
Variational convergence of gradient flows and
rate-independent evolutions in metric spaces

Alexander Mielke, Riccarda Rossi and Giuseppe Savaré

Abstract. We study the asymptotic behaviour of families of gradient
flows in a general metric setting, when the metric-dissipation potentials
degenerate in the limit to a dissipation with linear growth.

We present a general variational definition of BV solutions to met-
ric evolutions, showing the different characterization of the solution in
the absolutely continuous regime, on the singular Cantor part, and along
the jump transitions. By using tools of metric analysis, BV functions
and blow-up by time rescaling, we show that this variational notion is
stable with respect to a wide class of perturbations involving energies,
distances, and dissipation potentials.

As a particular application, we show that BV solutions to rate-
independent problems arise naturally as a limit of p-gradient flows, p >
1, when the exponents p converge to 1.
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1. Introduction

The aim of this paper is to study the asymptotic behaviour of the solutions
to a sequence of gradient flows (in a suitable metric setting), when the gov-
erning energies and metric-dissipation potentials give raise in the limit to a
rate-independent evolution or, more generally, to an evolution driven by a
dissipation potential with linear growth.
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A finite dimensional example: superlinear dissipation potentials and abso-
lutely continuous gradient flows.

In order to explain the problem, let us start from a simple example in a finite
dimensional manifold X (see e.g. the motivating discussion in [13]). We fix a
time interval [0, T ], we denote by Q the product space Q = [0, T ]×X , and
we consider a sequence of smooth energies Eh : Q → R indexed by h ∈ N. We
are also given a sequence of smooth dissipation potentials Rh : TX → [0,∞)
of the form

Rh(u, u̇) = ψh(‖u̇‖u,h) where ‖ · ‖u,h are norms on the tangent space TuX

smoothly depending on u ∈X and

ψh : [0,∞)→ [0,∞) are C1 convex functions with superlinear growth.

Typical examples are

ψh(v) =
1

ph
vph with ph > 1,

ψh(v) = v + εh v
p with p > 1, εh > 0.

(1.1)

For given initial data ūh ∈X we can consider the solutions uh : [0, T ]→X
of the Cauchy problem for the doubly nonlinear differential equations

Du̇Rh(uh(t), u̇h(t)) + DuEh(t, uh(t)) = 0 in T∗X , uh(0) = ūh. (1.2)

In (1.2) the parameter h ∈ N affects the limit behaviour of the initial data ūh,
of the energies Eh in Q, of the norms ‖ · ‖·,h on TX , and of the dissipation
potentials ψh on [0,∞). Assuming that (in a suitable sense that we will
describe later on) ūh → ū, Eh → E, ‖ · ‖u,h → ‖ · ‖u, ψh → ψ as h→∞, it is
then natural to investigate if a limit curve u (possibly up to subsequence) of
the solutions (uh)h still satisfies the corresponding limit equation of (1.2).

BV solutions to rate-independent evolutions.

We want to address here the singular situation when the limit dissipation po-
tential ψ loses the superlinear growth; let us focus here on the 1-homogeneous
case when

lim
h→∞

ψh(v) = ψ(v) := L v, for some L > 0 (1.3)

corresponding e.g. to limh→∞ ph = 1, or limh→∞ εh = 0 in (1.1) (in that
cases L = 1). The limit problem is formally the differential inclusion

L ∂u̇R(u(t), u̇(t)) + DuE(t, u(t)) 3 0 in T∗X , t ∈ [0, T ], u(0) = ū, (1.4)

where the presence of the subdifferential ∂u̇R is motivated by the lack of
differentiability of the norm R(u, u̇) = ‖u̇‖u at u̇ = 0. Since R(u, ·) is 1-
positively homogeneous, (1.4) describes a rate-independent evolution and its
solutions exhibit a different behavior with respect to the viscous flows (1.2).
In particular, jumps can occur even for smooth energies E and various kinds
of solutions have been proposed in the literature (we refer to the surveys [11],
the overall presentation in [12] and the references therein). Here we focus on
the notion of BV solution, proposed in [13, 14]: for the sake of simplicity, in
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this introductory section we consider the simplest case of a piecewise smooth
curve u with a finite number of jump points Ju = {t1, t2, · · · tn} ⊂ [0, T ];
u(ti±) will denote the left and the right limit of u at each ti (see also [25] for
an explicit characterization in a one-dimensional setting)

In this case a BV solution u can be characterized by two conditions:

(BV1) In each interval (ti−1, ti) the velocity vector field u̇ satisfies the dif-
ferential inclusion (1.4), which yields in particular the local stability
condition

F(t, u(t)) ≤ L for every t ∈ [0, T ] \ Ju (1.5)

and the energy dissipation

− d

dt
E(t, u(t)) + P(t, u(t)) = L ‖u̇(t)‖u(t) in (ti−1, ti), (1.6)

where P(t, u) := ∂
∂tE(t, u) and F denotes the dual norm of the (opposite)

differential of the energy,

F(t, u) := ‖DuE(t, u)‖∗u = sup
{
−〈DuE(t, u), v〉 : ‖v‖u ≤ 1

}
. (1.7)

It turns out that in the smooth regime (1.5) and (1.6) are equivalent to
(1.4).

(BV2) At each jump point ti it is possible to find an optimal transition path
ϑi : [ri−, ri+]→X , ri− ≤ 0 ≤ ri+, such that ϑi(ri±) = u(ti±), ϑi(0) =
u(ti), F(r, ϑi(r)) ≥ L in [ri−, ri+], and∫ ri+

ri−

F(r, ϑi(r))‖ϑ̇i(r)‖ϑi(r) dr = E(ti, u(ti−))− E(ti, u(ti+)) (1.8)

= min
{∫ ri+

ri−

(F(r, θ(r)) ∨ L)‖θ̇(r)‖θ(r) dr : θ(ri±) = u(ti±), θ(0) = u(ti)
}
.

Notice that the choice of the interval [ri−, ri+] is not essential, since the
integrals in (1.8) are invariant with respect to monotone time rescaling. The
minimum problem in (1.8) characterizes the minimal transition cost at each
jump point ti to connect in u(ti−) with u(ti+) passing through u(ti). Such a
cost is influenced both by the norms ‖ · ‖u and by the slope F of the energy:
we will denote it by ∆ti(u(ti−), u(ti), u(ti+)).

Energy-dissipation inequalities.

It is a remarkable fact, highlighted in [13, 14], that the refined structure
given in (BV1,BV2) can be captured by simply imposing the local stability
condition (1.5) and a single energy-dissipation inequality, namely

E(T, u(T )) + L

∫ T

0

‖u̇(t)‖u dt+

n∑
i=1

∆ti(u(ti−), u(ti), u(ti+))

≤ E(0, ū) +

∫ T

0

P(t, u(t)) dt.

(1.9)
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It turns out that (1.9) is in fact an identity, since the opposite inequality is
always satisfied along any piecewise smooth curve u. If (1.9) holds, then u is
forced to satisfy (1.6) along its smooth evolution, and the optimal transition
paths obtained by solving the minimum problem in (1.8) provide the right
energy balance between u(ti±).

The link of (1.9) with the gradient flow (1.2) becomes more transparent
if, following [1, 24, 23, 16], one notices that also (1.2) can be formulated as a
energy-dissipation inequality. In fact, setting as before

Fh(t, u) := ‖DuEh(t, u)‖∗u,h, Ph(t, u) :=
∂

∂t
Eh(t, u), (1.10)

it is not difficult to check (see the informal discussion in the next section)
that a C1 curve uh with uh(0) = ūh satisfies (1.2) if and only if the ψh
energy-dissipation inequality holds

Eh(T, uh(T )) +

∫ T

0

(
ψh
(
‖u̇h(t)‖uh,h

)
+ ψ∗h

(
Fh(t, uh(t))

))
dt

≤ Eh(0, ūh) +

∫ T

0

Ph(t, uh(t)) dt,

(1.11)

where ψ∗h is the Legendre transform of ψh.

A more general formulation in metric spaces. Here we want to show that the
metric-variational approach to gradient flows and rate-independent problems
provides a natural framework to study this singular perturbation problem
and suggests a robust and general strategy to pass to the limit in a much
more general setting where

- X is a topological space endowed with a family of complete extended
distances dh,

- the terms like ‖u̇h‖uh,h are replaced by the metric velocity induced by
dh,

- the functions Fh,Ph can be characterized as an irreversible couple of
upper gradients in terms of the behaviour of the energies Eh along ar-
bitrary absolutely continuous curves with values in (X , dh), and

- ψ is a general metric dissipation function with linear growth.

