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Abstract. In the present paper we consider the Dirichlet problem associated with a
nonlinear singular elliptic equation, whose differential operator arises in the level set
formulation of the inverse mean curvature flow; namely, we study

−div

(
Du

∣Du∣

)
+ ∣Du∣ = f .

We introduce a suitable concept of weak solution, for which we prove existence and
uniqueness of the homogeneous Dirichlet problem in a bounded open set of ℝN for
data f belonging to suitable Lebesgue spaces. Moreover, examples of explicit solutions
are shown.

1. Introduction

Let Ω be a bounded open set in ℝN with Lipschitz continuous boundary ∂Ω. Let us
consider the problem

(1.1)

⎧⎨⎩
−div

(
Du

∣Du∣

)
+ ∣Du∣ = f in Ω

u = 0 on ∂Ω,

being 0 ≤ f ∈ Lq(Ω), q > N . This differential operator appears in the level set
formulation of the inverse mean curvature flow ([12], see also [11], [17] and [18]).

The inverse mean curvature flow is a one-parameter family of hypersurfaces {Γt}t≥0 ⊂
ℝN (N ≥ 2) whose normal velocity Vn(t) at each time t equals the inverse of its mean
curvature H(t). If we let Γt := F (Γ0, t), then the parametric description of the inverse
mean curvature flow is to find F : Γ0 × [0, T ]→ ℝN such that

(1.2)
∂F

∂t
=

�

H
, t ≥ 0,

where � denotes the unit outward normal to Γt.

The inverse mean curvature flow was originally introduced as a mathematical method
for proving well-known conjectures from the black hole theory such as Penrose Inequality
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(which says that the total mass of a spacetime containing black holes with event horizons

of the total area A should be at least
√
A(16�)−1 ). Huisken and Ilmanen in [12]

propose a level set formulation for the inverse mean curvature flow (1.2), and define a
weak notion of solution using an energy minimizing principle in such a way that the
generalized inverse mean curvature flow exists for all time. Using this result they then
give a proof of the Penrose Inequality for the particular case of a single black hole.

The level set formulation proposed in [12] is the following. Assume that the flow is
giving by the level set of a function u : ℝN → ℝ via

Γt = ∂Et, Et := {x ∈ ℝN : u(x) < t}.

Wherever u is smooth with ∇u ∕= 0, equation (1.2) is equivalent to

div

(
∇u

∣∇u∣

)
= ∣∇u∣.

Thus, (1.2) give rise to the boundary value problem

(1.3)

⎧⎨⎩
div

(
∇u

∣∇u∣

)
= ∣∇u∣ in Ω

u = 0 on ∂Ω,

where Ω = ℝN∖E0.

Huisken and Ilmanen [12] define a weak solution of problem (1.3) as a locally Lipschitz
function u which minimizes

Ju(v) :=

∫
Ω

(∣∇v∣+ ∣∇u∣v) dx

for every locally Lipschitz function v such that {v ∕= u} ⊂⊂ Ω. They proved the
existence of weak solution by elliptic regularity. Afterwards, Huisken and Ilmanen in
[13] have proved regularity results for the inverse mean curvature flow and as conse-
quence that every weak solution is regular after the first instant where a level set is
star shaped. A different proof for the existence of weak solution of problem (1.3) is
given in [17], which is based on the observation that for p > 1, a logarithmic change of
dependent variable transforms the approximating equation div(∣∇u∣p−2∇u) = ∣∇u∣p−2

to the homogeneous p-Laplace equation.

Our aim is to prove existence and uniqueness of solutions for problem (1.1). Note that
when f ≡ 0 problem (1.1) coincides with (1.3). Now, even if f ≡ 0, there are important
differences between both problems. One is that Huisken and Ilmanen study the problem
on other manifolds than ℝN . On the other hand, we assume that Ω is an open bounded
set, while Huisken, Ilmanen and Moser assume that it is an unbounded one, since E0 is
compact. So that we only consider the homogeneous Dirichlet condition u

∣∣
∂Ω
≡ 0 and
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they, besides it, need another condition at infinity. As expected, this condition states
that u must satisfy

lim
∣x∣→∞

u(x) = +∞.

Our approach to the existence is closer to the one followed by Moser, but our concept
of weak solution is different and follows the ideas developed in [3] (see also [4]) to study
the Dirichlet problem associated with the total variation flow. Indeed, our definition of
solution relies on the existence of a bounded vector field z which plays the role of Du

∣Du∣ ,

even if Du may vanish (see Definition 3.1 below). We prove that, given any nonnegative
f ∈ Lq(Ω), with q > N , there exists a unique nonnegative bounded solution to (1.1).
This solution belongs to BV (Ω), but it has not jump part. We explicitly point out that
it is the presence of the gradient term in (1.1) what implies uniqueness and leads to
certain regularizing effects (see Remarks 3.9 and 3.10).

Let us briefly summarize the contents of this paper. In Section 2 we fix the notation
and give some preliminaries results that we need. The next section is devoted to
establish the existence and uniqueness results. Finally, in the last section we give some
explicit solutions of our problem.

2. Preliminary results

In this section we introduce some notation and some preliminary results that we
need. Throughout this paper ℋN−1 will denote the (N − 1)–dimensional Hausdorff
measure and ℒN the Lebesgue measure.

2.1. Functions of bounded variations and some generalizations. The natural
energy space to study the problems we are interested in is the space of functions of
bounded variation. Recall that if Ω is an open subset of ℝN , a function u ∈ L1(Ω)
whose gradient Du in the sense of distributions is a vector valued Radon measure with
finite total variation in Ω is called a function of bounded variation. The class of such
functions will be denoted by BV (Ω). For every u ∈ BV (Ω), the Radon measure Du
is decomposed into its absolutely continuous and singular parts with respect to the
Lebesgue measure: Du = Dau + Dsu. So Dau = ∇u ℒN , where ∇u is the Radon–
Nikodým derivative of the measure Du with respect to the Lebesgue measure ℒN .

We denote by Su the set of all x ∈ Ω such that x is not a Lebesgue point of u, that
is, the point x ∈ Ω for which there exists ũ(x) such that

lim
�↓0

1

ℒN(B�(x))

∫
B�(x)

∣u(y)− ũ(x)∣ dy = 0.

We say that x ∈ Ω is an approximate jump point of u if there exist u+(x) > u−(x) ∈ ℝ
and �u(x) ∈ SN−1 such that

lim
�↓0

1

ℒN(B+
� (x, �u(x)))

∫
B+
� (x,�u(x))

∣u(y)− u+(x)∣ dy = 0
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lim
�↓0

1

ℒN(B−� (x, �u(x)))

∫
B−� (x,�u(x))

∣u(y)− u−(x)∣ dy = 0,

where

B+
� (x, �u(x)) = {y ∈ B�(x) : ⟨y − x, �u(x)⟩ > 0}

and

B−� (x, �u(x)) = {y ∈ B�(x) : ⟨y − x, �u(x)⟩ < 0}.
We recall that for a Radon measure � in Ω and a Borel set A ⊆ Ω the measure � A is
defined by (� A)(B) = �(A∩B) for any Borel set B ⊆ Ω. If a measure � is such that
� = � A for a certain Borel set A, the measure � is said to be concentrated on A.

We denote by Ju the set of approximate jump points of u. By the Federer-Vol’pert
Theorem [2, Theorem 3.78], we know that Su is countablyℋN−1–rectifiable andℋN−1(Su∖Ju) =
0. Moreover, Du Ju = (u+ − u−)�uℋN−1 Ju. Using Su and Ju, we may split Dsu in
two parts: the jump part Dju and the Cantor part Dcu defined by

Dju = Dsu Ju and Dcu = Dsu (Ω∖Su).
Then, we have

Dju = (u+ − u−)�uℋN−1 Ju.

Moreover, if x ∈ Ju, then �u(x) = Du
∣Du∣(x), Du

∣Du∣ being the Radon–Nikodým derivative of

Du with respect to its total variation ∣Du∣.
The precise representative u∗ : Ω∖(Su∖Ju)→ ℝ of u is defined as equal to ũ on Ω∖Su

and equal to u−+u+
2

on Ju. It is well know (see for instance [2, Corollary 3.80]) that if
� is a symmetric mollifier, then the mollified functions u ★ �� pointwise converges to u∗

in its domain.

For further information concerning functions of bounded variation we refer to [2],
[10] or [20].

2.2. A generalized Green’s formula. We shall need several results from [6] (see also
[4]) in order to give sense to the integrals of bounded vector fields whose divergence is
a measure integrated with respect to the gradient of a BV function. This theory was
also studied in [8] from a different point of view.

Assume that Ω is an open bounded set of ℝN with Lipschitz continuous boundary.
Let p ≥ 1 and p′ ≥ 1 be such that 1

p
+ 1

p′
= 1. Let

Xp(Ω) =
{
z ∈ L∞(Ω,ℝN) : div (z) ∈ Lp(Ω)

}
and

X�(Ω) =
{
z ∈ L∞(Ω,ℝN) : div (z) is a bounded measure in Ω

}
.

Observe that the space X�(Ω) coincides with the space Dℳ∞(Ω) of divergence-
measure fields over Ω introduced in [8]. From now on we shall use the notation
Dℳ∞(Ω).
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If z ∈ Xp(Ω) and w ∈ BV (Ω) ∩ Lp′(Ω) or z ∈ Dℳ∞(Ω) and w ∈ BV (Ω) ∩ C(Ω) ∩
L∞(Ω), we define the functional (z, Dw) : C∞0 (Ω)→ ℝ by the formula

(2.1) ⟨(z, Dw), '⟩ := −
∫

Ω

w' div (z) dx−
∫

Ω

w z ⋅ ∇' dx.

In [6] (see also [4, Corollary C.7, C.16]) it is proved the following result.

Proposition 2.1. The distribution (z, Dw) is actually a Radon measure with finite
total variation.

The measures (z, Dw), ∣(z, Dw)∣ are absolutely continuous with respect to the measure
∣Dw∣ and ∣∣∣∣∫

B

(z, Dw)

∣∣∣∣ ≤ ∫
B

∣(z, Dw)∣ ≤ ∥z∥L∞(U)

∫
B

∣Dw∣

for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.
Denoting by

�(z, Dw, ⋅) : Ω→ ℝ
the Radon–Nikodým derivative of (z, Dw) with respect to ∣Dw∣, it follows that∫

B

(z, Dw) =

∫
B

�(z, Dw, x) ∣Dw∣ for all Borel sets B ⊂ Ω

and
∥�(z,Dw, ⋅)∥L∞(Ω,∣Dw∣) ≤ ∥z∥∞.

