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1 Introduction

In this paper we study BV functions in metric measure spaces, providing a positive answer
to a problem raised in [7], where similar questions are investigated and positively answered
in the setting of Sobolev spaces. Let (X, d,m) be a complete and separable metric measure
space, with m locally finite Borel measure. Recall that, according to the notion of BV
function given in [27], a function f ∈ L1(X, d,m) belongs to BV∗(X, d,m) if there exist
locally Lipschitz functions fn convergent to f in L1(X) such that

lim sup
n→∞

∫
X

|∇fn| dm <∞.

Here |∇fn| are the slopes (also called local Lipschitz constants) of fn, see (2.1) below. By
localizing this construction one can define

|Df |∗(A) := inf

{
lim inf
h→∞

∫
A

|∇fh| dm : fh ∈ Liploc(A), fh → f in L1(A)

}
, (1.1)

for any open set A ⊆ X. In [27], it is proved (with a minor variant, since L1
loc convergence

of the functions is considered) that this set function is the restriction to open sets of a finite
Borel measure, called total variation measure and, following basically the same strategy,
we will extend this result to our more general setup.

A first variant of this definition arises if one considers not only locally Lipschitz ap-
proximating functions, but general functions fn, replacing |∇fn| by upper gradients gn of
fn. This is the definition considered in [11] for Sobolev functions, with a mention of the
possibility of extending it to the construction to BV functions; denoting by BV c

∗ (X, d,m)
the corresponding space, it is clear that BV c

∗ is larger than BV∗; in addition, the set func-
tion |Df |c∗ obtained by a procedure similar to (1.1) is smaller than |Df |, since the class of
approximating functions is larger.

We will prove indeed that the two approaches lead to the same BV space and to the
same total variation measure. As a matter of fact, this equivalence is part of a more general
result, where we consider a new definition of BV function in the spirit of the theory of
weak, rather than relaxed, upper gradients [24, 28]. Without entering in this introduction
in too many technical details, we say that f ∈ w−BV (X, d,m) if there exists a finite Borel
measure µ with this property: for any probability measure π on Lip([0, 1];X) the function
t 7→ f ◦ γt belongs to BV (0, 1) for π-a.e. curve γt and

1

C(π)‖Lip(γ)‖L∞(π)

∫
γ]|D(f ◦ γ)| dπ ≤ µ.

Here C(π) is the least constant C such that (et)]π ≤ Cm for all t ∈ [0, 1], where et(γ) := γt
are the evaluation maps at time t. See also Remark 7.2 for another definition which
involves only the oscillation of f at the endpoints of the curve. The smallest measure µ
with this property will be denoted by |Df |w, and the proof that w−BV (X, d,m) includes
the previous two spaces and that |Df |∗ ≥ |Df |c∗ ≥ |Df |w is not too difficult. It is also
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worthwhile to mention that the BV property along curves and suitable measures in the
space of curves play a role in [14] (see also [12, 13]), for this reason we think that it
is interesting to compare the relaxation point of view with the point of view based on
measure upper gradients, so to speak.

Notice that proving equivalence of the three definitions amounts to passing from a
(quantitative) information on the behavior of the function along random curves to the con-
struction of a Lipschitz approximation. Remarkably, this result does not rely on doubling
and Poincaré assumptions on the metric measure structure. As in [7] (based essentially on
ideas come from [5], dealing with the case of W 1,2 Sobolev spaces), the proof is not really
constructive: it is obtained with optimal transportation tools and using the theory of gra-
dient flows of convex and lower semicontinuous functionals in Hilbert spaces. Specifically,
in our case we shall use the gradient flow in L2(X,m) of the functional f 7→ |Df |∗(X), also
called total variation flow in image processing [9].

We can now state the main result of our paper (see also Corollary 7.5, kindly pointed
out to us by the reviewer of the paper).

Theorem 1.1 Let (X, d,m) be a complete and separable metric measure space, with m
nonnegative and locally finite Borel measure (i.e. for all x ∈ X there exists r > 0 such that
m(Br(x)) <∞). Then the spaces

BV∗(X, d,m), BV c
∗ (X, d,m), w −BV (X, d,m)

and the corresponding total variation measures |Df |∗, |Df |c∗, |Df |w coincide.

The paper is organized as follows. In Section 2 we recall some preliminary facts on
absolutely continuous curves, upper gradients and BV functions. In Section 3 we study
the properties of the Hopf-Lax semigroup

inf
y∈X

φ(y) +
dp(x, y)

ptp−1
.

in the limit case when p = ∞, where it reduces simply to Qtφ(x) = inf
Bt(x)

φ. In particular

the differential inequality
d

dt
Qtφ+ |∇Qtφ| ≤ 0

will play an important role in our analysis. In Section 4 we study some elementary prop-
erties of the W∞ Wasserstein distance, focussing in particular on the dual formulation.
In Section 5 we present and compare the three definitions of BV we already mentioned,
proving in particular the “easy” inequalities |Df |∗ ≥ |Df |c∗ ≥ |Df |w. In Section 6 we
gather a few facts on the gradient flow of |Df |∗, that are used in Section 7 to prove our
main result.

Finally, Section 8 is devoted to the discussion of 3 potential definitions of the Sobolev
space W 1,1. Since the functional

Φ(f) :=


|Df |∗(X) if f ∈ BV∗(X, d,m) and |Df |∗ � m;

+∞ otherwise
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is not lower semicontinuous, one of our main tools (namely the theory of gradient flows)
breaks down and we are not able, at least at this level of generality, to prove equivalence
of the three definitions. The Appendix is devoted to the proof of the metric superposition
principle in the limiting case p =∞: its proof follows with minor variants [26].

We close this introduction mentioning that some properties of BV functions readily
extend to the more general framework considered in this paper. For instance, the coarea
formula

|Df |∗ =

∫ ∞
0

|Dχ{f>t}|∗ dt+

∫ 0

−∞
|Dχ{f<t}|∗ dt

can be achieved following verbatim the proof in [27]. On the other hand, more advanced
facts, as the decomposition alone curves in absolutely continuous and singular part of the
derivative (see [3, Section 3.11]), seem to be open at this level of generality: for instance,
Example 7.4 shows that, in contrast to what happens in Euclidean metric measure spaces
(here the supremum is understood in the lattice of measures), the measure

sup
π

1

C(π)‖Lip(γ)‖L∞(π)

∫
γ]|Da(f ◦ γ)| dπ, (1.2)

which is easily seen to be smaller than the absolutely continuous part of |Df |w, maybe be
strictly smaller.

Acknowledgement. The first author acknowledges the support of the ERC ADG
GeMeThNES and of the PRIN08-grant from MIUR for the project Optimal transport
theory, geometric and functional inequalities, and applications. The authors thank an
anonymous referee for his/her extremely valuable remarks.

2 Notation and preliminary notions

In this section we introduce some notation and recall a few basic facts on absolutely
continuous functions, and BV functions, see also [4], [3] as general references.

2.1 Absolutely continuous curves

Let (X, d) be a metric space, J ⊆ R a closed interval and consider a curve γ : J → X
(sometimes we will denote γ(t) = γt). We say that γ is absolutely continuous if

d(γs, γt) ≤
∫ t

s

g(r) dr ∀s, t ∈ J, s < t

for some g ∈ L1(J). It turns out that, if γ is absolutely continuous, there is a minimal
function g with this property, called metric speed, denoted by |γ̇t| and given for a.e. t ∈ J
by

|γ̇t| = lim
s→t

d(γs, γt)

|s− t|
.
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See [4, Theorem 1.1.2] for the simple proof.
We will denote by C([0, 1], X) the space of continuous curves from [0, 1] to (X, d)

endowed with the sup norm and by AC([0, 1], X) the subset of absolutely continuous curves.
For p > 1, the set ACp([0, 1], X) ⊆ C([0, 1], X) consists of all absolutely continuous curves
γ such that |γ̇t| ∈ Lp(0, 1): it is the countable union of the sets {γ : ‖γ̇t‖Lp ≤ n}, which
are easily seen to be closed. Thus the set ACp([0, 1], X) is a Borel subset of C([0, 1], X)
(this is still true for AC([0, 1], X), see [5], but we shall not need this fact in the sequel);
in particular we will be interested in AC∞([0, 1], X), which is easily seen to coincide with
the set of Lipschitz curves. The evaluation maps et : C([0, 1], X)→ X are defined by

et(γ) := γt,

and are clearly continuous.

2.2 Slopes, locally Lipschitz functions and upper gradients

Let (X, d) be a metric space; given f : X → R, we define the slope of f (also called local
Lipschitz constant) by

|∇f |(x) := lim
y→x

|f(y)− f(x)|
d(y, x)

, (2.1)

and, correspondingly, the ascending slope |∇+f | and the descending slope |∇−f |:

|∇±f |(x) := lim
y→x

(f(y)− f(x))±

d(y, x)
. (2.2)

In the sequel, we say that f is locally Lipschitz in an open set A if for every x ∈ A, the
function is Lipschitz in a neighborhood of x. With this definition locally Lipschitz functions
in X are Lipschitz if the ambient space X is compact. For f, g : X → R locally Lipschitz
it clearly holds

|∇(αf + βg)| ≤ |α||∇f |+ |β||∇g| ∀α, β ∈ R, (2.3a)

|∇(fg)| ≤ |f ||∇g|+ |g||∇f |. (2.3b)

Given a real valued function f on X, we denote by UG(f) the set of upper gradients
of f (see also [21, 11]), namely the class of Borel functions g : X → [0,∞] such that

|f(γ1)− f(γ0)| ≤
∫ 1

0

g(γt)|γ̇t| dt ∀ γ ∈ AC([0, 1];X).

With a slight abuse of notation we will write g ∈ UG(f) with f ∈ L1(X,m), but it should
be noticed that a priori the concept of upper gradient is not invariant in the equivalence
class of an L1 function, even though Borel representatives are chosen.
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2.3 BV functions and total variation on Euclidean spaces

We refer to Chapter 3 of [3] for a complete review of this topic, with all the proofs; here
we will only overview the main properties needed in this paper.

Given an open set A ⊆ Rd, f ∈ L1(A) is said to be of bounded variation in A if one of
the following three equivalent properties hold:

(a) the distributional derivative Df is a Rd-valued measure with finite total variation in
A;

(b) The following quantity, called total variation of f in A, is finite:

TVf (A) := sup

{∫
A

fdivφ dx : φ ∈ C1
c (A;Rd), |φ| ≤ 1

}
.

(c) There exists a sequence (fn) ⊆ C∞(A) converging fo f in L1(A) with
supn

∫
A
|∇fn| dx <∞.

