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Abstract

In this note we review some recent results on the Sobolev regularity of solutions to the Monge-
Ampère equation, and show how these estimates can be used to prove some global existence
results for the semigeostrophic equations.

1 The Monge-Ampère equation

The Monge-Ampère equation arises in connections with several problems from geometry and analy-
sis (regularity for optimal transport maps, the Minkowski problem, the affine sphere problem, etc.)
The regularity theory for this equation has been widely studied. In particular, Caffarelli developed
in [4, 6, 5] a regularity theory for Alexandrov/viscosity solutions, showing that convex solutions of{

det(D2u) = f in Ω,
u = 0 on ∂Ω

(1.1)

are locally C1,α provided 0 < λ ≤ f ≤ Λ for some λ,Λ ∈ R. Moreover, for any p > 1 there exists
δ = δ(p) > 0 such that u ∈W 2,p

loc (Ω) provided |f − 1| ≤ δ.
Then, few years later, Wang [17] showed that for any p > 1 there exists a function f satisfying

0 < λ ≤ f ≤ Λ such that u 6∈W 2,p
loc (Ω). This counterexample shows that the results of Caffarelli were

more or less optimal. However, an important question which remained open was whether solutions
of (1.1) with 0 < λ ≤ f ≤ Λ could be at least W 2,1

loc , or even W
2,1+ε
loc for some ε = ε(n, λ,Λ) > 0.

In the next section we motivate this W 2,1
loc question, showing how a positive answer to this

question can be used to obtain some global existence results for the semigeostrophic equations
[1, 2]. Then, following [11, 12], in Section 3 we prove that solutions to (1.1) are actually W 2,1+ε

loc ,

and we show how the very same proof can be used to obtain Caffarelli’s W 2,p
loc estimates.

2 The semigeostrophic equations

A motivation for being interested in the W 2,1
loc regularity of solutions to (1.1) comes from the

semigeostrophic equations: The semigeostrophic equations are a simple model used in meteorology
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to describe large scale atmospheric flows. As explained for instance in [3, Section 2.2] (see also [9]
for a more complete exposition), these equations can be derived from the 3-d incompressible Euler
equations, with Boussinesq and hydrostatic approximations, subject to a strong Coriolis force.
Since for large scale atmospheric flows the Coriolis force dominates the advection term, the flow
is mostly bi-dimensional. For this reason, the study of the semigeostrophic equations in 2-d or
3-d is pretty similar, and in order to simplify our presentation we focus here on the 2-dimentional
periodic case.

The semigeostrophic system can be written as
∂t∇pt + (ut · ∇)∇pt +∇⊥pt + ut = 0

∇ · ut = 0

p0 = p̄

(2.1)

where ut : R2 → R2 and pt : R2 → R are periodic functions corresponding respectively the velocity
and the pressure.

As shown in [9], energetic considerations show that it is natural to assume that pt is (−1)-convex,
i.e., the function Pt(x) := pt(x) + |x|2/2 is convex on R2. If we denote with LT2 the Lebesgue
measure on the 2-dimensional torus, then formally ρt := (∇Pt)]LT2 satisfies the following dual
problem: 

∂tρt +∇ · (U tρt) = 0

U t(x) =
(
x−∇P ∗

t (x)
)⊥

ρt = (∇Pt)]LT2

P0(x) = p̄(x) + |x|2/2,

(2.2)

where P ∗
t is the convex conjugate of Pt, namely

P ∗
t (y) := sup

x∈R2

{
y · x− Pt(x)

}
.

The dual problem (2.2) is nowadays pretty well understood. In particular, Benamou and Brenier
proved in [3] existence of weak solutions to (2.2). On the contrary, much less is known about the
original system (2.1). Formally, given a solution ρt of (2.2) and defining Pt through the relation
ρt = (∇Pt)]LT2 (namely the optimal transport map from ρt to LT2 for the quadratic cost on the
torus), the pair (pt,ut) given by{

pt(x) := Pt(x)− |x|2/2
ut(x) := ∂t∇P ∗

t (∇Pt(x)) +D2P ∗
t (∇Pt(x))