Moreover, if f : ℝ→ ℝ is a Lipschitz continuous increasing function, then

(2.2) �(z, D(f ∘ w), x) = �(z, Dw, x), ∣Dw∣ − a.e. in Ω

In [6], a weak trace on ∂Ω of the normal component of z ∈ Dℳ∞(Ω) is defined. More
precisely, it is proved that there exists a linear operator  : Dℳ∞(Ω)→ L∞(∂Ω) such
that

∥(z)∥∞ ≤ ∥z∥∞
(z)(x) = z(x) ⋅ �(x) for all x ∈ ∂Ω if z ∈ C1(Ω,ℝN).

We shall denote (z)(x) by [z, �](x). Moreover, the following Green’s formula, relating
the function [z, �] and the measure (z, Dw), for z ∈ Xp(Ω) and w ∈ BV (Ω)∩Lp′(Ω) or
z ∈ Dℳ∞(Ω) and w ∈ BV (Ω) ∩ C(Ω) ∩ L∞(Ω), is established

(2.3)

∫
Ω

w div (z) dx +

∫
Ω

(z,Dw) =

∫
∂Ω

[z, �]w dℋN−1.

Applying a Meyers–Serrin type Theorem, it was observed in [16] that it is possible
to get a Green’s formula like (2.3) for z ∈ Dℳ∞(Ω) and w ∈ BV (Ω) ∩ L∞(Ω), that
is, without assuming the continuity of w. To do that, for z ∈ Dℳ∞(Ω) and w ∈
BV (Ω) ∩ L∞(Ω) is defined the functional (z, Dw) : C∞0 (Ω)→ ℝ by the formula

(2.4) ⟨(z, Dw), '⟩ := −
∫

Ω

w∗ 'd�−
∫

Ω

w z ⋅ ∇'dx
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where � := div (z); which is well defined since ∣�∣ is absolutely continuous respect to
ℋN−1 (see [8, Proposition 3.1]). We explicitly remark that this definition depends on
the precise representative of u; if we change the representative, in general, we will get
a different definition (see another definition in (2.27) below).

With the above definition of (z, Dw), in [16] it is proved that (z, Dw) is a Radon
measure such that

(2.5)

∣∣∣∣∫
B

(z, Dw)

∣∣∣∣ ≤ ∥z∥L∞(U)∣Dw∣(B)

for every Borel set B and for every open set U such that B ⊂ U ⊂ Ω, and verifies the
Green formula

(2.6)

∫
Ω

w∗ d�+

∫
Ω

(z, Dw) =

∫
∂Ω

[z, �]w dℋN−1.

Observe that for z ∈ Dℳ∞(Ω) and w ∈ BV (Ω) ∩ L∞(Ω), we have the following
equality as Radon measures

(2.7) div (wz) = (z,Dw) + w∗ div (z) ,

so that wz ∈ Dℳ∞(Ω).
In principle it is not clear that (2.2) holds in the case that z ∈ Dℳ∞(Ω) and

u ∈ BV (Ω) ∩ L∞(Ω). However, let us see that (2.2) holds if we assume the jump part
Dju vanishes.

Proposition 2.2. Let z ∈ Dℳ∞(Ω) and consider u ∈ BV (Ω)∩L∞(Ω) with Dju = 0.
If f : ℝ→ ℝ is a Lipschitz continuous increasing function, then

(2.8) �(z, D(f ∘ u), x) = �(z, Du, x), ∣Du∣ − a.e. in Ω

Proof. By the proof of (2.2) in [6, Proposition 2.8], it is enough to prove that

(2.9) �(z, Du, x) = �(z, D�Eu,t , x) ∣D�Eu,t ∣ − a.e. in Ω for ℒ1 − almost all t ∈ ℝ,

where Eu,t := {x ∈ Ω : u(x) > t}. We remark that the main ingredient to prove
the above formula is a “slicing” result that links the measure (z, Du) with the mea-
sures (z, D�Eu,t). This result can be stated as: for all ' ∈ C∞0 (Ω), the function
t 7→ ⟨(z, D�Eu,t), '⟩ is ℒ1- measurable and

(2.10) ⟨(z, Du), '⟩ =

∫ +∞

−∞
⟨(z, D�Eu,t), '⟩ dt.

Given z, by results in [8], there exists a sequence zn ∈ C∞(Ω) ∩ L∞(Ω) such that

zn ⇀ z in L∞(Ω)− weak∗

and

div (zn) ⇀ div (z) and ∣div (zn)∣⇀ ∣div (z)∣ weakly-* as measures.
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Fix ' ∈ C∞0 (Ω). By the coarea formula we have

(2.11)

⟨(zn, Du), '⟩ =

∫
Ω

zn(x) ⋅ Du
∣Du∣

(x)'(x) ∣Du∣

=

∫ +∞

−∞

(∫
Ω

zn(x) ⋅
D�Eu,t
∣D�Eu,t ∣

(x)'(x) ∣D�Eu,t ∣
)
dt

−

=

∫ +∞

−∞
⟨(zn, D�Eu,t), '⟩ dt.

On the other hand,

(2.12) ⟨(zn, Du), '⟩ = −
∫

Ω

u' div(zn) dx−
∫

Ω

uzn ⋅ ∇'dx.

Now, by [8, Proposition 3.1], ∣div (z)∣ ≪ ℋN−1, and since Dju = 0, we have u' is a
bounded Borel function with compact support such that the set of its discontinuity
points is ∣div (z)∣-negligible. Thus, from [2, Proposition 1.62], we can pass to the limit
in the first term of the right hand of (2.12). Since obviously we can pass to the limit
in the second term, taking limit in (2.12), we get

(2.13) ⟨(zn, Du), '⟩ → ⟨(z, Du), '⟩.
Next we will pass to the limit in the right hand side of (2.11). Observe that, since
Dju = 0, we have ℋN−1 (Eu,t ∩ Eu,s) = 0 if s ∕= t. Then, applying again ∣div (z)∣ ≪
ℋN−1, we have

∣div (z)∣ (Eu,t ∩ Eu,s) = 0 if s ∕= t.

Therefore, there exists A ⊂ ℝ numerable such that

∣div (z)∣ (Eu,t) = 0 if t ∈ ℝ∖A.
Then we may apply the same argument as above to let n goes to +∞ in

⟨(zn, D�Eu,t), '⟩ = −
∫
Eu,t

' div(zn) dx−
∫
Eu,t

zn ⋅ ∇'dx

and deduce that

(2.14) ⟨(zn, D�Eu,t), '⟩ → ⟨(z, Du�Eu,t), '⟩ for all t ∈ ℝ∖A .
Moreover, it is straightforward that

∣⟨(zn, D�Eu,t), '⟩∣ ≤ ∥zn∥∞∥'∥∞
∫

Ω

∣D�Eu,t ∣ ≤ C

∫
Ω

∣D�Eu,t ∣,

for all n ∈ ℕ. By the Dominated Convergence Theorem, we obtain that

(2.15)

∫ +∞

−∞
⟨(zn, D�Eu,t), '⟩ dt→

∫ +∞

−∞
⟨(z, D�Eu,t), '⟩ dt.

Finally, from (2.13) and (2.15), we get (2.10). □
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Proposition 2.3. If z ∈ Dℳ∞(Ω) and u,w ∈ BV (Ω)∩L∞(Ω) with Dju = Djw = 0,
then

(2.16) (wz, Du) = w∗(z, Du) as Radon measures.

Proof. By (2.7), we have wz ∈ Dℳ∞(Ω) and also,

div (uwz)− u∗w∗div (z) = (wz,Du) + u∗ div (wz)− u∗w∗div (z)

= (wz, Du) + u∗w∗div (z) + u∗(z,Dw)− u∗w∗div (z) = (wz,Du) + u∗(z,Dw).

Interchanging the roles of u and w, we get

div (uwz)− u∗w∗div (z) = (uz,Dw) + w∗(z,Du).

Hence, we obtain that

(2.17) (wz, Du) + u∗(z, Dw) = (uz, Dw) + w∗(z, Du).

We claim now that

(2.18) u∗(z, Du) = (uz, Du) as Radon measures.

Assume first that u ≥ 0. Since, by Proposition 2.2,

(2.19) �(z, Du2, x) = �(z, Du, x), ∣Du∣ − a.e. in Ω,

we have
(z, Du2) = �(z, Du2, x)∣Du2∣ = �(z, Du2, x)2u∗∣Du∣

= 2u∗�(z, Du, x)∣Du∣ = 2u∗(z, Du).

On the other hand, by (2.7)

div (u2z) = (z,Du2) + (u2)∗ div (z).

Now, since Dju = 0, we have (u2)∗ = (u∗)2 up to a ℋN−1–null set, therefore

2u∗(z, Du) = (z, Du2) = div (u2z)− (u2)∗ div (z)

= div (u2z)− (u∗)2 div (z) = u∗(z,Du) + (uz,Du),

and the claim (2.18) holds when u is nonnegative. When the sign of u can change, we
apply the claim to u+ ∥u∥∞. It follows that

(uz, Du) + ∥u∥∞(z, Du) = ((u+ ∥u∥∞)z, D(u+ ∥u∥∞))

= (u+ ∥u∥∞)∗(z, D(u+ ∥u∥∞)) = u∗(z, Du) + ∥u∥∞(z, Du) .

Simplifying, we get (2.18) in general.

Applying (2.18) to the function u+ w, we obtain that

(u+ w)∗(z, D(u+ w)) = ((u+ w)z, D(u+ w)),

from where it follows that

(2.20) u∗(z, Dw) + w∗(z, Du) = (uz, Dw) + (wz, Du) as Radon measures.
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Finally, from (2.17) and (2.20), we obtain (2.16). □

As noted after (2.4), our definition of (z, w) changes by changing the representative
of w. Since another definition will be useful in the sequel, we next introduce it. To this
end, we will need the following approximation of a BV –function by smooth functions.
Before give the approximation result let us introduce the following notation. For each
w ∈ BV (Ω), we consider the representatives w̃+, w̃− : Ω∖(Sw∖Jw)→ ℝ of w defined as
equal to w̃ on Ω∖Sw and equal to w+, respectively w− on Ju.

Proposition 2.4. For each w ∈ BV (Ω) ∩ L∞(Ω) there exists a sequence {wn}n in
BV (Ω) ∩ C∞(Ω) satisfying

wn → w̃+ , pointwise ℋN−1–a.e.(2.21)

∥wn∥∞ ≤ ∥w∥∞ , for all n ∈ ℕ .(2.22)

sup
n∈ℕ

∫
Ω

∣∇wn∣ <∞ .(2.23)

A similar approximation holds for w̃−.

Proof. For each n ∈ ℕ, set Fn = Ω∖{x − t �w(x) : x ∈ Jw , 0 < t < 1
n
}. Observe

that Ω =
∪∞
n=1 Fn. Let � be a symmetric mollifier supported in B1(0) and consider the

sequence defined by �n(x) = nN�(nx). We define

wn = �n ★ (w�Fn) .

We will prove that wn(x)→ w̃+(x) for all x ∈ (Ω∖Sw)∪Jw; since ℋN−1(Sw∖Jw) = 0,
we will deduce (2.21).