The equivalence between (a), (b) and (c) leads to relations between the corresponding
quantities involved: in particular we have

|Df |(A) = TVf (A) ≤ lim inf
n→∞

∫
A

|∇fn| dx.

Moreover the second definition gives us easily the crucial property that the total variation
|Df | of the distributional derivative in open sets is lower semicontinuous with respect to
L1 convergence:

lim inf
n→∞

|Dfn|(A) ≥ |Df |(A) ∀A ⊆ Rd open set, fn → f in L1(A). (2.4)

By means of standard mollifiers and partitions of unity we can get also the following
stronger result: there exists a sequence of functions fn ∈ C∞(A) convergent to f in L1(A)
and such that |Dfn|(A) → |Df |(A). In our metric context we simply replace C∞(A) by
the space of locally Lipschitz functions on A.

3 Hopf-Lax formula and Hamilton-Jacobi equation

In this section we study some elementary properties of the Hopf-Lax formula in a metric
setting, extending to a limiting case (suitable for the study of the∞-Wasserstein distances,
made in the next section) the analysis made in [5], see also [18]. Here we assume that
(X, d) is a metric space: there is no reference measure m here and we can drop even the
completeness assumption. We are dealing with a very simple convex lower semicontinuous
Lagrangian L : [0,∞]→ [0,∞]:

L(s) =

{
0 if s ≤ 1;

∞ otherwise.
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Let φ : X → R be a Lipschitz function. We set Q0φ(x) = φ(x) and, for t > 0,

Qtφ(x) := inf
y∈X

{
φ(y) + L

(d(x, y)

t

)}
. (3.1)

Due to the particular form of our Lagrangian, we get

Qtφ(x) := inf
d(x,y)≤t

φ(y). (3.2)

Obviously, these transformations act almost as a semigroup: in fact, the triangle inequality
gives

QsQtφ(x) = inf
d(y,x)≤s

{
inf

d(y,z)≤t
φ(z)

}
≥ inf

d(x,z)≤s+t
φ(z) = Qs+tφ(x).

Moreover, if (X, d) is a length space, we have equality and thus Qt is a semigroup. In fact,
under this assumption, for every z such that d(x, z) < s + t there exists a constant speed
curve γ : [0, 1] → X whose length is less than s + t and such that γ0 = x and γ1 = z; in
particular there will be a time η := s/(s + t) such that y := γη satisfies d(x, y) < s and
d(y, z) < t. It follows that QsQtφ(x) ≤ inf

d(x,z)<s+t
φ(z). In order to conclude, one has to

observe that, if φ is continuous, then

inf
d(x,z)≤r

φ(z) = inf
d(x,z)<r

φ(z) ∀r > 0,

and this is true because in a length space the closure of the open ball is the closed ball.
Also, it is easy to check that the length space property ensures that the Lipschitz

constant does not increase:
Lip(Qtφ) ≤ Lip(φ). (3.3)

Now we look at the time derivative, to get information on the Hamilton-Jacobi equation
satisfied by Qtφ(x):

Theorem 3.1 (Time derivative of Qtf) Let x ∈ X. The map t 7→ Qtφ(x) is nonin-
creasing in [0,∞) and satisfies:

d

dt
Qtφ(x) + |∇Qtφ(x)| ≤ 0 for a.e. t > 0. (3.4)

Moreover, if (X, d) is a length space, the map t 7→ Qtφ is Lipschitz from [0,∞) to C(X),
with Lipschitz constant Lip(φ).

Proof. The basic inequality, that we will use in the first part of the proof is:

Qsφ(y) ≤ Qs′φ(y′) whenever s ≥ s′ + d(y, y′). (3.5)

It holds because the inequality implies B(y′, s′) ⊆ B(y, s) and thus it is clear by the very
definition of Qtφ. Now we take xi and yi converging to x such that:

lim
i→∞

Qtφ(xi)−Qtφ(x)

d(xi, x)
= −|∇−Qtφ|(x), lim

i→∞

Qtφ(x)−Qtφ(yi)

d(x, yi)
= −|∇+Qtφ|(x).
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Now we consider the inequalities, given by (3.5), involving x, xi, yi:

Qt+d(xi,x)φ(x) ≤ Qtφ(xi), Qtφ(yi) ≤ Qt−d(x,yi)φ(x)

and let us define, for brevity, si = d(xi, x) and ri = d(x, yi). Then we have

lim inf
h→0+

Qt+hφ(x)−Qtφ(x)

h
≤ lim inf

i→∞

Qt+siφ(x)−Qtφ(x)

si

≤ lim
i→∞

Qtφ(xi)−Qtφ(x)

si
= −|∇−Qtφ|(x)

and, similarly,

lim inf
h→0−

Qt+hφ(x)−Qtφ(x)

h
≤ lim inf

i→∞

Qtφ(x)−Qt−riφ(x)

ri

≤ lim
i→∞

Qtφ(x)−Qtφ(yi)

ri
= −|∇+Qtφ|(x).

Using that |∇f | = max{|∇+f |, |∇−f |}, the combination of these inequalities gives

lim inf
h→0

Qt+hφ(x)−Qtφ(x)

h
≤ −|∇Qtφ|(x) ∀x ∈ X ∀t > 0.

Since Qtφ(x) is obviously non increasing w.r.t. t, we get that is differentiable almost
everywhere and so we get the thesis.

If we suppose that (X, d) is also a length space, using the semigroup property and (3.3)
we get that

Qsφ(x)−Qtφ(x) = Qsφ(x)−Qt−s(Qsφ)(x) ≤ (t−s) Lip(Qsφ) ≤ (t−s) Lip(φ) ∀s ∈ [0, t],

and so the thesis. �

Note that, in case (X, d) is not a length space, it might happen that balls are not
connected and, as a consequence, that t 7→ Qtφ(x) is discontinuous; as an example we can
take X the curve in Figure 1, with the distance induced as subset of R2.

It is clear that some balls, such as the shaded one centered in x, are disconnected;
furthermore if we take a Lipschitz function φ equal to 0 in the upper part of the curve
and equal to 1 in the lower one, doing an interpolation between two values only in the
rightmost and leftmost parts, it is easy to see that Qtφ(p) is discontinuous both in time
and space.

4 The ∞-Wasserstein distance

Let (X, d) be a complete and separable metric space and let M+(X) denote the set of
positive and finite Borel measures on X. Given a lower semicontinuous cost c : X ×X →
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Figure 1: Example of a compact metric space (X, d) that is not a length space, having a
time discontinuous Hopf-Lax semigroup Qt

[0,∞], we can consider the classical Kantorovich transport problem on X between measures
with same mass, defining

Cc(µ, ν) := min
{∫

X×X
c(x, y) dγ | π1

]γ = µ, π2
]γ = ν

}
,

where π1 and π2 are respectively the projections on the first and second factors. We shall
denote by Γ(µ, ν) the collection of admissible plans γ in the Kantorovich minimization
problem. In the case of cp = dp, 1 ≤ p < ∞, we get the classical Wasserstein distances
Wp = (Ccp)

1/p; they can equivalently be written as

Wp(µ, ν) = min{‖d‖Lp(γ) |γ ∈ Γ(µ, ν)}

and so it is somewhat natural to look at the limiting case p =∞:

W∞(µ, ν) := min
{
‖d‖L∞(γ) |γ ∈ Γ(µ, ν)

}
.

It is known (see for instance [10]) that W∞ is the monotone limit of Wp as p goes to infinity,
at least when we are dealing with probability measures; we want to consider also this limit
case as a transport problem, in order to have a dual formulation that will be used later on.
The key point is to consider the limit costs: in fact we consider c(x, y) = L(d(x, y)), where
L is the function we defined in the previous section. This is indeed the limit cost because
dp converges as p→∞, in the sense of De Giorgi’s theory of Γ-convergence [15], to L ◦ d,
namely

pn →∞, dn → d =⇒ lim inf
n→∞

dpnn ≥ L(d)

and
for all d ≥ 0 there exist dp → d such that lim sup

p→∞
dpp ≤ L(d).
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Notice however that the pointwise limit of dp is strictly larger than L(d) when the distance
equals 1.

We then introduce the “test” distances

W (s)
∞ (µ, ν) = min

{∫
X×X

L
(d(x, y)

s

)
dγ | γ ∈ Γ(µ, ν)

}
,

called this way because W
(s)
∞ (µ, ν) = 0 if and only if W∞(µ, ν) ≤ s. These “test” distances

are given by transport problems with lower semicontinuous costs c(x, y) = L(d(x, y)/s), so
they have a dual formulation [4, Theorem 6.1.1]:

W (s)
∞ (µ, ν) = sup

ψ∈Lipb(X)

∫
X

ψc dµ+

∫
X

ψ dν,

where ψc denotes the so called c-transform of f , defined as:

ψc(x) = inf
y∈X

{
c(x, y)− ψ(y)

}
(namely the largest function g(x) satisfying g(x) + ψ(y) ≤ c(x, y) for all (x, y)). By the
definition of Qsφ given in the previous section we get:

ψc(y) = inf
y∈X

{
L

(
d(x, y)

s

)
− ψ(y)

}
= Qs(−ψ)(x).

Now, setting ψ = −φ in the dual formulation, and using this characterization of the c-
transform, we get

W (s)
∞ (µ, ν) = sup

φ∈Lipb(X)

∫
X

Qsφdµ−
∫
X

φdν. (4.1)

5 Three notions of BV function

Let (X, d) be a complete and separable metric space and let m be a nonnegative Borel
measure in X. In this section we introduce three notions of BV function and, correspond-
ingly, three notions of total variation. We recall that the aim of this paper is to show that
these notions are equivalent.

5.1 BV functions in the relaxed sense

A function f in L1(X,m) is said to be BV in the relaxed sense if there exist locally Lipschitz
functions fn converging to f in L1(X,m) and with equibounded energies, i.e. such that
supn

∫
X
|∇fn| dm <∞. We shall denote this space by BV∗(X, d,m).

We already noticed that this definition coincides with the classical one in Euclidean spaces.
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Associated to this definition is the relaxed total variation |Df |∗, already introduced in [27],
defined on open sets A ⊆ X as:

|Df |∗(A) := inf

{
lim inf
h→∞

∫
A

|∇fh| dm : fh ∈ Liploc(A), fh → f in L1(A)

}
. (5.1)

Here “locally Lipschitz in an open set A” means that for all x ∈ A there exists r > 0 such
that Br(x) ⊆ A and the restriction of f to Br(x) is Lipschitz. In [27] it is proved that for
all relaxed BV functions f the set function A 7→ |Df |∗(A) is the restriction to open sets
of a finite Borel measure, for which we keep the same notation. Since the result in [27] is
stated and proved in locally compact spaces, we adapt his arguments to our more general
framework.

