have finished, so we can assume
D = D∞. Recalling that V (D) = v, items 5 and 7 of Theorem 2.8 yield that

(11) IM (v) = PM∪Rn(D) = PRn(D∞) = IRn(v).

Now, by Proposition 3.2 all the metric balls BM (p0, v) ⊂ M of volume v are isometric to the standard
round ball BRn(v) ⊂ Rn of volume v, and in particular the area of the boundaries are equal. We conclude

IM (v) ≤ PM (BM (p0, v)) = PRn(BRn(v)) = IRn(v) = IM (v)

where we used (11) in the last equality. Therefore IM (v) = PM (BM (p0, v)), i.e. BM (p0, v) is an isoperi-
metric region in volume v for every p0 ∈M , and the theorem follows by the arbitrarity of v > 0.
We remark that in the latter case M is locally isometric to Rn.

2

4.2.2 Finer properties of the minimizing sequences in the case Ric ≥ 0

Given a Riemannian manifold (M, g), we say that a sequence {Ωk}k∈N of finite perimeter subsets of M
diverges if for every compact subset K ⊂⊂M , there exists N ∈ N such that

Ωk ∩K = ∅ ∀k ≥ N.

Let us recall the following fundamental theorem of Ritoré and Rosales (Theorem 2.1 in [55])

Theorem 4.1 (Ritoré-Rosales ’04). Let (Mn, g) be a complete connected Riemannian n-manifold. For
every minimizing sequence {Ωk}k∈N of sets of volume v, there exists a finite perimeter set Ω ⊂ M and
sequences of sets of finite perimeter {Ωck}k∈N, {Ωdk}k∈N, with Ωk = Ωck ∪ Ωdk and Ωck ∩ Ωdk = ∅, such that
the following hold:

1. V (Ω) ≤ v, P(Ω) ≤ IM (v),

2. V (Ωck) + V (Ωdk) = v, limk→∞[P(Ωck) + P(Ωdk)] = IM (v),

3. the sequence {Ωdk}k∈N diverges,

4. there exists a finite perimeter set Ω ⊂ M such that, passing to a subsequence {kj}j∈N, {Ωckj}j∈N
converges to Ω in the sense of finite perimeter sets. In particular, limj→∞ P(Ωckj ) = P(Ω) and

limkj→∞ V (Ωck′) = V (Ω),

5. Ω is an isoperimetric region (possibly empty) for the volume it encloses.
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The aim of the present section is to prove the following theorem, which says that if Ricg ≥ 0 then
for every v > 0 any minimizing sequence {Ωk}k∈N for the volume v cannot split into a convergent part
{Ωck}k∈N and a divergent part {Ωdk}k∈N such that lim infk V (Ωck) > 0 and lim infk V (Ωdk) > 0, or in other
words, any minimizing sequence for the volume v > 0 either converges to an isoperimetric region of
volume v or diverges, up to a part whose volume converges to zero and up to subsequences.

Theorem 4.2. Let (Mn, g) be a complete connected Riemannian n-manifold having C2,α-bounded geo-
metry and satisfying Ricg ≥ 0. Fix v ∈]0, V (M)[ and consider any minimizing sequence {Ωk}k∈N for the
volume v. Then there exist sequences of sets of finite perimeter {Ω1

k}k∈N, {Ω2
k}k∈N and a subsequence

{kj}j∈N such that

Ωk = Ω1
k ∪ Ω2

k, Ω1
k ∩ Ω2

k = ∅ for all k ∈ N, and lim
j→∞

V (Ω1
kj ) = v, lim

j→∞
V (Ω2

kj ) = 0.

Moreover, either {Ω1
kj
}j∈N diverges or there exists an isoperimetric region Ω ⊂M for the volume v such

that {Ω1
kj
}j∈N converges to Ω in the sense of finite perimeter.

Proof. Applying Theorem 4.1 to the minimizing sequence {Ωk}k∈N we obtain the sequences of sets of
finite perimeter {Ωck}k∈N, {Ωdk}k∈N with the stated properties. Let

v1 = V (Ω) = lim
j→∞

V (Ωckj ) and v∞ = v − v1 = lim
j→∞

V (Ωdkj ).

