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Abstract. We deal with a nonlocal interaction equation describing the evolution of a parti-
cle density under the effect of a general symmetric pairwise interaction potential, not neces-
sarily in convolution form. We describe the case of a convex (or λ-convex) potential, possibly
not smooth at several points, generalizing the results of [CDFLS]. We also identify the cases
in which the dynamic is still governed by the continuity equation with well-characterized
nonlocal velocity field.

1. Introduction

Let us consider a distribution of particles, represented by a Borel probability measure µ on
Rd. We introduce the interaction potential W : Rd × Rd → R. The value W(x, y) describes
the interaction of two particles of unit mass at the positions x and y. The total energy of a
distribution µ under the effect of the potential is given by the interaction energy functional,
defined by

(1.1) W(µ) :=
1

2

∫
Rd×Rd

W(x, y) d(µ× µ)(x, y).

We assume that W satisfies the following assumptions:

i) W is symmetric, i.e.

(1.2) W(x, y) = W(y, x) for every x, y ∈ Rd;
ii) W is a λ-convex function for some λ ∈ R, i.e.

(1.3) there exists λ ∈ R such that (x, y) 7→W(x, y)− λ

2
(|x|2 + |y|2) is convex;

iii) W satisfies the quadratic growth condition at infinity, i.e.

(1.4) there exists C > 0 such that W(x, y) ≤ C(1 + |x|2 + |y|2) for every x, y ∈ Rd.

We are interested in the evolution problem given by the continuity equation

(1.5) ∂tµt + div (vtµt) = 0, in (0,∞)× Rd,
describing the dynamics of the particle density µt, under the mutual attractive-repulsive
interaction described by functional (1.1). For any t, µt is a Borel probability measure and
the velocity vector field vt enjoys a nonlocal dependence on µt. For instance, in the basic
model represented by a C1 potential W which depends only on the difference of its variables,
so that we may write W(x, y) = W (x− y), the velocity is given by convolution:

(1.6) vt = −∇W ∗ µt.
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Under the assumptions (1.2), (1.3), (1.4) and W(x, y) = W (x − y), in general W is not
differentiable but only subdifferentiable, therefore it is reasonable to consider a velocity field
of the form

(1.7) vt = −ηt ∗ µt,

where, for any t, ηt represents a Borel measurable selection in the subdifferential of W , and
we will write ηt ∈ ∂W . Unlike the case (1.6), in general such selection may depend on t. We
stress that, for fixed t, the map x 7→ ηt(x) needs to be pointwise defined, since the solutions
we consider are probability measures, and since this model typically presents concentration
phenomena when starting with absolutely continuous initial data.

In this paper, we are going to analyse equations of the form (1.5)-(1.7) as the gradient flow
of the interaction energy (1.1) in the space of Borel probability measures with finite second
moment, endowed with the metric-differential structure induced by the so-called Wasserstein
distance. This interpretation coming from the optimal transport theory was introduced in
[O1, O2] for nonlinear diffusion equations and generalized for a large class of functionals
including potential, interaction, and internal energy by different authors [CMV, AGS, CMV2],
see [V] for related information.

The gradient flow interpretation allows to construct solutions by means of variational
schemes based on the euclidean optimal transport distance as originally introduced in [JKO]
for the linear Fokker-Planck equation. The convergence of these variational schemes for gen-
eral functionals was detailed in [AGS]. The results in this monograph apply to the interaction
equation (1.5)-(1.6), with a C1 smooth nonnegative potential verifying the convexity assump-
tion (1.3) and a growth condition at infinity weaker than (1.4).

On the other hand, these equations have appeared in the literature as simple models of
inelastic interactions [MY, BCP, BCCP, LT, T] in which the asymptotic behavior of the
equations is given by a total concentration towards a unique Dirac Delta point measure. The
typical potential in these models was a power law, W(x, y) = |x − y|α, α ≥ 0. Moreover, it
was noticed in [LT] that the convergence towards this unique steady state was in finite time
for certain range of exponents in the one dimensional case.

Also these equations appear in very simplified swarming or population dynamics models
for collective motion of individuals, see [MEBS, BL, BCL, KSUB, BCLR] and the references
therein. The interaction potential models the long-range attraction and the short-range re-
pulsion typical in animal groups. In case the potential is fully attractive, equation (1.5)
is usually referred as the aggregation equation. For the aggregation equation, finite time
blow-up results for weak-Lp solutions, unique up to the blow-up time, have been obtained
in the literature [BCL, BLR, CR]. In fact, those results conjectured that solutions tend to
concentrate and form Dirac Deltas in finite time under suitable conditions on the interaction
potential. On the other hand, the confinement of particles is shown to happen for short-range
repulsive long-range attractive potentials under certain conditions [CDFLS2]. Some singular
stationary states such as uniform densities on spheres have been identified as stable/unstable
for radial perturbations in [BCLR] with sharp conditions on the potential. Finally, in the one
dimensional case, stationary states formed by finite number of particles and smooth stationary
profiles are found whose stability have been studied in [FR1, FR2] in a suitable sense.

A global-in-time well-posedness theory of measure weak solutions has been developed in
[CDFLS] for interaction potentials of the form W(x, y) = W (x − y) satisfying the assump-
tions (1.2),(1.3), (1.4), and additionally being C1-smooth except possibly at the origin. The
convexity condition (1.3) restricts the possible singularities of the potential at the origin since
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it implies that W is Lipschitz, and therefore the possible singularity cannot be worse than |x|
locally at the origin. Nevertheless, for a class of potentials in which the local behavior at the
origin is like |x|α, 1 ≤ α < 2, the solutions converge towards a Dirac Delta with the full mass
at the center of mass of the solution. The condition for blow-up is more general and related
to the Osgood criterium for uniqueness of ODEs [BCL, CDFLS, BLR]. Note that the center
of mass of the solution is preserved, at least formally, due to the symmetry assumption (1.2).