Postponing to the next two sections a more precise review of moti-
vations and definitions, we just remark that whenever sufficiently strong a
priori estimates are available to guarantee the pointwise convergence of uh
to some limit function u ∈ BV([0, T ]; (X , d)), then the heart of the problem
consists in deriving (1.9) (in a suitably extended form allowing countably
many jumps and Cantor-like terms in the metric velocity), starting from the
viscous inequality (1.11). Assuming convergence in energy of the initial data,
i.e. limh→∞ Eh(0, ūh) = E(0, ū), some lower-upper semicontinuity conditions
on (Eh)h and (Ph)h along arbitrary sequences (xh)h with equibounded en-
ergy and converging to x in a fixed reference topology σ of X are naturally
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suggested by the structure of the main inequalities (1.11) and (1.9):
lim inf
h→∞

Eh(t, xh) ≥ E(t, x),

lim sup
h→∞

Ph(t, xh) ≤ P(t, x),
whenever xh

σ→ x in X . (1.12)

The most challenging point is provided by the limit behaviour of the integral
term ∫ T

0

(
ψh
(
‖u̇h(t)‖uh,h

)
+ ψ∗h

(
Fh(t, uh(t))

))
dt, (1.13)

which has been typically studied by a clever re-parametrization technique,
introduced by [10] and then extended in various directions by [13, 18, 14].
This approach leads to the notion of the so-called parametrized solutions
to the rate-independent evolution and the crucial assumption concerns the
validity of the Γ-lim inf space-time estimate for the slopes

lim inf
h→∞

Fh(th, xh) ≥ F(t, x) whenever th → t, xh
σ→ x. (1.14)

In the present paper we propose a different technique, which avoids parametrized
solutions and thus allows for more general non-homogenous dissipation po-
tentials like

ψ(v) :=

∫ v

0

(r ∧ L) dr =

{
1
2v

2 if 0 ≤ v ≤ L,

L v − 1
2L

2 if v ≥ L,

ψ(v) :=(1 + v2)1/2.

(1.15)

Our approach involves weak convergence of measures to deal with concentra-
tions of the time derivative and blow-up around jump points of the limit solu-
tion to recover the variational structure of the transition. In this way, an eas-
ier rescaling is sufficient to construct the optimal transition paths (see (1.8))
from the converging family (uh)h and to obtain the BV energy-dissipation
inequality (1.9).
Particular cases. Let us remark that various particular cases of the present
setting are interesting by themselves and have been considered from many
different points of view.

(i) A first important case for applications is when X is a Hilbert space,
ψh(v) = 1

2v
2, and the norms ‖ · ‖u,h are independent of h and coincide

with the norm ‖·‖ of X . In this case we are dealing with the convergence
of gradient flows and a typical situation arises when Eh(t, u) = Eh(u)−
〈`(t), u〉. It is well known, since the pioneering contributions of [28, 29, 9],
that convexity (or λ-convexity for some λ ∈ R independent of h) of
the energies makes it possible to reduce (1.14) to the simpler Mosco-
convergence [19] of Eh (see e.g. [4] or [5] for the connection with the
graph-convergence of the differential operators). The link between Γ-
convergence of the energies and convergence of the gradient flows in a
metric setting has been considered in [1, 2, 8].

(ii) Another relevant situation is when both the energies and the distances
depend on h: in the quadratic case a convergence result can be deduced
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by a joint Γ-convergence, see e.g. [26, 22, 21]. The role of the Γ-lim inf
condition on the slopes as in (1.14) in general non-convex setting has
been clarified in [20, 27]. A very general stability result has been given
in [16]. An interesting example where the limit of gradient flows gives
raise to a singular limit in a new geometry is discussed in [3].

(iii) The particular case when the h-dependence affects only the dissipation
potential ψ and gives raise to a rate-independent problem in the limit
has been studied in [13, 14, 15]. The Γ-limit of rate-independent evo-
lutions, in the framework of energetic solutions, has been studied in
[17].

Plan of the paper. In the next section we give more details on the simple
finite-dimensional example we introduced before, in order to motivate the
abstract metric approach, whose setting is explained in Section 3.

Section 4 contains our main results, concerning compactness (Theorem
4.1) and convergence (Theorem 4.2) of gradient flows in a general setting. A
few examples are briefly presented at the end of the paper.

2. The metric formulation of gradient flows in a smooth setting

Let X be the finite-dimensional differentiable manifold discussed in the In-
troduction.

Length and metric derivative.

Let us first recall that the Finsler structure ‖·‖u,h on TX allows us to define
the length of a smooth curve u ∈ C1([r0, r1]; X ) by

Lengthh[u] :=

∫ r1

r0

‖u̇(r)‖u(r),h dr (2.1)

and a distance

dh(u0, u1) := inf
{

Lengthh[u] : u ∈ C1([r0, r1]; X ), u(ri) = ui

}
, (2.2)

which still retains the information of the norms ‖ · ‖u,h, since

‖u̇(r)‖u(r),h = lim
s→r

dh(u(s), u(r))

|s− r|
for every u ∈ C1([r0, r1]; X ). (2.3)

The limit in (2.3) can be extended to the general setting of absolutely contin-
uous curves in metric spaces: it is denoted by |u̇|dh(r) and it is called metric
derivative of the curve u, see Definition 3.1.

Chain rule and irreversible upper gradients.

A second crucial quantity is the dual norm of the opposite differential of the
energy

‖DuEh(t, u)‖∗u,h = sup
{
−〈DuEh(t, u), v〉 : ‖v‖u,h ≤ 1

}
. (2.4)
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Observe that the quantity in (2.4) also has a nice characterization in terms
of curves, since the function (t, u) 7→ ‖DuEh(t, u)‖∗u,h is minimal among the

functions Fh : Q → [0,∞) satisfying the chain-rule inequality

− ∂

∂r
Eh(t, u(r)) ≤ Fh(t, u(r))|u̇|dh(r) (2.5)

along arbitrary curves u ∈ C1([r0, r1]; X ). If one wants to allow for time
variation of the energy, it is natural to introduce the partial time derivative
∂
∂tEh(t, u), so that (2.5) is in fact equivalent to

− d

dr
Eh(t(r), u(r)) +

∂

∂t
Eh(t(r), u(r))ṫ(r) ≤ Fh(t(r), u(r))|u̇|dh(r) (2.6)

along arbitrary regular curves r 7→ (t(r), u(r)) ∈ Q. If we only consider
nondecreasing time parametrizations r 7→ t(r), and we integrate (2.6) along
arbitrary intervals [r0, r1], we see that the map (t, u) 7→ ∂

∂tE(t, u) is maximal
among all the functions Ph : Q → R satisfying

Eh(t(r0), u(r0)) +

∫ r1

r0

Ph(t(r), u(r))ṫ(r) dr

≤ Eh(t(r1), u(r1)) +

∫ r1

r0

Fh(t(r), u(r))|u̇|dh(r) dr.

(2.7)

In fact, let us suppose that Fh,Ph are continuous functions satisfying (2.7)
along arbitrary regular curves with ṫ(r) ≥ 0: it would not be difficult to check
that this property is equivalent toPh(t, u) ≤ ∂

∂t
E(t, u),

Fh(t, u) ≥ ‖DuEh(t, u)‖∗u,h
for every (t, u) ∈ Q. (2.8)

If (2.8) holds, we say that the couple (Fh,Ph) is an irreversible upper gradient
for the energy Eh with respect to the distance dh, see Definition 3.2, and
(X , dh,Eh,Fh,Ph) is an upper-gradient evolution system.

This definition is the natural adaptation to time-dependent functionals
of the well-known notion of upper-gradient in the frame of analysis in metric
spaces (see [7, 1]); the interesting fact is that (2.7) only involves the notion
of absolutely continuous curves in (X , dh).

ψ-gradient flows and energy-dissipation inequality.

The distinguished role of gradient flows with respect to (2.6) can be easily
seen by recalling the Fenchel duality

−DvRh(u, v) = f ⇔ −〈f, v〉 = ‖v‖u,h‖f‖∗u,h = ψh(‖v‖u,h) + ψ∗h(‖f‖∗u,h),
(2.9)

where ψ∗ is the Legendre transform of ψ:

ψ∗(f) = sup
v≥0

(
f v − ψ(v)

)
. (2.10)
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A crucial feature of Fenchel duality is that for every couple (v, f) ∈ TuX ×
T∗uX one has the inequality

−〈f, v〉 ≤ ‖v‖u,h‖f‖∗u,h ≤ ψh(‖v‖u,h) + ψ∗h(‖f‖∗u,h), (2.11)

so that in order to check the identity −DvRh(u, v) = f it is sufficient to prove
the opposite inequality, i.e.

−〈f, v〉 ≥ ψh(‖v‖u,h) + ψ∗h(‖f‖∗u,h) ⇒ −DvRh(u, v) = f. (2.12)

Taking into account these remarks and observing that we have the chain rule

−〈DuEh(t, uh(t)), u̇h(t)〉 = − d

dt
Eh(t, uh(t)) +

∂

∂t
Eh(t, uh(t)),

we deduce that uh solves (1.2) if and only if

− d

dt
Eh(t, uh(t)) +

∂

∂t
Eh(t, uh(t))

≥ ψh
(
‖u̇h(t)‖uh,h

)
+ ψ∗h

(
‖DuEh(t, uh(t))‖∗uh,h

)
.

(2.13)

Since, as we already noticed in (2.11), the opposite inequality is always true,
we immediately see that it is sufficient to impose the integrated version of
(2.13) in (0, T ):

Eh(T, uh(T )) +

∫ T

0

(
ψh
(
‖u̇h(t)‖uh,h

)
+ ψ∗h

(
‖DuEh(t, uh(t))‖∗uh,h

))
dt

≤ Eh(0, ūh) +

∫ T

0

∂

∂t
Eh(t, uh(t)) dt.

