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Abstract

We present an abstract framework for irreversible rate independent evolution pro-
cesses of quasi-static nature. The main tool relies on the minimizing movement theory.
In particular situations, stability and energy inequality of Mielke’s type are satisfied.
Several examples are given, among which the obstacle erosion.

1 Introduction

In this paper we introduce a general model for the quasi-static evolution of some irreversible
processes. The main framework relies on the minimizing movement theory introduced by
De Giorgi [9] (see also [1]). The irreversibility is modeled through a monotonicity relation
among states; typical examples of such irreversible processes are the crack propagation (see
[10]) and the debonding membranes (see [4]).

The abstract setting of minimizing movements requires a convergence structure on the
space of states and an energy functional. In the examples above the states are closed or open
sets of RN , the energy functional is related to the Dirichlet energy of the membrane, but the
topology on the space of states is not a priori imposed. Nevertheless, a good topology should
be compact and strong enough to ensure that the energy functional is continuous. The usual
topology on the space of states for which the energy functional is continuous (called in this
paper γ) is in general not compact (see for instance [2] for a detailed presentation of γ-
convergence). Here is a fundamental different point of view with respect to other abstract
models, e.g. the models introduced by Mielke [15] and Mielke and Mainik [14]. By acting
on the space of states (e.g. making it smaller), one can artificially restrict the movement to
some γ-compact classes (e.g. adding some geometric or topological constraints on the moving
shapes). Nevertheless, those movements do not, in general, satisfy stability properties or
energy conservation laws in the sense of Mielke [15]. In the frame of Mielke, there is only
one topology, which is assumed to be compact, while in the situations we consider (like
the debonding membrane and obstacle erosion) two topologies are necessary for a good
understanding of the problem. The main idea is to introduce a second topology called weak
γ (and denoted wγ), which is weaker than γ and compact. The main inconvenient is that
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the internal energy is, in general, only lower semicontinuous in the wγ-topology. Our study
concentrates on the interplay between the two topologies and the monotonicity assumption
in order to achieve stability and energy conservation in the sense of Mielke, for a minimizing
movement solution (see also [3]).

The purpose of this paper is to highlight the double topology framework in the context of
irreversible processes. We discuss both situations, i.e. γ compact or not and we give several
examples among which the debonding membrane and the obstacle erosion.

2 The abstract setting: the compact case

We start by recalling a simplified version of the notion of generalized minimizing movements.
We refer the reader to the pioneering paper of De Giorgi [9] (see also [1]). Consider a
topological space S, or more in general a set S endowed with a convergence structure [13],
and a functional

[0, T ]× S × S 3 (t, v, w) 7→ F(t, v, w) ∈ R.

For every fixed ε > 0, we introduce the following Euler scheme of time step ε and initial
condition u0 ∈ S. We construct a function uε : [0, T ] → S by setting uε(t) = w([t/ε]), where

w(0) = u0, w(n + 1) ∈ Argmin
{
F

(
(n + 1)ε, ·, w(n)

)}
.

Here [·] stands for the integer part function.

Definition 2.1 We say that u : [0, T ] → S is a minimizing movement associated to F with
initial condition u0, and we write u ∈ MM(F ,S, u0), if there exist a sequence εn → 0+ such
that for any t ∈ [0, T ], uεn(t) → u(t) in S.

The above procedure can be generalized by considering general partitions of [0, T ] instead
of constant steps in the Euler scheme. More precisely, for every finite partition A of [0, T ]
(i.e. 0 = t0 < t1 < · · · < th = T ) we define

uA(t) = w(ti) ∀t ∈ [ti, ti+1],

where
w(0) = u0, w(ti+1) ∈ Argmin

{
F

(
ti+1, ·, w(ti)

)}
.

We call generalized minimizing movement (simply GMM) associated to F with initial condi-
tion u0 a function u : [0, T ] → S for which there exists a family of finite partitions {An}n∈N
such that An → [0, T ] in the Hausdorff metric and uAn(t) → u(t) for every t ∈ [0, T ].

We define now the rate independence property for a function u : [0, T ] → S.

Definition 2.2 We say that u : [0, T ] → S verifies the rate independence property if for
every increasing continuous bijection α : [0, T ] → [0, T ], the mapping t 7→ u(α(t)) is a GMM
associaterd to F(α(·), ·, ·) and initial condition u0.

We have the following result.