(
∇Pt(x)− x

)⊥ (2.3)

solves (2.1).
Being P ∗

t just a convex function, a priori D2P ∗
t is a matrix-valued measure, thus it is not clear

the meaning to give to the previous formula. However, since ρt solves a continuity equation with a
divergence free vector field (notice that U t is the rotated gradient of the function |x|2/2 − P ∗

t (x),
see (2.2)), we know that

0 < λ ≤ ρt ≤ Λ ∀ t > 0 (2.4)
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provided this bound holds at t = 0.
In addition, the relation ρt = (∇Pt)]LT2 implies that (∇P ∗

t )]ρt = LT2 (since ∇P ∗
t is the

inverse of ∇Pt), from which it follows [8] that P ∗
t solves in the Alexandrov sense the Monge-Ampère

equation
det(D2P ∗

t ) = ρt

(see Section 3.1 for the definition of Alexandrov solution). Hence, it becomes clear now our initial
question on the W 2,1 regularity of solutions to the Monge-Ampère equation: if we can prove that
under (2.4) we have D2P ∗

t ∈ L1, then we have hopes to give a meaning to the velocity field ut

defined in (2.3), and then prove that (pt,ut) solve (2.1).

2.1 Space-time Sobolev regularity of ∇P ∗
t

In [11] we proved not only that solutions to (1.1) with 0 < λ ≤ f ≤ Λ are W 2,1
loc , but that actually,

for any k > 0, ∫
Ω′

|D2u| logk(2 + |D2u|) <∞ ∀Ω′ ⊂⊂ Ω. (2.5)

The proof of this estimate strongly exploits the affine invariance of Monge-Ampère, and can actually
be pushed forward to show that solutions are W 2,1+ε

loc for some ε = ε(n, λ,Λ) > 0 [12, 16].
As shown in [1, Theorem 2.2], this estimate immediately extends to solutions on the torus, so

in particular it applies to P ∗
t . Thanks to this fact, it is easy to see that the second term in the

definition of ut (see (2.3)) is well-defined and belongs to L1.
To deal with the term ∂t∇P ∗

t , we need a second argument. We use log+ to denote the posi-
tive part of the logarithm, i.e., log+(t) = max{log(t), 0}. The following estimate is proved in [1,
Proposition 3.3], following an idea introduced in [15, Theorem 5.1]:

Proposition 2.1. For every k ∈ N there exists a constant Ck such that, for almost every t ≥ 0,∫
T2

ρt|∂t∇P ∗
t | logk+(|∂t∇P ∗

t |) dx

≤ Ck

(∫
T2

ρt|D2P ∗
t | log2k+ (|D2P ∗

t |) dx+
∥∥ρt|U t|2

∥∥
L∞(T2)

∫
T2

|D2P ∗
t | dx

)
. (2.6)

Remark 2.2. Let us mention that, by the W 2,1+ε
loc regularity of P ∗

t , one could actually prove that∫
T2

ρt|∂t∇P ∗
t |κ dx ≤ C, κ :=

2 + 2ε

2 + ε
> 1.

Although this estimate is stronger, it is less suited when one investigates the problem in the whole
space [2]: indeed, in that case one would obtain that, for any R > 0, there exist κR > 1 and CR > 0
such that ∫

B(0,R)
ρt|∂t∇P ∗

t |κR dx ≤ CR

(i.e., the integrability exponent depends on R), while the estimates with the logarithm reads∫
B(0,R)

ρt|∂t∇P ∗
t | logk+(|∂t∇P ∗

t |) dx ≤ Ck,R,

and this makes it simpler to use.
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Sketch of the proof of (2.6). In order to justify the following computations one needs to perform
a careful regularization argument. Here we show just the formal argument, referring to [1] for a
detailed proof.

First of all, by differentiating in time the relation det(D2P ∗
t ) = ρt we get

2∑
i,j=1

Mij(D
2P ∗

t (x)) ∂t∂ijP
∗
t (x) = ∂tρt,

where Mij(A) :=
∂ det(A)
∂Aij

is the cofactor matrix of A. Taking into account (2.2) and the well-known

divergence-free property of the cofactor matrix∑
i

∂iMij(D
2Pt

∗(x)) = 0, j = 1, 2,

we can rewrite the above equation as

2∑
i,j=1

∂i
(
Mij(D

2P ∗
t (x)) ∂t∂jP

∗
t (x)

)
= −∇ · (U tρt),

and recalling the well-known identity M(A) = det(A)A−1 we get

∇ ·
(
ρt(D

2P ∗
t )

−1∂t∇P ∗
t

)
= −∇ · (ρtU t), (2.7)

where we used again the relation det(D2P ∗
t ) = ρt.