Remark 5.1 If we apply the definition of relaxed total variation to a locally Lipschitz
function f , taking fh = f , we get

|Df |∗(A) ≤
∫
A

|∇f | dm for all A ⊆ X open.

Thus, |Df |∗ � m and so f belongs to the Sobolev space W 1,1
∗ (X, d,m) consisting of

functions f ∈ BV∗(X, d,m) such that |Df |∗ � m. See Section 8 for more on the Sobolev
space W 1,1.

5.2 BV functions in Cheeger’s relaxed sense

We can imagine a slightly weaker notion than the previous one, not requiring fn to be locally
Lipschitz and replacing |∇fn| with an element of UG(fn), the set of upper gradients of fn,
see [21, 11]. So the definition becomes: a function f ∈ L1(X,m) belongs to BV c

∗ (X, d,m) if
there exist a sequence (fn) ⊆ L1(X,m) that converges to f in L1(X,m) and upper gradients
gn of fn, such that supn

∫
X
gndm <∞.

For f ∈ BV c
∗ (X, d,m) the Cheeger total variation |Df |c∗ is defined on open sets A as

|Df |c∗(A) := inf

{
lim inf
h→∞

∫
A

gh dm : fh ∈ L1(A), fh → f in L1(A), gh ∈ UG(fh)

}
. (5.2)

Of course we have that BV∗ ⊆ BV c
∗ and |Df |∗ ≥ |Df |c∗, because the slope is an upper

gradient for locally Lipschitz functions (see for instance [11]).
We investigate more closely the properties of the set functions |Df |∗ in the following

lemma. We will write A b B whenever A, B are open sets and d(A,X \B) > 0 (in partic-
ular, A b B implies A ⊆ B). We say that A1 and A2 are well separated if dist(A1, A2) > 0.

Lemma 5.2 Let A(X) be the class of open subsets of X, f ∈ L1(X,m) and let β : A(X)→
[0,∞] be defined as in (5.1), with the convention β(∅) = 0. Then, β satisfies the following
properties:

(i) β(A1) ≤ β(A2) whenever A1 ⊆ A2;
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(ii) β(A1 ∪ A2) ≤ β(A1) + β(A2), with equality if A1 and A2 are well separated;

(iii) If An are open and An ⊆ An+1 it holds

lim
n→∞

β(An) = β
(⋃

n

An

)
. (5.3)

In particular the formula

β(B) := inf {β(A) : A ⊆ X open, B ⊆ A}

provides a σ-subadditive extension of β whose additive sets, in the sense of Carathéodory,
contain B(X). If follows that β : B(X)→ [0,∞] is a σ-additive Borel measure.

Proof. The verifications of monotonicity and the additivity on well separated sets are
standard.

Since we will use (iii) in the proof of the first statement of (ii), we prove (iii) first,
denoting A := ∪nAn. It is sufficient to prove that sup |Du|∗(An) ≥ |Du|∗(A) because the
converse inequality is trivial by monotonicity, so we can assume that supn |Du|∗(An) <∞.

First, we reduce ourselves to the case when An satisfy the additional condition

dist(An, X \ An+1) > 0 ∀n ∈ N. (5.4)

In order to realize that the restriction to this case is possible, suffices to consider the sets

A′n :=

{
x ∈ X : dist(x,X \ An) ≥ 1

n

}
which satisfy (5.4), are contained in An and whose union is still equal to A.

In particular, if we call {
C1 = A2

Ck = Ak \ Ak−2 if k ≥ 2,

it is clear that the families {C3k+1}, {C3k+2}, {C3k+3} are well separated, hence∑
j |Du|∗(C3j+i) < ∞ for all i ∈ {1, 2, 3}. It follows that for any ε > 0 we can find

an integer k̄ such that
∞∑
n=k̄

|Du|∗(Cn) ≤ ε. (5.5)

Now, to prove (5.3) we build a sequence (um) ⊆ Liploc(A) such that um → u in L1(A,m)
and

|Du|∗(Ak̄) + 2ε ≥ lim inf
m→∞

∫
A

|∇um| dm.
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In order to do so, we fix m and set Dh = Ch+k̄, Bh = Ah+k̄ if h ≥ 1, D0 = B0 = Ak̄.
Then we choose ψk,h ∈ Liploc(Dh) in such a way that∫

Dh

|∇ψk,h| dm ≤ |Du|∗(Dh) +
1

m2k
. (5.6)

We are going to use Lemma 5.4 below with M = Bh, N = Dh+1, so we denote by ch and
Hh b Bh ∩ Dh+1 the constants and the domains given by the lemma. It is then easy to
find sufficiently large integers k(h) ≥ h satisfying

ch

∫
Hh

|ψk(h),h − u| dm ≤
ε

2 · 2h
and ch

∫
Hh

|ψk(h+1),h+1 − u| dm ≤
ε

2 · 2h
. (5.7)

This is possible because Hh is contained in Bh ∩Dh+1 which, in turn, is contained in Dh.
In addition, possibly increasing k(h), we can also have:∫

Dh

|ψk(h),h − u| dm ≤
1

m2h
. (5.8)

Now we define by induction on h functions um,h ∈ Liploc(Bh) for h ≥ 0 : we set
um,0 = ψk(0),0 and, given um,h, we build um,h+1 in such a way that:{

um,h+1 ≡ um,h on Bh−1

um,h+1 ≡ ψk(h+1),h+1 on Bh+1 \Bh,
(5.9)

‖um,h − u‖L1(Bh) ≤
1

m

(
1− 1

2h

)
, (5.10)∫

Bh+1

|∇um,h+1| dm ≤
∫
Bh

|∇um,h| dm +

∫
Dh+1

|∇ψk(h+1),h+1| dm +
ε

2h
. (5.11)

Once we have this we are done because we can construct um(x) = um,h(x) if x ∈ Bh−1, then
it is clear that um is well defined thanks to the first equation in (5.9) and locally Lipschitz
in A. In addition ‖um − u‖L1(A) ≤ 1/m thanks to (5.10) and the monotone convergence
theorem and, iterating (5.11) and using (5.6) and k(h) ≥ h, we get∫

A

|∇um| dm = lim
h→∞

∫
Bh

|∇um,h+1| dm ≤ lim
h→∞

∫
Bh+1

|∇um,h+1| dm

≤
∞∑
i=0

|Du|∗(Di) +
2

m
+ ε ≤ |Du|∗(Ak̄) + 2ε+

2

m
.

In order to prove the induction step in the construction of um,h we use Lemma 5.4 with
M = Bh, N = Dh+1, u = um,h and v = ψk(h+1),h+1. So, applying (5.12) of the lemma we
find a function w = um,h+1 such that∫
Bh+1

|∇um,h+1| dm ≤
∫
Dh+1

|∇ψk(h+1),h+1| dm+

∫
Bh

|∇um,h| dm+ch

∫
Hh

|ψk(h+1),h+1−um,h| dm,

13



{
um,h+1 ≡ um,h on Bh \Dh+1 ⊇ Bh−1

um,h+1 ≡ ψk(h+1),h+1 on Dh+1 \Bh ⊇ Bh+1 \Bh.

By the induction assumption, um,h ≡ ψk(h),h on Bh \ Bh−1 which contains Hh, and so we
can use (5.7) to get (5.11). Then (5.13) of Lemma 5.4 with σ = u tells us exactly that∫

Bh+1

|um,h+1 − u| dm ≤
∫
Dh+1

|ψk(h+1),h+1 − u| dm +

∫
Bh

|um,h − u| dm

and so by (5.7) and the induction assumption we get also (5.10):∫
Bh+1

|um,h+1 − u| dm ≤
1

m2h+1
+

1

m

(
1− 1

2h

)
=

1

m

(
1− 1

2h+1

)
.

Now we prove (ii). Having already proved (iii), suffices to show that

β(A′1 ∪ A′2) ≤ β(A1) + β(A2) whenever A′1 b A1, A′2 b A2.

This inequality can be obtained by applying Lemma 5.4 to join optimal sequences for A1

and A2, with M = (A′1 ∪ A′2) ∩ A1 and N = (A′1 ∪ A′2) ∩ A2. �

Remark 5.3 We note that the measure |Df |c∗ too has the monotonicity property, thanks
to the localizing property of upper gradients. Also, |Df |c∗ is additive on disjoint open
sets. In fact, if A1 and A2 are disjoint open sets we clearly have that |Df |c∗(A1 ∪ A2) ≥
|Df |c∗(A1) + |Df |c∗(A2), by the superadditivity of the lim inf. On the other hand, if we
consider pairs (fi, gi), i = 1, 2, with fi ∈ L1(Ai) and gi ∈ UG(fi), then

g(x) =

{
g1(x) if x ∈ A1

g2(x) if x ∈ A2

is an upper gradient for f(x) =

{
f1(x) if x ∈ A1

f2(x) if x ∈ A2,

since every absolutely continuous curve γ : [0, 1] → A1 ∪ A2 lies either entirely in A1 or
entirely in A2, thanks to the connectedness of γ([0, 1]); this joining property gives the
converse inequality |Df |c∗(A1 ∪ A2) ≤ |Df |c∗(A1) + |Df |c∗(A2).

We won’t need the σ-additivity property of |Df |c∗ in the sequel; however, in the proof
of Theorem 1.1 we gain the equality |Df |∗ = |Df |c∗ on open sets, and so we recover that
|Df |c∗ is the restriction to the open sets of a measure, too.

Lemma 5.4 (Joint lemma) Let M, N be open sets such that d(N \ M,M \ N) > 0.
There exist an open set H b M ∩ N and a constant c depending only on M and N such
that for every u ∈ Liploc(M), v ∈ Liploc(N) we can find w ∈ Liploc(M ∪N) such that∫

M∪N
|∇w| dm ≤

∫
M

|∇u| dm +

∫
N

|∇v| dm + c(M,N)

∫
H

|u− v| dm; (5.12)
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w ≡ u on neighborhood of M \N, w ≡ v on neighborhood of N \M.

Furthermore, for every σ ∈ L1(M ∪N) we have∫
M∪N

|w − σ| dm ≤
∫
M

|u− σ| dm +

∫
N

|v − σ| dm. (5.13)

Proof. The assumption on M and N guarantees the existence of a Lipschitz function
φ : X → [0, 1] such that

φ(x) =

{
1 on a neighborhood of M \N
0 on a neighborhood of N \M,

so that H := {0 < φ < 1} ∩ (M ∪ N) will be an open set contained in M ∩ N and well
separated from both M \N and N \M . Setting η := d(N \M,M \N), it is clear that we
can have Lip(φ) ≤ 3/η; for example we can take

φ(x) :=
3

η
min

{(
d(x,N \M)− η

3

)+

,
η

3

}
.