In this work, we push the ideas started in [CDFLS] further in the direction of giving con-
ditions on the interaction potential to have a global-in-time well-posedness theory of measure
solutions. The solutions constructed in Section 2 will be gradient flow solutions, as in [AGS],
built via the variational schemes based on the optimal transport Wasserstein distance. The
crucial point for the analysis in this framework is the identification of the velocity field in
the continuity equation satisfied by the limiting curve of measures from the approximat-
ing variational scheme. In order to identify it, we need to characterize the sub-differential
of the functional defined in (1.1) with respect to the differential structure induced by the
Wasserstein metric. The Wasserstein sub-differential of the functional W, which is rigorously
introduced in Section 2, is defined through variations along transport maps. It turns out that
that the element of minimal norm in this sub-differential, which will be denoted by ∂oW(·),
is the element that governs the dynamics. Actually, it gives the velocity field via the relation
vt = −∂oW(µt) for a.e. t ∈ (0,∞), which corresponds to the notion of gradient flow solution.
This notion will be discussed in Section 2, where we will give the precise definition and recall
from [AGS, Chapter 11] the main properties, such as the semigroup generation.

In Section 3, we give a characterization of the subdifferential in the general case of the inter-
action potential W(x, y) satisfying only the basic assumptions (1.2),(1.3), and (1.4). However,
the element of minimal norm in the subdifferential is not fully identified and cannot be uni-
versally characterized. Nevertheless, the global well-posedness of the evolution semigroup in
measures is obtained.

A distinguished role will be played by the case of a kernel function W(x, y) which depends
only on the difference x−y of its arguments. Hence we will often consider one of the following
additional assumptions.

iv) W depends on the difference of its arguments, i.e.

(1.8) there exists W : Rd → R such that W(x, y) = W (x− y) for every x, y ∈ Rd;

v) W satisfies iv) above and W is radial, i.e.

(1.9)
there holds (1.8) and there exists w : [0,+∞)→ R such that

W(x, y) = W (x− y) = w(|x− y|) for every x, y ∈ Rd.

The radial hypothesis is frequently made in models, and corresponds to an interaction between
particles which depends only on their mutual distance vector. In case W(x, y) is also radial
and convex, we can fully generalize the identification of the element of minimal norm in
the subdifferential of the interaction energy done in [CDFLS], regardless of the number of
nondifferentiability points of W . We complement our results with explicit examples showing
the sharpness of these characterizations.

Before stating the results and in order to fix notations we recall the characterization of
subdifferential for λ-convex functions. Given a λ-convex function V : Rk → R (i.e. the map
z 7→ V (z)−λ|z|2/2 is convex) a vector η ∈ Rk belongs to the subdifferential of V at the point
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z1 ∈ Rk if

(1.10) V (z2)− V (z1) ≥ 〈η, z2 − z1〉+
λ

2
|z2 − z1|2 for every z2 ∈ Rk,

and we write η ∈ ∂V (z1). In this case, for every z1 ∈ Rk, we have that ∂V (z1) is a non empty
closed convex subset of Rk. We denote by ∂oV (z1) the unique element of minimal euclidean
norm in ∂V (z1). λ-convexity of V is also equivalent to

(1.11) V ((1− t)z1 + tz2) ≤ tV (z1) + (1− t)V (z2)− λ

2
t(1− t)|z2 − z1|2

for every t ∈ [0, 1] and z1, z2 ∈ Rk. A map Rd 3 z 7→ η(z) ∈ Rd is a selection in the
subdifferential of V if η(z) ∈ ∂V (z) for any z ∈ Rd (and we write η ∈ ∂V ). Any such
selection is λ-monotone, i.e.,

(1.12) 〈η(z1)− η(z2), z1 − z2〉 ≥ λ|z1 − z2|2 for every z1, z2 ∈ Rk.

The main results. Let us give a brief summary of the results contained in this paper. The
main theorem deals with radial-convex potentials and reads as follows. Let W satisfy the
three basic assumptions above: (1.2), (1.3), and (1.4). If in addition W satisfies (1.8), (1.9)
and is convex (that is, λ ≥ 0 in (1.3)), then there exists a unique gradient flow solution to
the equation

(1.13) ∂tµt − div ((∂oW ∗ µt)µt) = 0.

This solution is the gradient flow of the energy W, in the sense that the velocity field in
(1.13) satisfies

∂oW ∗ µt = ∂oW(µt).

On the other hand, when omitting the radial hypothesis (1.9), or when letting the potential
be λ-convex but not convex, we show that the evolution of the system under the effect of the
potential, that is the gradient flow of W, is characterized by (1.5)-(1.7), where ηt is a Borel
anti-symmetric selection in ∂W . The corresponding rigorous statement is found in Section 2.