If x ∈ Ω∖Sw, then

∣wn(x)− w̃+(x)∣ ≤
∫
ℝN
∣(w�Fn)

(
x− 1

n
z

)
− w̃(x)∣�(z) dz

≤ ∥�∥∞
(1/n)N

∫
B1/n(x)∩Fn

∣w(y)− w̃(x)∣ dy ≤ ∥�∥∞
(1/n)N

∫
B1/n(x)

∣w(y)− w̃(x)∣ dy

and the last term tends to 0 as n goes to ∞. On the other hand, if x ∈ Jw, note
that B1/n(x) ∩ Fn = B+

1/n(x, �w(x)), at least to n large enough. Thus, an analogous

argument yields

∣wn(x)− w̃+(x)∣ ≤ ∥�∥∞
(1/n)N

∫
B+

1/n
(x,�w(x))

∣w(y)− w+(x)∣ dy ,

which tends to 0 as n goes to ∞.
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Condition (2.22) follows easily from the definition of wn. To see condition (2.23), it
is enough perform the following computations

lim sup
n→∞

∫
Ω

∣∇wn∣ ≤ lim sup
n→∞

∫
Ω

∣D(w�Fn)∣

= lim sup
n→∞

∫
Fn

∣Dw∣+ ∥w∥∞ lim sup
n→∞

∫
Ω

∣D�Fn∣ ≤
∫

Ω

∣Dw∣+ ∥w∥∞ℋN−1(Jw) .

□

Now, given a C1–real function g and a ≤ b, we write

−
∫ b

a

g(s) ds =

⎧⎨⎩
1

b− a

∫ b

a

g(s) ds , if a < b ;

g(a) , if a = b .

For w ∈ BV (Ω) ∩ L∞(Ω), we denote

g(w)♯ = −
∫ w̃+

w̃−

g(s) ds.

Note that g(w)♯ is a particular representative of g(w) ∈ BV (Ω) ∩ L∞(Ω). It is equal
to the precise representative g(w)∗ of g(w) if g is an affine function but, in general,
g(w)∗ ∕= g(w)♯. We point out that, by the chain rule BV (Theorem 3.96 in [2]), we
have

(2.24) Dg(w) = g′(w)♯Dw.

In the next result we will see that g(w)♯ is ℋN−1–a.e. equal to a Borel measurable
function.

Lemma 2.5. For every w ∈ BV (Ω)∩L∞(Ω), there exists a sequence {vn}n in W 1,1(Ω)∩
L∞(Ω) such that

(2.25)

{
vn → g(w)♯ , pointwise ℋN−1–a.e.

vn ⇀ g(w)♯ , weakly-* in BV (Ω) .

Proof. Applying Proposition 2.4, we find two sequences {w1
n}n and {w2

n}n in BV (Ω) ∩
C∞(Ω) satisfying

w1
n → w̃+ and w2

n → w̃− , pointwise ℋN−1–a.e.

∥win∥∞ ≤ ∥w∥∞ , for i = 1, 2 and for all n ∈ ℕ .

sup
n∈ℕ

∫
Ω

∣∇win∣ <∞ , for i = 1, 2 .
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We may assume that w2
n ≤ w1

n without loss of generality; if necessary, we will take
w1
n ∨ w2

n instead of w1
n and w1

n ∧ w2
n instead of w2

n. Defining

vn = −
∫ w1

n

w2
n

g(s) ds ,

it is straightforward that

vn → g(w)♯ , pointwise ℋN−1–a.e.

and

∥vn∥∞ ≤ sup
∣s∣≤∥w∥∞

∣g(s)∣ , for all n ∈ ℕ .

Thus, as a consequence of Lebesgue’s Theorem, we obtain

(2.26) vn → g(w)♯ , strongly in L1(Ω) .

On the other hand, performing easy computations, it yields

∇vn =
[g(w1

n)− vn
w1
n − w2

n

�{w2
n<w

1
n} +

1

2
g′(w1

n)�{w2
n=w1

n}

]
∇w1

n

+
[vn − g(w2

n)

w1
n − w2

n

�{w2
n<w

1
n} +

1

2
g′(w2

n)�{w2
n=w1

n}

]
∇w2

n .

Using Taylor’s Theorem, we also obtain that∣∣∣vn − g(w1
n)

w1
n − w2

n

∣∣∣ =
1

2
∣g′(z1)∣ and

∣∣∣vn − g(w2
n)

w1
n − w2

n

∣∣∣ =
1

2
∣g′(z2)∣

for some zi ∈ [w2
n, w

1
n], i = 1, 2. Therefore,

∣∇vn∣ ≤
1

2
sup

∣s∣≤∥w∥∞
∣g′(s)∣

[
∣∇w1

n∣+ ∣∇w2
n∣
]
, for all n ∈ ℕ ,

and so

sup
n∈ℕ

∫
Ω

∣∇vn∣ <∞ .

This estimate and (2.26) imply vn ⇀ g(w)♯ weakly-* in BV (Ω); hence, (2.25) holds. □

Now we are ready to provide another definition of a pairing between z ∈ Dℳ∞(Ω)
and g(w) ∈ BV (Ω) ∩ L∞(Ω), where g is a C1–real function. In fact, we introduce the
functional (z, Dg(w)♯) : C∞0 (Ω)→ ℝ by the formula

(2.27) ⟨(z, Dg(w)♯), '⟩ := −
∫

Ω

g(w)♯ 'd�−
∫

Ω

g(w) z ⋅ ∇'dx

where � := div (z). Having in mind (2.25) and ∣�∣ ≪ ℋN−1, we deduce that g(w)♯ is
�–measurable and so (z, Dg(w)♯) is well–defined.
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Moreover, by using again (2.25) and the arguments of [6], it follows that (z, Dg(w)♯)
is actually a Radon measure such that

(2.28)

∣∣∣∣∫
B

(z, Dg(w)♯)

∣∣∣∣ ≤ ∥z∥L∞(U)∣Dg(w)∣(B)

for every Borel set B and for every open set U such that B ⊂ U ⊂ Ω.

2.3. Functionals defined on BV . Let Ω be an open subset of ℝN . Let l : Ω × ℝ ×
ℝN → [0,∞[ be a Borel function such that

(2.29) C(x)∣�∣ −D(x) ≤ l(x, z, �) ≤M ′(x) +M ∣�∣
for any (x, z, �) ∈ Ω×ℝ×ℝN , ∣z∣ ≤ R, where M is a positive constant and C,D,M ′ ≥ 0
are bounded Borel functions which may depend on R. Assume that C,D,M ′ ∈ L1(Ω).

Following Dal Maso [9], we consider the following functional for u ∈ BV (Ω)∩L∞(Ω):

(2.30)

ℛl(u) :=

∫
Ω

l(x, u(x),∇u(x)) dx+

∫
Ω

l0
(
x, ũ(x),

Du

∣Du∣
(x)

)
∣Dcu∣

+

∫
Ju

(∫ u+(x)

u−(x)

l0(x, s, �u(x)) ds

)
dℋN−1(x),

where the recession function l0 of l is defined by

(2.31) l0(x, z, �) = lim
t→0+

tl

(
x, z,

�

t

)
,

it is convex and homogeneous of degree 1 with respect to �.

Assume that l : ℝ×ℝN → [0,∞[ is a continuous function convex in its last variable
such that

(2.32) 0 ≤ l(z, �) ≤M(1 + ∣�∣) ∀(z, �) ∈ ℝ× ℝN

for some constant M ≥ 0 which may depend on R. Given a function u ∈ BV (Ω) ∩
L∞(Ω), we define the Radon measure l(u,Du) in Ω by

(2.33) ⟨l(u,Du), �⟩ := ℛ�l(u) � ∈ Cc(Ω)+.

If � ∈ Cc(Ω), we write � = �+ − �− with �+ = max(�, 0), �− = −min(�, 0), and we
define ⟨l(u,Du), �⟩ := ℛ�+l(u)−ℛ�−l(u).

Let us observe that in the special case

(2.34) l0(z, �) = '(z) 0(�),

where ' is Lipschitz continuous and  0 is an homogeneous function of degree 1, by
applying the chain rule for BV–functions (see [2]), we have

(2.35) ℛ�l(u) =

∫
Ω

�(x)l(u,∇u)dx+

∫
Ω

�(x) 0

(
Du

∣Du∣

)
∣DsJ'(u)∣,
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where J'(r) denote the primitive of ' given by

J'(r) =

∫ r

0

'(s) ds.

In this case,

(2.36) l(u,Du)s =  0

(
Du

∣Du∣

)
∣DsJ'(u)∣.

In [5] we have established the following result.

Theorem 2.6. Let l verifying (2.32) and (2.34), g ∈ L∞(∂Ω) and � ∈ C(Ω)+ be given.
Then, the functional ℱg�l : BV (Ω) −→ ℝ defined by

ℱg�l(u) := ℛ�l(u) +

∫
∂Ω

� ∣J'(g)− J'(u)∣ 0(�u) dℋN−1

is lower semi-continuous with respect to the L1−convergence.

For the particular case l(z, �) := ∣�∣, and �(x) = 1 for all x ∈ Ω, by Theorem 2.6, we
have that the functional ℱg : BV (Ω) −→ ℝ defined by

(2.37) ℱg(u) :=

∫
Ω

∣Du∣+
∫
∂Ω

∣g(x)− u(x)∣ dℋN−1(x)

is lower semi-continuous with respect to the L1−convergence, which is a well known
result

For the particular case l(z, �) := e−z∣�∣, g = 0, by Theorem 2.6, we have that for any
� ∈ C(Ω)+, the functional ℱ� : BV (Ω) −→ ℝ defined by

(2.38)

ℱ�(u) :=

∫
Ω

�(x)e−u(x)∣∇u(x)∣ dx+

∫
Ω

�(x)e−ũ(x) ∣Dcu∣

+

∫
Ju

�(x)

(∫ u+(x)

u−(x)

e−s ds

)
dℋN−1(x) +

∫
∂Ω

�(x) ∣e−u(x) − 1∣ dℋN−1(x)

is lower semi-continuous with respect to the L1−convergence.

For u ∈ BV (Ω), we define the Radon measure E(u) in Ω by

(2.39) ⟨E(u), �⟩ := ℱ�(u) ∀� ∈ Cc(Ω).

Note that for � ∈ Cc(Ω), we have

⟨E(u), �⟩ =

∫
Ω

�(x)e−u(x)∣∇u(x)∣ dx+

∫
Ω

�(x)e−ũ(x) ∣Dcu∣
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+

∫
Ju

�(x)

(∫ u+(x)

u−(x)

e−s ds

)
dℋN−1(x).

Now, applying the chain rule for BV–functions (see [2]), we have

∣D(1− e−u)∣ = e−u∣∇u∣ℒN + e−ũ∣Dcu∣+ ∣e−u+ − e−u−∣ℋN−1 Ju.