Now we consider the function w = φu + (1 − φ)v and, using the convexity inequality for
the slope |∇w| ≤ φ|∇u| + (1− φ)|∇v| + |∇φ||u− v| (see [5] for its simple proof) and the
fact that φ ≤ 1M and 1 − φ ≤ 1N on M ∪ N , splitting the integration on the interior of
{φ = 1}, the interior of {φ = 0} and H we end up with:∫

M∪N
|∇w| dm ≤

∫
M

|∇u| dm +

∫
N

|∇v| dm +
3

η

∫
H

|u− v| dm.

To prove (5.13) we simply note that |w − σ| ≤ φ|u− σ|+ (1− φ)|v − σ| on M ∪N . �

5.3 Weak-BV functions

Before introducing the third definition we introduce some additional notation and termi-
nology.

Definition 5.5 A measure π ∈P(C([0, 1];X)) is said to be an ∞-test plan if the follow-
ing two properties are satisfied:

(a) π is concentrated on AC∞([0, 1];X) and Lip(γ) belongs to L∞(C([0, 1];X),π);

(b) there exists C = C(π) ≥ 0 such that (et)]π ≤ Cm for each t ∈ [0, 1].

A Borel subset Γ of C([0, 1];X) is said to be 1-negligible if π(Γ) = 0 for every ∞-plan π.
A property of continuous curves is said to be true 1-almost everywhere if the set for which
it is false is contained in a 1-negligible set.
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This definition is the limit case of the one that occurs in [7], and also the definition of
weak-BV is suggested in there. Given a function f in L1(X,m), we say that f is a weak-BV
function, and write f ∈ w −BV (X, d,m), if the following two conditions are fulfilled:

(i) for 1-almost every curve we have that f ◦ γ ∈ BV (0, 1); we require also a mild
regularity at the boundary, namely

|f(γ1)− f(γ0)| ≤ |D(f ◦ γ)|(0, 1) for 1-a.e. γ, (5.14)

where |D(f ◦γ)| ∈M−((0, 1)) is the total variation measure of the map f ◦γ : [0, 1]→
R;

(ii) there exists µ ∈M+(X) such that∫
γ]|D(f ◦ γ)|(B) dπ(γ) ≤ C(π) · ‖Lip(γ)‖L∞(π)µ(B) ∀B ∈ B(X). (5.15)

Associated to this notion, there is also the concept of weak total variation |Df |w, defined
as the least measure µ satisfying (5.15) for every∞-test plan π. Equivalently, |Df |w is the
least upper bound, in the complete and separable lattice M+(X), of the family of measures

1

C(π)‖Lip(γ)‖L∞(π)

∫
γ]|D(f ◦ γ)| dπ(γ) (5.16)

as π runs in the class of ∞-test plans.
If we fix t ∈ (0, 1) and we consider the rescaling map Rt from C([0, 1], X) to C([0, 1], X)

mapping γs to γts, we see that the push-forward πt = (Rt)]π is still a ∞-test plan, with
C(πt) ≤ C(π). In addition

‖Lip(γ)‖L∞(πt) ≤ t‖Lip(γ)‖L∞(π).

By (5.14) we get

|f(γt)− f(γ0)| ≤ |D(f ◦ γ)|(0, t) for π-a.e. γ, (5.17)

while (5.15) with A = X gives∫
|D(f ◦ γ)|(0, t) dπ(γ) =

∫
|D(f ◦ γ)|(0, 1) dπt(γ) ≤ tC(π)‖Lip(γ)‖L∞(π)|Df |w(X).

(5.18)
Now we prove that the class BV c

∗ is contained in the class w − BV and that |Df |w ≤
|Df |c∗ on open sets. The proof of this fact is not difficult, and reminiscent of the closure
property of weak gradients in a Sobolev context, see [11, 28]. First of all, we state without
proof the following elementary lemma:
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Lemma 5.6 Assume that g is an upper gradient of f , that γ : [0, 1]→ X is Lipschitz and
that

∫
γ
g < ∞. Then f ◦ γ ∈ W 1,1(0, 1) and |(f ◦ γ)′(t)| ≤ g(γt)|γ̇t| for a.e. t ∈ (0, 1). In

particular

|D(f ◦ γ)|(B) ≤ Lip(γ)

∫
B

g(γt) dt for any Borel set B ⊆ (0, 1).

Given an open set A ⊆ X, we take a sequence of pairs (fn, gn) with gn ∈ UG(fn)
such that fn → f in L1(A,m) and

∫
A
gndm → |Df |c∗(A) (whose existence is granted by

the definition of Cheeger total variation), and use the lemma to estimate the weak total
variation of fn as follows:∫

γ]|D(fn ◦ γ)|(A) dπ(γ) =

∫
|D(fn ◦ γ)|(γ−1(A)) dπ(γ)

≤
∫

Lip(γ)

∫ 1

0

gn(γt)χA(γt) dt dπ(γ)

≤ ‖Lip(γ)‖L∞(π)

∫ 1

0

∫
A

gn d(et)]π dt

≤ ‖Lip(γ)‖L∞(π)C(π)

∫
A

gn dm.

(5.19)

We now introduce a lemma that permits us, up to a subsequence, to localize the L1

convergence, so that we can estimate the left hand side.

Lemma 5.7 Let B ⊆ X be a Borel set and let (fn) be a sequence converging to f in
L1(B,m). Then, a subsequence of (fn) converges to f in L1(γ−1(B),L 1) along 1-almost
every curve.

Proof. We can assume without loss of generality that B = X. Possibly extracting a
subsequence, we can suppose that∑

n

‖fn − f‖L1(X,m) <∞.

We now fix a ∞-test plan π and we show that ‖fn ◦ γ − f ◦ γ‖L1(0,1) → 0 for π-almost
every curve γ. Our choice of the subsequence ensures that the function g :=

∑
n |fn − f |

belongs to L1(0, 1). Now, the inequality∫
‖g ◦ γ‖L1(0,1) dπ(γ) =

∫∫ 1

0

(g ◦ γ)(t) dt dπ ≤ C(π)

∫ 1

0

∫
X

g dm <∞

guarantees that g ◦ γ belongs to L1(0, 1) for π-a.e. curve γ and thus we can say that
fn ◦ γ → f ◦ γ in L1(0, 1) for π-a.e. γ. By the arbitrariness of π, we conclude. �
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We can now complete the proof of |Df |w ≤ |Df |c∗ on open sets, starting from (5.19).
Notice that until now we still don’t know whether |Df |c∗ is a measure or not, however we
can use the additivity properties ensured by Remark 5.3.

Let A ⊆ X be an open set, let (fn) be a sequence convergent to f in L1(A) and
gn ∈ UG(fn) such that

lim
n→∞

∫
A

gn dm = |Df |c∗(A).

Thanks to Lemma 5.7 we can find a subsequence n(s) such that fn(s) ◦ γ → f ◦ γ in
L1(γ−1(A)) along 1-almost every curve γ. By (2.4) in the open set γ−1(A) we get

γ]|D(f ◦ γ)|(A) ≤ lim inf
s→∞

γ]|D(fn(s) ◦ γ)|(A) for π-a.e. curve γ.

Passing to the limit as s→∞ in the inequality (5.19) with n = n(s), Fatou’s lemma gives
µπ(A) ≤ |Df |c∗(A) for all∞-test plan π, where µπ is the finite Borel measure in (5.16). If
π1, . . . , πk is a finite collection of ∞-test plans, the formula

k∨
i=1

µπi(A) = sup

{
k∑
i=1

µπi(Ai) : A1 ⊆ A, . . . , Ak ⊆ A open, pairwise disjoint

}

and the additivity of |Df |c∗ yield |Df |c∗(A) ≥ ∨k1µπi(A) for any open set A. Since this
collection is arbitrary, the inequality |Df |w(A) ≤ |Df |c∗(A) is proved.

We’re not done yet, because we have to prove also the boundary regularity (5.14) that
is part of our axiomatization of w − BV functions. The inequality would clearly follow if
we show that f ◦ γi, i = 0, 1, is the approximate limit of f ◦ γ as t→ i, namely

lim
t↓0

1

t

∫ t

0

|f(γs)− f(γ0)| ds = 0, lim
t↓0

1

t

∫ 1

1−t
|f(γs)− f(γ1)| ds = 0.

This is indeed the context of the next lemma, that we state and prove for t = 0 only:

Lemma 5.8 (Boundary regularity) We are given a sequence of pairs (fn, gn) where gn ∈
UG(fn), fn → f in L1(X,m) and supn

∫
X
gndm <∞. Then t = 0 is a Lebesgue point for

the map f ◦ γ : [0, 1]→ R for 1-almost every curve γ.

Proof. Let us fix an ∞-plan π, set C1 := supn
∫
X
gndm, C2 := C(π) and consider the

quantities

Ht(γ) =
1

t

∫ t

0

|f(γs)− f(γ0)|ds.

By definition, we know that 0 is a Lebesgue point for f ◦γ if Ht(γ)→ 0 as t→ 0. Applying
Fatou’s lemma we get: ∫

lim inf
t→0

Ht(γ)dπ ≤ lim inf
t→0

∫
Ht(γ) dπ. (5.20)
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We can estimate∫
Ht(γ) dπ ≤

∫
Hn
t (γ) dπ +

1

t

∫∫ t

0

(
|fn(γs)− f(γs)|+ |fn(γ0)− f(γ0)|

)
ds dπ,

where Hn
t (γ) = 1

t

∫ t
0
|fn(γs) − fn(γ0)|ds. We now treat separately the two terms on the

right: first let’s note that∫
Hn
t (γ)dπ =

1

t

∫∫ t

0

|fn(γs)− fn(γ0)|ds dπ ≤ 1

t

∫∫ t

0

∫ s

0

gn(γr)dr ds dπ

≤ 1

t

∫∫ t

0

∫ t

0

gn(γr)dr ds dπ =

∫∫ t

0

gn(γr)dr dπ

≤ C2

∫ t

0

∫
X

gn(x) dm(x) dm dt ≤ tC1C2.

For the second term:

1

t

∫∫ t

0

(
|fn(γs)− f(γs)|+ |fn(γ0)− f(γ0)|

)
ds dπ

=
1

t

∫∫ t

0

|fn(γs)− f(γs)|ds dπ +

∫
|fn(γ0)− f(γ0)| dπ

≤ 1

t

∫ t

0

∫
X

|fn − f | · C2 dm ds+

∫
X

|fn − f | · C2 dm

≤ 2C2 · ‖fn − f‖L1(X,m).

summing up we get that, choosing n so large that ‖fn − f‖L1 ≤ t,∫
Ht(γ)dπ ≤ tC2(C1 + 2).