About this last result, let us remark that the velocity vector field is still written in terms
of a suitable selection ηt in the subdifferential of W , but such selection ηt is not in general
the minimal one in ∂W , and it is not a priori independent of t. By this characterization
we also recover the result of [CDFLS], where the only non smoothness point for W is the
origin: in such case, for any t we are left with ηt(x) = ∇W (x) for x 6= 0 and ηt(0) = 0,
by anti-symmetry. We stress that, due to the nonlocal structure of the problem, the task of
identifying the velocity vector field becomes much more involved when W has several non
smoothness points, even if it is λ-convex. Later in Section 4, we will analyse some particular
examples, showing that in general it is not possible to write the velocity field in terms of a
single selection in ∂W .

Finally, when omitting also the assumption (1.8), we break the convolution structure: in
this more general case we show that the velocity is given in terms of elements of ∂1W, or
equivalently of ∂2W by symmetry, where ∂1W and ∂2W denotes the partial subdifferentials
of W with respect to the first d variables or the last d variables respectively. Indeed, we have

vt(x) = −
∫
Rd
ηt(x, y) dµt(y),
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where ηt ∈ ∂1W. An additional joint subdifferential condition is also present in this case, for
the rigorous statement we still refer to the next section.

Pointwise particle model and asymptotic behavior. In the model case of a system of
N point particles the dynamics are governed by a system of ordinary differential equations.
In this case equation (1.5)-(1.7) corresponds to

(1.14)
dxi(t)

dt
=

N∑
j=1

mj ηt(xj(t)− xi(t)), i = 1, . . . , N,

where xi(t) is the position of the i-th particle and mi is its mass. It is shown in [CDFLS] that
if the attractive strength of the potential at the origin is sufficiently high, all the particles
collapse to the center of mass in finite time. We will remark how this result is still working
under our hypotheses and under the same non-Osgood criterium as in [BCL, CDFLS] for
fully attractive potentials. For non-convex non-smooth repulsive-attractive potentials, albeit
λ-convex, the analysis leads to non-trivial sets of stationary states with singularities that
cannot be treated by the theory in [CDFLS]. Our analysis shows that a very wide range of
asymptotic states is indeed possible, we give different explicit examples.

Plan of the paper. In the following Section 2 we introduce the optimal transport framework
and the basic properties of our energy functional, in particular the subdifferentiability and
the λ-convexity along geodesics. We briefly explain what is a gradient flow in the metric space
P2(Rd) and we introduce the notion of gradient flow solution. We present the general well-
posedness result of [AGS] and show how it will apply to our interaction models, stating our
main results. In Section 3, we make a fine analysis on the Wasserstein subdifferential ofW and
find a first characterization of its element of minimal norm. In Section 4 we particularize the
characterization to the case of assumption (1.8), which is the convolution case. In particular,
we have the strongest result in the case of assumption (1.9). Section 5 gives examples of non-
smooth non-convex repulsive-attractive potentials, albeit λ-convex, leading to non-trivial sets
of stationary states. Finally, the Appendix is devoted to recall technical concepts from the
differential calculus in Wasserstein spaces which are needed in Section 3.

2. Gradient flow of the interaction energy and main results

2.1. Probability measures and Wasserstein distance. We denote by P(Rd) the space
of Borel probability measures over Rd and by P2(Rd) the corresponding subset of measures
with finite second moment, i.e.,

P2(Rd) :=

{
µ ∈P(Rd) :

∫
Rd
|x|2 dµ(x) < +∞

}
.

The convergence of probability measures is considered in the narrow sense defined as the
weak convergence in the duality with continuous and bounded functions over Rd. A sequence
{µn}n∈N ⊂P(Rd) is said to be tight if for any ε > 0 there exists a compact set Kε ∈ Rd such
that supn µn(Rd \Kε) < ε. We recall that Prokhorov theorem (see for instance [B]) entails
that tight sequences admit narrow limit points.

Given µ, ν ∈P2(Rd) and γ ∈ Γ(µ, ν), where

Γ(µ, ν) := {γ ∈P2(Rd × Rd) : γ(Ω× Rd) = µ(Ω), γ(Rd × Ω) = ν(Ω),

for every Borel set Ω ⊂ Rd},
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the euclidean quadratic transport cost between µ and ν with respect to the transport plan γ
is defined by

C(µ, ν ; γ) =

(∫
Rd×Rd

|x− y|2 dγ(x, y)

)1/2

.

The “Wasserstein distance” between µ and ν is defined by

(2.1) dW (µ, ν) = inf
γ∈Γ(µ,ν)

C(µ, ν ; γ).

It is well known that the inf in (2.1) is attained by a minimizer. The minimizers in (2.1) are
called optimal plans. We denote by Γo(µ, ν) ⊂ Γ(µ, ν) the set of optimal plans between µ
and ν. It is also well known that µn → µ in P2(Rd) (i.e. dW (µn, µ) → 0) if and only if µn
narrowly converge to µ and

∫
Rd |x|

2 dµn(x)→
∫
Rd |x|

2 dµ(x). The space P2(Rd) endowed with
the distance dW is a complete and separable metric space. For all the details on Wasserstein
distance and optimal transportation, we refer to [AGS, V].

We recall the push forward notation for a map s : (Rd)m → (Rd)k, m, k ≥ 1, and a measure
µ ∈P((Rd)m): the measure s#µ ∈P((Rd)k) is defined by s#µ(A) = µ(s−1(A)), where A is

a Borel set. A transport plan γ ∈ Γ(µ, ν) may be induced by a map s : Rd → Rd such that
s#µ = ν. This means that γ = (i, s)#µ, where i : Rd → Rd denotes the identity map over

Rd and (i, s) : Rd → Rd × Rd is the product map, whose image is the graph of s. Finally, πj

will stand for the projection map on the j-th component of a product space. Hence, if γ is

a probability measure over a product space (for instance a transport plan), πj#γ is its j-th

marginal.