Proposition 2.3 Every u ∈ MM(F ,S, u0), satisfies the rate independence property.
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Proof If (εn) is the sequence provided by Definition 2.1 and α : [0, T ] → [0, T ] is an
increasing continuous bijection, it is enough to consider the partitions An = {α((k + 1)εn) :
k ∈ N} and to verify that uAn(t) → u(t) for every t ∈ [0, T ]. 2

In our setting we fix the following notation.

• The convergence on S is denoted by γ (by abuse of language we still call it a topology).

• We introduce an order relation � on S which is compatible with γ, i.e. if un � vn and
un → u, vn → v in γ, then u � v.

• The internal energy of the system is given by a functional

E : [0, T ]× S → R,

such that for every t ∈ [0, T ] the mapping E(t, ·) is γ-lower semicontinuous. In many
examples the natural topology for which this functional is continuous is related to the
Γ-convergence, and is denoted by γ (see [2, Chapter 3]).

• The dissipation distance we consider is a symmetric functional

D : S × S → R

such that for every v ∈ S the mapping D(v, ·) is γ-lower semicontinuous and satisfies

(i) D(u, u) = 0 for every u ∈ S;

(ii) D(u1, u3) ≤ D(u1, u2) +D(u2, u3) for every u1, u2, u3 ∈ S.

This functional accounts on the quantity of energy which is necessary to spent for
switching between two ordered states.

• The functional to which we associate the minimizing movement is

F(t, v, u) = E(t, v) +D(u, v) + χu�v,

where χu�v = 0 if u � v and +∞ otherwise. The term χu�v models the irreversibility
property of the quasi-static evolution.

Proposition 2.4 If γ is compact, for every ε > 0 and u0 ∈ S there exists a solution uε(t)
of the discrete Euler scheme with initial datum u0.

Proof Indeed, we fix a time step ε > 0 and consider the discretized time tεk = εk for k ∈ N.
We define uε(t

ε
k) iteratively, by taking uε(t

ε
k+1) as the solution of the minimum problem

min
{

E
(
tεk+1, u

)
+D

(
u(tεk), u

)
+ χu(tεk)�u : u ∈ S

}
. (2.1)

The minimization problem has a solution since the topology γ is compact, both E and D are
γ-l.s.c. in the second variable, and the order is compatible with the γ-convergence. 2
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The following hypothesis insures that monotone mappings from [0, T ] in S have an at
most countable family of discontinuity points. This hypothesis is also used in [14, 15] being
a fundamental assumption for the passage from the discrete to the continuous frame. In all
the examples we consider here, this hypothesis is satisfied.

Hypothesis H1. Every nondecreasing mapping [0, T ] 7→ S has an at most countable family
of γ-discontinuity points.

Theorem 2.5 Under hypothesis H1, there exists a minimizing movement u : [0, T ] → S
associated to F , which satisfies the rate independence property.

Proof The proof relies on the Helly theorem and hypothesis H1. Let εn = 2−n and consider
the sequence of discrete movements issued from the Euler scheme through Proposition 2.4;
for simplicity we denote by un the element uεn . Using the compactness of the γ-convergence,
by an usual diagonal procedure, we can extract a subsequence (still denoted by (un)) such
that

q = k2−j ∈ [0, T ] with k, j ∈ N ⇒ un(q) → u(q).

Yet, u is not defined on the full interval [0, T ], so we set

u(t) = sup
{
u(q) : q = k2−j < t

}
.

We notice that u is well defined by the compactness of the γ-convergence and its compatibility
with the monotonicity assumption. The mapping u may differ from u on the points of
the form k2−j but, according to hypothesis H1, u has an at most countable family I of
discontinuity points.

If t /∈ I, that is t is a continuity point for u, then un(t) → u(t). If t ∈ I, we extract a
subsequence (still denoted by (un)) such that

un(t) → ũ(t)

for a suitable ũ(t), and since I is countable, the subsequence (un) can be chosen independent
of t ∈ I. We may now define the minimizing movement for every t ∈ [0, T ] setting

u∗(t) =

{
u(t) if t /∈ I
ũ(t) if t ∈ I

and the proof is achieved.
By Proposition 2.3 the function u satisfies the rate independence property. 2

As noticed, the minimizing movement u : [0, T ] → S in the previous theorem is nonde-
creasing, hence it has an at most countable family of discontinuity points.