(2.14)
Now we can make the last step: instead of looking for curves satisfying (2.14),
we reinforce it by replacing ∂tEh and ‖DuEh‖∗uh,h

with a couple Ph,Fh of

irreversible upper gradients satisfying (2.7). Since ψ and ψ∗ are nondecreasing
maps and (2.8) holds, it is immediate to see that if a curve u ∈ C1([0, T ]; X )
satisfies the ψ-ψ∗ energy-dissipation inequality

Eh(T, uh(T )) +

∫ T

0

(
ψh
(
|u̇h|dh(t)

)
+ ψ∗h

(
Fh(t, uh(t))

))
dt

≤ Eh(0, ūh) +

∫ T

0

Ph(t, uh(t)) dt

(2.15)

(see also the next Definition 3.3), then it also satisfies (2.14) and by the ar-
gument above it satisfies (1.2); moreover, along the curve we find a posteriori

‖DuEh(t, uh(t))‖∗uh,h
= Fh(t, uh(t)),

∂

∂t
Eh(t, uh(t)) = Ph(t, uh(t))

for every t ∈ [0, T ]. We thus have seen that (2.15) for a couple (Fh,Ph) of
irreversible upper gradients provides a natural metric definition of ψ-gradient
flow, which can be immediately extended to a metric framework.
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Marginal functionals and conditional time derivative of the energy.

In order to motivate the even more general definition of evolution system
considered in Section 3.2, where the power functional P can also depend on
a further variable F satisfying the constraint F(t) ≥ F(t, u(t)), let us consider
a non smooth situation, where E is a marginal functional : it means that E

results from a minimization of the form

E(t, u) := min
η

{
I(t, u, η) : η ∈ K

}
, (2.16)

where K is a compact topological space and I : Q ×K → R is a contin-
uous function such that I(·, ·, η) ∈ C1(Q) for every η ∈ K with uniformly
continuous derivatives.

Even if each single functional I(·, η) is regular, E is not C1 in general.
Referring to [16] for a more detailed discussion, we recall here that setting

M(t, u) := argmin I(t, u, ·) =
{
η ∈ K : I(t, u, η) = E(t, u)

}
(2.17)

it is natural to replace the smooth differential equation (1.2) with the differ-
ential inclusion in [0, T ]

Du̇Rh(uh(t), u̇h(t)) + Dm

uE(t, uh(t)) 3 0 in T∗X , uh(0) = ūh, (2.18)

where, just for the purposes of this section, DmE denotes the so-called mar-
ginal differential of Eh, i.e.

DmE(t, u) :=
{

(p,w) ∈ R× T∗uX : p = ∂tI(t, u, η),

w = DuI(t, u, η) for some η ∈M(t, u)
}

and Dm
uE is its projection onto the second component,

Dm

uE(t, u) :=
{
w ∈ T∗uX : w = DuI(t, u, η) for some η ∈M(t, u)

}
. (2.19)

If we want to differentiate the energy along a regular curve r 7→ (t(r), u(r))
as in (2.6) we get for a.a. r

− d

dr
E(t(r), u(r)) + p(r) ṫ(r) = −〈w(r), u̇(r)〉 ≤ ‖w(r)‖∗u,h |u̇|dh(r), (2.20)

where (p(r),w(r)) is an arbitrary selection in DmE(t(r), u(r)). Setting

Fh(t, u) := min
{
‖w‖u,h : w ∈ Dm

u (t, u)
}
, (2.21)

Ph(t, u, f) := max
{
p : (p,w) ∈ DmE(t, u), ‖w‖u,h ≤ f

}
, (2.22)

it is easy to check that for every F(r) ≥ Fh(t(r), u(r)) we have

− d

dr
E(t(r), u(r)) + Ph(t(r), u(r),F(r))ṫ(r) ≤ F(r) |u̇|dh(r). (2.23)

Conversely, if a curve [0, T ] 3 t 7→ uh satisfies the ψh energy-dissipation
inequality

− d

dt
E(t, u(t)) + Ph(t, u(t),Fh(t)) ≥ ψh

(
|u̇|dh(t)

)
+ ψ∗h

(
Fh(t)

)
(2.24)
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for a.a. t ∈ (0, T ) and for some Fh(t) ≥ Fh(t, uh(t)), we get by (2.20) and
(2.23)

−〈w, u̇h(t)〉 − p + Ph(t, u(t),Fh(t)) ≥ ψh
(
|u̇|dh(t)

)
+ ψ∗h

(
Fh(t)

)
for every (p,w) ∈ DmE(t, uh(t)).

Choosing in particular a couple (p̄, w̄) attaining the maximum in (2.22) for
f := Fh(t), we obtain

−〈w̄, u̇h(t)〉 ≥ ψh
(
|u̇|dh(t)

)
+ ψ∗h

(
Fh(t)

)
≥ ψh

(
|u̇|dh(t)

)
+ ψ∗h

(
w̄
)
,

which eventually yields by (2.9)

−Du̇Rh(uh(t), u̇h(t)) = w̄ ∈ Dm

uE(t, uh(t)), Fh(t) = ‖w̄‖uh,h,

so that uh solves (2.18).

Towards a general form of chain rule and energy-dissipation inequalities.

Notice that we were able to formulate the non-smooth differential inclusion
(2.18) in a metric variational form by looking for a chain-rule inequality
with the more general structure given by (2.23): this will be reflected in the
definition 3.2 of irreversible upper gradients.

The differential inclusion is then characterized by the ψh energy-dissipation
inequality (2.24): its metric formulation will be considered in Definition 3.3
in the superlinear case and in Definition 3.6 in the case of a metric dissipation
ψ with linear growth.

It is then natural to investigate the stability of inequality (2.14) with re-
spect to perturbations of the parameter h. One of the most difficult points is
to guess how to state (2.15) when the metric dissipation functional ψ has only
a linear growth, and therefore one expects a solution in BV([0, T ]; (X , d)).
We have already discussed in the introduction the case of a piecewise smooth
curve, but a robust theory should allow for general BV curves, possibly ex-
hibiting countably many jumps and a metric derivative with a singular Cantor
part. The correct treatment of this case will be discussed in the next section.

3. The metric setting and preliminary results

Complete extended distances. Let X be a given set; an extended distance
on X is a map d : X ×X → [0,∞] satisfying

d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x) for every x, y ∈X ,

d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈X .

We say that (X , d) is an extended metric space. Most of the definitions
concerning metric spaces generalize verbatim to extended metric spaces, in
particular it makes perfectly sense to speak about a complete extended metric
space.
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3.1. BV, absolutely continuous curves, and metric derivative

Let (X , d) be an extended metric space.

Definition 3.1 (Absolutely continuous curves and metric derivatives). We
say that a curve u : [a, b] → X is absolutely continuous (a.c. for short) and
belongs to AC(a, b; (X , d)) if there exists m ∈ L1(a, b) such that

d(u(s), u(t)) ≤
∫ t

s

m(r) dr for every a ≤ s < t ≤ b. (3.1)

If u ∈ AC(a, b; (X , d)) then the limit

|u̇|d(t) := lim
τ↓0

d(u(t+ τ), u(t))

|τ |
exists for L 1-a.a. t ∈ (a, b), (3.2)

it satisfies |u̇|d ≤ m L 1-a.e. in (a, b), belongs to L1(a, b), and it is called
metric derivative of u; |u̇|d provides the minimal function m such that (3.1)
holds.

The (pointwise) d-variation of u : [a, b]→X in an interval [α, β] ⊂ [a, b]
is defined by

Vard(u; [α, β]) := sup
{ n∑
j=1

d(u(tj), u(tj−1)) : α = t0 < · · · < tn = b
}
. (3.3)

We say that u ∈ BV([a, b]; (X , d)) if Vard(u; [a, b]) < ∞ and u takes values
in a complete subset of (X , d); in this case, u admits left and right lim-
its (denoted by u(t−) and u(t+)) at every point of [a, b] and we adopt the
convention to extend u to R \ [a, b] by setting

u(t) :=

{
u(a) if t < a,

u(b) if t > b,
so that u(a−) := u(a), u(b+) := u(b). (3.4)

The pointwise jump set and the essential jump set of u are defined by

Ju :=
{
t ∈ [a, b] : u(t) 6= u(t−) or u(t) 6= u(t+)

}
ess-Ju :=

{
t ∈ [a, b] : u(t−) 6= u(t+)

}
,

(3.5)

and satisfy the obvious inclusion ess-Ju ⊂ Ju. If u ∈ BV([a, b]; (X , d)) we
denote by Vu : R→ [0,∞) the bounded monotone function

Vu(t) :=


0 if t < a,

Vard(u; [a, t]) if t ∈ [a, b],

Vard(u; [a, b]) if t > b,

(3.6)

and by |du|d its distributional derivative: |du|d is a finite measure in R sup-
ported in [a, b], and we can decompose it as the sum of a diffuse part and a
jump part

|du|d = |u′|d + |Ju|d, |Ju|d = |du|d Ju,

|u′|d({t}) = 0 for every t ∈ R,
(3.7)
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where denotes the restriction of a measure to a Borel set; thus |Ju|d is
concentrated on the (at most) countable jump set Ju and

|Ju|d({t}) = d(u(t−), u(t)) + d(u(t), u(t+)) for every y ∈ Ju. (3.8)

The Lebesgue decomposition of the diffuse part |u′|d can be written as

|u′|d = |u̇|d L 1+|Cu|d, with |u̇|d given by (3.2) and the Cantor part |Cu|d ⊥ L 1.
(3.9)

We obtain

Vard(u; [α, β]) =

∫ β

α

d |u′|d + Jmpd(u; [α, β]) (3.10)

=

∫ β

α

|u̇|d(t) dt+

∫ β

α

d |Cu|d + Jmpd(u; [α, β]) (3.11)

where for every subinterval [α, β] ⊂ [a, b]

Jmpd(u; [α, β]) := d(u(α), u(α+)) +
∑

t∈Ju∩(a,b)

|Ju|d({t}) + d(u(β−), u(β)).