2.2. Wasserstein subdifferential of the interaction energy. We introduce the notion
of subdifferential of W in the Wasserstein framework. Let us first discuss some elementary
properties of W and W.

Proposition 2.1. If W satisfies assumptions (1.3) and (1.4), then there exists K > 0 such
that

(2.2) |W(x, y)| ≤ K(1 + |x|2 + |y|2) for every x, y ∈ Rd.

Moreover, if η ∈ ∂W is a selection in the subdifferential of W, then there exists M > 0 such
that

(2.3) |η(x, y)| ≤M(1 + |x|+ |y|) for every x, y ∈ Rd.

Proof. The estimate (2.2) is a direct consequence of (1.3) and (1.4). Letting z1 = (x1, y1) and
z2 = (x2, y2) in Rd × Rd, by (2.2) and the inequality

W(z1 + z2)−W(z1) ≥ 〈η(z1), z2〉+
λ

2
|z2|2,

we have

〈η(z1), z2〉 ≤ K̃(1 + |z1|2 + |z2|2),

where K̃ depends only on K and λ. Dividing by |z2| and taking the supremum among all z2

such that |z2| = max{|z1|, 1} we obtain |η(z1)| ≤ 2K̃(1 + |z1|), which implies (2.3). �

Under assumptions (1.2), (1.3) and (1.4), as a consequence of (2.2), functional W is well
defined and finite on P2(Rd). Moreover, it satisfies the following λ-convexity property.
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Proposition 2.2. Under assumptions (1.2), (1.3) and (1.4), the functionalW : P2(Rd)→ R
is lower semicontinuous with respect to the dW metric and enjoys the following property: for
every µ, ν ∈P2(Rd) and every γ ∈ Γ(µ, ν) it holds

(2.4) W(θγ(t)) ≤ (1− t)W(µ) + tW(ν)− λ

2
t(1− t)C2(µ, ν; γ),

where θγ denotes the interpolating curve t ∈ [0, 1] 7→ θγ(t) = ((1− t)π1 + tπ2)#γ ∈P2(Rd).

The dW lower semicontinuity follows from standard arguments. For the convexity along
interpolating curves we refer to [AGS, §9.3]. In particular, since every constant speed Wasser-
stein geodesic is of the form θγ where γ is an optimal plan, then W is λ-convex along every
Wasserstein geodesic. We adapt from [AGS] the definition of the Wasserstein subdifferential.
Still in the framework of assumptions (1.2), (1.3) and (1.4), we have

Definition 2.3 (The Wasserstein subdifferential of W). Let µ ∈P2(Rd). We say that
the vector field ξ ∈ L2(Rd, µ;Rd) belongs to ∂W(µ), the Wasserstein subdifferential of the
λ-convex functional W : P2(Rd) → R at the point µ, if for every ν ∈ P2(Rd) there exists
γ ∈ Γo(µ, ν) such that

(2.5) W(ν)−W(µ) ≥
∫
Rd
〈ξ(x), y − x〉 dγ(x, y) +

λ

2
C2(µ, ν ; γ).

We say that that ξ ∈ ∂SW(µ), the strong subdifferential of W at the point µ, if for every
ν ∈P2(Rd) and for every admissible plan γ ∈ Γ(µ, ν), (2.5) holds.

Notice that ∂W(µ) and ∂SW(µ) are convex subsets of L2(Rd, µ;Rd). We also define the
metric slope of the functional W at the point µ as follows:

|∂W|(µ) := lim sup
ν→µ in P2(Rd)

(W(ν)−W(µ))+

dW (ν, µ)
,

where (a)+ denotes the positive part of the real number a. Since W is λ-convex we know
that, whenever ∂W(µ) 6= ∅,

(2.6) |∂W|(µ) = min
{
‖ξ‖L2(Rd,µ;Rd) : ξ ∈ ∂W(µ)

}
.

Moreover, the minimizer of the norm in (2.6) is unique and we denote it by ∂oW(µ) (see [AGS,
Chapter 10]). Later on we will also show that, in our case, ∂W(µ) 6= ∅ for any µ ∈ P2(Rd)
(see Theorem 3.1). The element of minimal norm in the subdifferential plays a crucial role,
since it is known to be the velocity vector field of the evolution equation associated to the
gradient flow of the functional (1.1) under certain conditions as reviewed next.

2.3. Gradient flow solution. As already shown in [CDFLS], we are forced to consider
measure solutions. In fact, in case of attractive radial potentials verifying assumptions (1.2),
(1.3), (1.4) and (1.9), with w increasing, it was shown in [BCL, BLR] that weak-Lp solutions
blow-up in finite time. Moreover, these weak-Lp solutions can be uniquely continued as
measure solutions, as proved in [CDFLS], leading to a total collapse in a single Dirac’s Delta at
the center of mass in finite time. Furthermore, particle solutions, i.e., solutions corresponding
to an initial data composed by a finite number of atoms, remain particle solutions for all times
for the evolution of (1.5). Summarizing, we can only expect that a regular solution enjoys
local in time existence.
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Before stating a theorem about gradient flow solutions, we recall that a curve t ∈ [0,∞) 7→
µt ∈ P2(Rd) is locally absolutely continuous with locally finite energy, and we denote it by
µ ∈ AC2

loc([0,∞); P2(Rd)), if the restriction of µ to the interval [0, T ] is absolutely continuous
for every T > 0 and its metric derivative, which exists for a.e. t > 0 defined by

|µ′|(t) := lim
s→t

dW (µs, µt)

|t− s|
,

belongs to L2(0, T ) for every T > 0. Thanks to Proposition 2.2, functional W satisfies the
assumptions of [AGS, §11.2]. Therefore, we can apply [AGS, Theorem 11.2.1] and directly
deduce the following well-posedness result, see [AGS, §11.2] for details.