Therefore, we have obtain that

(2.40) E(u) = ∣D(1− e−u)∣ as Radon measures on Ω.

Similarly, taking l(z, �) := z∣�∣ and g = 0, by Theorem 2.6, we have that for any
� ∈ C(Ω)+, the functional ℱ� : BV (Ω) −→ ℝ defined by

(2.41)

ℱ�(u) :=

∫
Ω

�(x)u(x)∣∇u(x)∣ dx+

∫
Ω

ũ(x) ∣Dcu∣

+

∫
Ju

(∫ u+(x)

u−(x)

s ds

)
dℋN−1(x) +

∫
∂Ω

�(x)
1

2
u(x)2 dℋN−1(x)

is lower semi-continuous with respect to the L1−convergence.

For u ∈ BV (Ω), we define the Radon measure I(u) in Ω by

(2.42) ⟨I(u), �⟩ := ℱ�(u) ∀� ∈ Cc(Ω).

Now, observe that for � ∈ Cc(Ω), we have

⟨I(u), �⟩ =

∫
Ω

�(x)u(x)∣∇u(x)∣ dx+

∫
Ω

ũ(x) ∣Dcu∣+
∫
Ju

1

2

(
u+(x)2 − u−(x)2) dℋN−1(x)

=

∫
Ω

�(x)u∗(x)∣∇u(x)∣ dx+

∫
Ω

u∗(x) ∣Dcu∣+
∫
Ju

u∗(x) (u+(x)− u−(x)) dℋN−1(x)

and consequently we have that

(2.43) I(u) = u∗∣Du∣ as Radon measures on Ω.

3. Existence and uniqueness of solutions

We introduce the following concept of solution to problem (1.1).

Definition 3.1. Let f be a non-negative function in LN(Ω). We say that u is a weak
solution of problem (1.1), if 0 ≤ u ∈ BV (Ω) ∩ L∞(Ω) with Dju = 0 and there exists a
vector field z ∈ Dℳ∞(Ω), with ∥z∥∞ ≤ 1, satisfying

(3.1) −div (z) + ∣Du∣ = f in D′(Ω) ,

(3.2) (z, Du) = ∣Du∣ as measures in Ω ,
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and

(3.3) u∣∂Ω = 0 ℋN−1 − a.e.

Remark 3.2. It is worth noting that if u is a solution to problem (1.1) in the sense
of the above definition, then it is also a solution in the sense of Huisken and Ilmanen:
namely, it minimizes a suitable functional. To see it, assume that u is a solution to
problem (1.1) in the sense of the above definition. Then there exists a vector field
z ∈ Dℳ∞(Ω) satisfying ∥z∥∞ ≤ 1, (3.1) and (3.2). Define

Iu(v) =

∫
Ω

(∣Dv∣+ v∗∣Du∣ − fv) .

We will see that u minimizes this functional among all v ∈ BV (Ω) ∩ L∞(Ω) satisfying
Djv = 0 and v∣∂Ω = 0. Indeed, fix one of those v, multiply (3.1) by v and apply Green’s
formula to obtain

(3.4) 0 =

∫
Ω

(z, Dv) + v∗∣Du∣ − fv .

Since ∥z∥∞ ≤ 1, it follows that (z, Dv) ≤ ∣Dv∣ and so we deduce that

0 ≤ Iu(v) .

On the other hand, taking v = u in (3.4) and having in mind (3.2), we get that
Iu(u) = 0. Therefore, among all admissible functions, the minimum of Iu is attained at
u.

Remark 3.3. The condition Dju = 0 does not imply that u is a continuous function.
Nevertheless, then ℋN−1(Su) = 0 and so the points of discontinuity of its precise
representative u∗ make up a ℋN−1–null set.

Remark 3.4. Let us see that if u is a weak solution of problem (1.1) and z ∈ Dℳ∞(Ω),
with ∥z∥∞ ≤ 1, satisfying (3.1) and (3.2), then

(3.5) −div(e−uz) = e−uf in D′(Ω).

In fact, by (3.2)

�(z, Du, x) = 1 ∣Du∣ − a.e. in Ω.

Then, by Proposition 2.2 we have

�(z, D(1− e−u), x) = 1 ∣D(1− e−u)∣ − a.e. in Ω,

and consequently, for all Borel sets B ⊂ Ω,∫
B

(z, D(1− e−u)) =

∫
B

�(z, D(1− e−u), x) ∣D(1− e−u)∣ =
∫
B

∣D(1− e−u)∣.

Therefore

(3.6) (z, D(1− e−u)) = ∣D(1− e−u)∣ as Radon measures in Ω.
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On the other hand, by (2.7), (3.6), (3.1) and (2.40), we have

−div (e−uz) = div
(
(1− e−u) z

)
− div (z) = (z,D(1− e−u)) + (1− e−u)∗ div (z)− div (z)

= ∣D(1− e−u)∣ − (e−u)∗ div (z) = (e−u)∗∣Du∣ − (e−u)∗(−f + ∣Du∣) = e−uf,

and (3.5) hold.

We have the following existence result.

Theorem 3.5. Given 0 ≤ f ∈ Lq(Ω), with q > N , there exists, at least, a weak solution
u of problem (1.1).

Proof. To prove the existence of solution of problem (1.1) we approximate it by the
following problems related with the p-Laplacian.

(3.7)

⎧⎨⎩ −Δp(u) + ∣∇u∣p = f in Ω

u = 0 on ∂Ω,

where, for 1 < p ≤ N , the p-Laplacian operator Δp(u) := div (∣∇u∣p−2∇u).
Now we proceed by dividing the proof into several steps.

Step 1. Existence of non–negative approximate solutions

It is well known (see for instance [7]) that for any 0 ≤ f ∈ Lq(Ω), q > N , there exists
a weak solution of the problem (3.7), that is, a function up ∈ W 1,p

0 (Ω) satisfying

(3.8)

∫
Ω

∣∇up∣p−2∇up ⋅ ∇w +

∫
Ω

∣∇up∣pw =

∫
Ω

fw ∀w ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Moreover, this function is bounded, since q > N
p

and it is unique (it is enough to apply

the same argument used in [1]).
Taking in (3.8) w = −e−upu−p , we have∫

Ω

e−up∣∇u−p ∣p = −
∫

Ω

fe−upu−p ≤ 0.

Hence, ∣∇u−p ∣ = 0 in Ω, and consequently, up ≥ 0.

Step 2. BV –estimate

For k > 0, we consider the truncatures Tk(s) = sup(−k, inf(s, k)). Taking in (3.8)

w = Tk(up)

k
, we get ∫

Ω

Tk(up)

k
∣∇up∣p ≤

∫
Ω

f
Tk(up)

k
≤
∫

Ω

f,

and, by Fatou’s Lemma, we may let k → 0+ and obtain

(3.9)

∫
Ω

∣∇up∣p ≤
∫

Ω

f .
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Applying Young’s inequality we get

(3.10)

∫
Ω

∣∇up∣ ≤ C ∀ p > 1 ,

where C does not depend on p. Thus, {up}p>1 is bounded in W 1,1(Ω) and we may
extract a subsequence such that up converges in L1(Ω) and almost everywhere to some
u ∈ BV (Ω) as p→ 1+. Moreover, u ≥ 0.

Step 3. L∞–estimate

Now, using the Stampacchia methods, we are going to prove that u ∈ L∞(Ω). Since
q > N , then N

q′(N−1)
> 1. Fix p0, such that 1 < p0 <

N
q′(N−1)

, and take p such that

1 < p ≤ p0. For any k > 0 consider Gk(s) := s− Tk(s), s ∈ ℝ. Taking in (3.8) as test
function w = Gk(up) and using Hölder’s inequality, we get∫

Ω

∣∇Gk(up)∣p ≤
∫

Ω

fGk(up) ≤ ∥f∥q
(∫

Ω

∣Gk(up)∣q
′
) 1

q′

≤ ∥f∥q
(∫

Ω

∣Gk(up)∣
N
N−1

)N−1
N

∣Apk∣
1
q′−

N−1
N ,

where
Apk := {x ∈ Ω : up(x) > k}.

Hence, by Sobolev’s and Hölder’s inequalities, we have∫
Ω

∣∇Gk(up)∣p ≤ ∥f∥qS
(∫

Ω

∣∇Gk(up)∣
)
∣Apk∣

1
q′−

N−1
N

≤ ∥f∥qS∣Ω∣
p−1
p

(∫
Ω

∣∇Gk(up)∣p
) 1

p

∣Apk∣
1
q′−

N−1
N ,

and consequently (∫
Ω

∣∇Gk(up)∣p
) p−1

p

≤ ∥f∥qS∣Ω∣
p−1
p ∣Apk∣

1
q′−

N−1
N .

On the other hand, by (3.10) and Sobolev’s inequality, we have ∥up∥ N
N−1
≤ C for all

p > 1, hence

∣Apk∣ ≤ Ck−
N
N−1 for all p > 1,

and consequently we get limk→∞ ∣Apk∣ = 0 uniformly in p > 1. Then, if we fix a k0

sufficiently large such that

(3.11) ∥f∥qS∣Apk0∣
1
q′−

N−1
N < 1 ∀ p ∈]1, p0],

then(∫
Ω

∣∇Gk(up)∣p
) 1

p

≤
(
∥f∥qS∣Apk∣

1
q′−

N−1
N

) 1
p−1 ∣Ω∣

1
p ≤

(
∥f∥qS∣Apk∣

1
q′−

N−1
N

) 1
p0−1 ∣Ω∣

1
p .
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Therefore,∫
Ω

∣∇Gk(up)∣ ≤
(∫

Ω

∣∇Gk(up)∣p
) 1

p

∣Ω∣
p−1
p

≤
(
∥f∥qS∣Apk∣

1
q′−

N−1
N

) 1
p0−1 ∣Ω∣ = C∣Apk∣

1
p0−1

(
1
q′−

N−1
N

)
,

where C does not depend of p. Then, applying again Sobolev’s inequality, we obtain
that (∫

Ω

∣Gk(up)∣
N
N−1

)N−1
N

≤ S

∫
Ω

∣∇Gk(up)∣ ≤ SC∣Apk∣
1

p0−1

(
1
q′−

N−1
N

)
.

Hence ∫
Ω

∣Gk(up)∣
N
N−1 ≤ C̃∣Apk∣

1
p0−1

(
N

q′(N−1)
−1

)
.

Then, if ℎ > k ≥ k0, we have

(ℎ− k)
N
N−1 ∣Apℎ∣ ≤

∫
Apℎ

∣Gk(up)∣
N
N−1 ≤ C̃∣Apk∣

1
p0−1

(
N

q′(N−1)
−1

)
,

from where it follows that

∣Apℎ∣ ≤
C̃

(ℎ− k)
N
N−1

∣Apk∣
1

p0−1

(
N

q′(N−1)
−1

)
.