We shall further work with the regularization of the minimizing movement u∗ which is
the mapping u defined above, which verifies

u(t) = sup
s<t

u∗(s). (2.2)
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The function u : [0, T ] → S is well defined by the compactness of the γ-topology and its
compatibility with the monotonicity. Moreover, u coincides with u∗ on every continuity point
of u∗.

The stability property. In the sequel we investigate the stability property of the regular-
ized movement u defined in (2.2). The stability property was introduced in [14, 15] as being
one of the relevant mechanical properties which are required by a minimizing movement.

Definition 2.6 We say that the movement u is stable if for every t ∈ [0, T ]

E(t, u(t)) ≤ E(t, v) +D(u(t), v) ∀u(t) � v. (2.3)

At this point, we may formalize a second hypothesis (which is satisfied in all examples
we consider).

Hypothesis H2. Assume that u � v and un
γ→ u. There exists a subsequence (unk

) and a

sequence (vk) such that vk
γ→ v and unk

� vk.

From a practical point of view, we notice that hypothesis H2 has to be satisfied only for
the elements u such that u0 � u. This observation may be very useful in practice, since well
chosen initial conditions may have a direct influence on the properties of the evolution (this
is for instance the case of modeling debonding membranes by measures [4]).

Theorem 2.7 Assume that E is continuous on R×S and D is continuous on S ×S. Then,
the regularized minimizing movement u(t) defined in (2.2) is stable.

Proof At each time step, using the optimization problem (2.1) we can write

E(tεk, uε(t
ε
k)) +D(uε(t

ε
k − ε), uε(t

ε
k)) ≤ E(tεk, v) +D(uε(t

ε
k − ε), v),

for every v such that uε(t
ε
k − ε) � v.

For every t ∈ (0, T ], there exists tn ↑ t and εn → 0 such that

uεn(tn)
γ−→ u(t).

For every v such that u(t) � v, following hypothesis H2, there exists vn such that (up to a
subsequence)

vn
γ−→ v, uεn(tn) � vn.

Using the subadditivity of D we have

E(tn, uεn(tn)) ≤ E(tn, vn) +D(uεn(tn), v).

Passing to the limit and using the continuity properties of E and D, the stability property
follows. 2

The energy inequality. The following energy inequality was introduced in [14, 15] as
another condition to give a mechanical relevance to a minimizing movement.
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Definition 2.8 We say that a movement u(t) satisfies the energy inequality, if for every
0 ≤ s < t ≤ T

E(t, u(t)) + Diss(u, [s, t]) ≤ E(s, u(s)) +

∫ t

s

∂τE(τ, u(τ))dτ, (2.4)

where

∂τE(τ, v) = lim sup
h→0

E(τ + h, v)− E(τ, v)

h

and

DissD(u, [s, t]) = sup
N∈N, s=t0<···<tN=t

N∑
j=1

D(u(tj−1), u(tj)).

In order to investigate the energy inequality property, we start with some preliminary
observations. From (2.1), writing the optimality of uεn(tn) with respect to uεn(tn − εn) we
have

E(tn, uεn(tn)) +D(uεn(tn − εn), uεn(tn)) ≤ E(tn, uεn(tn − εn)).

The following assumption is related to a suitable time differentiability of the energy, and is
verifed in all the examples we consider. It is a Leibnitz-Newton type formula:

(LN) E(t, v)− E(s, v) ≤
∫ t

s

∂Eτ (τ, v) dτ ∀ 0 ≤ s < t ≤ T, ∀v ∈ S.

With this assumption, we have

E(tn, uεn(tn − εn)) ≤ E(tn − εn, uεn(tn − εn)) +

∫ tn

tn−εn

∂τE(τ, uεn(tn − εn)) dτ.

Summing the inequalities

E(tn, uεn(tn))+D(uεn(tn−εn), uεn(tn)) ≤ E(tn−εn, uεn(tn−εn))+

∫ tn

tn−εn

∂τE(τ, uεn(tn−εn)) dτ

between sn and tn, we get

E(tn, uεn(tn))− E(sn, uεn(sn)) +
∑

k

D(uεn(sn + kεn), uεn(sn + (k + 1)εn))

≤
∑

k

∫ sn+(k+1)εn

sn+kεn

∂τE(τ, uεn(sn + kεn))dτ.
(2.5)

Theorem 2.9 Assume (LN) is satisfied, that the mapping

(t, v) 7→ ∂tE(t, v)

is R× γ-continuous, and that

|∂tE(t, v)| ≤ g(t) ∀t ∈ (0, T ), ∀v ∈ S (2.6)

for some g ∈ L1(0, T ). Then the energy inequality (2.4) holds true.
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Proof Passing to the limit in (2.5) and using the continuity of D together with the Lebesgue
dominated convergence theorem, we get

E(t, u(t))− E(s, u(s)) + Diss(u, [s, t]) ≤
∫ t

s

∂τE(τ, u(τ)) dτ

as required. 2

Remark 2.10 In fact, inequality (2.6) is necessary only for v = uεn(t), where uεn are
the functions obtained in the Euler scheme. In practice, in all examples we consider, this
inequality holds for every v ∈ S, as a consequence of the regularity of the data.