Theorem 2.4. Let W satisfy the hypotheses (1.2), (1.3), and (1.4). For any initial datum
µ̄ ∈P2(Rd), there exists a unique curve µ ∈ AC2

loc([0,∞); P2(Rd)) satisfying

∂tµt + div (vtµt) = 0 in D′((0,∞)× Rd),
where D′ denotes the space of distributions,

vt = −∂oW(µt), for a.e. t > 0,

‖vt‖L2(µt) = |µ′|(t) for a.e. t > 0,

with µ0 = µ̄. The energy identity∫ b

a

∫
Rd
|vt(x)|2 dµt(x) dt+W(µb) =W(µa)

holds for all 0 ≤ a ≤ b <∞. Moreover, the solution is given by a λ-contractive semigroup S
acting on P2(Rd), that is µt = S[µ0](t) with

dW (S[µ0](t), S[ν0](t)) ≤ e−λtdW (µ0, ν0), ∀µ0, ν0 ∈P2(Rd) .

The unique curve µ given by Theorem 2.4 is called gradient flow solution for equation

(2.7) ∂tµt = div (∂oW(µt)µt),

starting from µ0 = µ̄. Let us remark that weak measure solutions as defined in [CDFLS] are
equivalent to gradient flow solutions as shown therein.

2.4. Summary of the main results. Characterizing the element of minimal norm ∂oW(µ)
is now essential to link the constructed solutions to the sought equation (1.5)-(1.6) or (1.5)-
(1.7). This characterization was done in [CDFLS] for potentials satisfying (1.2), (1.3), (1.4)
and (1.8), being the potential W C1-smooth except possibly at the origin. Under those
assumptions, the authors identified ∂oW(µ) as ∂oW ∗ µ, i.e.

∂oW ∗ µ(x) =

∫
x 6=y
∇W (x− y) dµ(y).

The main results in the present work will show that this characterization can be generalized
to convex potentials satisfying assumptions (1.4) and the radial hypothesis (1.9), regardless
of the number of points of non-differentiability of the potential W . In Theorem 4.5, we show
that under those conditions, the formula ∂oW(µ) = ∂oW ∗µ also holds, and the equation takes
the form (1.13), which generalizes the standard form of the interaction potential evolution
(1.5)-(1.6). In the most general case, i.e. for potentials satisfying only (1.2), (1.3) and (1.4),
we will obtain a characterization in terms of generic Borel measurable selections in ∂W.
Precisely, in the next two sections we are going to prove the following results:
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• Let W satisfy (1.2), (1.3) and (1.4). Let µ ∈P2(Rd). There holds

(2.8) ∂oW(µ) =

∫
Rd
η(·, y) dµ(y)

for some selection η ∈ ∂1W having the form

(2.9) η(x, y) =
1

2

(
η1(x, y) + η2(y, x)

)
,

with the couple (η1,η2) belonging to the joint subdifferential ∂W. This is shown in
Theorem 3.3.
• Under the additional assumption (1.8), let µ ∈P2(Rd). Then we have

(2.10) ∂oW(µ) = η ∗ µ
for some η ∈ ∂W . This is the characterization following from Corollary 4.2.
• Finally, when the further condition (1.9) holds, and the potential is convex (not only
λ-convex for a negative λ) there holds

(2.11) ∂oW(µ) = ∂oW ∗ µ for all µ ∈P2(Rd).
Here, ∂oW is the element of minimal norm of the subdifferential of W . This is proven
in the subsequent Theorem 4.5.

Remark 2.5. In (2.8) and (2.10) the selection η depends in general on µ, as we will show
in Section 4. Assuming in addition that (1.9) holds and W is convex, the selection η in
(2.10) is always given by ∂oW and thus it does not depend on µ. Substituting (2.8), (2.10)
or (2.11) in (2.7) and applying Theorem 2.4, one obtains the corresponding well-posedness
result. Therefore, in the case of (2.10), the dynamics will be governed by a velocity field of
the form (1.7), where the selection depends in general on t via µt. Similarly for the case of
(2.8). On the other hand, in the case of (2.11), we stress that the selection corresponding to
the velocity v(t) in (1.7) does not depend on t.

Remark 2.6. The joint subdifferential constraint (2.9) has a natural interpretation: there is
a symmetry in the interaction between particles (action-reaction law).

3. Characterization of the element of minimal norm in the subdifferential

In this section and in the next we analyze the Wasserstein subdifferential of W, we char-
acterize its element of minimal norm and we prove the main core results of this work.

Let us give a quick sketch of the strategy of the present section. We preliminarily show
in Theorem 3.1 that if (η1,η2) ∈ ∂W is a Borel measurable selection in the subdifferential
of W and η is given by (2.9), the vector field x 7→

∫
Rd η(x, y) dµ(y) belongs to the (strong)

subdifferential of W at µ. Then, the main goal is to show that indeed the element of minimal
norm in ∂W(µ) is necessarily of the same form, as stated in the subsequent Theorem 3.3.
In order to prove Theorem 3.3, we use the approach of [AGS, §10.3], trying to characterize
∂oW(µ) as limit of approximating strong subdifferentials. This is achieved with two parallel
regularization steps. We first introduce the approximating measures µτ , given as solutions to

min
ν∈P2(Rd)

W(ν) +
1

2τ
d2
W (ν, µ).