We now multiply (2.7) by ∂tP
∗
t and integrate by parts to obtain∫

T2

ρt|(D2P ∗
t )

−1/2∂t∇P ∗
t |2 dx =

∫
T2

ρt∂t∇P ∗
t · (D2P ∗

t )
−1∂t∇P ∗

t dx

= −
∫
T2

ρt∂t∇P ∗
t ·U t dx.

(2.8)

(Since the matrix D2Pt
∗ is positive definite, both its square root and the square root of its inverse

are well-defined.) From Cauchy-Schwartz inequality, the right-hand side of (2.8) can be estimated
as

−
∫
T2

ρt∂t∇P ∗
t · (D2P ∗

t )
−1/2(D2P ∗

t )
1/2U t dx

≤
(∫

T2

ρt|(D2P ∗
t )

−1/2∂t∇P ∗
t |2 dx

)1/2(∫
T2

ρt|(D2P ∗
t )

1/2U t|2 dx
)1/2

.

(2.9)

Moreover, the second term in the right-hand side of (2.9) can be bounded by∫
T2

ρtU t ·D2P ∗
t U t dx ≤ sup

T2

(
ρt|U t|2

) ∫
T2

|D2P ∗
t | dx. (2.10)

Hence, it follows from (2.8), (2.9), and (2.10) that∫
T2

ρt|(D2P ∗
t )

−1/2∂t∇P ∗
t |2 dx ≤ sup

T2

(
ρt|U t|2

) ∫
T2

|D2P ∗
t | dx. (2.11)
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We now apply the elementary estimate (see [1, Lemma 3.4])

ab logk+(ab) ≤ Ck

(
a2 log2k+ (a2) + b2

)
∀ (a, b) ∈ R+ × R+

with a = |(D2P ∗
t )|1/2 and b = |(D2P ∗

t )
−1/2∂t∇Pt

∗(x)|, to deduce that

|∂t∇P ∗
t | logk+(|∂t∇P ∗

t |) ≤ Ck

(
|D2P ∗

t | log2k+ (|D2P ∗
t |) + |(D2P ∗

t )
−1/2∂t∇P ∗

t |2
)
.

Multiplying the above inequality by ρt and integrating it over T2, using (2.11) we obtain∫
T2

ρt|∂t∇P ∗
t | logk+(|∂t∇P ∗

t |) dx

≤ Ck

(∫
T2

ρt|D2P ∗
t | log2k+ (|D2P ∗

t |) dx+

∫
T2

ρt|(D2P ∗
t )

−1/2∂t∇P ∗
t |2 dx

)
≤ Ck

(∫
T2

ρt|D2P ∗
t | log2k+ (|D2P ∗

t |) dx+ sup
T2

(
ρt|U t|2

) ∫
T2

|D2P ∗
t | dx

)
,

which proves (2.6).

Thanks to (2.5) applied to P ∗
t and (2.6), we deduce easily that the velocity field ut in (2.3)

belongs to L1(T2).

2.2 (pt,ut) solves the semigeostrophic system

In order to prove that the couple (pt,ut) defined in (2.3) is a distributional solution of (2.1) we
need to find some suitable test functions to use in (2.2).

More precisely, we first write (2.2) in distributional form:∫ ∫
T2

{
∂tϕt(x) +∇ϕt(x) ·U t(x)

}
ρt(x) dx dt+

∫
T2

ϕ0(x)ρ0(x) dx = 0 (2.12)

for every ϕ ∈W 1,1(R2 × [0,∞)) Z2-periodic in the space variable.
We now take φ ∈ C∞

c (R2 × [0,∞)) a function Z2-periodic in space, and we consider the test
function ϕ : R2 × [0,∞) → R2 defined as

ϕt(y) := J(y −∇P ∗
t (y))φt(∇P ∗

t (y)), (2.13)

where J :=

(
0 −1
1 0

)
denotes the rotation by π/2. We compute the derivatives of ϕ:


∂tϕt(y) = −J [∂t∇P ∗

t ](y)φt(∇P ∗
t (y)) + J

(
y −∇P ∗

t (y)
)
∂tφt(∇P ∗

t (y))+

+J
(
y −∇P ∗

t (y)
)[
∇φt(∇P ∗

t (y)) · ∂t∇P ∗
t (y)

]
,

∇ϕt(y) = J
(
Id−D2P ∗

t (y)
)
φt(∇P ∗

t (y))

+J
(
y −∇P ∗

t (y)
)
⊗

(
∇Tφt(∇P ∗

t (y))D
2P ∗

t (y)
)
.