This remark is also valid for Theorem 3.3.

Example 2.11 The debonding membrane. The following example has been studied in
[4]. Let D ⊆ RN be a bounded open set. We denote by M0 the class of all nonnegative
Borel measures µ on D, possibly +∞ valued, such that µ(B) = 0 for every Borel set B ⊆ D
with cap(B, D) = 0. In our setting S = M0. We say that

µ1 � µ2 if for every quasi-open set A ⊆ D we have µ1(A) ≥ µ2(A),

or equivalently if ∫
D

u2 dµ2 ≤
∫

D

u2 dµ1 ∀u ∈ H1
0 (D).

Definition 2.12 We say that a sequence (µn) of measures in M0 γ-converges to a measure
µ ∈M0 if and only if

Rµn(f) → Rµ(f) strongly in L2(D) ∀f ∈ H−1(D)

where Rµ(f) is the variational solution of

u ∈ H1
0 (D) ∩ L2(D, µ), −∆u + µu = f in [H1

0 (D) ∩ L2(D, µ)]′

i.e. ∫
D

∇u∇v dx +

∫
D

uv dµ = 〈f, v〉H−1(D) ∀v ∈ H1
0 (D) ∩ L2(D, µ). (2.7)

Remark 2.13 It is possible to show (see for instance [2]) that µn
γ−→ µ if and only if

Rµn(1) → Rµ(1) in L2(D), so that the quantity

dγ(µ, ν) = ‖Rµ(1)−Rν(1)‖L2(D)

is a distance on M0, equivalent to the γ-convergence and which makes it a compact metric
space.

Assume now f ∈ W 1,∞(
[0, T ], L2(D)

)
; if we set

E(t, µ) = min
{1

2

∫
D

|∇u|2 dx +
1

2

∫
D

u2 dµ−
∫

D

f(t)u dx : u ∈ H1
0 (D) ∩ L2(D, µ)

}
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and

D(µ1, µ2) =

∫
D

|Rµ1(1)−Rµ2(1)| dx,

one can check that Theorem 2.7 applies. Hypothesis H1 is a consequence of the fact that if
the mapping

t 7→ Rµt(1)

is increasing (i.e. s ≤ t ⇒ Rµs(1) ≤ Rµt(1) a.e. on D) then t 7→ µt is γ-continuous except
the discontinuity points of t 7→

∫
D

Rµt(1) dx. Assumption (LN) is a direct consequence of
the time Lipschitz continuity of f .

Hypothesis H2 is more technical, and is satisfied by the family of measures {µ ∈ M0 :
µ � µ0} where µ0 is a measure of M0 which has a finite mass. Hence, provided the initial
condition is a measure of finite mass, Theorem 2.9 applies. We refer to [4] for further details
on this case and for the proofs of the results stated above.

3 The non-compact case

The non-compact case refers essentially to the situation in which the natural topology on S
(which is often given by the Γ-convergence of the energy functionals and is denoted as previ-
ously by γ) is not compact. For this reason the abstract framework of minimizing movements
and rate independent processes of Mielke does not apply. In addition, we introduce a weaker
convergence structure called weak γ, and denoted wγ, which is compact and weaker than γ.
The main inconvenient is that the internal energy functional is not, in general, continuous
in the wγ-topology. This situation is for example encountered in shape optimization and
obstacle problems, where the space of states (shapes and obstacles, respectively) is not a
vector space.

We consider an abstract framework where S is a set and γ and wγ two convergence
structures on S. We assume:

• wγ is sequentially compact and weaker than γ

• � is compatible with wγ (and so also with γ)

• hypothesis H1 is satisfied, with respect to the γ-convergence

Notice that the first two assumptions above imply that if un � vn � wn and un, wn are
wγ-convergent to u, then vn is also wγ-convergent to u.