Then, since

� :=
1

p0 − 1

(
N

q′(N − 1)
− 1

)
> 1,

by Stampacchia’s Lemma (see [19, Lemme 5.1] or [14, Lemma B.1]), there is dp such
that

∣Apk0+dp
∣ = 0 for all 1 < p ≤ p0,

being

dp = 2
�
�−1C

N−1
N ∣Apk0∣

(�−1)(N−1)
N .

Now, by (3.11), there exists a constant Q depending on ∥f∥q, but independent on p,
for 1 < p ≤ p0, such that

∣Apk0∣ ≤ Q.

Therefore, there exists a constant Q̃ depending on ∥f∥q and N , but independent on p,

for 1 < p ≤ p0, such that dp ≤ Q̃, and consequently

∣Ap
k0+Q̃
∣ = 0 for all 1 < p ≤ p0,

from where it follows that

(3.12) ∥up∥∞ ≤ k0 + Q̃ for all 1 < p ≤ p0,
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and so

(3.13) ∥u∥∞ ≤ k0 + Q̃.

Step 4. Existence of the vector field z ∈ Dℳ∞(Ω) with ∥z∥∞ ≤ 1

Let us prove that {∣∇up∣p−2∇up}p>1 is weakly relatively compact in L1(Ω,ℝN). For
that, using (3.9) we observe that∫

Ω

∣∇up∣p−1 ≤
(∫

Ω

∣∇up∣p
) p−1

p

∣Ω∣
1
p ≤ C,

where C does not depend on p. On the other hand, for any measurable subset E ⊆ Ω,∣∣∣∫
E

∣∇up∣p−2∇up
∣∣∣ ≤ ∫

E

∣∇up∣p−1 ≤M
p−1
p

1 ∣E∣
1
p .

Thus, {∣∇up∣p−2∇up}p>1, being bounded and equi–integrable in L1(Ω,ℝN), is weakly
relatively compact in L1(Ω,ℝN). There is not loss of generality in assuming that the
whole “sequence” converges. Therefore, there exists z ∈ L1(Ω,ℝN) such that

(3.14) ∣∇up∣p−2∇up ⇀ z as p→ 1, weakly in L1(Ω,ℝN).

Given 0 ≤ ' ∈ C∞0 (Ω), taking w = ' in (3.8), we have

(3.15)

∫
Ω

∣∇up∣p−2∇up ⋅ ∇'+

∫
Ω

∣∇up∣p' =

∫
Ω

f'.

Now, by the lower semi-continuity of the total variation, and applying Young’s inequal-
ity, we have∫

Ω

'∣Du∣ ≤ lim inf
p↓1

∫
Ω

'∣∇up∣ dx ≤ lim inf
p↓1

(
1

p

∫
Ω

'∣∇up∣p dx+
p− 1

p

∫
Ω

'dx

)
= lim inf

p↓1

∫
Ω

'∣∇up∣p dx.

Then, having in mind (3.14), if we take limit in (3.15), we get

(3.16)

∫
Ω

z ⋅ ∇'+

∫
Ω

∣Du∣' ≤
∫

Ω

f'.

Thus,

(3.17) −div (z) + ∣Du∣ ≤ f in D′(Ω),

and consequently, div (z) is a Radon measure in Ω.

The next step is to see that

(3.18) z ∈ L∞(Ω;ℝN) with ∥z∥∞ ≤ 1.

On account of (3.10), this fact can be proved exactly as in [3].
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To finish the proof of this step, we will see that the Radon measure div (z) has
bounded total variation. To this end, it is enough to show that the Radon measure
� = f + div (z) is finite (observe that, by (3.17), � is actually positive). First note that
� defines a bounded linear map on W 1,1

0 (Ω), a consequence of the Hölder and Sobolev
inequalities. Indeed, if � ∈ C∞0 (Ω), then∣∣∣ ∫

Ω

� d�
∣∣∣ ≤ ∣∣∣ ∫

Ω

f�−
∫

Ω

z ⋅ ∇�
∣∣∣ ≤ ∣∣∣∥f∥N∥�∥ N

N−1
+ ∥z∥∞

∫
Ω

∣∇�∣
∣∣∣

≤
∣∣∣S∥f∥N ∫

Ω

∣∇�∣+ ∥z∥∞
∫

Ω

∣∇�∣
∣∣∣ = C

∫
Ω

∣∇�∣ ,

and this estimate holds for all � ∈ W 1,1
0 (Ω) by density. Now consider

wn := T1(n dist (x, ∂Ω))

which defines an increasing sequence satisfying∫
Ω

∣∇wn∣ =
∫
{x : dist (x,∂Ω)<1/n}

∣∇wn∣

and supwn = �Ω. Thus,

�(Ω) = lim
n→∞

∫
Ω

wn d� ≤ lim inf
n→∞

∣�∣
∫

Ω

∣∇wn∣ = ∣�∣ℋN−1(∂Ω) .

Hence, since � is finite, div (z) has bounded total variation, and consequently z ∈
Dℳ∞(Ω).

Step 5. The equation −div z + ∣Du∣ = f holds in D′(Ω)
Given � ∈ C∞0 (Ω), taking w = e−up� in (3.8), we have∫

Ω

e−up ∣∇up∣p−2∇up ⋅ ∇� =

∫
Ω

fe−up�.

Then, letting p→ 1, we obtain that

(3.19)

∫
Ω

e−uz ⋅ ∇� =

∫
Ω

fe−u�,

consequently

(3.20) −div(e−uz) = e−uf in D′(Ω),

and e−uz ∈ Dℳ∞(Ω).

On the other hand, by (2.27),

(z, D(e−u)♯) = div (e−uz)− (e−u)♯ div (z) as Radon measures on Ω.
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Then, having in mind (3.17), (2.28), (3.18), (2.24) and (3.20), we obtain

− div (e−u z) = −(e−u)♯ div (z)− (z,D(e−u)♯)

≤ e−u f − (e−u)♯ ∣Du∣ − (z, D(e−u)♯)

≤ e−u f − (e−u)♯ ∣Du∣+ ∣D(e−u)∣ = e−u f = −div (e−u z)

Therefore, the above inequalities become equalities and so

(e−u)♯ (−div (z) + ∣Du∣) = e−uf, as Radon measures on Ω,

from where it follows that

(3.21) −div (z) + ∣Du∣ = f as Radon measures on Ω.

Step 6. ∣Du∣ = (z, Du) as measures

Given 0 ≤ � ∈ C∞0 (Ω), taking w = up� in (3.8), we have

(3.22)

∫
Ω

�∣∇up∣p +

∫
Ω

up�∣∇up∣p +

∫
Ω

up∣∇up∣p−2∇up ⋅ ∇� =

∫
Ω

fup�.

By the lower semi-continuity of the total variation and the operator ℱ� defined by
(2.41), and Young’s inequality, taking limit in (3.22) when p ↓ 1 we have∫

Ω

�∣Du∣+
∫

Ω

�u∗∣Du∣+
∫

Ω

uz ⋅ ∇� dx ≤
∫

Ω

�fu dx.

Then, applying (3.21), we get∫
Ω

�∣Du∣+
∫

Ω

�u∗∣Du∣+
∫

Ω

uz ⋅ ∇� dx ≤
∫

Ω

�u∗∣Du∣ −
∫

Ω

�u∗ d(div (z)),

from where it follows that ∫
Ω

�∣Du∣ ≤ ⟨(z, Du), �⟩,

and consequently

∣Du∣ ≤ (z, Du) as Radon measures on Ω.

Therefore, since ∥z∥∞ ≤ 1, we obtain that

(3.23) ∣Du∣ = (z, Du).
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Step 7. Dju = 0.
Since Su is countably ℋN−1–rectifiable and ℋN−1(Su∖Ju) = 0, there exist countably

many Lipschitz hypersurfaces Γk such that

ℋN−1

(
Su∖

∞∪
k=1

Γk

)
= 0.

Therefore, it is enough to show that

∣Dju∣(Γk) = 0 ∀ k ∈ ℕ .
Fixed k denote by � the unit normal to Γk, chosen in such a way that �(x) = �u(x)
for ℋN−1–almost all x ∈ Γk ∩ Ju. Thereby the traces of u on Γk ∩ Ju are given by
(u+

Γk
, u+

Γk
) = (u+, u−).

The proof of Step 7 relies on the following claim:

(3.24) For any x0 ∈ Γk there exists an open set U,with x0 ∈ U and ∣Dju∣(U∩Γk) = 0 .

In fact, take U to be a smooth open neighbourhood of x0 satisfying U ∩ Γk ⊂ Ω, set
n0 ∈ ℕ such that 0 < 1

n0
< d(U ∩ Γk, ∂Ω) and consider

Un =

{
x+ t�(x) : x ∈ U ∩ Γk , ∣t∣ <

1

n

}
⊂ Ω for all n ≥ n0.

Then Un is an open generalized cylinder with Lipschitz boundary and∩
n≥n0

Un = U ∩ Γk .

Since −div (z) + ∣Du∣ = f in the sense of distributions, we deduce

−
∫
Un

u∗div (z) +

∫
Un

u∗∣Du∣ =
∫
Un

fu .

By applying Green’s formula and Step 6, it yields

(3.25)

∫
Un

∣Du∣ −
∫
∂Un

u[z, �] dℋN−1 +

∫
Un

u∗∣Du∣ =
∫
Un

fu ,

� denoting the unit outward normal to ∂Un.
Now, we are going to analyze each term in the previous equation. It is straightforward

that

(3.26) lim
n→∞

∫
Un

(1 + u∗)∣Du∣ =
∫
U∩Γk

(1 + u∗)∣Du∣.

Also, since ℒN(Γk) = 0, we have

(3.27) lim
n→∞

∫
Un

fu =

∫
U∩Γk

fu = 0.
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To study the remainder term, we split the boundary ∂Un into three parts:

∂Un = E+
n ∪ E−n ∪ E0

n ,

where

E+
n ⊂

{
x+

1

n
�(x) : x ∈ U ∩ Γk

}
,

E−n ⊂
{
x− 1

n
�(x) : x ∈ U ∩ Γk

}
and E0

n denotes the lateral surface of the generalized cylinder Un, namely that obtained
from ∂(U ∩ Γk). It satisfies ∩

n≥n0

E0
n = ∂(U ∩ Γk).

Thus,

lim
n→∞

∫
E+
n

u[z, �] dℋN−1 =

∫
U∩Γk

u+
Γk

[z, �] dℋN−1 ,

lim
n→∞

∫
E−n

u[z, �] dℋN−1 =

∫
U∩Γk

u−Γk [z,−�] dℋN−1 ,

lim
n→∞

∫
E0
n

u[z, �] dℋN−1 = 0 ,

this last equality holds since u and [z, �] are bounded, and ℋN−1(∂(U ∩ Γk)) = 0. It
follows that

(3.28) lim
n→∞

∫
∂Un

u[z, �] dℋN−1 =

∫
U∩Γk

(u+
Γk
− u−Γk)[z, �] dℋN−1 .