By the theory developed in [AGS, §10.3], there are elements in the strong subdifferentials
∂SW(µτ ) that converge to ∂oW(µ) as τ → 0 (see Proposition 3.13 below). However, the
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strong subdifferential is fully characterized and it is a singleton when W is C1 (thanks to
the simple result we give with Proposition 3.2). Therefore, we need to further introduce,
the approximating functionals Wn, see (3.11), by taking the Moreau-Yosida approximation
Wn of W, defined by (3.6) below. Then we apply the above minimization procedure to
Wn, obtaining approximating measures µnτ . This way, having at disposal the explicit form of
∂SWn(µnτ ), we will pass to the limit (both in τ and n), in the sense specified in Definition 3.8,
and obtain the desired characterization of ∂oW(µ).

Theorem 3.1. Let W satisfy assumptions (1.2), (1.3), and (1.4). Consider a Borel measur-
able selection (η1,η2) ∈ ∂W, i.e., (η1,η2) : Rd×Rd → Rd×Rd is a Borel measurable function
such that (η1(x, y),η2(x, y)) ∈ ∂W(x, y) for every (x, y) ∈ Rd × Rd. For any µ ∈ P2(Rd),
the map

(3.1) ξ(x) :=
1

2

∫
Rd

(η1(x, y) + η2(y, x)) dµ(y)

belongs to ∂SW(µ). In particular ∂SW(µ) is not empty and the metric slope |∂W|(µ) is finite.

Proof. Let µ ∈P2(Rd). First of all, by Jensen inequality we have

∫
Rd
|ξ(x)|2 dµ(x) ≤ 1

2

∫
Rd

∫
Rd

(
|η1(x, y)|2 + |η2(y, x)|2

)
dµ(y) dµ(x),

thus ξ ∈ L2(Rd, µ;Rd) thanks to the estimate (2.3).
Since W is λ-convex, we use the corresponding of (1.10) for W, so that

(3.2)
W(y1, y2)−W(x1, x2) ≥ 〈(η1(x1, x2), η2(x1, x2)), (y1 − x1, y2 − x2)〉+

+
λ

2
|(y1 − x1, y2 − x2)|2, for every (x1, x2), (y1, y2) ∈ Rd × Rd.

Let µ, ν ∈P2(Rd) and γ ∈ Γ(µ, ν). We show that inequality (2.5) holds. Considering the
measure γ × γ, we can write

W(ν)−W(µ) =
1

2

∫
(Rd)4

(W(y1, y2)−W(x1, x2)) d(γ × γ)(x1, y1, x2, y2).

Hence, by (3.2),

W(ν)−W(µ) ≥ 1

2

∫
(Rd)4

[
〈η1(x1, x2), (y1 − x1)〉+〈η2(x1, x2), (y2 − x2)〉

]
d(γ × γ)(x1, y1, x2, y2)

+
λ

4

∫
(Rd)4

(|y1 − x1|2 + |y2 − x2|2) d(γ × γ)(x1, y1, x2, y2).

10



The last term is λ
2 C

2(µ, ν; γ), so that a change of variables gives

W(ν)−W(µ) ≥ 1

2

∫
Rd

∫
Rd×Rd

〈η1(x1, x2), (y1 − x1)〉 dγ(x1, y1) dµ(x2)

+
1

2

∫
Rd

∫
Rd×Rd

〈η2(x1, x2), (y2 − x2)〉 dγ(x2, y2) dµ(x1) +
λ

2
C2(µ, ν; γ)

=
1

2

∫
Rd

∫
Rd×Rd

〈η1(x, z), (y − x)〉 dγ(x, y) dµ(z)

+
1

2

∫
Rd

∫
Rd×Rd

〈η2(z, x), (y − x)〉 dγ(x, y) dµ(z) +
λ

2
C2(µ, ν; γ)

=

∫
Rd×Rd

〈
1

2

∫
Rd

(η1(x, z) + η2(z, x)) dµ(z), (y − x)

〉
dγ(x, y)+

λ

2
C2(µ, ν; γ)

as desired. �

In the case of a smooth interaction function W, there is a complete characterization of the
strong subdifferential ∂SW(µ) which is single valued.

Proposition 3.2 (The smooth case). Let µ ∈P2(Rd). If W ∈ C1(Rd × Rd) satisfies the
assumptions (1.2), (1.3), and (1.4), then the strong Wasserstein subdifferential is a singleton
and it is of the form

(3.3)

∂SW(µ) =

{∫
Rd
∇1W(·, y) dµ(y)

}
=

{∫
Rd
∇2W(y, ·) dµ(y)

}
=

{
1

2

∫
Rd

(
∇1W(·, y) +∇2W(y, ·)

)
dµ(y)

}
,

where ∇1 (resp. ∇2) are the gradients with respect to the first-d (second-d) variables of
Rd × Rd.

Proof. Since ∂W(x, y) = {∇W(x, y)}, by Theorem 3.1 and the symmetry of W we have that
the right hand sides of (3.3) are contained in ∂SW(µ).