3.2. Metric evolution systems, irreversible upper gradients and ψ-gradient
flows

Let (X , d) be a complete extended metric space and [0, T ] a fixed time in-
terval of R. We denote by Q the product space [0, T ] ×X and we say that
an a.c. curve q = (t, u) : [α, β]→ Q is time-ordered if t is non decreasing.

If I is some interval of R, B+(I) (resp. M+(I)) will denote the collections
of Borel (resp. L 1-measurable) maps defined in I with values in [0,+∞]. We
say that a map G : Q → R = R ∪ {±∞} is measurable along time-ordered
a.c. curves if for every time-ordered a.c. curve q in Q the composition G◦q is
Lebesgue measurable. We denote by M(Q) the collection of all such functions.

An evolution system (X , d,E,F,P) consists of

1. a complete extended metric space (X , d),
2. an energy functional E : Q → R ∪ {+∞} in M(Q),
3. a slope functional F : Q → [0,∞] in M(Q),
4. a power functional P : Q × [0,∞] → R such that for every (q, f) ∈

Q × [0,∞) the map P(·, f) belongs to M(Q) and the map P(q, ·) is
nondecreasing and upper semicontinuous.

Notice that if q = (t, u) : [α, β] → Q is a time-ordered a.c. curve and F ∈
M+([α, β]), the composition s 7→ P(q(s),F(s)) is measurable.

The essential feature of this structure is captured by the following defi-
nition:

Definition 3.2 (Irreversible upper gradients for time-dependent functionals).
We say that (X , d,E,F,P) is an (irreversible) upper gradient system if for
every time-ordered a.c. curve [α, β] 3 s 7→ q(s) = (t(s), u(s)) ∈ Q and every
F ∈ M+([α, β]) satisfying

E(t(α), u(α)) <∞, F ≥ F ◦ q in [α, β],

∫ β

α

[
P(q(s),F(s))

]
−ṫ(s) ds <∞
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there holds

E(q(α)) +

∫ β

α

P(q(s),F(s))ṫ(s) ds ≤ E(q(β)) +

∫ β

α

F(s) |u̇|(s) ds. (3.12)

A metric dissipation function is a function

ψ : [0,∞)→ [0,∞) convex, with ψ(0) = 0, L = lim
v→+∞

ψ(v)

v
> 0. (3.13)

We say that ψ has L-linear growth if L < +∞ and that ψ is superlinear if
L = +∞. Its dual ψ∗ : [0,∞)→ [0,∞] is defined as

ψ∗(f) = sup
v≥0

(
f v − ψ(v)

)
, (3.14)

and it is a convex and superlinear function with ψ∗(0) = 0 as well, satisfying
the Fenchel duality

ψ(v) + ψ∗(f) ≥ f v for every v, f ∈ [0,∞);

ψ(v) + ψ∗(f) = f v ⇔ f ∈ ∂ψ(v) ⇔ ψ′(v−) ≤ f ≤ ψ′(v+)
(3.15)

where ∂ψ(v) = [ψ′(v−), ψ′(v+)] denotes the convex subdifferential of ψ. No-
tice that at v = 0 we have

∂ψ(0) = [0, ψ′(0+)]

so that ∂ψ(0) is single valued only when the right derivative of ψ at 0 vanishes.

The proper domain D(ψ∗) := {f ∈ [0,∞) : ψ∗(f) <∞} is related to L
by the relation

L = sup{f : ψ∗(f) <∞}, (3.16)

so that ψ∗ is finite in [0,∞) if and only if ψ is superlinear. The typical
examples are

ψ(v) =
1

p
vp, ψ∗(f) =

1

p∗
fp
∗
, ∂ψ(v) = vp−1; p > 1,

1

p
+

1

p∗
= 1;

ψ(v) = Lv, ψ∗(f) =

{
0 if f ≤ L,

+∞ if f > L.

The ψ-gradient flows associated with an evolution system can be character-
ized by a simple family of dissipation inequalities:

Definition 3.3 (Energy-dissipation inequality). Let (X , d,E,F,P) be an evo-
lution system and let ψ be a metric dissipation function.
A curve u ∈ AC([0, T ]; (X , d)) with E(0, u(0)) <∞ satisfies the ψ-ψ∗ energy-
dissipation inequality if there exists a measurable map F ∈ M+([0, T ]) satis-
fying

F(t) ≥ F(t, u(t)) in [0, T ],

∫ T

0

[
P(t, u(t),F(t))

]
+

dt <∞, (3.17)
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and for every t ∈ [0, T ]

E(t, u(t)) +

∫ t

0

(
ψ
(
|u̇|d(r)

)
+ ψ∗

(
F(r)

))
dr

≤ E(0, u(0)) +

∫ t

0

P(r, u(r),F(r)) dr.

(3.18)

It is immediate to see that if (X , d,E,F,P) is an upper gradient evolu-
tion system, then by (3.12) and (3.15) the integral characterization (3.18) is
equivalent to the following properties:

t 7→ E(t, u(t)) is absolutely continuous in [0, T ], (3.19a)

F(t) ≥ F(t, u(t)) a.a. t in (0, T ), (3.19b)

− d

dt
E(t, u(t)) + P(t, u(t),F(t)) = |u̇|d(t)F(t)

= ψ
(
|u̇|d(t)

)
+ ψ∗

(
F(t)

) for a.e. t ∈ (0, T ). (3.19c)

Notice that (3.19c) and (3.15) yields the velocity-slope relation

F(t) ∈ ∂ψ
(
|u̇|d(t)

)
for a.a. t ∈ (0, T ), (3.20)

and, by (3.12), F(t) realizes the minimal selection property

|u̇|d(t)F(t) − P(t, u(t),F(t)) = min
f≥F(t,u(t))

|u̇|d(t) f − P(t, u(t), f) (3.21)

for a.a. t ∈ (0, T ). In particular, (3.21) yields

F(t) = F(t, u(t)) |u̇|d L 1-a.e. in (0, T ) when P is independent of F,
(3.22)

and (3.22) holds L 1-a.e. when ψ′(0+) = 0.

Definition 3.4 (ψ-gradient flows). Let (X , d,E,F,P) be an upper gradient
evolution system, and let ψ be a metric dissipation function as in (3.13). A
curve u ∈ AC(a, b; (X , d)) is a ψ-gradient flow of the system if it satisfies
(3.17) and (3.18) at t = T , or, equivalently, (3.19a,b,c).

3.3. BV solutions to evolution systems

Let us now consider the case of a dissipation potential ψ with linear growth,
corresponding to L <∞ in (3.13). In this case, absolutely continuous solutions
to (3.19a,b,c) often do not exist, even in the smooth and finite-dimensional
setting of Section 1 and therefore we have to extend the previous definitions
to the BV setting.

As before, we fix the time interval [0, T ] and we denote by Q the product
space [0, T ]×X and we consider a function f : Q → [0,∞] measurable along
absolutely continuous curves. Relevant examples will be f := F and

f(q) := F(q) ∨ L for every q ∈ Q. (3.23)

We interpret f(t, ·) as a conformal factor that induces a modified geometry in
X : the corresponding length of a curve ϑ ∈ AC(r0, r1; (X , d)) (notice that
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the curve is parametrized by a different variable r, and t remains fixed) is

Lengthd,f,t[ϑ] :=

∫ r1

r0

f(t, ϑ(r)) |ϑ̇(r)|d dr (3.24)

and the cost of a transition from u0 to u1 in X at the time t ∈ [0, T ] is then
defined by

∆d,f,t(u0, u1) = inf
{

Lengthd,f,t[ϑ] : ϑ ∈ AC(r0, r1; (X , d)), ϑ(ri) = ui

}
.

We also set

∆d,f,t(u0, u, u1) : = ∆d,f,t(u0, u) + ∆d,f,t(u, u1)

= inf
{

Lengthd,f,t[ϑ] : ϑ ∈ AC(r0, r1; (X , d)),

ϑ(ri) = ui, ϑ(r) = u for some r ∈ [r0, r1]
}
.

We can thus consider a modified Jump functional

Jmpd,f(u; [α, β]) = ∆d,f,α(u(α), u(α+))

+
∑
t∈Ju

∆d,f,t(u(t−), u(t), u(t+)) + ∆d,f,β(u(β−), u(β)).

The previous quantities will be quite useful to extend the chain-rule inequality
(3.12) to the BV setting. Notice that we are assuming that F is a Borel map
(instead of Lebesgue measurable as in Definition 3.2), since an integration
with respect to the possibly singular measure |u′|d occurs in (3.25).

Proposition 3.5. Let (X , d,E,F,P) be an upper gradient evolution system,
f := F ∨ L for some L > 0, and let u ∈ BV([0, T ]; (X , d)) satisfy

E(0, u(0)) <∞,
∫ T

0

(P(t, u(t),F(t)))− dt <∞, Jmpd,f(u; [0, T ]) <∞,

for some Borel map F ∈ B+([0, T ]) with F(t) ≥ F(t, u(t)) in [0, T ]. Then for
every t ∈ [0, T ]

E(0, u(0)) +

∫ t

0

P(r, u(r),F(r)) dr

≤ E(t, u(t)) +

∫ t

0

F(r) d|u′|d + Jmpd,F(u; [0, t]).

(3.25)

Proof. It is not restrictive to assume t = T . Let us denote by (tn)n the jump
set Ju of u and let us first set

s(t) := t+ Vu(t), S := T + Vu(T ), In := (s(tn−), s(tn+)), I := ∪nIn,
D := [0,S] \ I, t := s−1 : D → [0, T ], u := u ◦ t : D →X .