Taking (3.26), (3.27) and (3.28) into account, if we let n goes to +∞ in (3.25), then
we get

(3.29)

∫
U∩Γk

(1 + u∗)∣Du∣ =
∫
U∩Γk

(u+
Γk
− u−Γk)[z, �] dℋN−1 .

Now, by [2, Theorem 3.77 and Remark 3.79], we know that

∣Du∣ Γk = ∣u+
Γk
− u−Γk ∣ℋ

N−1 Γk = ∣u+ − u−∣ℋN−1 (Γk ∩ Ju) = ∣Dju∣ Γk.

Hence,∣∣∣∣∫
U∩Γk

(u+
Γk
− u−Γk)[z, �] dℋN−1

∣∣∣∣ ≤ ∫
U∩Γk

∣u+
Γk
− u−Γk ∣ dℋ

N−1 =

∫
U∩Γk

∣Dju∣ ,

and it follows from (3.29) that∫
U∩Γk

(1 + u∗)∣Dju∣ ≤
∫
U∩Γk

∣Dju∣
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and consequently ∫
U∩Γk

u∗∣Dju∣ ≤ 0 .

Since the measure appearing in the integrand is nonnegative, we actually have that it
vanishes:

(3.30) u∗∣Dju∣ (U ∩ Γk) = 0 .

Having in mind u∗∣Dju∣ (U ∩ Γk) = 1
2
(u+ + u−)(u+ − u−)ℋN−1 (U ∩ Γk ∩ Ju), we

deduce u+ = u− on U ∩ Γk ∩ Ju, up to a ℋN−1–null set, from where (3.24) follows.
Finally, as consequence of (3.24), we obtain that any compact subset of Γk is ∣Dju∣–

null, and we get ∣Dju∣(Γk) = 0.

Step 8. u = 0 on ∂Ω

Finally let us prove the boundary condition. Taking w = up in (3.8), we have

(3.31)

∫
Ω

∣∇up∣p +

∫
Ω

up∣∇up∣p =

∫
Ω

fup.

By the lower semi-continuity of the operators ℱ0 defined by (2.37) and ℱ� defined by
(2.41) with � ≡ 1, taking limit in (3.31) when p ↓ 1, we get∫

Ω

∣Du∣+
∫
∂Ω

∣u(x)∣ dℋN−1(x) +

∫
Ω

u∗∣Du∣+ 1

2

∫
∂Ω

u(x)2 dℋN−1(x) ≤
∫

Ω

f(x)u(x) dx.

Hence, having in mind (3.21), (3.23) and using Green’s formula (2.6), we obtain that∫
∂Ω

(∣u(x)∣+ [z, �](x)u(x)) dℋN−1(x) +
1

2

∫
∂Ω

u(x)2 dℋN−1(x) ≤ 0.

Then, since both integrand are non-negatives, we deduce that u∣∂Ω = 0 ℋN−1-a.e. □

To proof the uniqueness, we need the following results which are of interest in them-
selves. Every z ∈ Dℳ∞(Ω) is determined up to sets of zero Lebesgue measure but, as
pointed out in [8], a precise representative may be defined. This precise representative
is given by

(3.32) z(x) =

⎧⎨⎩ lim
�→0+

1

ℒN(B�(x))

∫
B�(x)

z(y) dy , if x /∈ S(z) ;

0 , if x ∈ S(z) ;

where S(z) denote the approximate discontinuity set of z. If we deal with precise
representatives, every z ∈ Dℳ∞(Ω) is pointwise determined. In the following result is
stated that the precise representatives of two vector fields differ in a ∣Du∣–null subset
of the set of approximate continuity of both.
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Proposition 3.6. Let z1, z2 ∈ Dℳ∞(Ω) satisfying ∥zi∥∞ ≤ 1 and denote by S(zi) the
approximate discontinuity set of zi, for i = 1, 2. Let u ∈ BV (Ω) ∩ L∞(Ω) be such that
Dju = 0. If (zi, Du) = ∣Du∣, for i = 1, 2, then

z1 = z2 holds ∣Du∣ − a.e. in Ω∖(S(z1) ∪ S(z2)).

Proof. Given u ∈ BV (Ω) ∩ L∞(Ω), we define

(3.33) Z(u) = {z ∈ Dℳ∞(Ω) : ∥z∥∞ ≤ 1 , (z, Du) = ∣Du∣ as measures }
An easy computation shows that

(3.34) Z(u) is a convex set.

We claim that, for every z ∈ Z(u), up to a ∣Du∣–null set,

(3.35) ∣z(x)∣ = 1 for all x ∈ Ω∖S(z).

Let z ∈ Z(u) be fixed, actually we will consider its precise representative. Since
(z, Du) = ∣Du∣ as measures, it follows that �(z, Du, x) = 1 holds for ∣Du∣–almost all
x ∈ Ω. On the other hand, for every � > 0, if we set

z�(x) =
1

ℒN(B�(x))

∫
B�(x)

z(y) dy,

by [6, Remark 2.5], we have

z� ⋅
Du

∣Du∣
⇀ �(z, Du, ⋅) , in L∞loc(Ω, ∣Du∣)–weak∗

where Du
∣Du∣ denotes the Radon–Nikodým derivative of Du with respect to the measure

∣Du∣. Thus, up to a ∣Du∣–null set, we have

(3.36) 1 = �(z, Du, x) ≤ lim sup
�→0+

z�(x) ⋅ Du
∣Du∣

(x) ≤ lim sup
�→0+

∣z�(x)∣ .

Disregarding the ∣Du∣–null set and having in mind that lim�→0+ ∣z�(x)∣ = ∣z(x)∣ holds
for every x /∈ S(z) and that ∥z∥∞ ≤ 1, we deduce from (3.36) that ∣z(x)∣ = 1 for every
x /∈ S(z), hence our claim is proved.

Now we are ready to see that Z(u) has, at most, a vector field. Assume that z1, z2 ∈
Z(u). By (3.34), we know that 1

2
(z1 + z2) ∈ Z(u). By the parallelogram identity,∣∣∣∣12(z1 − z2)

∣∣∣∣ =
1

2
∣z1∣+

1

2
∣z1∣ −

∣∣∣∣12(z1 + z2)

∣∣∣∣ .
Then, having in mind (3.35), we have that the right hand side vanishes ∣Du∣–a.e. in
Ω∖(S(z1) ∪ S(z2)), and consequently the left hand side so does. Therefore, z1 = z2

∣Du∣–a.e. in Ω∖(S(z1) ∪ S(z2)). □

Proposition 3.7. Let z ∈ Dℳ∞(Ω) be such that ∥z∥∞ ≤ 1. If u1, u2 ∈ BV (Ω)∩L∞(Ω)
satisfy (z, Du1) = ∣Du1∣ = ∣Du2∣ = (z, Du2), then Du1 = Du2.
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Proof. First notice that(
z, D

(
u1 + u2

2

))
=

1

2
(z, Du1) +

1

2
(z, Du2) =

1

2
∣Du1∣+

1

2
∣Du2∣ = ∣Du1∣ .

Thus, performing easy manipulations, we obtain

∣Du1∣ =
(

z, D

(
u1 + u2

2

))
≤
∣∣∣∣D(u1 + u2

2

)∣∣∣∣
=

1

2
∣Du1 +Du2∣ ≤

1

2
∣Du1∣+

1

2
∣Du2∣ = ∣Du1∣ ,

and so all the inequalities become equalities. Therefore,∣∣∣∣D(u1 + u2

2

)∣∣∣∣ = ∣Du1∣ = ∣Du2∣ .

Applying the Radon–Nikodým Theorem we get two vector functions f1, f2, with
∣f1∣ = 1 ∣Du1∣-a.e., ∣f2∣ = 1 ∣Du1∣-a.e., and satisfying

Du1 = f1∣Du1∣ , Du2 = f2∣Du2∣ = f2∣Du1∣ .
Hence,

D

(
u1 + u2

2

)
=

(
f1 + f2

2

)
∣Du1∣.

Since
∣∣D (u1+u2

2

)∣∣ = ∣Du1∣, it follows that
∣∣f1+f2

2

∣∣ = 1 ∣Du1∣-a.e. Thus, by the parallel-
ogram identity,∣∣∣∣f1 − f2

2

∣∣∣∣2 =
1

2

(
∣f1∣2 + ∣f2∣2

)
−
∣∣∣∣f1 + f2

2

∣∣∣∣2 = 0 ∣Du1∣–a.e.

Then f1 = f2 ∣Du1∣–a.e. and so Du1 = Du2. □

Theorem 3.8. Given 0 ≤ f ∈ Lq(Ω), with q > N , there exists, at most, a weak
solution of problem (1.1)

Proof. Let ui, i = 1, 2, two solutions of problem (1.1). Then, 0 ≤ ui ∈ BV (Ω)∩L∞(Ω)
with ui∣∂Ω = 0 ℋN−1-a.e. and Djui = 0, and there exists a vector field zi ∈ Dℳ∞(Ω),
with ∥zi∥∞ ≤ 1, satisfying

(3.37) −div (zi) + ∣Dui∣ = f in D′(Ω), i = 1, 2,

and

(3.38) (zi, Dui) = ∣Dui∣ as measures in Ω, i = 1, 2.

Having in mind (3.38), since ∣(zi, Duj)∣ ≤ ∣Duj∣, for any � ∈ Cc(Ω)+, we get∫
Ω

�(z1 − z2, D(u1 − u2)+) =

∫
{u1≥u2}

� [∣Du1∣+ ∣Du2∣ − (z1, Du2)− (z2, Du1)] ≥ 0,

and consequently the Radon measure (z1 − z2, D(u1 − u2)+) is positive.
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On the other hand, multiplying (3.37) by [(e−u2 − e−u1)+]∗ and applying Green’s
formula (2.6), we obtain∫

Ω

(zi, D((e−u2 − e−u1)+) +

∫
Ω

[(e−u2 − e−u1)+]∗∣Dui∣ =
∫

Ω

f(x)[(e−u2 − e−u1)+]∗(x) dx,

i = 1, 2. From here, having in mind (3.6), we can write,∫
Ω

f(x)[(e−u2 − e−u1)+]∗(x) dx = −
∫
{u1>u2}

(z1, D(1− e−u2))

+

∫
{u1>u2}

(z1, D(1− e−u1)) +

∫
{u1>u2}

[e−u2 ]∗∣Du1∣ −
∫
{u1>u2}

[e−u1 ]∗∣Du1∣

= −
∫
{u1>u2}

(z1, D(1− e−u2)) +

∫
{u1>u2}

[e−u2 ]∗∣Du1∣

and ∫
Ω

f(x)[(e−u2 − e−u1)+]∗(x) dx = −
∫
{u1>u2}

(z2, D(1− e−u2))

+

∫
{u1>u2}

(z2, D(1− e−u1)) +

∫
{u1>u2}

[e−u2 ]∗∣Du2∣ −
∫
{u1>u2}

[e−u1 ]∗∣Du2∣

= −
∫
{u1>u2}

(z2, D(1− e−u1))−
∫
{u1>u2}

[e−u1 ]∗∣Du2∣.