The functional we consider is still

F(t, v, u) = E(t, v) +D(u, v) + χu�v.

We further assume that

• E(t, ·) is wγ-lower semicontinuous,

• D(u, ·) is wγ-lower semicontinuous.
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Consequently, we obtain straightforward the existence of a solution for the discrete Euler
scheme.

Theorem 3.1 There exists a minimizing movement u : [0, T ] → S associated to F in
(S, wγ). This minimizing movement satisfies the rate independence property.

Proof The proof is similar to the one of Theorem 2.5. As in the previous section we
introduce the regularized movement

u(t) = sup
s<t

u(s).

This time, the supremum is constructed by using the wγ-convergence. The function u :
[0, T ] → S is well defined since one uses the compactness of the wγ-topology and the com-
patibility with the monotonicity.

The rate independence property is also proved similarly, as a consequence of the com-
pactness of the wγ-topology and of the irreversibility. 2

In order to study the stability and the energy inequality, we formalize some natural
hypotheses holding in all cases e consider. We assume that

H3 E is l.s.c. in R× wγ

H4 E is continuous in R× γ

H5 If u � v and un
wγ→ u there exists a subsequence (unk

) and a sequence (vk) such that

vk
γ→ v, unk

� vk and
D(u, v) ≥ lim sup

k
D(unk

, vk).

Theorem 3.2 Under assumptions H3, H4 and H5, the regularized movement t 7→ u(t) is
stable in the sense of Definition 2.6.

Proof At each time step, using the optimization problem (2.1) we can write

E(tεk, uε(t
ε
k)) +D(uε(t

ε
k − ε), uε(t

ε
k)) ≤ E(tεk, v) +D(uε(t

ε
k − ε), v),

for every v such that uε(t
ε
k − ε) � v.

For every t ∈ (0, T ], there exists tn ↑ t and εn → 0 such that

uεn(tn)
wγ−→ u(t).

For every v such that u(t) � v, according to hypothesis H5 there exist a subsequence of
uεn(tn) (that we denote by the same indices) and a sequence vn such that

vn
γ−→ v uεn(tn) � vn.

Using the subadditivity of D we have

E(tn, uεn(tn)) ≤ E(tn, vn) +D(uεn(tn), v).

Passing to the limit and using the assumptions H3, H4 and H5, the stability property (2.3)
follows. 2
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Theorem 3.3 Assume LN, H3, H4, H5, that the mapping

(t, u) 7→ ∂tE(t, u) (3.1)

is R× wγ upper semicontinuous, and that

|∂tE(t, u)| ≤ g(t) ∀t ∈ (0, T ), ∀v ∈ S

for some g ∈ L1(0, T ). Then the regularized movement t 7→ u(t) satisfies the weaker form of
the energy inequality

E(t, u(t)) + Diss(u, [0, t]) ≤ E(0, u(0)) +

∫ t

0

∂τE(τ, u(τ)) dτ ∀t ∈ (0, T ]. (3.2)

Proof The proof follows step by step Theorem 2.9. The passage to the limit is a conse-
quence of the fact that in (3.2) we have s = 0 and of the upper semicontinuity hypothesis
on ∂tE(t, u). 2

In practical situations, the wγ-upper semicontinuity of the mapping (3.1) may not occur,
as the following examples show. This is true only under further assumptions related to the
data (particular initial data and/or right-hand sides, etc.).

Example 3.4 Shape evolution of the debonding membrane. An example fitting the
non-compact frame is given in [4] and deals with the debonding membrane (i.e. without
relaxation). Precisely, the space S consists of the family of quasi-open subsets of a bounded
open set D ⊆ R2. A nonnegative force depending on time f : [0, T ] → L2(D, R+) acts on
the membrane. The energy of a debonded membrane A at time t is

E(t, A) = min
u∈H1

0 (A)

1

2

∫
A

|∇u|2 dx−
∫

A

f(t)u dx,

and the dissipation distance is proportional to the surface measure of the symmetric differ-
ence

D(A1, A2) = |A2 \ A1|+ |A1 \ A2|.

The monotonicity relation is the inclusion up to sets of zero capacity.
We identify a quasi-open set A with the measure ∞A defined by

∞A(E) =

{
0 if cap(Ac ∩ E, D) = 0
+∞ if cap(Ac ∩ E, D) > 0.