(2.14)
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Taking into account that (∇Pt)]LT2 = ρt and that ∇P ∗
t (∇Pt(x)) = x a.e., we can rewrite the

boundary term in (2.12) as∫
T2

ϕ0(y)ρ0(y) dy =

∫
T2

J
(
∇P0(x)− x

)
φ0(x) dx =

∫
T2

J∇p0(x)φ0(x) dx. (2.15)

In the same way, since U t(y) = J(y −∇P ∗
t (y)), we can use (2.14) to rewrite the other term as∫ ∞

0

∫
T2

{
∂tϕt(y) +∇ϕt(y) ·U t(y)

}
ρt(y) dy dt

=

∫ ∞

0

∫
T2

{
− J [∂t∇P ∗

t ](∇Pt(x))φt(x) + J
(
∇Pt(x)− x

)
∂tφt(x)

+ J
(
∇Pt(x)− x

)[
∇φt(x) · ∂t∇P ∗

t (∇Pt(x))
]

+
[
J
(
Id−D2P ∗

t (∇Pt(x))
)
φt(x)

+ J
(
∇Pt(x)− x

)
⊗

(
∇Tφt(x)D

2P ∗
t (∇Pt(x))

)]
J
(
∇Pt(x)− x

)}
dx dt

(2.16)

which, taking into account the formula (2.3) for ut, after rearranging the terms turns out to be
equal to∫ ∞

0

∫
T2

{
J∇pt(x)

(
∂tφt(x) + ut(x) · ∇φt(x)

)
+

(
−∇pt(x)− Jut(x)

)
φt(x)

}
dx dt. (2.17)

Hence, combining (2.15), (2.16), (2.17), and (2.12), we obtain that (pt,ut) solve the first equation
in (2.1). The fact that ut is divergence free is proved in a similar way, using the test function

ϕt(y) := φ(t)ψ(∇Pt
∗(y)).

Therefore, we obtain the following result [1, Theorem 1.2]:

Theorem 2.3. Let p̄ : R2 → R be a Z2-periodic function such that p̄(x) + |x|2/2 is convex, and
assume that the measure (Id+∇p̄)]LT2 is absolutely continuous with respect to the Lebesgue measure
with density ρ̄, namely

(Id+∇p̄)]LT2 = ρ̄.

Moreover, let us assume that both ρ̄ and 1/ρ̄ belong to L∞(R2).
Let ρt be a solution of (2.2) starting from ρ̄, and let Pt : R2 → R be the (unique up to an

additive constant) convex function such that (∇Pt)]LT2 = ρt and Pt(x) − |x|2/2 is Z2-periodic.
Denote by P ∗

t : R2 → R its convex conjugate.
Then the couple (pt,ut) defined in (2.3) is a distributional solution of (2.1).

Although the vector field ut provided by the previous theorem is only L1, in [1] we also showed
how to associate to it a measure-preserving Lagrangian flow. In particular we recovered (in the
particular case of the 2-dimensional periodic setting) the result of Cullen and Feldman [10] on the
existence of Lagrangian solutions to the semigeostrophic equations in physical space.

The 3-dimensional case on a bounded convex domain Ω ⊂ R3 presents additional difficulties
[2]. Indeed, first of all, in 3-d, Equation (2.1) becomes much less symmetric compared to its
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2-d counterpart, because the action of Coriolis force regards only the first and the second space
components. Moreover, even considering regular initial data and velocities, regularity results require
a finer regularization scheme, due to the non-compactness of the ambient space. Still, under suitable
assumptions on the initial data, we can prove the existence of distributional solutions (see [2] for
more details).