Now by (5.20) we conclude that
∫

(lim inft→0Ht) dπ = 0 and so, thanks to the arbitrariness
of π, we can say that 0 is a Lebesgue point for 1-almost every curve. �

We conclude this section with an auxiliary result regarding weak BV functions.

Lemma 5.9 (Truncations) Let f ∈ w − BV (X, d,m) and N ∈ R. Then f ∧ N and
f ∨ −N belong to w −BV (X, d,m) and

|D(f ∧N)|w(X) ≤ |Df |w(X), |D(f ∨ −N)|w(X) ≤ |Df |w(X).

Proof. It relies on the fact that |D(ψ ◦ g)|(0, 1) ≤ |Dg|(0, 1) whenever g ∈ BV (0, 1) and
ψ : R→ R is 1-Lipschitz. �
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6 The functional Ch1 and its gradient flow

Let us consider the convex functional Ch1 : L2(X,m)→ [0,∞] given by

Ch1(f) :=

{
|Df |∗(X) if f ∈ BV∗(X, d,m);

∞ if f /∈ BV∗(X, d,m),
(6.1)

where |Df |∗(X) has beed defined in the previous section. Convexity of Ch1 follows by the
more precise inequality between measures

|D(λf + µg)|∗ ≤ |λ||Df |∗ + |µ||Dg|∗ (6.2)

which simply follows (first on open sets, and then on Borel sets) by homogeneity and
convexity of f 7→ |∇f |(x). Also, a simple diagonal argument shows that Ch1 is lower
semicontinuous w.r.t. L2(X,m) convergence. In addition its domain

D(Ch1) = BV∗(X, d,m) ∩ L2(X,m)

is dense in L2(X,m), because it contains Lipb(X). Thanks to these facts we can apply the
standard theory of gradient flows [8] of convex lower semicontinuous functionals in Hilbert
spaces to obtain, starting from any f0 ∈ L2(X,m), a curve ft such that:

(a) t 7→ ft is locally Lipschitz from (0,∞) to L2(X,m) and ft → f0 as t ↓ 0;

(b) t 7→ Ch1(ft) is locally absolutely continuous in (0,∞);

(c) d
dt
ft = ∆1ft for a.e. t ∈ (0,∞).

Here ∆1f denotes the 1-laplacian of f , defined as the opposite of the element of minimal
norm of the subdifferential ∂−Ch1(f), when this set is not empty. Namely, ξ = −∆1f
satisfies

Ch1(g) ≥ Ch1(f) +

∫
X

ξ(g − f) dm ∀g ∈ L2(X,m) (6.3)

and is the vector with smallest L2(X,m) norm among those with this property. We will
denote by D(∆1) the set of functions for which the subdifferential is not empty.

We can think of the gradient flow also as a semigroup St that maps f0 in ft. When
m(X) is finite, a property that will be used is that St(f0 + C) = St(f0) + C for all C ∈ R;
this is true because Ch1 is invariant by addition of a constant and so also ∂−Ch1 has the
same property.

Proposition 6.1 (Integration by parts) For all f ∈ D(∆1) and g ∈ D(Ch1) it holds

−
∫
X

g∆1f dm ≤ |Dg|∗(X) = Ch1(g), (6.4)

with equality if g = f .
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Proof. Since −∆1f ∈ ∂−Ch1(f) it holds

Ch1(f)−
∫
X

g∆1f dm ≤ Ch1(f + g), ∀g ∈ L2(X,m).

Now we can use (6.2) to estimate Ch1(f + g) with Ch1(f) + Ch1(g), and so we get the first
statement. For the second statement we need the converse inequality when f = g; but this
is easy, because it is sufficient to put g = 0 in (6.3). �

Proposition 6.2 (Some properties of the gradient flow of Ch1) Let f0 ∈ L2(X,m)
and let (ft) be the gradient flow of Ch1 starting from f0. Then:
(Mass preservation)

∫
ft dm =

∫
f0 dm for any t ≥ 0.

(Maximum principle) If f0 ≤ C (resp. f0 ≥ c) m-a.e. in X, then ft ≤ C (resp ft ≥ c)
m-a.e. in X for any t ≥ 0.
(Energy dissipation) Suppose 0 < c ≤ f0 ≤ C <∞ m-a.e. in X and Φ ∈ C2([c, C]). Then
t 7→

∫
Φ(ft) dm is locally absolutely continuous in (0,∞) and it holds

− d

dt

∫
Φ(ft) dm ≤ |DΦ′(ft)|∗ for a.e. t ∈ (0,∞),

with equality if Φ(t) = t2.

Proof. (Mass preservation) Just notice that from (6.4) we get

d

dt

∫
±1ft dm =

∫
±1 ·∆1ft dm ≤ |D(±1)|∗(X) = 0 for a.e. t > 0,

where 1 is the function identically equal to 1, which has relaxed total variation equal to 0
by definition.
(Maximum principle) Fix f ∈ L2(X,m), τ > 0 and, according to the so-called implicit
Euler scheme, let f τ be the unique minimizer of

g 7→ Ch1(g) +
1

2τ

∫
X

|g − f |2 dm.

Assume that f ≤ C. We claim that in this case f τ ≤ C as well. Indeed, if this is
not the case we can consider the competitor g := min{f τ , C} in the above minimization
problem. By Lemma 5.9 we get Ch(g) ≤ Ch(f τ ) and the L2 distance of f and g is strictly
smaller than the one of f and f τ as soon as m({f τ > C}) > 0, which is a contradiction.
Starting from f0, iterating this procedure, and using the fact that the implicit Euler scheme
converges as τ ↓ 0 (see [8], [4] for details) to the gradient flow we get the conclusion.
(Energy dissipation) Since t 7→ ft ∈ L2(X,m) is locally absolutely continuous and, by the
maximum principle, ft take their values in [c, C] m-a.e., from the fact that Φ is Lipschitz in
[c, C] we get the claimed absolute continuity statement. Now, we know from the Lagrange
mean value theorem that exists a function ξht : X → [c, C] such that:

Φ(ft+h)− Φ(ft) = Φ′(ft)(ft+h − ft) +
1

2
Φ′′(ξht )(ft+h − ft)2.

21



Dividing by h and integrating in space, we get that, for times where the L2 derivative of
ft exists (i.e., for almost every t):

d

dt

∫
X

Φ(ft) dm =

∫
X

Φ′(ft)∆1ft dm.

We can now use Lemma 6.1 with g = Φ′(ft) in the right hand side to get the last statement.
�

7 Proof of equivalence

In Section 5 we discussed the “easy” inclusions BV∗ ⊆ BV c
∗ ⊆ w − BV , and the corre-

sponding inequalities (localized on open subsets of X)

|Df |w ≤ |Df |c∗ ≤ |Df |∗.

In this section we prove the main result of the paper, namely the equivalence of the three
definitions. So, we have to start from a function f ∈ w−BV (X, d,m), and build a sequence
of approximating Lipschitz functions in such a way that

lim sup
n→∞

∫
X

|∇fn| dm ≤ |Df |w(X). (7.1)

As in [5] for the case q = 2 and [7] for the case 1 < q < ∞, our main tool in the
construction will the gradient flow in L2(X,m) of the functional Ch1, starting from f0. We
initially assume that (X, d) is a complete and separable length space (this assumption is
used to be able to apply the results of Section 3 and in Lemma 7.3, to apply (4.1)) and that
m is a finite Borel measure, so that the L2-gradient flow of Ch1 can be used. The finiteness
and length space assumptions will be eventually removed in the proof of the equivalence
result.

We start with the following proposition, which relates energy dissipation to a sharp
combination of weak total variation and metric dissipation in W∞.

Proposition 7.1 Let µt = ftm be a curve in AC∞([0, 1], (M+(X),W∞)). Assume that
for some 0 < c < C < ∞ it holds c ≤ ft ≤ C m-a.e. in X for any t ∈ [0, 1], and that
f0 ∈ w −BV (X, d,m). Then for all Φ ∈ C2([c, C]) convex it holds∫

Φ(f0) dm−
∫

Φ(fs) dm ≤ sLip(Φ′)|Df0|w(X) · C · Lip(µt) ∀s > 0.

Proof. Let m =
∫
X
f0 dm, and let π ∈M+(C([0, 1], X)) be a plan associated to the curve

(µt) as in Remark 8.5. The assumption ft ≤ C m-a.e. and the fact that ‖Lip(γ)‖L∞(π) =
Lip(µt) <∞ guarantee that π

m
is an ∞-test plan, such that C(π

m
) ≤ C/m.

22



Now we get, using our hypothesis that f0 ∈ w −BV and (5.17), (5.18):∫
Φ(f0)−

∫
Φ(fs) dm ≤

∫
Φ′(f0)(f0 − fs) dm =

∫
Φ′(f0) ◦ e0 − Φ′(f0) ◦ es dπ

≤
∫
|Φ′(f0(γs))− Φ′(f0(γ0))| dπ(γ)

≤ Lip(Φ′)

∫
|f0(γs)− f0(γ0)| dπ(γ)

≤ m · Lip(Φ′)

∫
|D(f0 ◦ γ)|(0, s) d

(π
m

)
(γ)

≤ Lip(Φ′) · s · |Df0|w(X) ·m · C(
π

m
) · ‖Lip(γ)‖L∞(π)

≤ Lip(Φ′) · s · |Df0|w(X) · C · Lip(µt).

�

Remark 7.2 The proof of Proposition 7.1 suggests another possible definition of w −
BV (X, d,m), in the spirit of the classical definitions of BV based on the oscillation, namely,
requiring the existence of a constant C∗ satisfying∫

|f(γ1)− f(γ0)| dπ(γ) ≤ C∗C(π) · ‖Lip(γ)‖L∞(π)

for any∞-test plan π. A posteriori, the constant C∗ coincides with |Df |w(X) = |Df |∗(X).
Even though this definition is simpler, we have chosen the definition based on (5.15) because
it involves explictly a measure, which can be compared with the definition arising from
approximation with Lipschitz functions.

The key argument to achieve the identification is the following lemma which gives a
sharp bound on the W∞-speed of the L2-gradient flow of Ch1. This lemma, in the Wp

case, has been introduced in [25] and then used in [17, 5] to study the heat flow on metric
measure spaces.

Lemma 7.3 (Kuwada’s lemma for Ch1) Let f0 ∈ L2(X,m) and let (ft) be the gradient
flow of Ch1 starting from f0. Assume that for some 0 < c < C < ∞ it holds c ≤ f0 ≤ C
m-a.e. in X. Then the curve t 7→ µt := ftm ∈M+(X) is absolutely continuous w.r.t. W∞
and it holds

|µ̇t| ≤
1

c
for a.e. t ∈ (0,∞).