In order to prove the opposite inclusion, assume that ξ ∈ L2(Rd, µ;Rd) belongs to ∂SW(µ).
Let s ∈ L2(Rd, µ;Rd) be an arbitrary vector field, ν = s#µ and µt = (i+ ts)#µ. Writing (2.5)
in correspondence of the plan

γt = (i, i + ts)#µ

between µ and µt, we have

W(µt)−W(µ) ≥
∫
Rd×Rd

〈ξ(x), y − x〉 dγt(x, y) +
λ

2
C2(µ, µt; γt).

Hence, for every t > 0

1

2t

∫
Rd×Rd

(W(x+ ts(x), y + ts(y))−W(x, y)) d(µ× µ)(x, y)

≥
∫
Rd
〈ξ(x), s(x)〉 dµ(x) +

λ

2
t‖s‖2L2(µ),

11



and, by a direct computation

1

2t

∫
Rd×Rd

(
W(x+ ts(x), y + ts(y))−W(x, y)

)
d(µ× µ)(x, y)(3.4)

≥ λ

4t

∫
Rd×Rd

(
|(x+ ts(x), y + ts(y))|2 − |(x, y)|2

)
d(µ× µ)(x, y)

+

∫
Rd
〈ξ(x), s(x)〉 dµ(x)− λ

∫
Rd
〈x, s(x)〉 dµ(x) .

Since W is λ-convex, the map

t 7→ 1

t
(W(x+ ts(x), y + ts(y))−W(x, y))− λ

2t

(
|(x+ ts(x), y + ts(y))|2 − |(x, y)|2

)
is nondecreasing in t, for t > 0. Taking advantage of the C1 regularity and the quadratic
growth of W, by the monotone convergence theorem, we can pass to the limit in (3.4) as t
goes to 0, obtaining

(3.5)
1

2

∫
Rd×Rd

〈∇W(x, y), (s(x), s(y))〉 d(µ× µ)(x, y) ≥
∫
Rd
〈ξ, s〉 dµ.

Since by the symmetry of W we have ∇1W(x, y) = ∇2W(y, x) for any x, y ∈ Rd, we can
write

1

2

∫
Rd×Rd

〈∇W(x, y), (s(x), s(y))〉 d(µ× µ)(x, y)

=
1

2

∫
Rd×Rd

〈∇1W(x, y), s(x)〉 d(µ× µ)(x, y) +
1

2

∫
Rd×Rd

〈∇1W(y, x), s(y)〉 d(µ× µ)(x, y)

=

∫
Rd×Rd

〈∇1W(x, y), s(x)〉 d(µ× µ)(x, y).

This way, (3.5) becomes∫
Rd

〈∫
Rd
∇1W(x, y) dµ(y), s(x)

〉
dµ(x) ≥

∫
Rd
〈ξ, s〉 dµ,

that is ∫
Rd

〈∫
Rd
∇1W(x, y) dµ(y)− ξ(x), s(x)

〉
dµ(x) ≥ 0.

Since s ∈ L2(Rd, µ;Rd) is arbitrary we conclude that ξ(x) =
∫
Rd ∇1W(x, y) dµ(y) as elements

of L2(Rd, µ;Rd). �

The next theorem contains the main result of this section. It provides the desired charac-
terization of the element of minimal norm in the subdifferential of W in the nonsmooth case.

Theorem 3.3. Let W satisfy assumptions (1.2), (1.3), and (1.4). Let µ ∈ P2(Rd) and
ξ = ∂oW(µ). Then there exists a Borel measurable selection (η1, η2) ∈ ∂W such that

ξ(x) =
1

2

∫
Rd

(η1(x, y) + η2(y, x)) dµ(y) for µ-a.e. x ∈ Rd.
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Remark 3.4. Theorem 3.3 characterizes only the element of minimal norm in ∂W(µ). How-
ever the property stating that every element of ∂W(µ) is of the form (3.1) for a suitable Borel
selection of the subdifferential of W could be in general very difficult and we do not know if
it is true. On the other hand, a consequence of Theorem 3.3 is that the element of minimal
norm is a strong subdifferential, thanks to Theorem 3.1, and in the C1 case it is the element
given by Proposition 3.2.

The proof of Theorem 3.3 needs several preliminary results. The first step is the introduc-
tion of a sequence of regularized interaction functionals, obtained by taking the Moreau-Yosida
approximation of the potential W. We recall that the Moreau-Yosida approximation of the
λ-convex function W is defined as

(3.6) Wn(x, y) := inf
(v,w)∈Rd×Rd

{
W(v, w) +

n

2
|(x− v, y − w)|2

}
, n ∈ N, n > λ−,

where λ− := max{0,−λ}. Notice that λ-convexity of W implies that for n > λ− the function
being minimized in (3.6) is strictly convex and coercive for every (x, y) ∈ Rd×Rd, so that the
minimizer is uniquely attained. We have Wn(x, y) ≤W(x, y) for every (x, y) ∈ Rd×Rd. It is
well known that Wn ∈ C1(Rd×Rd), ∇Wn is globally Lipschitz, and the sequence {Wn}n∈N
converges pointwise and monotonically to W as n→∞. Moreover, we have the following

Proposition 3.5. Let W satisfy assumptions (1.2), (1.3), and (1.4). Then there exist Λ ≤ λ,
K̄ > 0 and M̄ > 0 such that, for any n > λ−,

(3.7) Wn is Λ-convex,

(3.8) |Wn(x, y)| ≤ K̄(1 + |x|2 + |y|2) for every x, y ∈ Rd,

(3.9) |∇iWn(x, y)| ≤ M̄(1 + |x|+ |y|), i = 1, 2, for every x, y ∈ Rd.