Let us mention that a key assumption made in [2] is that the initial data ρ0 = (∇P0)]LΩ is
supported on the whole R3 (here LΩ denotes the Lebesgue measure restricted to Ω). It would
be extremely interesting to remove this assumption in order to deal with the case when ρ0 is
compactly supported (which is the most interesting case from a physical point of view). However,
the nontrivial evolution of the support of the solution ρt does not allow to apply the regularity
results in [11, 12, 16], which are actually expected to fail in this situation, so completely new ideas
need to be introduced in order to prove existence of distributional solutions in this case.

3 Sobolev regularity for the Monge-Ampère equation

In this section we prove that solutions to (1.1) are W 2,1+ε
loc . For this, we follow the arguments in

[11, 12]. In addition, we show that the very same proof can be used to obtain the W 2,p
loc estimates

from [5].

3.1 Notation and Preliminaries

We say that a convex function u : Ω → R is an Alexandrov solution of the Monge-Ampère equation
(1.1) if ∣∣∣ ⋃

x∈E
∂u(x)

∣∣∣ = ∫
E
f for all E ⊂ Ω Borel,

where ∂u(x) denotes the subdifferential of u at x, and |E| denotes the Lebesgue measure of a set
E.

Given u : Ω → R a C1 convex function, we define the section Sh(x0) centered at x0 at height h
as

Sh(x0) :=
{
x ∈ Ω : u(x) < u(x0) +∇u(x0) · (x− x0) + h

}
.

If u : Ω → R solves (1.1) then u ∈ C1,α
loc (Ω) [4, 6], and sections well contained inside Ω (say,

Sh(x0) ⊂ Ω′ ⊂⊂ Ω) enjoy several nice geometric properties (see [4, 6, 7, 14]).
Indeed, first of all, there exists a universal constant σ > 1 such that the following holds: for

any section Sh(x0) ⊂ Ω′, there exists an affine transformation A with detA = 1 such that

B√
h/σ

⊂ A(Sh(x0)− x0) ⊂ B√
σh, (3.1)

which implies in particular that
|Sh(x0)| ' hn/2. (3.2)

In addition, there exists η ∈ (0, 1) universal such that:
(a) If h1 ≤ h2 and Sηh1(x1) ∩ Sηh2(x2) 6= ∅ then

Sηh1(x1) ⊂ Sh2(x2).
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(b) If h1 ≤ h2 and x1 ∈ Sh2(x2) then we can find a point z such that

Sηh1(z) ⊂ Sh1(x1) ∩ Sh2(x2).

(c) If x1 ∈ Sh(x2) then
Sηh(x1) ⊂ S2h(x2).

Because of Property (a) above, sections are well suited for covering lemmas (see for instance
[12, Lemma 2.2]):

Lemma 3.1. Let D ⊂ Ω′ ⊂⊂ Ω be a compact set, and assume that to each x ∈ D we associate
a corresponding section Sh(x) ⊂ Ω′. Then we can find a finite number of these sections Shi

(xi),
i = 1, . . . ,m, such that

D ⊂
m⋃
i=1

Shi
(xi), with Sηhi

(xi) disjoint.

In the proof of our result we will use the “normalized size” of a section to measure the size of
D2u: we say that Sh(x0) has normalized size α if

α := ‖A‖2

for some matrix A as in (3.1). (Notice that, although A may not be unique, this definition fixes
the value of α up to multiplicative universal constants.) It is not difficult to check that if u is C2

in a neighborhood of x0, then as h → 0 the normalized size of Sh(x0) converges ‖D2u(x0)‖, up to
dimensional constants.

Given a transformation A as in (3.1), we define ũ to be the rescaling of u

ũ(x̃) := h−1u(x), x̃ = Tx := h−1/2A (x− x0). (3.3)

Then ũ solves an equation of the same form:

detD2ũ = f̃ , with f̃(x̃) := f(x).

In particular,

λ ≤ f ≤ Λ (resp. |f − 1| ≤ δ) =⇒ λ ≤ f̃ ≤ Λ (resp. |f̃ − 1| ≤ δ).

In addition the section S̃1(0) of ũ at height 1 is normalized, that is,

B1/σ ⊂ S̃1(0) ⊂ Bσ, S̃1(0) := T (Sh(x0)).