Proof. We start from the duality formula (4.1)

W (s)
∞ (µ, ν) = sup

φ∈Lipb(X)

∫
X

Qsφ dν −
∫
X

φ dµ. (7.2)
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where Qtφ is defined in (3.1) and (3.2). Fix φ ∈ Lipb(X) and recall (Theorem 3.1) that
the map t 7→ Qtϕ is Lipschitz with values in C(X), in particular also as a L2(X,m)-valued
map.

Fix also 0 ≤ t < r, set ` = (r − t) and recall that since (ft) is a gradient flow of Ch1

in L2(X,m), the map [0, `] 3 τ 7→ ft+τ is absolutely continuous with values in L2(X,m).
Therefore, since both factors are uniformly bounded, the map [0, `] 3 τ 7→ Q sτ

`
ϕft+τ is

absolutely continuous with values in L2(X,m). In addition, the equality

Q s(τ+h)
`

ϕft+τ+h −Q sτ
`
ϕft+τ

h
= ft+τ

Q s(τ+h)
`

−Q sτ
`
ϕ

h
+Q s(τ+h)

`

ϕ
ft+τ+h − ft+τ

h
,

together with the uniform continuity of (x, τ) 7→ Q sτ
`
ϕ(x) shows that the derivative of

τ 7→ Q sτ
`
ϕft+τ can be computed via the Leibniz rule.

We have:∫
X

Qsϕ dµr −
∫
X

ϕ dµt =

∫
Qsϕft+` dm−

∫
X

ϕft dm =

∫
X

∫ `

0

d

dτ

(
Q sτ

`
ϕft+τ

)
dτ dm

≤
∫
X

∫ `

0

−s
`
|∇Q sτ

`
ϕ|ft+τ +Q sτ

`
ϕ∆1ft+τ dτ dm,

(7.3)

having used Theorem 3.1.
Observe that by inequality (6.4) and Remark 5.1 we have∫

X

Q sτ
`
ϕ∆1ft+τ dm ≤

∫
X

|∇Q sτ
`
ϕ|∗,1 dm ≤

∫
X

|∇Q sτ
`
ϕ| dm. (7.4)

Plugging this inequality in (7.3), and taking s = `
c

we obtain∫
X

Qsϕ dµr −
∫
X

ϕ dµt ≤
∫ `

0

∫
X

|∇Q sτ
`
ϕ|
(

1− sft+τ
`

)
dm dτ ≤ 0

This latter bound obviously doesn’t depend on ϕ, so from (7.2) we deduce

W∞(µt, µr) ≤
(r − t)
c

.

In particular, we showed that the curve µt is 1
c
-Lipschitz. �

We can now prove our main theorem:

Proof. [of Theorem 1.1] Recalling the results of Section 5, to conclude the proof we are
only left to show that a function of weak total variation is also a function of relaxed total
variation and the two definitions of total variations bring us to the same measure. We first
prove that |Df |∗(X) ≤ |Df |w(X) and then that the set functions agree on all open sets.
This yields the coincidence of the two measures on the Borel σ-algebra.

24



We split the proof of the inequality |Df |∗(X) ≤ |Df |w(X) in three parts: we prove
it first for bounded functions and finite measures in length spaces, then we remove the
boundedness assumption on f and the length space assumption, and eventually the local
finiteness assumption on m.
Let us consider a bounded function f0 ∈ BVw possibly adding a constant (that doesn’t
change any of the total variations) we can suppose also that C ≥ f0 ≥ c > 0. Let us
consider as before the gradient flow ft in L2(X,m), with respect to Ch1, starting from f0.
Now, let Φ(x) = x2, so that Φ′′ ≡ 2, and let’s substitute f0 with f0 +H; our computation
is left unchanged, because we know that St(f0 +H) = ft +H and so we can say, using the
energy estimate in Proposition 6.2 and the Lipschitz estimate for the curve t 7→ (ft +H)m
given by Lemma 7.3, combined with Proposition 7.1:

2

∫ s

0

|Dft|∗(X) dt = 2

∫ s

0

|D(ft +H)|∗(X) dt

=

∫
X

(f0 +H)2 dm−
∫
X

(fs +H)2 dm

≤ 2s · |Df0|w(X) · C +H

c+H
.

Now, letting H →∞, we get that∫ s

0

|Dft|∗(X) dt ≤ s · |Df0|w(X).

But, knowing that |Dft|∗(X) = Ch1(ft) is nonincreasing in t we can say

s|Dfs|∗(X) ≤
∫ s

0

|Dft|∗(X) dt ≤ s · |Df0|w(X)

and thus |Dfs|∗(X) ≤ |Df0|w(X). Now we have that |Df |∗ is lower semicontinuous and
so, letting s ↓ 0, we obtain that f0 ∈ BV c

∗ (X, d,m) and that |Df0|∗(X) ≤ |Df0|w(X).

Now, taking any function g ∈ w − BV (X, d,m), defining gN = (g ∧ N) ∨ (−N), we
have gN → g in L1 as N goes to infinity; by the lower semicontinuity of the relaxed total
variation we get:

|Dg|w(X) ≥ lim sup |DgN |w(X) = lim sup |DgN |∗(X) ≥ |Dg|∗(X),

where the first inequality follows by Lemma 5.9, while the equality is what we proved in
the first step, i.e. the thesis for bounded functions.

Now, still assuming m finite, we prove that |Df |∗(A) ≤ |Df |w(A) for any open set
A ⊆ X. In fact, the superadditivity of |Df |∗ gives

|Df |∗(A) ≤ |Df |∗(X)− |Df |∗(X \ A) = |Df |w(X)− |Df |∗(X \ A)

≤ |Df |w(X)− |Df |w(X \ A) = |Df |w(A).
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Eventually we use that |Df |∗ satisfies (iii) of Lemma 5.2 to conclude that |Df |∗(A) ≤
|Df |w(A) for any open set A.

Now, still assuming m to be finite, we see how the length space assumption on X can
be easily removed. Indeed, it is not difficult to find an isometric embedding of (X, d) into a
complete, separable and length metric space (Y, dY ): for instance one can use the canonical
Kuratowski isometric embedding j of (X, d) into `∞ and then take as Y the closed convex
hull of j(X). For notational simplicity, just assume that X ⊆ Y and that dY restricted
to X × X coincides with d. Since X is a closed subset of Y , we may also view m as a
finite Borel measure in Y supported in X. Then, if f ∈ w − BV (X, d,m), we have also
f ∈ w−BV (Y, dY ,m) and |Df |w,Y (B) ≤ |Df |w,X(B∩X) for any Borel set B ⊆ Y , because
any ∞-test plan π in Y is, by the condition (et)]π ≤ m, supported on Lipschitz curves
with values in X. Then, applying the equivalence result in (Y, dY ,m), we find a sequence
of locally Lipschitz functions gn : Y → R convergent to f in L1(Y,m) satisfying

lim sup
n→∞

∫
Y

|∇gn| dm ≤ |Df |w,Y (Y ) ≤ |Df |w,X(X).

Now, if fn = gn|X , from the inequality |∇fn| ≤ |∇gn| on X we obtain
lim supn

∫
X
|∇fn| dm ≤ |Df |w,X(X). On the other hand, it is immediate to check that

fn are locally Lipschitz in X.
Eventually we show that the theorem is true for all locally finite measures m. Recall that

m is said to be locally finite if for any x ∈ X there exists r > 0 such that m(Br(x)) <∞.
By the Lindelöf property we can find a sequence of balls Bri(xi) with finite m-measure and
m-negligible boundary whose union is the whole of X. Now, defining

Ah :=
h⋃
i=1

Bri(xi),

we have a nondecreasing sequence of open sets Ah whose union is X.
Now, notice that the space w−BV (X, d,m) satisfies the following global-to-local prop-

erty: if f ∈ w − BV (X, d,m) and mC(B) = m(C ∩ B), then f ∈ w − BV (C, d,mC)
and |Df |mC ,w(X) ≤ |Df |w(X) for all closed subsets C of X (this is due to the fact
that ∞-test plans in relative to mC can be viewed also as ∞-test plans relative to m).
Then, we can apply first the global-to-local property to all measures mCn relative to the
closed sets Cn := An and then the equivalence theorem for finite measures to obtain that
|Df |∗(An) = |Df |mCn ,∗(An) is uniformly bounded by |Df |w(X). Eventually we can use
Lemma 5.2(iii) to obtain that |Df |∗(X) = supn |Df |∗(An) is finite. �

The following example shows that in general the supremum in (1.2) may be strictly
smaller than the absolutely continuous parts of |Df |w.

Example 7.4 Let X = R2, let B be the closed unit ball in R2, d the Euclidean distance
and m(C) = L 2(C) + H 1(C ∩∂B), for C ⊆ X Borel. If f is the characteristic function of
B, the inequality m ≥ L 2 gives the inequality between measures |Df | ≤ |Df |w. We claim
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that the two measures coincide. To see this, suffices to show that |Df |w(R2) ≤ 2π and this
inequality follows easily by considering the sequence of functions (each one constant in a
neighbourhood of ∂B) fn(x) = φn(|x|) with

φn(t) :=


1 if t ≤ 1 + 1

n
;

1− n
(
t− 1− 1

n

)
if 1 + 1

n
< t ≤ 1 + 2

n
;

0 if t > 1 + 2
n
.

Since |Df |(C) = H 1(C ∩ ∂B), it follows that |Df |w is absolutely continuous w.r.t. m; on
the other hand, since f is a characteristic function the same is true for the maps f ◦ γ, so
that |Da(f ◦ γ)| = 0 whenever f ◦ γ has bounded variation.

We conclude this section with the following corollary to Theorem 1.1, dealing with the
degenerate case L1 = BV∗; similar results could be stated also at the level of the Sobolev
spaces W 1,q(X, d,m) and the corresponding test plans of [7].

Corollary 7.5 BV∗(X, d,m) coincides with L1(X,m) if and only if (X, d,m) has a ∞-
test plan concentrated on nonconstant rectifiable curves. In addition, (X, d) contains one
nonconstant rectifiable curve if and only there exists a finite Borel measure m in (X, d)
satisfying BV∗(X, d,m) 6= L1(X,m).