Since Jmpd,f(u; [0, T ]) < ∞ it is not difficult to check that t, u are Lipschitz
maps (if we only know Jmpd,F(u; [0, T ]) <∞, it would not clear how to derive
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a uniform upper bound on the total variation of the function u). We easily
extend t to [0,S] by setting

t(s) ≡ tn if s ∈ In. (3.26)

In order to extend u, we fix ε > 0 and for every interval In we consider two
curves ϑn, ζn : [s(tn−), s(tn+)] → X satisfying ϑn(s(tn±)) = ζn(s(tn±)) =
u(tn±), taking the value u(tn) at some point in In, and fulfilling∫

In

F(tn, ϑn(s))|ϑ̇n|d(s) ds ≤ ∆d,F,tn(u(tn−), u(tn), u(tn+)) + ε2−n,∫
In

f(tn, ζn(s))|ζ̇n|d(s) ds ≤ ∆d,f,tn(u(tn−), u(tn), u(tn+)) + ε2−n.

(3.27)

For N ∈ N we define

uN (s) :=


u(s) if s ∈ [0,S] \ I,
ϑn(s) if s ∈ In, n ≤ N,
ζn(s) if s ∈ In, n > N,

FN (s) :=


F(t(s)) if s ∈ [0,S] \ I,
F(tn, ϑn(s)) if s ∈ In, n ≤ N,
f(tn, ζn(s)) if s ∈ In, n > N.

It is not difficult to check that uN is absolutely continuous, so that (3.12)
yields (see [23, Lemma 4.1])

E(0, u(0)) +

∫ T

0

P(t, u(t),F(t)) dt

= E(t(0), uN (0)) +

∫ S

0

P(t(s), u(s),F(t(s))) ṫ(s) ds

≤ E(t(S), uN (S)) +

∫ S

0

FN (s)|u̇N |d(s) ds

= E(T, u(T )) +

∫
D

F(t(s))|u̇N |d(s) ds

+

N∑
n=1

∫
In

F(tn, ϑn(s))|ϑ̇n|d(s) ds+
∑
n>N

∫
In

f(tn, ζn(s))|ζ̇n|d(s) ds

≤ E(T, u(T )) +

∫ T

0

F(t) d|u′|+ ε

+

N∑
n=1

∆d,F,tn(u(tn−), u(tn), u(tn+)) +
∑
n>N

∆d,f,tn(u(tn−), u(tn), u(tn+)).

Passing first to the limit as N ↑ ∞ (notice that the last term vanishes as
N ↑ ∞ since Jmpd,f(u; [0, T ]) is finite) and then as ε ↓ 0 we obtain (3.25). �

Definition 3.6 (Energy-dissipation inequality for BV functions). Let
(X , d,E,F,P) be an evolution system in the time interval [0, T ], let ψ be
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a metric dissipation function with L-linear growth, and let f := F ∨ L. A
curve u ∈ BV([0, T ]; (X , d)) with E(0, u(0)) < ∞ satisfies the ψ-ψ∗ energy
dissipation inequality if there exists a Borel map F ∈ M+([0, T ]) satisfying
(3.17),

F(t) ≥ F(t, u(t)) in [0, T ],

∫ T

0

[
P(t, u(t),F(t))

]
+

dt <∞, (3.28)

the stability condition on the Cantor part

F(t) ≤ L for |Cu|d-a.a. t ∈ [0, T ] (3.29)

and

E(t, u(t)) +

∫ t

0

(
ψ
(
|u̇|d(r)

)
+ ψ∗

(
F(r)

))
dr + L

∫ t

0

d|Cu|d + Jmpd,f(u; [0, t])

≤ E(0, u(0)) +

∫ t

0

P(r, u(r),F(r)) dr for every t ∈ [0, T ]. (ED)

Since ψ∗(f) =∞ if f > L, (ED) yields in fact a stronger version of the
local stability condition

F(t) ≤ L for (L 1 + |Cu|d)-a.a. t ∈ [0, T ]. (Sloc)

In the rate-independent case ψ(v) = Lv, (3.29) and (ED) are thus equivalent
to (Sloc) and

E(t, u(t)) + L

∫ t

0

d |u′|d + Jmpd,f(u; [0, t])

≤ E(0, u(0)) +

∫ t

0

P(r, u(r),F(r)) dr

(EDRI)

for every t ∈ [0, T ].

Definition 3.7 (BV solutions to evolution systems and rate-independent flows).
Let (X , d,E,F,P) be an upper gradient system in the time interval [0, T ], let
ψ be a metric dissipation function with L-linear growth, and let f := F ∨ L.
A curve u ∈ BV([0, T ]; (X , d)) with E(0, u(0)) < ∞ is a BV solution of the
corresponding evolution if there exists F ∈ B+([0, T ]) satisfying (3.28), the
local stability condition (Sloc) and the energy balance

E(t2, u(t2)) +

∫ t2

t1

(
ψ
(
|u̇|d
)

+ ψ∗
(
F
))

dr + L

∫ t2

t1

d|Cu|d + Jmpd,f(u; [t1, t2])

= E(t1, u(t1)) +

∫ t2

t1

P(r, u(r),F(r)) dr (EB)

for every [t1, t2] ⊂ [0, T ].

Notice that (EB) holds if and only if the curve t 7→ e(t) := E(t, u(t))
(extended to R as in (3.4)) is of bounded variation, Je = Ju, and its distri-
butional time derivative d

dte satisfies

− d

dt
e+ P(·, u,F) =

(
ψ
(
|u̇|d
)

+ ψ∗
(
F
))

L 1 + L|Cu|d − Je in R, (3.30)
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where at each jump point t ∈ Ju we have e(t±) = E(t, u(t±)) and the jump
part Je is 

E(t, u(t−))− E(t, u(t+)) = −Je({t}),
E(t, u(t−))− E(t, u(t)) = ∆d,f(u(t−), u(t)),

E(t, u(t))− E(t, u(t+)) = ∆d,f(u(t), u(t+)).

As for gradient flows, thanks to Proposition 3.5 it is immediate to see that
whenever (3.29) holds the energy balance (EB) is equivalent to the energy-
dissipation inequality (ED) at the final point t = T . Moreover, a BV solution
u satisfies

F(t) ∈ ∂ψ
(
|u̇|d(t)

)
for L 1-a.a. t ∈ (0, T ), (3.31)

F(t) = F(t, u(t)) = L for |Cu|d-a.a. t ∈ (0, T ), (3.32)

and the minimal selection principle

|u̇|d(t)F(t)− P(t, u(t),F(t)) = min
f≥F(t,u(t))

|u̇|d(t) f − P(t, u(t), f) (3.33)

for L 1-a.a. t ∈ (0, T ). In the rate-independent case ψ(v) = Lv, a BV solu-
tion is equivalently characterized by the local stability (Sloc) and the energy
balance

E(t2, u(t2)) + L

∫ t2

t1

d |u′|d + Jmpd,f(u; [t1, t2])

= E(t1, u(t1)) +

∫ t2

t1

P(r, u(r),F(r)) dr

(EBRI)

for every 0 ≤ t1 ≤ t2 ≤ T .

4. Compactness and convergence for families of Gradient
Flows

In this section we will state and prove our main results. For the sake of clar-
ity, we distinguish between the compactness (Theorem 4.1) and the stability
(Theorem 4.2) issues.

We also take care to highlight the role of the energy-dissipation inequal-
ity for general metric-evolution systems (X , dh,Eh,Fh,Ph), even if they do
not satisfy the irreversible upper gradient condition 3.2. Therefore, compact-
ness and stability of the energy-dissipation inequality always hold whenever
suitable topological properties (see the next (C1,2,3,4) assumptions) are sat-
isfied.

In order to recover a ψ-gradient flow or a BV solution in the limit, we
will ask that (X , d,E,F,P) is an upper gradient system.

We also notice that our theorems can also be extremely useful to prove
existence results for solutions to the limit evolution system: in this case one
could think that (X , dh,Eh,Fh,Ph) is a family of suitably regularized prob-
lems (e.g. with smooth superlinear dissipations and better energies) for which
existence is already known (see [16]).
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Let (X , σ) be a topological space, and let Q = [0, T ] ×X with the
standard product topology, which we will denote by π. We consider a family
of evolution systems (X , dh,Eh,Fh,Ph) in the time interval [0, T ] indexed by
the parameter h ∈ N, a sequence ūh of initial points, and metric dissipation
functions ψh, ψ such that

lim
h→∞

ψh(v) = ψ(v) for every v ∈ [0,∞), (4.1)

Since each function ψh is monotone, (4.1) is equivalent to

Γ- lim
h→∞

ψh(v) = ψ(v) for every v ∈ [0,∞), (4.2)

and also to the following property, valid for arbitrary sequences (wh)h ⊂
[0,∞):

wh → w ⇒ lim inf
h→∞

ψh(wh) ≥ ψ(w), lim inf
h→∞

ψ∗h(wh) ≥ ψ∗(w). (4.3)

Typical examples are given in (1.1) and (1.3). We want to study the limit
of absolutely continuous ψh-gradient flows uh ∈ AC(0, T ; (X , dh)) of the
systems (X , dh,Eh,Fh,Ph) with uh(0) = ūh as h→∞, assuming that they
“converge” (in a variational sense that we are going to make precise) to a
limit system (X , d,E,F,P). The most interesting case is when ψ has L-linear
growth, so that we expect a function of bounded variation in the limit.

Here and in the following we identify diverging subsequences in N with
subsets H ⊂ N with supH =∞ and we write limh∈H for limh→∞,h∈H .