Also D2u(x) = ATD2ũ(x̃)A, which implies ‖D2u(x)‖ ≤ ‖A‖2‖D2ũ(x̃)‖, and

γ1I ≤ D2ũ(x̃) ≤ γ2I ⇒ γ1‖A‖2 ≤ ‖D2u(x)‖ ≤ γ2‖A‖2.
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3.2 W 2,1+ε and W 2,p regularity

We assume throughout that u is a normalized solution of (1.1), that is

detD2u = f in Ω, λ ≤ f ≤ Λ, S2(0) ⊂ Ω′ ⊂⊂ Ω, B1/σ ⊂ S1(0) ⊂ Bσ.

Our goal is to show that ∫
S1(0)

‖D2u‖1+εdx ≤ C, (3.4)

for some universal constants ε, C > 0. In addition, we will also prove that for any p > 1 there
exists δ = δ(p) ' e−Cp such that∫

S1(0)
‖D2u‖pdx ≤ C provided |f − 1| ≤ δ. (3.5)

Once these estimates are proved, the desired interior regularity follows by a standard scaling/covering
argument, see for instance [11].

Without loss of generality we may assume that u ∈ C2, since the general case follows by
approximation (for instance, one may convolve f to have a smooth solution, prove the estimates in
this case, and then pass to the limit).

Lemma 3.2. Assume S2(0) ⊂ Ω′, and 0 ∈ St(y) ⊂ Ω′ for some t ≥ 1. Then there exists a large
universal constant K > 0 such that:

(i) ∫
S1(0)

‖D2u‖dx ≤ K
∣∣{Id/K ≤ D2u ≤ KId

}
∩ Sη(0) ∩ St(y)

∣∣ .
(ii) If in addition |f − 1| ≤ δ then∣∣S1(0) ∩ {

‖D2u‖ ≥ K
}∣∣ ≤ K δγ

∣∣{Id/K ≤ D2u ≤ KId
}
∩ Sη(0) ∩ St(y)

∣∣
for some γ > 0 universal.

Proof. Since u is convex we have∫
S1(0)

‖D2u‖dx ≤
∫
S1(0)

∆u dx ≤
∫
∂S1(0)

uν ≤ C1, (3.6)

where the last inequality follows from the interior Lipschitz estimate of u in S2(0).
In addition, Property (b) in Subsection 3.1 gives

Sη(0) ∩ St(y) ⊃ Sη2(z)

for some point z, which by (3.2) implies that

|Sη(0) ∩ St(y)| ≥ c1
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for some c1 > 0 universal. These two inequalities show that∣∣{‖D2u‖ ≤ 2C1/c1
}
∩ Sη(0) ∩ St(y)

∣∣ ≥ c1/2.

In addition, the lower bound detD2u ≥ λ implies that there exists a universal constant C2 > 0
such that

Id/C2 ≤ D2u ≤ 2C1/c1Id inside {‖D2u‖ ≤ 2C1/c1},

from which we deduce that∣∣{Id/C2 ≤ D2u ≤ 2C1/c1Id
}
∩ Sη(0) ∩ St(y)

∣∣ ≥ c1/2. (3.7)

• Case (i). By (3.6) and (3.7) we get the desired estimate choosing K := max{C2, 2C1/c1}.

• Case (ii). Thanks to (3.7), the desired estimate follows immediately from the bound∣∣S1(0) ∩ {
‖D2u‖ ≥ C3

}∣∣ ≤ C3 δ
γ , C3, γ > 0 universal,

(see for instance [5, Lemma 6 and Corollary 1] or [13, Theorem 6.1.1]), choosing K :=
max{C3, 2C3/c1, C2, 2C1/c1}.

Applying Lemma 3.2 to the rescaling ũ defined in Section 2 (see (3.3)) we obtain the following
key estimates (see [12] for more details):

Lemma 3.3. Let S2h(x0) ⊂ Ω′, and assume x0 ∈ St(y) ⊂ Ω′ for some t ≥ h. If Sh(x0) has
normalized size α, then:

(i) ∫
Sh(x0)

‖D2u‖ dx ≤ Kα
∣∣{α/K ≤ ‖D2u‖ ≤ Kα

}
∩ Sηh(x0) ∩ St(y)

∣∣ .
(ii) If in addition |f − 1| ≤ δ then∣∣Sh(x0) ∩ {

‖D2u‖ ≥ Kα
}∣∣ ≤ K δγ

∣∣{α/K ≤ ‖D2u‖ ≤ Kα
}
∩ Sηh(x0) ∩ St(y)

∣∣ .
Next, we denote by Dk the compact sets

Dk :=
{
x ∈ S1(0) : ‖D2u(x)‖ ≥Mk

}
, (3.8)

where M > 0 is a large constant (to be chosen). As we show now, Lemma 3.3 combined with a
covering argument gives a geometric decay for both

∫
Dk

‖D2u‖ and |Dk|.