The conclusion follows if we prove that either v1 = v and v∞ = 0 or that v1 = 0 and v∞ = v.
Assume by contradiction that both v1 and v∞ are strictly positive. Combining items 2, 4 and 5 of

Theorem 4.1, we infer

IM (v) = lim
k→∞

[P(Ωck) + P(Ωdk)] = IM (v1) + lim
k→∞

P(Ωdk).

Using the trivial inequality P(Ωdk) ≥ IM (V (Ωdk)) we can continue the chain above, obtaining

IM (v) ≥ IM (v1) + lim sup
k→∞

IM (V (Ωdk)) ≥ IM (v1) + lim
j→∞

IM (V (Ωdkj )) = IM (v1) + IM (v∞),

where, in the last equality, we used that limj→∞ V (Ωdkj ) = v∞ together with the continuity of the

isoperimetric profile ensured by Proposition 3.1. Therefore IM (v) ≥ IM (v1) + IM (v∞), and if both v1

and v∞ are strictly positive, this contradicts the strict subadditivity of IM stated in Corollary 3.4.

4.3 Existence of isoperimetric regions of small volume under assumptions on
the scalar curvature

In this section we prove Theorem 1.2, the existence of isoperimetric regions of small volumes in non-
compact manifolds of any dimension under assumptions on the scalar curvature alone.

PROOF OF THEOREM 1.2: From Lemma 3.6 in [49], there exists a small v0 > 0 such that for any
0 < v < v0, the isoperimetric profile IM (v) is achieved in the enlarged manifold M ∪M∞, where M∞ is
given by a compactness argument in the theory of pointed convergence of manifolds (see [49], and note
that we have changed the notation a bit from that in the cited paper, where M∞ may coincide with M ,
while here M denotes the original manifold and M∞ denotes the manifold we are attaching at infinity
in case a minimizing sequence is diverging). From Lemma 3.7, the minimizer is a pseudo-bubble (for the
precise notion see Definition 2.11) ΨBv contained either in M or in M∞.

We now show that ΨBv must be contained in M , from which the theorem follows. Suppose for
contradiction that ΨBv ⊂ M∞. Then the expansion of the isoperimetric profile IM∞ for small volume
(see formula (2) in Theorem 2 in [49]) is

(12) IM (v) = IM∞(v) = cnv
n−1
n

(
1− S∞

2n(n+ 2)

(
v

ωn

) 2
n

+ o
(
v

2
n

))
,
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where cn is the Euclidean isoperimetric constant, S∞ := supM∞ Scalg∞ , and ωn is the volume of the n
dimensional ball of radius 1. Notice that since (M, g) has C2,α-bounded geometry, the asymptotic bounds
on the curvature of M are transferred to the C2,α-limit manifold M∞, so under our assumptions we have
that

S∞ ≤ S.

On the other hand, taking a point p̄ ∈ M where Scalg(p̄) > S, the same computations show that on
small geodesic balls Bp̄,v of volume v centered at p̄ we have

(13) PM (Bp̄,v) = cnv
n−1
n

(
1− Scalg(p̄)

2n(n+ 2)

(
v

ωn

) 2
n

+ o
(
v

2
n

))
.

Since Scalg(p̄) > S ≥ S∞, the combination of (12) and (13) gives the contradiction

IM (v) ≤ AM (Sp̄,v) < IM∞(v) = IM (v), for small v > 0.

Finally, from Theorem 1 in [49], the isoperimetric regions of small fixed volume v are pseudo-bubbles
with center of mass p̄v converging in Hausdorff distance to the set of points of global maximum of the
scalar curvature Scalg as v → 0.

5 Noteworthy examples of manifolds satisfying the assumptions
of Theorem 1.1 and open problems

5.1 ALE Gravitational Instantons

A first class of manifolds satisfying the assumptions of Theorem 1.1 is given by the so-called Asymptoti-
cally Locally Euclidean (ALE) Gravitational Instantons: 4-manifolds which are solutions of the Einstein
vacuum equations with null cosmological constant (i.e. they are Ricci flat, Ric ≡ 0). These are non-
compact with just one end which is topologically a quotient of R4 by a finite subgroup of O(4), and the
Riemannian metric g on this end is asymptotic to the euclidean metric up to O(r−4),

gij = δij +O(r−4),

with appropriate decay in the derivatives of gij (in particular, these metrics are C0 locally asymptotic,
in the sense of Definition 2.3, to the Euclidean 4-dimensional space).