We will assume that:

(C1) There exist constants a < L, b ≥ 0 such that

Ẽh(t, u) := Eh(t, u) + adh(u, ūh) + b ≥ 0 for every (t, u) ∈ Q. (4.4)

(C2) The energies (Ẽh)h∈N are equi-coercive in Q: for every sequence (qh)h∈H ⊂
Q with suph∈H Ẽh(qh) < ∞ there exists a subsequence H ′ ⊂ H such
that limh∈H′ qh = q in the π-topology.

(C3) If two sequences qih = (tih, x
i
h) ⊂ Q, h ∈ H, i = 1, 2, satisfy suph∈H Ẽh(qih) <

∞ and π-converge to qi, then we have

lim inf
h∈H

dh(x1
h, x

2
h) ≥ d(x1, x2) (4.5)

where d(·, ·) is a complete extended distance on X .

Theorem 4.1 (A priori bounds and compactness). Let us suppose that (C1)
holds and let uh ∈ AC(0, T ; (X , dh)), Fh ∈ B+([0, T ]) be sequences satisfying
uh(0) = ūh and the corresponding energy-dissipation inequalities (3.17) and
(3.18) for every h ∈ N, namely

Fh(t) ≥ Fh(t, uh(t)) in [0, T ],

∫ T

0

[
Ph(t, uh(t),Fh(t))

]
+

dt <∞, (4.6)
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and

Eh(t, uh(t)) +

∫ t

0

(
ψh
(
|u̇h|dh(r)

)
+ ψ∗h

(
Fh(r)

))
dr

≤ Eh(0, ūh) +

∫ t

0

Ph(r, uh(r),Fh(r)) dr

(4.7)

for every t ∈ [0, T ]. If there exists a constant A ≥ 0 such that

Eh(0, ūh)+

∫ t

0

Ph
(
r, uh(r),Fh(r)

)
dr ≤ A for every h ∈ N, t ∈ [0, T ], (4.8)

then there exists a constant C > 0 such that for every t ∈ [0, T ] and h ∈ N

Eh(t, uh(t)) ≤ C,
∫ T

0

(
ψh
(
|u̇h|dh(r)

)
dr + ψ∗h

(
Fh(r)

))
dr ≤ C, (4.9)

so that

lim
h→∞

L 1{t ∈ (0, T ) : Fh(t) ≥ f} = 0 for every f > L. (4.10)

If moreover (C2,3) hold, then for every subsequence H ⊂ N there exists a
further subsequence H ′ ⊂ H such that

lim
h∈H′

uh(t) = u(t) in (X , σ) for every t ∈ [0, T ], (4.11)

with u ∈ BV([0, T ]; (X , d)),

lim
h∈H′

uh(th) = u(t) if [0, T ] 3 th → t ∈ [0, T ] \ Ju, (4.12)

and, for every interval [t1, t2] ⊂ [0, T ],

lim inf
h∈H′

∫ t2

t1

ψh
(
|u̇h|dh(r)

)
dr ≥

∫ t2

t1

ψ
(
|u̇|d(r)

)
dr + L|Cu|d([α, β]) (4.13)

Proof. Let us first prove (4.9) and (4.10).

First of all we show that dh(uh(t), ūh) is uniformly bounded, we choose ā ∈
(a, L), and we observe that (4.3), the monotonicity of ψh, and the continuity
of ψ∗ in [0, L) yield limh→∞ ψ∗h(ā) = ψ∗(ā) <∞ so that c := suph ψ

∗
h(ā) <∞.

It follows that

ψh(v) ≥ ā v − c for every v ≥ 0, h ∈ N,

and therefore (4.7) and (4.4) yield

ā dh(uh(t), ūh) ≤ ā

∫ t

0

|u̇h|dh(r) dr ≤
∫ t

0

ψh
(
|u̇h|dh(r)

)
dr + c

≤ A− Eh(t, uh(t)) + c ≤ A+ b + adh(uh(t), ūh) + c,

so that

dh(uh(t), ūh) ≤ (ā− a)−1
(
A+ b + c

)
for every t ∈ [0, T ], h ∈ N. (4.14)

Combining (C1), (4.8) and (4.14) we conclude that there exists a constant
B ≥ 0 such that

−B ≤ Eh(t, uh(t)) ≤ A for every t ∈ [0, T ], h ∈ N. (4.15)
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Therefore (4.15) and (4.7) yield∫ T

0

ψh
(
|u̇h|dh(t)

)
dt ≤ A+B,

∫ T

0

ψ∗h
(
Fh(t)

)
dt ≤ A+B. (4.16)

We eventually obtain (4.10), since by the monotonicity of ψ∗h we get from the
second of (4.16)

ψ∗h(f) L 1{t ∈ (0, T ) : Fh(t, uh(t)) ≥ f} ≤ A+B for every f ≥ 0,

and limh→∞ ψ∗h(f) =∞ when f > L by (4.3) and (3.16).

The proof of (4.11) and (4.12) can be easily obtained by adapting the

argument of the extended Ascoli-Arzelà-Helly type result [1, Proposition
3.3.1].

By (C2) and the bound (4.9), for every t ∈ [0, T ] the sequence (uh(t))h∈H
admits a σ-converging subsequence (possibly depending on t). For every
f ∈ [0, L) and 0 ≤ t0 < t1 ≤ T we recall the bound

fd(uh(t1), uh(t0)) ≤
∫ t1

t0

f |u̇h|dh dt ≤
∫ t1

t0

(
ψh
(
|u̇h|dh

)
+ ψ∗h(f)

)
dt. (4.17)

We consider the nonnegative finite measures on [0, T ]

νh,f :=
(
ψh
(
|u̇h|dh

)
+ ψ∗h(f)

)
L 1, f ∈ [0, L) (4.18)

on [0, T ]; up to extracting a suitable subsequence, we can suppose that they
weakly∗ converge to a finite measure νf = ν0 + ψ∗(f)L 1 in the duality with
continuous functions on [0, T ], so that

f lim sup
h→∞

dh(uh(t1), uh(t2)) ≤ lim sup
h→∞

νh,f ([t1, t2]) ≤ νf ([t1, t2]) (4.19)

for every 0 ≤ t1 ≤ t2 ≤ T . Denoting by J := {t ∈ [0, T ] : ν0({t}) > 0} and
considering a countable set I ⊃ J dense in [0, T ], by a standard diagonal

argument we can find a subsequence H ′ ⊂ H such that uh(t)
σ→ u(t) for

every t ∈ I as h→∞, h ∈ H ′. By (C3) we have

f d(u(t1), u(t2)) ≤ νf ([t1, t2]) for every t1, t2 ∈ I. (4.20)

Since (X , d) is complete, the curve I 3 t 7→ u(t) can be uniquely extended to
a continuous curve in [0, T ] \ J , which we still denote by u. In order to prove
(4.12) we argue by contradiction and we find a sequence H ′′ ⊂ H ′, points
th → t ∈ [0, T ] \ J and a σ-neighborhood U of u(t) such that (uh(th)) 6∈ U
for every h ∈ H ′′. Up to extracting a further subsequence (still denoted by

H ′′) we can assume that uh(th)
σ→ ũ 6= u(t) so that by (C3)

fd(u(t), ũ) ≤ lim inf
h∈H′′

fdh(uh(t), uh(th)) ≤ lim sup
h∈H′′

νh,f ([t, th]) = νf ({t}) = 0.

This yields in particular that uh(t) converges pointwise to u(t) as h → ∞,
h ∈ H ′; (4.20) then holds for every t1, t2 ∈ [0, T ] and shows that u ∈
BV([0, T ]; (X , d)).
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Since for an arbitrary subdivision t0 = α < t1 < · · · < tn−1 < tn = β
there holds

n∑
i=1

dh(uh(ti), uh(ti−1)) ≤
∫ β

α

|u̇h|dh(r) dr (4.21)

it is easy to check that

f

n∑
i=1

d(u(ti), u(ti−1)) ≤ lim sup
h∈H′′

∫ β

α

|u̇h|dh(r) dr ≤ ν0([α, β]) + ψ∗(f)(β − α),

so that
fVard(u; [α, β]) ≤ ν0([α, β]) + ψ∗(f)(β − α). (4.22)

Therefore, the duality formula ψ(v) = sup0<f<L

(
fv − ψ∗(f)

)
yields

ψ
(

(β − α)−1Vard(u; [α, β])
)
≤ (β − α)−1ν0([α, β]). (4.23)

From (4.22) we immediately get

f
(
|Cu|d + |Ju|d

)
≤ ν0 + ψ∗(f)L 1 for every f < L. (4.24)

Since |Cu|d and |Ju|d are concentrated in a L 1-negligible set, we deduce

L
(
|Cu|d + |Ju|d

)
≤ ν0. (4.25)

When ψ is superlinear we conclude that u is absolutely continuous, since in
this case L =∞ and (4.25) yields |Cu|=0, |Ju|=0.

Let us eventually prove (4.13).