Proof. In the first statement, the “only if” part is trivial, since absence of ∞-test plans
implies that all L1 functions are BVw, and therefore BV∗. In order to prove the converse,
we notice that for a given countable dense set D ⊂ X, a curve γ is constant iff t 7→ d(γ, x)
is constant for all x ∈ D. Hence, we can find x ∈ D and a ∞-test plan π such that d(γ, x)
is nonconstant in a set with π-positive measure. The composition

f(y) := w(d(y, x)),

where w : [0,∞) → [0, 1] is a continuous and nowhere differentiable function, provides a
function in L1 \BVw = L1 \BV∗.

For the second statement, absence of nonconstant rectifiable curves forces the absence of
nontrivial∞-test plans whatever m is and, for the reasons explained above, the coincidence
L1 = BV∗. On the other hand, existence of a nonconstant rectifiable curve in (X, d)
implies existence of a nonconstant injective curve γ : [0, 1] → X with constant speed. If
u ∈ L1(0, 1)\BV (0, 1), then it is easily seen that u◦γ−1 (arbitrarily defined on X\γ([0, 1]))
belongs to L1\BVw provided we choose m := γ]L 1, where L 1 is the restriction of Lebesgue
measure to [0, 1]. �

8 Spaces W 1,1(X, d,m)

In this section we discuss potential definitions of the space W 1,1. Here the picture is far
from being complete, since at least three definitions are available and we are presently not
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able to prove their equivalence, unlike for BV . For simplicity, here we assume that (X, d,m)
is a compact metric space and that m is a probability measure. Recall that BV∗(X, d,m)
denotes the BV space defined by relaxation of the slope of Lipschitz functions, while
w −BV (X, d,m) is the BV space defined with the BV property along curves.

It is immediate to define w−W 1,1(X, d,m) as the subset of w−BV (X, d,m) consisting of
functions f ∈ L1(X, d,m) such that |Df |w � m. On the other hand, also the construction
leading to BV∗(X, d,m) (or to the relaxed Sobolev spaces) can be adapted to provide a
different definition of W 1,1:

Definition 8.1 (1-relaxed slope) Let f ∈ L1(X, d,m). We say that a nonnegative func-
tion g ∈ L1(X, d,m) is a 1-relaxed slope of f if there exist locally Lipschitz functions fn
converging to f in L1(Xm) such that |∇fn|⇀ h weakly in L1(X,m), with g ≥ h m-a.e. in
X.

Then, we may define W 1,1
∗ (X, d,m) as the space of functions in L1(X, d,m) having a 1-

relaxed slope. It is not difficult to show, using Mazur’s lemma, that an equivalent definition
of 1-relaxed slope g involves sequences fn such that |∇fn| ≤ hn, with hn → h strongly in
L1(X,m) and h ≤ g. Then, this gives that |Df |w ≤ hm for all f ∈ W 1,1

∗ (X, d,m), so that

W 1,1
∗ (X, d,m) ⊆ w −W 1,1(X, d,m).

Finally, also a third intermediate definition of W 1,1(X, d,m) could be considered, in the
spirit of [24, 28].

Definition 8.2 (1-upper gradient) A Borel nonnegative function g ∈ L1(X, d,m) is
said to be a 1-upper gradient of f ∈ L1(X, d,m) if there exists a function f̂ that coincides
m-almost everywhere with f such that

|f̂(γ(1))− f̂(γ(0))| ≤
∫ 1

0

g(γ(s))|γ̇s| ds ∀γ ∈ AC∞([0, 1];X) \ Γ,

with Mod1(Γ) = 0.

Recall that

Mod1(Γ) := inf

{∫
X

ρ dm : ρ ≥ 0,

∫
γ

ρ ≥ 1 ∀γ ∈ Γ

}
.

Since Mod1-negligible set of curves parametrized on [0, 1] are easily seen to be 1-negligible

(it suffices to integrate with respect to any ∞-test plan π the inequality
∫ 1

0
ρ(γt)|γ̇t| ≥ 1)

we see that the space W 1,1
S (X, d,m) of functions having 1-upper gradient is contained

in w −W 1,1(X, d,m), while the arguments of [28] provide the inclusion W 1,1
∗ (X, d,m) ⊆

W 1,1
S (X, d,m). Summing up, we have

W 1,1
∗ (X, d,m) ⊆ W 1,1

S (X, d,m) ⊆ w −W 1,1
∗ (X, d,m)
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and we don’t know wether the first inclusion may be strict; an example showing that the
second inclusion may be strict is provided by Example 7.4. A fourth space could be added
to this list, considering general integrable functions fn and replacing the slopes |∇fn| with
upper gradients gn in Definition 8.1. However, since 1-upper gradients are characterized
as strong L1 limits of upper gradients, this space is easily seen to coincide W 1,1

S (X, d,m).

Appendix: proof of the superposition principle, p =∞
We will need the following result, proved for 1 < p < ∞ in [26]: it shows how to lift,
somehow in an optimal way (see (8.5)), a Lipschitz curve µt w.r.t. W∞ to a plan π ∈
P(C([0, T ];X)) whose time marginals are µt (see also [4, Theorem 8.2.1] for the Euclidean
case).

Let us recall some preliminary facts. If Y is a metric space, a function ϕ : Y →
R ∪ {+∞} is said to be coercive if for every c <∞ the sublevel set

Kc = {y ∈ Y : ϕ(y) ≤ c}

is compact. In particular, coercive functions are lower semicontininuous. If Y is Polish,
Prokhorov’s theorem states that a family A of probability Borel measures in Y is relatively
compact for the weak topology if and only if there exists a coercive function ϕ on Y such
that:

sup
µ∈A

∫
Y

ϕ dµ <∞.

We shall use the “if” implication in the sequel, to build our plan π.
We shall work in the Polish space M (larger than C([0, 1];X)) of Borel maps γ : [0, 1]→

X endowed with the convergence in measure, namely the one induced by the distance

dM(γ, γ′) := inf
{
ε > 0 : L 1({t ∈ [0, 1] : d(γt, γ

′
t) > ε}) < ε

}
.

Recall that convergence a.e. implies convergence in measure, and that sequences convergent
in measure have subsequences convergent a.e. in [0, 1].

We state now the following simple compactness criterion in M: the proof will be ob-
tained by embedding isometrically X into `∞, and then applying the classical Frechét-
Kolmogorov compactness criterion for real-valued maps componentwise.

Proposition 8.3 [Compactness in M] Let F ⊆M be satisfying the following properties:

• (equicontinuity) for every ε > 0 there exists δ = δ(ε) ∈ (0, 1] such that

sup
0<j≤δ

L 1
(
{t ∈ [0, 1− j] : d(γt+j, γt) > ε}

)
≤ ε ∀γ ∈ F; (8.1)

• (tightness) there exists a coercive function Φ on X such that:

sup
γ∈F

∫ 1

0

Φ(γt) dt <∞.
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Then F is relatively compact in (M, dM).

Proof. The statement is well-known if X = RN : indeed, arguing componentwise one easily
reduces to the case N = 1. If the functions are equibounded the statement corresponds
to the classical Frechét-Kolmogorov relative compactness criterion in Lp(0, 1), 1 ≤ p <∞,
while in the general case one can combine tightness with a truncation argument to obtain
relative compactness w.r.t. convergence in measure.

If (X, d) is complete and separable, possibly embedding (X, d) isometrically into `∞

endowed with the canonical norm ‖ · ‖∞, we can assume that X ⊆ `∞ and we denote by
πN : `∞ → RN the canonical finite-dimensional projections. By the compactness of the
sublevels of Φ, we can find doubly-indexed sequences ωN,p such that

d(x, y) = ‖x−y‖∞ ≤ ‖πN(x)−πN(y)‖∞+ωN,p ∀x, y ∈ {Φ ≤ p}, lim
N→∞

ωN,p = 0 ∀p.
(8.2)

By the relative compactness criterion for RN -valued maps, applied with

ΦN(y) :=

{
min {Φ(x) : πN(x) = y} y ∈ πN(X),

+∞ y ∈ RN \ πN(X),

the families {πN ◦ γ : γ ∈ F} are relatively compact w.r.t. convergence in measure; by a
diagonal argument, given any sequence (γk) ⊆ F, we can find a subsequence (γk(n))) ⊆ F

such that πN(γk(n)) is a Cauchy sequence w.r.t. the distance dM for all N . In order to
conclude the proof, suffices to show that for all ε > 0 and δ > 0 we can find n0 such that

L 1
({
t ∈ [0, 1] : ‖γk(n)

t − γk(m)
t ‖∞ > ε

}
) ≤ δ ∀m, n ≥ n0. (8.3)

Having fixed ε > 0 and δ > 0, choose p so large that supn
∫ 1

0
Φ(γ

k(n)
t ) dt < pδ/3 and then

N so large that ωN,p < ε/2; then, using (8.2), we easily get that the set in the left hand
side of (8.3) is contained in{

‖πN(γ
k(n)
t )− πN(γ

k(m)
t )‖∞ > ε/2

}
∪
{

max{Φ(γ
k(n)
t ),Φ(γ

k(m)
t )} > p

}
.

Markov inequality and the fact that πN(γk(n)) is a Cauchy sequence, give us an integer n0

such that

L 1
({
t ∈ [0, 1] : ‖γk(n)

t − γk(m)
t ‖∞ > ε

}
) ≤ δ

3
+
δ

3
+
δ

3
∀m, n ≥ n0.