Therefore, we obtain that∫
{u1>u2}

[e−u2 ]∗∣Du1∣+
∫
{u1>u2}

[e−u1 ]∗∣Du2∣

=

∫
{u1>u2}

(z1, D(1− e−u2))−
∫
{u1>u2}

(z2, D(1− e−u1))

≤
∫
{u1>u2}

∣D(1− e−u1)∣+
∫
{u1>u2}

∣D(1− e−u2)∣

=

∫
{u1>u2}

[e−u1 ]∗∣Du1∣+
∫
{u1>u2}

[e−u2 ]∗∣Du2∣,

and consequently,

(3.39)

∫
{u1>u2}

(
[e−u2 ]∗ − [e−u1 ]∗

)
(∣Du2∣ − ∣Du1∣) ≥ 0.

On the other hand, by (3.5), we have

(3.40) −div(e−uizi) = e−uif in D′(Ω), i = 1, 2.
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Multiplying (3.40) by [(u1 − u2)+]∗ and applying Green’s formula (2.6), we obtain∫
Ω

(e−uizi, D(u1 − u2)+) =

∫
Ω

e−uif(x)[(u1 − u2)+]∗ dx, i = 1, 2.

Hence, ∫
Ω

(e−u1z1, D(u1 − u2)+)−
∫

Ω

(e−u2z2, D(u1 − u2)+)

=

∫
Ω

(
e−u1 − e−u2

)
f(x)[(u1 − u2)+]∗ dx ≤ 0.

Therefore,

(3.41)

0 ≥
∫
{u1>u2}

(e−u2z2 − e−u1z1, D(u2 − u1))

=

∫
{u1>u2}

((e−u2 − e−u1)z2, D(u2 − u1))

+

∫
{u1>u2}

(e−u1(z2 − z1), D(u2 − u1)).

Having in mind (3.38), (3.39) and Proposition 2.3, and since ∣(z2, Du1)∣ ≤ ∣Du1∣, we
have∫

{u1>u2}
((e−u2 − e−u1)z2, D(u2 − u1)) =

∫
{u1>u2}

(e−u2 − e−u1)∗(z2, D(u2 − u1))

=

∫
{u1>u2}

(e−u2 − e−u1)∗∣Du2∣ −
∫
{u1>u2}

(e−u2 − e−u1)∗(z2, Du1)

≥
∫
{u1>u2}

(
[e−u2 ]∗ − [e−u1 ]∗

)
(∣Du2∣ − ∣Du1∣) ≥ 0.

Hence, from (3.41) and applying again Proposition 2.3, we get∫
Ω

[e−u1 ]∗(z1 − z2, D(u1 − u2)+) =

∫
{u1>u2}

[e−u1 ]∗((z2 − z1), D(u2 − u1)) ≤ 0.

Then, since the Radon measure (z1 − z2, D(u1 − u2)+) is positive, we obtain that

(z1 − z2, D(u1 − u2)+) = 0.

Similarly, we get

(z1 − z2, D(u1 − u2)−) = (z2 − z1, D(u2 − u1)+) = 0.

Therefore,

(3.42) (z1 − z2, D(u1 − u2)) = 0.
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Now, from (3.42), and (3.38), since ∣(zi, Duj)∣ ≤ ∣Duj∣, we get

∣Du1∣+ ∣Du2∣ = (z1, Du1) + (z2, Du2) = (z1, Du2) + (z2, Du1) ≤ ∣Du1∣+ ∣Du1∣,

from where it follows that

(z1, Du2) = ∣Du2∣
and

(z2, Du1) = ∣Du1∣.
These equalities and (3.38) imply, applying Proposition 3.6 (and considering the

precise representatives of z1 and z2, as defined in (3.32)), that z1 ∕= z2 just holds in a
null set with respect to both ∣Du1∣ and ∣Du2∣ in Ω∖(S1(z1) ∪ S2(z2)). We next prove
that

(3.43) div (z1) = div (z2) as measures in Ω .

Denote Λ = {z1 ∕= z2} ∩ (Ω∖(S1(z1) ∪ S2(z2))). If A ⊂ Λ is a Borel set, then we have
that ∣Dui∣(A) = 0, for i = 1, 2, and (3.37) hold, so that

div (z1)(A) = ∣Du1∣(A)−
∫
A

f = −
∫
A

f = ∣Du2∣(A)−
∫
A

f = div (z2)(A) .

Hence, div (z1) = div (z2) as measures in Λ.
On the other hand, given � > 0, we may find a regular open set U satisfying Λ ⊂ U

and ∣div zi∣(U∖Λ) < � for i = 1, 2. We point out that z1(x) = z2(x) for all x ∈ Ω∖U .
Indeed, we already know that the points of Ω∖U where those vector fields may be
different make up a subset of S1(z1)∪S2(z2). As a consequence, z1 = z2 holds ℒN–a.e.
in the open set Ω∖U and so

S1(z1) ∩
(
Ω∖U

)
= S2(z2) ∩

(
Ω∖U

)
.

On account of being both vector fields precise representatives, it follows that z1(x) =
z2(x) for all x ∈ Ω∖U . As a straightforward consequence, we obtain that div (z1) =
div (z2) as measures in Ω∖U . Another consequence is

(3.44) [z1 − z2, �] = 0 ℋN−1–a.e. on ∂(Ω∖U) ,

where � denotes the unit outward normal to ∂(Ω∖U). To prove it, we consider ℎ ∈
L∞
(
∂(Ω∖U)

)
and take v ∈ W 1,1(Ω∖U) such that ℎ = v∣∂(Ω∖U). Applying Green’s

formula, it yields∫
∂(Ω∖U)

ℎ[z1 − z2, �] dℋN−1 =

∫
Ω∖U

vdiv (z1 − z2) +

∫
Ω∖U

(z1 − z2) ⋅ ∇v = 0 .

Since ∫
∂(Ω∖U)

ℎ[z1 − z2, �] dℋN−1 = 0 for every ℎ ∈ L∞
(
∂(Ω∖U)

)
,

it follows that (3.44) holds true.
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To go on with the proof of (3.43), fix ' ∈ C∞0 (Ω). On account of Ω∖U ⊂ {z1 = z2},
we have∫

Ω

(z1 − z2) ⋅ ∇' =

∫
U

(z1 − z2) ⋅ ∇'+

∫
Ω∖U

(z1 − z2) ⋅ ∇' =

∫
U

(z1 − z2) ⋅ ∇' .

Applying Green’s formula in both sides, it yields

(3.45) −
∫

Ω

' div (z1 − z2) = −
∫
U

' div (z1 − z2) +

∫
∂U

'[z1 − z2, �0] dℋN−1 ,

with �0 denoting the unit outward normal to ∂U . The last term can be split as∫
∂U

'[z1 − z2, �0] dℋN−1

=

∫
∂U∩∂Ω

'[z1 − z2, �0] dℋN−1 +

∫
∂U∖∂Ω

'[z1 − z2, �0] dℋN−1 .

It is straightforward that

∫
∂U∩∂Ω

'[z1−z2, �0] dℋN−1 = 0 since ' ∈ C∞0 (Ω). To analyze

the other term, observe that∫
∂U∖∂Ω

'[z1 − z2, �0] dℋN−1 = −
∫
∂(Ω∖U)∖∂Ω

'[z1 − z2, �] dℋN−1 = 0 ,

due to (3.44). Hence,

∫
∂U

'[z1 − z2, �0] dℋN−1 = 0 and (3.45) becomes

−
∫

Ω

' div (z1 − z2) = −
∫
U

' div (z1 − z2) .

So that ∫
Ω

' div (z1 − z2) =

∫
U∖Λ

' div (z1 − z2) ,

since div (z1) = div (z2) as measures in Λ. It follows from the way U has been chosen,
that ∣∣∣∣∫

Ω

' div (z1 − z2)

∣∣∣∣ =

∣∣∣∣∫
U∖Λ

' div (z1 − z2)

∣∣∣∣ < 2�∥'∥∞ .

Thus, we deduce that ∫
Ω

' div (z1 − z2) = 0 .

Since it holds for every ' ∈ C∞0 (Ω), we have finish the proof of (3.43).
Finally, it follows from (3.37) and (3.43) that ∣Du1∣ = ∣Du2∣ as measures in Ω, and

by Proposition 3.7 we obtain Du1 = Du2. Since u1∣∂Ω = u2∣∂Ω = 0 hold ℋN−1-a.e., we
conclude that u1 = u2, as desired. □

We finish this section pointing out several differences between the problem we have
studied and the Dirichlet problem associated with the total variation flow.
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Remark 3.9. In [3] (see also [4]) we give the following definition of solution of problem

(3.46)

⎧⎨⎩
−div

(
Du

∣Du∣

)
= f , in Ω ;

u = 0 , on ∂Ω ;

with f ∈ LN(Ω). A function u ∈ BV (Ω) is a solution of (3.46) if there exists a vector
field z ∈ XN(Ω), with ∥z∥∞ ≤ 1, satisfying

(3.47) −div (z) = f in D′(Ω) ,

(3.48) (z, Du) = ∣Du∣ as measures in Ω ,

and

(3.49) [z, �] ∈ sign(−u) , ℋN−1–a.e. on ∂Ω ,

where � denotes the unit outward vector. This condition (3.49) is a weak form of the
boundary condition; it is introduced since the trace on the boundary of solutions to
(3.46) does not always vanish.

It is known (see [16] and references therein) that there exists a solution to problem
(3.46) only when ∥f∥N is small enough. On the contrary, if ∥f∥N is larger, then problem
(3.46) has no solution (or alternatively, modifying a little bit the concept of solution,
solutions of (3.46) take the value ∞ in a set of positive measure).

Furthermore, as a consequence of (2.2), it is easy to see that if u is a solution of (3.46)
then, for every  : ℝ→ ℝ positive, increasing and Lipschitz continuous function,  (u)
is also a solution of the same problem.

Therefore, the term ∣Du∣ produces a regularizing effect and without its presence,
solutions have no regularity (even may take the value∞), the boundary condition only
holds in a weak sense and there is not uniqueness at all.

Remark 3.10. In [3] we have proved existence and uniqueness of solution for every
datum (regardless of its size) if we deal with the problem

(3.50)

⎧⎨⎩
u− div

(
Du

∣Du∣

)
= f , in Ω ;

u = 0 , on ∂Ω .

Thus the presence of the zero order term u has a certain regularizing effect. Neverthe-
less, solutions to (3.50) may jump and the boundary condition only holds in the sense
of (3.49). Let us show these features with some simple examples.