The first example of such manifolds was discovered by Eguchi and Hanson in [24]; the authors, inspired
by the discovery of self-dual instantons in Yang-Mills Theory, found a self-dual ALE instanton metric.
The Eguchi-Hanson example was then generalized by Gibbons and Hawking [30] who constructed for each
integer k ≥ 2 a family of ALE 4-dimensional gravitational instantons depending on 3k − 6 parameters,
which have self dual curvature and are asymptotic to a quotient of R4 by a cyclic group of order k; these
”multi-Eguchi-Hanson” metrics constitute the building blocks of Euclidean quantum gravity theory (see
[35], [36]) and were obtained also by Hitchin [38], who derived them through an application of Penrose’s
non-linear graviton construction. The ALE Gravitational Instantons were classified in 1989 by Kron-
heimer (see [40], [41]).

For the reader’s convenience, in order to give at least one explicit example, we briefly describe the
Eguchi-Hanson metric following [25]. Let ds2 = dt2 + dx2 + dy2 + dz2 the Euclidean metric in R4 and
observe that the flat metric can be written in polar coordinates as

(14) ds2 = dr2 + r2(σ2
x + σ2

y + σ2
z)
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where r2 = t2 + x2 + y2 + z2 and

σx =
1

r2
(xdt− tdx+ ydz − zdy)

σy =
1

r2
(ydt− tdy + zdx− xdz)

σz =
1

r2
(zdt− tdz + xdy − ydx).

Then the Eguchi-Hanson metric can be written

(15) ds2 =

[
1−

(a
r

)4
]−1

dr2 + r2(σ2
x + σ2

y) + r2

[
1−

(a
r

)4
]
σ2
z ,

where a is a real constant. The metric is singular at r = a in R4, but this singularity disappears if one
identifies (t, x, y, z) ∼ (−t,−x,−y,−z), after which we obtain a smooth, geodesically complete, Ricci flat
metric on R4/ ∼. The global topology of the manifold is the following: near r = a the manifold has the
topology of R2×S2 (more precisely, at every point of S2 there is an R2 attached which shrinks to a point
as r → a) while for large r the metric approaches the flat metric. Notice that because of the identification
∼, the boundary at infinity is not S3 but RP 3 ∼= SO(3), for which S2 ∼= SU(2) is the double cover. So,
as remarked before, the manifold is locally asymptotically Euclidean, but the global topology at infinity
differs from the that of R4. For completeness let us also recall that the entire manifold just described can
be seen also as the cotangent bundle of the complex plane CP 1 ∼= S2.

Open Problem 1: By the direct application of Theorem 1.1 to the Eguchi-Hanson space, we get
existence of isoperimetric regions for every value of the area. It is an interesting open problem to
characterize such regions. Since the metric is radially symmetric, we expect that (at least for large
volumes) the isoperimetric regions are the 3-dimensional projective spaces described by {r = const}.

Open Problem 2: Clearly Theorem 1.1 can be applied as well to the other more general ALE Gra-
vitational Instantons mentioned above; the description of the isoperimetric regions is again an interesting
open problem. We expect that for large volumes they are normal graphs of the quotient of large centered
spheres.

We remark that the existence and description of isoperimetric regions is an important issue in general
relativity. To name a few examples, D. Christodoulou and S.T. Yau proved in [20] that the Hawking
mass of isoperimetric spheres is non-negative (provided the scalar curvature of the ambient manifold is
non-negative); H. Bray in [10] gave a proof of a special case of the Riemannian Penrose inequality using
isoperimetric techniques; G. Huisken in [39] proposed a definition of mass using just isoperimetric con-
cepts; H. Bray and F. Morgan in [11] characterized isoperimetric regions in certain spherically symmetric
manifolds, in particular in Schwarzshild; M. Eichmair and J. Metzger in [26], [27] and [28] described
the isoperimetric regions of large volume in initial data sets for the Einstein’s equations; J. Corvino, A.
Gerek, M. Greenberg, B. Krummel in [23] characterized the isoperimetric regions in the spatial Reissner-
Nordstrom and Schwarzschild anti-de Sitter manifolds; S. Brendle and M. Eichmair in [14] characterized
isoperimetric regions in the ”doubled” Schwarzschild manifold.