�

It will be useful in the sequel the following fact. If for every modulus of continuity
ω : [0, 1]→ [0, 1], we call P(ω) the property

sup
0<j≤ω(ε)

L 1
(
{t ∈ [0, 1− j] : d(γt+j, γt) > ε}

)
≤ ε ∀ ε ≤ 1, (8.4)

then the set of curves in M satisfying P(ω) is closed w.r.t. convergence in measure; this can
be checked verifying the closure w.r.t. convergence almost everywhere, which is a simple
matter.
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Proposition 8.4 (Superposition principle) Let (X, d) be a complete and separable
metric space with and let µt ∈ Lip

(
[0, T ]; (P(X),W∞)

)
. Then there exists π ∈

P(C([0, T ];X)), concentrated on Lip([0, 1];X), such that (et)]π = µt for any t ∈ [0, T ]
and

‖γ̇t‖L∞(π) = |µ̇t| for a.e. t ∈ [0, T ]. (8.5)

In particular
‖Lip(γ)‖L∞(π) = Lip(µt). (8.6)

Proof. We assume T = 1, since the general case follows easily by a rescaling argument. We
begin with an inequality: given a plan π concentrated on Lipschitz curves with Lipschitz
constant less then C, we consider the curve µt = (et)]π. Then, using a time rescaled
version of π as transport plan from µt to µs it is easy to see that

W p
p (µt, µs) ≤ ‖d(γs, γt)‖pLp(π) ≤ (t− s)p−1

∫ t

s

∫
|γ̇r|p dπ dr

for 1 < p <∞ and 0 ≤ s ≤ t ≤ 1 (notice that, by Fubini’s theorem, the metric derivative
|γ̇t| exists π-a.e. in C([0, 1];X) for a.e. t). This yields that the metric derivative of µt
w.r.t. Wp can be estimated a.e. by ‖γ̇t‖Lp(π). Since

W∞(µt, µs) = lim
p→∞

Wp(µt, µs) ≤
∫ t

s

‖γ̇r‖Lp(π) dr ≤
∫ t

s

‖γ̇r‖L∞(π) dr

we obtain the inequality≥ in (8.5), as well as the global inequality Lip(µt) ≤ ‖Lip(γ)‖L∞(π).
Given a curve (µt) with Lipschitz constant C, we want to build π with the correct marginals
that satisfies the opposite inequalities; it is very natural to approximate such a plan. The
remaining part of the proof will be split in steps.
Step 1. (Approximating plans ΣN) We can argue as in [26], with minor changes, to build
approximating plans ηN in this way:

• we consider Σi
N , for i = 0, . . . , 2N − 1, optimal plans in the ∞-Wasserstein problem

between µ i

2N
and µ i+1

2N
;

• we build as in [26] a probability measure ΣN on X2N+1 such that

(πi)]ΣN = µ i

2N
(0 ≤ i ≤ 2N), (πi, πi+1)]ΣN = Σi

N (0 ≤ i ≤ 2N − 1),

where πi : X2N → X denotes the canonical projection on the i-th component;

• we consider the map ρ : X2N+1 → M, taking more precisely values in the class of
piecewise constant maps, such that

ρ(x0, x1, . . . , x2N )(t) = xb2N tc.

Eventually we define ηN = (ρ)]ΣN .
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Step 2. (Tightness) Now we want to show that the family ηN is tight, so that we can
extract a converging subsequence: applying Prokhorov compactness theorem it is sufficient
to show the existence of a coercive function Ψ on M such that

sup
N∈N

∫
M

Ψ(γ)dηN(γ) <∞. (8.7)

We claim that the function:

Ψ(γ) = IP(ω)(γ) +

∫ 1

0

Φ(γt)dt

satisfies this property, choosing appropriately a coercive function Φ : X → [0,∞] and a
modulus of continuity ω; here I sands for the indicator function, namely

IP(ω)(γ) =

{
0 if γ satisfies P(ω)

+∞ otherwise.

Every function of this kind with Φ coercive is again coercive thanks to Proposition 8.3 and
to the fact that P(ω) is a closed condition under convergence in measure.
If we want also (8.7) to be satisfied we have to choose carefully Φ and ω. First we note
that the family of measure {µt} is clearly tight and thus, another application of Prokhorov
gives us the existence of a coercive Φ satisfying

∫
X

Φ dµt ≤ 1 for all t ∈ [0, 1]. In this way
we obtain that the second term of Ψ is equibounded; indeed∫
M

∫ 1

0

Φ(γt) dt dηN(γ) =

∫
X2N+1

∫ 1

0

Φ(ρ(x)(t)) dt dΣN(x) =

∫
X2N+1

∫ 1

0

Φ(xbt2N c) dt dΣN(x)

=

∫ 1

0

∫
X2N+1

Φ(xbt2N c) dΣN(x) dt =

∫ 1

0

∫
X

Φ(x) dµgN (t) dt ≤ 1,

where we used that (πk)]ΣN = µ k

2N
, then we introduced the functions gN(t) := b2N tc/2N ,

and finally we used the fact that
∫
X

Φ dµt ≤ 1 for all t ∈ [0, 1].
Now let us define the modulus of continuity ω: for all ε > 0 we want to find δ > 0 such

that
L 1(Aδ,ε(γ)) ≤ ε for ηN -a.e. γ ∈M and all N ,

where Aδ,ε(γ) := {t ∈ [0, 1− δ] : d(γt+δ, γt) > ε} .

We know that ηN is concentrated on equivalence classes of “step”’ curves, i.e. curves
which remains at the same point in every interval of the form [ k

2N
, k+1

2N
), with 0 ≤ k < 2N ,

described by the map ρ; therefore we can estimate L 1(Aδ,ε(γ)) working instead on X2N+1,
with curves γ = ρ(x) and with the measure ΣN , recalling that

‖d(xk, xk+1)‖L∞(ΣN ) = W∞
(
µ k

2N
, µ k+1

2N

)
≤ C · 2−N , 0 ≤ k ≤ 2N − 1. (8.8)

We distinguish two cases:
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• δ < 2−N . Then it is clear that in [t, t+δ] there is at most one jump and so d(γt, γt+δ) ≤
C · 2−N for ηN -a.e. γ; in particular if C · 2−N ≤ ε we get that L 1(Aδ,ε(γ)) = 0.
Otherwise, in the case C · 2−N > ε, knowing nothing more on the size of the jump,
we can say only that Aδ,ε(γ) is contained in the δ-neighourhooud of the set of jumps,
which has Lebesgue measure less than 2Nδ. So at the end we get that in the case
δ < 2N we can estimate L 1(Aδ,ε(γ)) on the measure theoretic support of ηN as
follows:

L 1(Aδ,ε(γ)) ≤ 2Nδ ≤ C
δ

ε
.

• k2−N ≤ δ < (k+ 1)2−N , for some k > 0. This time we know that there exist at most
k + 1 jumps in [t, t+ δ]; thus we know that d(γt, γt+δ) ≤ C(k + 1)2−N . Again we get
L 1(Aδ,ε(γ)) = 0 if (k + 1)2−NC < ε; this is always true if 2Cδ < ε, in fact, in this
case

C
k + 1

2N
= C

k + 1

k

k

2N
≤ C · 2 · δ < ε.

Summing up, in order to have L 1(Aδ,ε(γ)) ≤ ε for ηN -a.e. γ for every N it is sufficient
that both the conditions Cδ/ε ≤ ε, 2Cδ < ε hold, and so we can choose the modulus of
continuity ω(ε) = ε2/(2C), ε ∈ [0, 1].
Step 3. (Construction of π) We can fix now a limit point η of ηN and we assume, just
for notational simplicity, that the whole family ηN weakly converges to η. Now we show
that suppη is contained in the set of equivalence classes of C-Lipschitz curves. We have
already seen that, by construction, the support of ηN is contained in the closed set:

AN =

{
γ ∈M : sup

h≥N2−N
esssup
t∈[0,1−h]

{
d(γt, γt+h)

h

}
≤ N + 1

N
C

}

where the AN are obviously decreasing. So, we obtain that suppη ⊆
⋂
N AN , and it is

clear that curves in
⋂
N AN have a C-Lipschitz curve in their equivalence class.

Considering the canonical continuous immersion

i : C([0, 1];X)→M

we can define the measure π on C([0, 1];X) defined as π(A) = η(i(A)) for every Borel
subset A of L. Notice that i is a well-defined Borel probability measure because the con-
tinuous image of a Borel set is Suslin, hence η-measurable. In addition, π is concentrated
on C-Lipschitz curves.

In order to compute the marginals of π, for every continuous and bounded function
φ on X, h ∈ [0, 1] and t ∈ [0, 1 − h] we can consider the bounded continuous map on M

defined by

fφt,h(γ) =

∫ t+h

t

φ(γs) ds.
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Since ηN converge weakly to η, with more or less the same calculation we made before we
get:∫
M

fφt,h dη = lim
N→∞

∫
M

fφt,h dηN = lim
N→∞

∫
X2N+1

fφt,h(ρ(x)) dΣN(x)

= lim
N→∞

∫
X2N+1

∫ t+h

t

φ(xbs2N c) ds dΣN(x) = lim
N→∞

∫ t+h

t

∫
X2N+1

φ(xbs2N c) dΣN(x) ds

= lim
N→∞

∫ t+h

t

∫
X

φ dµgN (s) ds,

with gN(t) = b2N tc/2N . It is clear that gN(t)→ t uniformly in t and, by the continuity of
the function s→

∫
φ dµs we get finally that∫
C([0,1];X)

fφt,h dπ =

∫
M

fφt,h dη =

∫ t+h

t

∫
X

φ(x) dµs ds. (8.9)

Dividing both sides by h and passing to the limit as h ↓ 0 we can use the fact that
fφt,h(γ)/h→ φ(γt) as h ↓ 0 in C([0, 1];X) and the arbitrariness of φ to obtain that (et)]π =
µt for all t ∈ [0, 1].
Step 4. (Verification of (8.5)) We need only to show the inequality ‖γ̇t‖L∞(π) ≤ |µ̇t| for
a.e. t. It is clear that the inequality holds by construction if |µ̇t| = C for a.e. t, since in
this case we proved that π is supported on C-Lipschitz curves. If we drop this assumption,
assuming only that {|µ̇t| > 0} has positive measure in any interval, we can define a strictly
increasing map L on [0, 1] as follows:

L(t) :=

∫ t

0

|µ̇r| dr t ∈ [0, 1]. (8.10)

Set L = L(1). It is immediate to check that µ̃s := µL−1(s), s ∈ [0, L], is 1-Lipschitz.
If we represent µ̃s as (et)]π̃, with π̃ concentrated on 1-Lipschitz curves on [0, L], we see
immediately that the plan

π := Ψ]π̃ with Ψ(γ)t := γL(t)

represents µt, and that |γ̇t| ≤ L′(t) = |µ̇t| π-a.e. in C([0, 1];X) for a.e. t ∈ [0, 1].
Finally, we only sketch the argument which allows to remove the assumption that

{|µ̇t| > 0} has positive measure in any interval. One can either use the ε-parameterizations
of [4, Lemma 1.1.4] (i.e. adding ε into the integral in (8.10)) and pass to the limit as ε ↓ 0,
or argue as follows: collapsing all open intervals where µt is constant, one obtains a new
Lipschitz curve µ̃t defined on an interval [0, L] with L < 1 which satisfies the nondegeneracy
condition. Representing µ̃t as (et)]π̃, with π̃ probability measure on C([0, L];X), the
intervals can be restored to produce π, concentrated on curves defined in [0, 1] and constant
on these intervals. �
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Remark 8.5 Let us note that this proposition, stated only for probability measures,
holds also for Lipschitz curves {µt} ⊆ (M+(X),W∞). Indeed, first of all we note that
W∞(µ, ν) = W∞(Cµ,Cν) for all C ≥ 0; then, letting m = µ0(X), we can consider the
curve of probability measures {µt

m
} that is still Lipschitz (with the same Lipschitz constant)

and so we can apply the proposition, to get a plan π. Now it is easy to see that mπ solves
the problem for {µt}.
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