Let Ω = BR(0) ⊂ ℝN , with N < R. Consider f = �Br(0), with N < r < R; it is easy

to see that the function u =
(
1− N

r

)
�Br(0) is the unique solution of (3.50) with vector
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field given by

z(x) :=

⎧⎨⎩
−x
r

if x ∈ Br(0)

−rN−1 x
∣x∣N if x ∈ Ω∖Br(0).

Observe that the above solution u satisfies Ju = {x ∈ ℝN : ∣x∣ = r}.
On the other hand, if f ≡ 1, then the constant function u ≡ 1 − N

R
is the unique

solution of (3.50) with vector field given by z(x) := − x
R

. We remark that this solution
does not vanish on the boundary, but satisfies

[z, �] = − x
R
⋅ x
R

= −1 ∈ sign(−u) .

4. Explicit radial solutions

This section is devoted to find explicit radial solutions to the problem (1.1). Consider

Ω = BR(0) ⊂ ℝN , and f(x) := f̃(∣x∣), with f̃ : [0, R] → [0,+∞[. We are looking for a
radial solution u(x) = g(∣x∣) such that g(r) ≥ 0 for r ∈ [0, R] and g(R) = 0. We will
not find an explicit expression of g.

Assuming that g′ < 0, we have Du(x) = −∣g′(∣x∣)∣ x∣x∣ and consequently z(x) = − x
∣x∣ .

Then

−div (z) =
N− 1

∣x∣
,

and we arrive to the equation

(4.1) 0 < −g′(r) = f̃(r)− N − 1

r
.

Hence,

(4.2)
N − 1

r
< f̃(r).

In summary, if N−1
r
≥ f̃(r), then g′(r) = 0 and so Du(x) = 0. Now an expression of

z must be searched, taking into account that −div (z) = f have to be satisfied. On the

contrary, if N−1
r

< f̃(r), then perhaps g′(r) < 0 holds. In this case we may apply (4.1),
to obtain

g(r) =

∫ R

r

f̃(s)− N − 1

s
ds ,

and deduce u(x) = g(∣x∣) and z(x) = − x
∣x∣ .

Nevertheless, the condition N−1
r

< f̃(r) is necessary but not sufficient to obtain

g′(r) < 0. We point out that N−1
r

< f̃(r) and g′(r) = 0 can occur. So that, the set

of all points for which N−1
r

< f̃(r) holds, must be split into two parts: the part where
g′(r) < 0 and the part g′(r) = 0.
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In the following explicit examples, the main criterion that allow us to decide how to
split the zone where N−1

r
< f̃(r) holds, is to get a continuous vector field z. For the

sake of simplicity, we will take R = 1.

Example 4.1.

(1) Take f(x) := �. If 0 ≤ � ≤ N , we have that u ≡ 0 is solution with

z(x) = −�x
N
.

Assume now that � > N . Then, for N
�
< r < 1, (4.2) holds and we have

g(r) =

∫ 1

r

(
f̃(s)− N − 1

s

)
ds =

∫ 1

r

�− N − 1

s
ds = �(1− r) + log (r)N−1 .

Then, it is easy to see that in this case the solution is given by

u(x) :=

⎧⎨⎩ �(1− N
�

) + log
(
N
�

)N−1
if ∣x∣ ≤ N

�

�(1− ∣x∣) + log (∣x∣)N−1 if N
�
< ∣x∣ < 1,

with

z(x) = −�x
N
�BN

�
(0)(x)− x

∣x∣
�
B1(0)∖BN

�
(0)(x).

(2) Take f(x) := �
∣x∣q with 0 ≤ � and 0 < q < 1. Then, f ∈ Lm(Ω), for m < N

q
. If

0 ≤ � ≤ N − q, we have u ≡ 0 is solution with

z(x) = − �x

(N − q)∣x∣q
.

Assume now that � > N − q. Then, for
(
N−q
�

) 1
1−q < r < 1, (4.2) holds and

we have

g(r) =

∫ 1

r

(
f̃(s)− N − 1

s

)
ds =

∫ 1

r

�

sq
− N − 1

s
ds

=
�

1− q
(1− r1−q) + log (r)N−1 .

Then, it is easy to see that in this case the solution is given by

u(x) :=
�

1− q
(
1− ∣x∣1−q

)
+ (N − 1) log ∣x∣,

with

z(x) =
−x
∣x∣

.
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In the case r ≤
(
N−q
�

) 1
1−q , we have g′(r) = 0 and

u(x) =
1

1− q
(�−N + q) +

N − 1

1− q
log

(
N − q
�

)
,

with

z(x) = − �

N − q
x

∣x∣q
.

(3) Take f(x) := ��B 1
2

(0). If 0 ≤ � ≤ 2N , we have u ≡ 0 is solution with

z(x) =

⎧⎨⎩
−�x

N
if ∣x∣ ≤ 1

2

− �x
2NN ∣x∣N if 1

2
< ∣x∣ < 1.

Assume now that � > 2N . Then, for N
�
< r < 1

2
, (4.2) holds and we have

g(r) =

∫ 1
2

r

(
f̃(s)− N − 1

s

)
ds =

∫ 1
2

r

�− N − 1

s
ds = �

(
1

2
− r
)

+ log (r)N−1 .

Then, it is easy to see that in this case the solution is given by

u(x) :=

⎧⎨⎩
�(1

2
− N

�
) + log

(
2N
�

)N−1
if ∣x∣ ≤ N

�

�(1
2
− ∣x∣) + log (2∣x∣)N−1 if N

�
< ∣x∣ ≤ 1

2

0 if 1
2
< ∣x∣ < 1,

with

z(x) = −�x
N
�BN

�
(0)(x)− x

∣x∣
�
B 1

2
(0)∖BN

�
(0)(x)− �x

2NN ∣x∣N
�
B1(0)∖B 1

2
(0)(x).

Remark 4.2. We explicitly remark that, in the previous examples, the solution is
trivial (identically 0) when the considered datum f is small enough. This situation
occurs until the vector field z satisfies ∥z∥∞ = 1. When the norm of the datum
increases, the gradient term ∣Du∣ absorbs the excess and so a finite solution can always
be obtained. This fact contrasts with what happens if the equation has no gradient
term. Then, once ∥z∥∞ = 1 is attained, solutions blow up (see [16]). However, this
phenomenon of absorbing the excess is not new, since it was already remarked in the
case of an anisotropic equation (see [15]).

In the above examples, we have consider data belonging to Lm(B1(0)), with m > N ,
and we have found bounded continuous solutions. When the condition m > N does
not hold, no bounded continuous solution must be expected, as shown in the following
example.
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Example 4.3. Take f(x) :=
�

∣x∣
and observe that f ∈ Lm(B1(0)) for all m < N . If

� > N − 1, we have f̃(r) = �
r
> N−1

r
and (4.2) holds. In this case, we have

g(r) =

∫ 1

r

(
f̃(s)− N − 1

s

)
ds =

∫ 1

r

�−N + 1

s
ds = log

(
1

r

)�−N+1

,

and the solution is
u(x) = −(�−N + 1) log ∣x∣,

with
z(x) = − x

∣x∣
.

Now in the case � ≤ N − 1, we have that the solution is u ≡ 0, with

z(x) = − �x

(N − 1)∣x∣
.

We have prove that there exists a unique solution in the class of bounded BV –
functions whose jump part is empty. Outside that class is possible to find other distri-
butional solutions. Indeed, we already know that u ≡ 0 is the weak solution to problem
(1.1) with datum f ≡ 0. We now include an example of a non trivial solution.

Example 4.4. Let N = 2. Defining u(x, y) = 1
2

log(x2 + y2), we get

Du(x, y) =
(x, y)

x2 + y2
, ∣Du(x, y)∣ = 1√

x2 + y2
and z(x, y) =

(x, y)√
x2 + y2

.

Then

−div z(x, y) + ∣Du(x, y)∣ = −1√
x2 + y2

+
1√

x2 + y2
= 0

and

(z(x, y), Du(x, y)) =
1√

x2 + y2
= ∣Du(x, y)∣ .

Acknowledgements. The authors have been partially supported by the Spanish MEC
and FEDER, project MTM2008-03176.

References

[1] D. Arcoya and S. Segura de León Uniqueness of solutions for some elliptic equations with a
quadratic gradient term Esaim-Control Optimisation and Calculus of Variations 16, n 2, (2010),
327—336.

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity
Problems, Oxford Mathematical Monographs, 2000.

[3] F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, The Dirichlet Problem for the Total Vari-
ational Flow, J. Funct. Anal. 180 (2001), 347- 403.

[4] F. Andreu, V. Caselles, and J.M. Mazon, Parabolic Quasilinear Equations Minimizing Linear
Growth Functionals, Progress in Mathematics, vol. 223, 2004. Birkhauser.
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[5] F. Andreu, V. Caselles, J.M. Mazón and S. Moll, The Dirichlet problem associated to the rela-
tivistic heat equation. Math. Ann. 347 (2010), 135-199.

[6] G. Anzellotti, Pairings Between Measures and Bounded Functions and Compensated Compactness,
Ann. di Matematica Pura ed Appl. IV (135) (1983), 293-318.

[7] L. Boccardo and T Gallouet, Strongly nonlinear elliptic equations having natural growth terms
and L1 datas, Nonlinear Anal. T.M.A. 19 (1992), 573-579.

[8] G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration.
Mech. Anal., 147 (1999) 89-118.

[9] G. Dal Maso, Integral representation on BV (Ω) of Γ-limits of variational integrals, Manuscripta
Math. 30 (1980), 387-416.

[10] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in
Advanced Math., CRC Press, 1992.

[11] B. Hein, A homotopy approach to solving the inverse mean curvature flow, Calc. Var. Partial
Differential Equations 28 (2007), 249–273.

[12] G. Huisken and T. Ilmanen, The Inverse Mean Curvature Flow and the Riemannian Penrose
Inequality, J. Differential Geom. 59 (2001) 353–438.

[13] G. Huisken and T. Ilmanen, Higher regularity of the inverse mean curvature flow., J. Differential
Geom. 80 (2008), 433–451.

[14] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their appli-
cations, Academic Press, 1980.

[15] A. Mercaldo, J.D. Rossi, S. Segura de León and C. Trombetti, Anisotropic p, q-Laplacian equations
when p goes to 1, preprint.

[16] A. Mercaldo, S. Segura de León and C. Trombetti, On the solutions to 1-Laplacian equation with
L1 data J. Functional Analysis 256 (2009), 2387–2416.

[17] R. Moser, The inverse mean curvature flow and p-harmonic functions, J. Eur. Math. Soc. (JEMS)
9 (2007), 77–83.

[18] R. Moser, The inverse mean curvature flow as an obstacle problem, Indiana Univ. Math. Journal
57 (2008), 2235–2256.

[19] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coef-
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