5.2 Asymptotically Hyperbolic Einstein manifolds

In this subsection we discuss the importance and existence of Einstein manifolds which are locally C0-
asymptotic to a negatively curved space form (and hence satisfy the assumption of Theorem 1.1).

Let M be the interior of a compact n-dimensional manifold M̄ with non-empty boundary ∂M ; a
complete metric g on M is Cm,α conformally compact if there is a defining function ρ̄ on M̄ such that
the conformally equivalent metric

g̃ = ρ2g

extends to a Cm,α metric on the compactification M̄ . A defining function ρ is a smooth, non-negative
function on M̄ with ρ−1(0) = ∂M and dρ 6= 0 on ∂M . The induced metric γ = g̃|∂M is called the
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boundary metric associated to the compactification g̃. There are many possible defining functions and
hence many compactifications of a metric g, so only the conformal class [γ] of γ on ∂M is uniquely
determined by (M, g). If the metric g is C2 conformally compact and Einstein normalized so that

Ricg = −(n− 1)g,

then it is asymptotically hyperbolic in the sense that |Kg + 1| = O(ρ2), where Kg is the sectional curva-
ture of g (see for example the Appendix in [4]). The relationship with the hyperbolic space can be made
even more explicit by constructing special coordinate charts near the boundary (see for example Chapter
3 in [42]).

In recent years, interest in asymptotically hyperbolic Einstein metrics has risen dramatically, also
thanks to their physical relevance. Indeed the previous described notion of conformal infinity for a
(pseudo)-Riemannian manifold was introduced by Penrose [51] in order to analyze the behaviour of gra-
vitational energy in asymptotically flat space times. More recently, asymptotically hyperbolic Einstein
metrics have begun to play a central role in the ”AdS/CFT correspondence” of quantum field theory:
broadly speaking the correspondence states the existence of a duality equivalence between gravitational
theories (such as string theory or M theory) on M and conformal field theories on the boundary at
conformal infinity ∂M (see for example [3]).

Regarding the existence of such metrics, Graham and Lee [32] have proved that any metric γ near
the standard metric γ0 on Sn−1 in a sufficiently smooth topology may be filled with an asymptotically
hyperbolic Einstein metric g on the n-ball Bn having prescribed boundary metric γ, and moreover such
metrics have a conformal compactification with a certain degree of smoothness. More precisely, they
prove that for any m ≥ 2, there is an open neighborhood Uγ0

of γ0 in the space of Cm,α metrics on Sn−1

such that any metric γ ∈ Uγ0
is the boundary metric of an asymptotically hyperbolic Einstein metric g

on the n-ball Bn, i.e. γ = g̃|∂M . Furthermore, the metric g is Cn−2,α-conformally compact for n > 4
and C1,α for n = 4. Biquard [9] and Lee [42] independently extended this result to boundary metrics
in an open Cm,α-neighborhood of the boundary metric γ0 of an arbitrary non-degenerate asymptotically
hyperbolic Einstein manifold (M, g). Anderson [4] gave other existence results using degree arguments,
under the assumption that the boundary metric γ has positive scalar curvature.

5.3 Bryant soliton and its generalizations

Another class of Riemannian manifolds satisfying the assumptions of Theorem 1.1 is given by Ricci solitons
of Bryant type. These metrics have non-negative Ricci curvature and are locally C0-asymptotically
Euclidean. R. Bryant in [15] proved that it is possible to find a function φ : R+ → R such that the
warped product metric

g = dr2 + φ(r)2gSn−1

on Rn, where gSn−1 is the standard metric on Sn−1 and r =
√

(x1)2 + . . .+ (xn)2 is the radial coordinate,
is a complete metric with positive curvature operator (hence positive Ricci curvature), whose sectional
curvatures decay at least inverse linearly in r (Bryant’s proof is in dimension three, but analogous ar-
guments give the general case; see for example Section 4.6 in [19]). This metric plays a crucial role in
the analysis of Ricci flow, being the only example in dimension three of a non-flat and k-non-collapsed
steady gradient Ricci soliton (see [12] and [13] for higher dimension).

Other soliton examples fitting our assumptions are given by Catino-Mazzieri in [16].
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