With this identification, the γ-convergence is the same as for measures (defined in the pre-
vious section) but it is not compact in the family of quasi-open sets; on the contrary, it can
be shown (see for instance [7, 2]) that the measures which are associated to domains are
γ-dense in the class M0 of all capacitary measures.

The wγ-convergence is defined as follows: we say that An wγ-converges to A if RAn(1)
L2(D)−→

w and A = {x ∈ D : w(x) > 0}, where RAn are the resolvent operators introduced in Defi-
nition 2.12.
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Hypothesis H5 is satisfied by the couple (γ, wγ) in relationship with E and D. This is
the main difficulty when dealing with the non compact case, and the choice of a suitable wγ
convergence is a challenge in all practical problems.

Following [4], Theorem 3.2 applies. Theorem 3.3 is known to be true only under further
assumptions, like for example if f(t) and D have both some symmetry properties (e.g. in
the sense of Schwarz or Steiner).

4 Obstacle erosion

In this section we discuss the problem of obstacle erosion, i.e. an obstacle which is diminishing
its contact with a membrane. Alternatively, one may have in mind an elastic membrane
pressing a deformable obstacle.

Let D ⊆ RN be a bounded open set (N ≥ 2); we consider the space of obstacles

S = {g : D → R quasi u.s.c., g ≤ Ψ,

∫
D

g dx ≥ c},

where Ψ ∈ L1(D) is a fixed function.
For a quasi upper semicontinuous function g : D → R we define the set

Kg = {u ∈ H1
0 (D) : u ≥ g q.e.}

so that, for every h ∈ L2(D) the solution ug,h of the obstacle problem associated to h and g
is given by

min
{∫

D

1

2
|∇u|2 dx−

∫
D

hu dx : u ∈ Kg

}
. (4.1)

The choice of obstacles as quasi u.s.c. functions is natural, since one can replace an
arbitrary obstacle by a suitable quasi u.s.c. one (see [5]).

The γ-convergence of obstacles is defined as follows:

gn γ-converges to g if for every h ∈ L2(D) ugn,h converges in L2(D) to ug,h.

Following [5] (see also [3]), this is equivalent to the γ-convergence of the level sets {gn < t}
to {g < t} in the sense of quasi-open sets for a countable and dense set Q ⊆ R of values t.

The wγ-convergence for obstacles was introduced in [3]. We say that gn wγ-converges to
g if for a countable and dense set Q ⊆ R of values t, we have that {gn < t} wγ-converges to
{g < t} in the sense of quasi-open sets seen above. We notice that this is a correct definition

in the sense that if gn
wγ
⇀ g and gn

wγ
⇀ g′ then g = g′. Thanks to this, there is no ambiguity

in the choice of the dense set Q. Moreover, following [3] the space S endowed with wγ is
sequentially compact and the γ-convergence of obstacles is stronger that the wγ-convergence.

Let h : [0, T ] → L2(D, R). We set

E(t, g) = min{
∫

D

1

2
|∇u|2dx−

∫
D

h(t)u dx : u ∈ Kg}.
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The dissipation distance that we consider is

D(g1, g2) =

∫
D

|g1 − g2|dx,

and the monotonicity relation on S is

g1 � g2 if g1(x) ≥ g2(x) q.e. on D.

We notice that the monotonicity of obstacles is related to the monotonicity of their level sets,
so several properties are inherited from quasi-open sets, as for example the compatibility of
the γ and wγ convergences of obstacles with the order relation as well as with the energy
and the dissipation distance.

Following [3], assumption H5 is satisfied for the couple of topologies (γ, wγ) and the
order relation between functions in S. Consequently, Theorems 3.2 applies and the following
result holds.

Theorem 4.1 Let T > 0, h ∈ W 1,∞(
[0, T ], L2(D, R−)

)
and g0 ∈ S. There exists a mini-

mizing movement associated to E and with initial condition g0 in (S, wγ). This minimizing
movement satisfies the rate independence property and the stability property.

We notice that Theorem 3.3 applies as well, provided that further assumptions are made,
in order to safisfy the hypothesis concerning the upper wγ-semicontinuity of ∂tE . In the case
of two dimensional obstacles, provided that the set D is symmetric (in the sense of Schwarz
or Steiner) and the force h is positive and symmetric in the same way as D, the discrete
evolutions and the minimizing movements do satisfy the symmetry property too. It turns
out that the wγ-convergence of obstacles coincides with the γ-convergence in this family,
hence the upper semicontinuity hypothesis of the mapping (3.1) is satisfied.
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