(4.23) and the monotonicity of ψ yield, for α = t and β = t+ ε

ψ
(1

ε

∫ t+ε

t

|u̇|d(r) dr
)
≤ ε−1 ν0([t, t+ ε]). (4.26)

Integrating this inequality from t0 to t1 − ε with respect to t we obtain∫ t1−ε

t0

ψ
(
ε−1

∫ t+ε

t

|u̇|d(r) dr
)

dt ≤ ε−1

∫ t1−ε

t0

ν0([t, t+ ε]) dt

≤ ε−1(L 1 × ν0)({(t, s) ∈ [t0, t1]2 : t ≤ s ≤ t+ ε})

≤ ε−1

∫ t1

t0

L 1([s− ε, s]) dν0(s) = ν0([t0, t1])

so that, passing to the limit as ε ↓ 0 in the above inequality and applying
Fatou’s Lemma and Lebesgue’s differentiation Theorem we get∫ t1

t0

ψ
(
|u̇|d(r)

)
dr dt ≤ ν0([t0, t1]). (4.27)

Since t0 and t1 are arbitrary, we conclude that ν0 ≥ ψ
(
|u̇|d
)
L 1. Since L 1 is

singular with respect to |Cu|d and |Ju|d we eventually get

ν0 ≥ ψ
(
|u̇|d
)
L 1 + L

(
|Cu|d + |Ju|d

)
, (4.28)

which in particular yields (4.13), since

lim inf
h∈H′

∫ t2

t1

ψh
(
|u̇h|dh(r)

)
dr = lim inf

h∈H′′
νh,0

(
(t1, t2)

)
≥ ν0

(
(t1, t2)

)
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and L 1 and |Cu|d are diffuse. �

We want to study now the properties of the limit function u; we will
suppose that the following lower semicontinuity properties hold:

(C4) If a sequence (uh)h∈H ⊂X σ-converges to u with suph∈H Ẽ(t, uh) <∞
for some t ∈ [0, T ] then

lim inf
h∈H

Eh(t, uh) ≥ E(t, u), (C4E)

fh ≥ Fh(t, uh), fh → f ⇒

{
f ≥ F(t, u),

lim sup
h∈H

Ph(t, uh, fh) ≤ P(t, u, f), (C4FP )

lim
h∈H

th = t, sup
h∈H

E(th, uh) <∞ ⇒ lim inf
h∈H

Fh(th, uh) ≥ F(t, u). (C4F )

Notice that in (C4F ) we allow for an h-dependence of t in the Γ-lim inf
inequality for F, whereas t is independent of h in (C4FP ). (C4F ) will not be
required for the convergence result in the superlinear case, see Theorem 4.4.

The next statement is the main result of our paper: it states that the
energy-dissipation inequality is preserved in the limit for arbitrary evolution
systems fulfilling (C1,2,3,4). When the limit (X , d,E,F,P) is also an upper
gradient evolution system, then we recover a BV solution.

Theorem 4.2 (Stability of the energy-dissipation inequality and convergence).
Let us assume that ψ has L-linear growth and for h ∈ N let (X , dh,Eh,Fh,Ph)
be a family of evolution systems satisfying (C1,2,3,4) with respect to a se-
quence ūh ∈X σ-converging to ū. Let uh ∈ AC(0, T ; (X , dh)), Fh ∈ B+([0, T ]),
h ∈ H, be sequences satisfying the ψh-energy dissipation inequality (4.7), such
that uh is pointwise converging to u in (X , σ), uh(0) = ūh, and

lim
h∈H

Eh(0, ūh) = E(0, ū),

r 7→
[
Ph(r, uh(r),Fh(r))

]
+

are equi-integrable in (0, T ).
(4.29)

Then u ∈ BV([0, T ]; (X , d)) satisfies the local stability condition

F(t, u(t)) ≤ L for every t ∈ [0, T ] \ Ju. (4.30)

If ∫ T

0

P(t, u(t), L) dt <∞ (4.31)

then u satisfies the BV energy-dissipation inequality in the formulation of
(ED), (Sloc) for some F ∈ B+([0, T ]).

In particular, if (X , d,E,F,P) is an upper gradient evolution system,
then u satisfies (4.31) and therefore is a BV-solution of the corresponding
rate-independent evolution and we have

lim
h∈H

Eh(t, uh(t)) = E(t, u(t)) for every t ∈ [0, T ]. (4.32)
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Proof. We denote by I the set [0, T ] \ Ju.

Let us first notice that (4.29) implies (4.8), so that (4.9), (4.10) and
(4.12) holds.

Fatou’s Lemma yields that

lim inf
h∈H

Fh(t) ≤ L. (4.33)

By a diagonal argument, combining the convergence (4.12) and the l.s.c.
property (C4F ) we obtain

F̃(t) = inf
{

lim inf
h∈H

Fh(th) : th → t
}
≤ L F(t, u(t)) ≤ F̃(t) for every t ∈ I,

hence we get (4.30).

Let us now assume (4.31) and let us prove the BV-dissipation inequality
(ED); it is not restrictive to prove the inequality for t = T .

We consider the function A : I× [0, L]→ R ∪ {∞}

A(t, f) := ψ∗(f)− P(t, u(t), f) ≥ −P(t, u(t), L). (4.34)

Denoting by L the Lebesgue-measurable subsets of I and by B the Borel
sets of R2, it is easy to check that A is L ⊗ B-measurable, thanks to the
monotonicity and upper semicontinuity of f 7→ P(t, u(t), f).

By (4.31), it is the immediate to see that for a.a. t ∈ I

a(t) := min
{
A(t, f) : F(t, u(t)) ≤ f ≤ L

}
> −∞ (4.35)

Applying [6, Lemma III.39] we find a Lebesgue measurable map F→ R such
that

F(t, u(t)) ≤ F(t) ≤ L, ψ∗(F(t))−P(t, u(t),F(t)) = a(t) for L 1-a.a. t ∈ I,

and, up to a modification of F in a negligible set, it is not restrictive to
assume F Borel and F(t) = L on a Borel set containing Ju and where |Cu|d is
concentrated.

Setting ah(t) := ψ∗h(Fh(t))−Ph(t, uh(t),Fh(t)), by (C4FP ) is immediate
to see that

lim inf
h∈H

ah(t) ≥ a(t). (4.36)

Since (4.7) and (C1) also yield

sup
h

∫ T

0

(
Ph(t, uh(t),Fh(t))

)
− dt <∞, (4.37)

Fatou’s lemma and (4.36) imply∫ T

0

(
a(t)

)
+

dt ≤ lim inf
h∈H

∫ T

0

(
ah(t)

)
+

dt <∞, (4.38)
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and the inequality a(t) ≥ −P(t, u(t), L) shows that a ∈ L1(0, T ). (4.29) and
Fatou’s Lemma then yield

lim inf
h∈H

∫ T

0

(
ψ∗h(Fh(t))− Ph(t, u(t),Fh(t))

)
dt

≥
∫ T

0

(
ψ∗(F(t))− P(t, u(t),F(t))

)
dt.

(4.39)

Recalling (4.18), we consider now the measures

ηh :=
(
ψ∗h
(
Fh
)
− Ph(·, uh,Fh)

)
L 1,

µh :=
(
ψh
(
|u̇h|dh

)
+ ψ∗h

(
Fh
)
− Ph(·, uh,Fh)

)
L 1 = νh,0 + ηh;

(4.40)

up to extracting a further subsequence, it is not restrictive to assume that
ηh ⇀

∗ η, µh ⇀
∗ µ ≥ ν0 + η in the duality with continuous functions. Fatou’s

Lemma and the previous arguments easily imply

η ≥
(
ψ∗
(
F
)
− P

(
·, u,F

))
L 1. (4.41)

Since limh∈H µh([0, T ]) = µ([0, T ]), combining (C4E) and (4.39) inequality
(ED) for t = T follows if we show that

µ([0, T ]) ≥
∫ T

0

(
ψ
(
|u̇|d
)

+ ψ∗(F)− P(·, u,F)
)

dr

+ L

∫ T

0

d|Cu|d + Jmpd,f(u; [0, T ]).

(4.42)

Now, (4.28) and (4.41) imply that

µ ≥ ν0 + η ≥
(
ψ
(
|u̇|d
)

+ ψ∗
(
F
)
− P(·, u,F)

)
L 1 + L|Cu|d. (4.43)

Since the atomic and the diffuse part of a measure are mutually singular,
(4.42) ensues if for every t ∈ [0, T ] with µ({t}) > 0 we have

µ({t}) ≥ ∆d,f,t(u(t−), u(t), u(t+)). (4.44)

In order to prove (4.44) we just take two sequences r−h < t < r+
h , h ∈ N,

converging monotonically to t such that

uh(r−h )
σ→ u(t−), uh(r+

h )
σ→ u(t+), (4.45)

and we set

sh(r) := r +

∫ r

t

(
ψh
(
|u̇h|dh(τ)

)
+ ψ∗h

(
Fh(τ, uh(τ))

))
dτ, s±h := sh(r±h ).

Since Fh(τ, uh(τ)) ≤ Fh(τ) and

lim sup
h∈H

∫ th+

th−

Ph(t, uh(t),Fh(t)) dt = 0 (4.46)

by (4.29), taking into account the definition (4.40) of µh we obtain

lim sup
h∈H′′

(s+h − s−h ) ≤ lim sup
h∈H′′

µh([t−h , t
+
h ]) ≤ µ({t}),
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and up to extracting a suitable subsequence we can assume that s±h → s±

as h → ∞. We denote by rh := s−1
h the inverse map of sh: rh is 1-Lipschitz,

monotone, and maps [s−h , s
+
h ] onto [r−h , r

+
h ]. We also set

ϑh(s) :=


uh(rh(s)) if s ∈ [s−h , s

+
h ],

uh(r+
h ) if s ≥ s+h ,

uh(r−h ) if s ≤ s−h ,

(4.47)

so that, in particular, we have

ϑh(s±h ) = uh(r±h ), ϑh(t) = uh(t).