Lemma 3.4. If M is sufficiently large (the largeness being universal), then:

(i) ∫
Dk+1

‖D2u‖ dx ≤ (1− τ)

∫
Dk

‖D2u‖ dx, τ :=
1

1 +K2
.
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(ii) If in addition |f − 1| ≤ δ then
|Dk+1| ≤ K2δγ |Dk|.

Proof. Let M � K (to be fixed later), and for each x ∈ Dk+1 consider a section

Sh(x) of normalized size α := KMk,

which is compactly included in S2(0). This is possible: indeed, as h→ 0 the normalized size of Sh(x)
converges up to a dimensional constant to ‖D2u(x)‖ (recall that u ∈ C2), which by assumption
is greater than Mk+1 (since x ∈ Dk+1). On the other hand Sη(x) ⊂ S2(0) (by Property (c) in
Subsection 3.1) and the normalized size of Sη/2(x) is bounded above by a universal constant, and
therefore by α. Hence, by continuity, there exists h ∈ (0, η/2) such that Sh(x) has normalized size
α = KMk.

We now apply Lemma 3.1 to find a finite subfamily of sections {Shi
(xi)}i=1,...,m covering Dk+1

such that the sections Sηhi
(xi) are disjoint. Then, by Lemma 3.3 applied with y = 0 and t = 1, for

each i = 1, . . . ,m we get∫
Shi

(xi)
‖D2u‖dx ≤ K2Mk

∣∣∣{Mk ≤ ‖D2u‖ ≤ K2Mk
}
∩ Sηhi

(xi) ∩ S1(0)
∣∣∣ ,

and ∣∣∣Shi
(xi) ∩

{
‖D2u‖ ≥ K2Mk

}∣∣∣ ≤ K2δγ
∣∣∣{Mk ≤ ‖D2u‖ ≤ K2Mk

}
∩ Sηhi

(xi) ∩ S1(0)
∣∣∣

provided |f − 1| ≤ δ. Adding these inequalities over i = 1, . . . ,m, and using that

Dk+1 ⊂
m⋃
i=1

Shi
(xi), Sηhi

(xi) disjoint,

we obtain:

• Case (i). ∫
Dk+1

‖D2u‖dx ≤ K2Mk
∣∣∣{Mk ≤ ‖D2u‖ ≤ K2Mk

}
∩ S1(0)

∣∣∣
≤ K2

∫
{Mk≤‖D2u‖≤K2Mk}∩S1(0)

‖D2u‖

≤ K2

∫
Dk\Dk+1

‖D2u‖dx

provided M > K2, so by adding K2
∫
Dk+1

‖D2u‖ to both sides of the above inequality the

conclusion follows with τ = 1/(1 +K2).

• Case (ii).

|Dk+1| ≤ K2δγ
∣∣∣{Mk ≤ ‖D2u‖ ≤ K2Mk

}
∩ S1(0)

∣∣∣ ≤ K2δγ |Dk|,

provided M > K2.
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By the above result, the proof of (3.4) and (3.5) is immediate. Indeed Lemma 3.4(i), (3.6), and
Chebyshev’s inequality imply

|Dk| ≤
1

Mk

∫
Dk

‖D2u‖ ≤ (1− τ)k

Mk

∫
S1(0)

‖D2u‖ ≤ C1
(1− τ)k

Mk
=

C1

Mk(1+2ε)
, ε :=

| log(1− τ)|
2 log(M)

,

while Lemma 3.4(ii) gives

|Dk| ≤
(
K2δγ

)k ≤ 1

Mk(p+1)
provided δ ≤ 1

(Mp+1K2)1/γ
,

so both (3.4) and (3.5) follow by the classical layer-cake formula∫
S1(0)

‖D2u‖q = q

∫ ∞

0
tq−1|S1(0) ∩ {‖D2u‖ ≥ t}| dt .

∞∑
k=1

Mkq|Dk| ∀ q ≥ 1.
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