We observe that Ẽh(rh(s), ϑh(s)) ≤ C and that the functions ϑh are uniformly
dh-Lipschitz: to show this fact, we choose f ∈ [0, L) in such a way that
suph ψ

∗
h(f) ≤ 1; the inequality ψh(v) ≥ fv − ψ∗h(f) yields

ṡh(r) ≥ 1 + ψh(|u̇h|dh(r)) ≥ 1 + f |u̇h|dh(r)− ψ∗h(f) ≥ f |u̇h|dh(r)

so that

fdh(ϑh(α),ϑh(β)) = fdh(uh(rh(α)), uh(rh(β)) ≤
∫ rh(β)

rh(α)

f |u̇h|dh(r) dr

≤
∫ rh(β)

rh(α)

ṡh(r) dr ≤ sh(rh(β))− sh(rh(α)) = β − α, (4.48)

whence the uniform dh-Lipschitz continuity of ϑh.

By arguing as in the proof of Theorem 4.1, we can find a compact
interval I containing all the intervals [s−h , s

+
h ] and a further subsequence such

that ϑh(s) → ϑ(s) for every s ∈ I: it follows from (4.48) that ϑ is f−1-
Lipschitz with respect to d, ϑ(s±) = u(t±), ϑ(t) = u(t), and

|ϑ̇h|dh ⇀∗ m in L∞(I) with m ≥ |ϑ̇|d. (4.49)

Moreover, by using the elementary inequality

ψh(v) + ψ∗h(f) ≥ (f ∨ a)v − ψ∗h(a) for every a ∈ [0, L), (4.50)
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and recalling that r+
h − r

−
h → 0, ψ∗h(a)→ ψ∗(a) <∞, and (4.46), we have

µ({t}) ≥ lim sup
h→∞

µh([r−h , r
+
h ])

(4.46)
= lim sup

h∈H

∫ r+h

r−h

(
ψh
(
|u̇h|dh(τ)

)
+ ψ∗h

(
Fh(τ, uh(τ))

))
dτ (4.51)

(4.50)

≥ lim inf
h∈H

∫ r+h

r−h

(
(Fh(τ, uh(τ)) ∨ a)|u̇h|dh(τ)− ψ∗h(a)

)
dτ

≥ lim inf
h∈H

∫ s+h

s−h

(
(Fh(rh(s), ϑh(s)) ∨ a)|ϑ̇h|dh(s)

)
ds− (r+

h − r
−
h )ψ∗h(a)

≥ lim inf
h∈H

∫
I

(
(Fh(rh(s), ϑh(s)) ∨ a)|ϑ̇h|dh(s)

)
ds

≥
∫
I

(
(F(t, ϑ(s)) ∨ a)m(s)

)
ds (4.52)

≥
∫ s+

s−

(
(F(t, ϑ(s)) ∨ a)|ϑ̇|d(s)

)
ds ≥ ∆d,f,t(u(t−), u(t), u(t+)),

viz. the desired (4.44). For the last lim inf inequality in (4.52) we used a result
proved in the next lemma. �

Lemma 4.3. Let I be a bounded interval in R, F,m, Fh,mh : I → [0,∞),
h ∈ N, be measurable functions satisfying

lim inf
h→∞

Fh(s) ≥ F (s) for L 1-a.a. s ∈ I, mh ⇀m in L1(I). (4.53)

Then

lim inf
h→∞

∫
I

Fh(s)mh(s) ds ≥
∫
I

F (s)m(s) ds (4.54)

Proof. Let us set Gk(s) := infh≥k Fh(s) ∧ k, k ∈ N. Since Gk(s) ≤ Fh(s) for
every h ≥ k and Gk ∈ L∞(I) we have for every k ∈ N

lim inf
h→∞

∫
I

Fh(s)mh(s) ds ≥ lim inf
h→∞

∫
I

Gk(s)mh(s) ds =

∫
I

Gk(s)m(s) ds.

On the other hand, for L 1-a.a. s ∈ I, k 7→ Gk(s) is a nondecreasing sequence
converging to lim infh→∞ Fh(s), so that by monotone convergence

lim
k→∞

∫
I

Gk(s)m(s) ds ≥
∫
I

F (s)m(s) ds. �

In the case of a limit metric dissipation function ψ with superlinear growth
we have a completely analogous result, which can be compared with [16, The-
orem 4.8]. We omit the similar proof: it can be carried out without assuming
(C4F ), which has been used only to characterize the contribution of jump
part in the energy dissipation inequality (ED).
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Theorem 4.4 (Convergence in the superlinear case). Let us assume that ψ
is superlinear and for h ∈ N let (X , dh,Eh,Fh,Ph) be a family of evolution
systems satisfying (C1,2,3) and (C4E,FP ) with respect to a sequence ūh ∈
X σ-converging to ū and let (X , d,E,F,P) be an upper gradient evolution
system.
Let uh ∈ AC(0, T ; (X , dh)), Fh ∈ B+([0, T ]), h ∈ H, be sequences of curves
satisfying the ψh-energy dissipation inequality (4.7), pointwise converging to u
in (X , σ), with uh(0) = ūh, and satisfying (4.29). Then u ∈ AC(0, T ; (X , d))
is a ψ-gradient flow of the limit system and

lim
h∈H

Eh(t, uh(t)) = E(t, u(t)) for every t ∈ [0, T ]. (4.55)

Examples

λ-convex energies.

Let (Xh, ‖·‖h), (X , ‖·‖) be a family of Banach spaces such that X0 ⊂Xh ⊂
X with continuous and dense inclusions. Setting ‖u‖h = ∞ if u ∈ X \Xh

we suppose that Γ(X )- limh→∞ ‖ · ‖h = ‖ · ‖. Let E : X0 → (−∞,+∞] be a
proper, λ-convex functional, i.e. satisfying for every u0, u1 ∈X0

E((1−θ)u0 +θu1) ≤ (1−θ)E(u0)+θE(u1)− λ
2
θ(1−θ)‖u1−u0‖ ∀ θ ∈ [0, 1].

We consider a time-dependent functional ` ∈ C1([0, T ]; X ′
0 ), we suppose that

E(t, u) := E(u)−〈`(t), u〉 has compact sublevels on X0, and we extend it to X
by setting E(t, u) =∞ if u ∈ X \X0. We set P(t, u) = ∂tE(t, u) = 〈`′(t), u〉
and

Fh(t, u) := min
{
‖ξ − `(t)‖∗h : ξ ∈ ∂hE(u)

}
,

where ∂h is the Frechét subdifferential of the restriction of E in Xh. No-
tice that ∂hE ⊂ X ′

0 and it is not difficult to check (see [23, 16]) that
(X , dh,E,Fh,P) and (X , d,E,F,P) are upper gradient evolution systems
and all the assumptions (C1,2,3,4) are satisfied.

Dirichlet energy and double-well potentials.

Here is a concrete example of the above setting. Consider a bounded open
set Ω ⊂ Rd, a function W ∈ C2(R) with infRW > −∞, infRW

′′ > −∞,
and ` ∈ C1([0, T ];L2(Ω)). In the space X := L2(Ω) endowed with the strong
L2-topology we set

E(t, u) :=

∫
Ω

(1

2
|∇u|2 +W (u)− `(t)u

)
dx if u ∈ H1

0 (Ω), W ◦ u ∈ L1(Ω),

E(t, u) := +∞ otherwise.

We choose a sequence of exponents ph > 1 converging to 1 as h → ∞, and
initial data ūh ∈ H1

0 (Ω) with E(0, ūh) <∞ strongly converging to ū in H1
0 (Ω)

with W ◦ uh →W ◦ u in L1(Ω).
We let dh be the distance induced by the Lph(Ω) norm, d the L1(Ω)-

distance, ψh(v) := 1
ph
vph , and

Fh(t, u) := ‖ −∆u+W ′(u)− `(t)‖
Lp∗

h (Ω)
, P(t, u) =

∫
Ω

`′(t)udx, (4.56)
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with Fh(t, u) = +∞ if −∆u + W ′(u) − `(t) 6∈ Lph(Ω); F has the analogous
expression in L∞(Ω).

Applying the results of [23, §7.2] we see that (X , dh,E,Fh,P) and
(X , d,E,F,P) are upper gradient evolution systems and for every h ∈ N
there exists a solution uh of the ψh-gradient flow. It is also easy to check
that all the assumptions (C1,2,3,4) are satisfied so that, up to subsequences,
uh(t, ·) converge to u(t, ·) in L2(Ω) at every time t with convergence of the
energies E(t, ·) and u is a BV solution of the rate-independent evolution gov-
erned by (X , d,E,F,P).

Marginal functionals.

In the finite dimensional setting described in Section 2 (here we also assume
that the norms ‖ · ‖u are independent of h), let us consider the marginal
functional (2.16) and the couple (F,P) given by (2.21) and (2.22).

It is not difficult to see that (X , d,E,F,P) is an upper gradient evolution
system. ψh-gradient flows in the superlinear case can be obtained by applying
the results of [16]: they in particular solve the differential inclusions (2.18).
Existence of a BV solution and convergence of the ψh gradient flows can thus
be obtained by applying Theorems 4.1 and 4.2.
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[2] L. Ambrosio, G. Savaré, and L. Zambotti, Existence and stability for Fokker-
Planck equations with log-concave reference measure., Probab. Theory Relat.
Fields, 145 (2009), pp. 517–564.

[3] S. Arnrich, A. Mielke, M. A. Peletier, G. Savaré, and M. Veneroni, Passing to
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