Proof. Let n > λ−. For any z = (x, y) ∈ Rd ×Rd, let pn(z) denote the unique solution to the
minimization problem in (3.6). Then, since 0 ∈ ∂(W(·) + n|z − (·)|2/2) at the point pn(z),
there holds the subdifferential relation

n(z − pn(z)) ∈ ∂W(pn(z)).

Therefore, taking z1 ∈ Rd×Rd, z2 ∈ Rd×Rd and applying the λ-monotonicity property (1.12)
to ∂W, it follows that

n 〈z2 − pn(z2)− (z1 − pn(z1)), pn(z2)− pn(z1)〉 ≥ λ|pn(z2)− pn(z1)|2,

and we deduce

(3.10) |pn(z1)− pn(z2)| ≤ 1

1 + λ/n
|z1 − z2|.

On the other hand, using the definition of Wn and the λ-convexity of W it is not difficult to
see that for any t ∈ [0, 1]

Wn(tz1 + (1− t)z2) ≤ tWn(z1) + (1− t)Wn(z2)− λ

2
t(1− t)|pn(z1)− pn(z2)|2.

Combined with (3.10), the latter yields

Wn(tz1 + (1− t)z2) ≤ tWn(z1) + (1− t)Wn(z2) +
λ−

2

1

(1 + λ/n)2
t(1− t)|z1 − z2|2.
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Notice that λ < 0 implies that 1/(1 + λ/n)2 is decreasing with respect to n, for n > λ−.
In particular, choosing Λ = −λ−/(1 + λ/n̄)2, where n̄ denotes the smallest integer strictly
larger than λ−, we see that Wn is Λ-convex for any n > λ−. The estimate (3.8) easily follows
from (3.7) and (1.4), since Wn ≤ W. Eventually, exploiting the subdifferential inequality
Wn(z1 + z2)−Wn(z1) ≥ 〈∇Wn(z1), z2〉+ Λ|z2|2/2 and the estimate (3.8) we have

〈∇Wn(z1), z2〉 ≤ K̃(1 + |z1|2 + |z2|2),

where K̃ depends only on K̄ and Λ. As in the proof of Proposition 2.1, we conclude that
(3.9) holds with M̄ depending only on K̄ and Λ. �

We define the approximating interaction functionals Wn : P2(Rd)→ R by

(3.11) Wn(µ) :=
1

2

∫
Rd×Rd

Wn(x, y) d(µ× µ)(x, y), n ∈ N, n > λ−.

Since W might enjoy a negative quadratic behavior at infinity, it is not true that W is
lower semicontinuous also with respect to the narrow convergence. By the way, it is shown in
[CDFLS, §2] that one can choose τ0 small enough (depending only on W) such that for any
τ < τ0 and for any µ ∈P2(Rd), the functional

(3.12) ν ∈P2(Rd) 7→ W(ν) +
1

2τ
d2
W (ν, µ),

is lower semicontinuous with respect to the narrow convegence. Moreover, for τ < τ0, minimiz-
ers do exist for (3.12). The same facts hold true in our case, and moreover when considering
functional Wn the constant τ0 can be chosen independently of n, as stated in the following

Proposition 3.6. Let W satisfy assumptions (1.2), (1.3), and (1.4). Let n > λ− and
µ ∈ P2(Rd). There exists τ0 > 0, depending only on W, such that for any τ < τ0 the
functionals

ν ∈P2(Rd) 7→ Wn(ν) +
1

2τ
d2
W (ν, µ)

as well as the functional in (3.12) are lower semicontinuous with respect to the narrow con-
vergence and admit minimizers in P2(Rd).

Proof. These results are proven in [CDFLS, Lemma 2.3, Lemma 2.5]. By investigating the
proof of [CDFLS, Lemma 2.3], it is evident that the very same arguments can be applied to
our functions Wn and W, since they are continuous and satisfy the quadratic bounds (3.8)
and (2.2) respectively, and the value τ0 depends only on K̄ in (3.8) (resp. K in (2.2)). In
particular, τ0 depends only on W and it is independent of n. �

We prove the following more general lower semicontinuity property.

Proposition 3.7. Let W satisfy assumptions (1.2), (1.3), and (1.4). Let τ0 be as in Proposi-
tion 3.6. Let τ < τ0 and let ν ∈P2(Rd). For any µ ∈P2(Rd) and for any sequence {µn}n∈N
such that µn narrowly converges to µ and supn

∫
Rd |x|

2 dµn(x) < +∞, there holds

W(µ) +
1

2τ
d2
W (µ, ν) ≤ lim inf

n

(
Wn(µn) +

1

2τ
d2
W (µn, ν)

)
.

Moreover, for µ ∈P2(Rd) there holds Wn(µ)→W(µ).
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Proof. Since Wn ≥Wk if n ≥ k > λ−, by Proposition 3.6 we have

lim inf
n→∞

(
Wn(µn) +

1

2τ
d2
W (µn, ν)

)
≥ lim inf

n→∞

(
Wk(µn) +

1

2τ
d2
W (µn, ν)

)
≥ Wk(µ) +

1

2τ
d2
W (µ, ν)

for any fixed k > λ−. Now we shall pass to the limit as k → +∞. Notice that Wk ↗
W pointwise and monotonically, and thus by the monotone convergence theorem, Wk(µ)
converges to W(µ). Both statements are proven. �

We recall a suitable notion of convergence of a sequence of vector fields ξn ∈ L2(Rd, µn;Rd).

Definition 3.8. Let {µn}n∈N ⊂ P(Rd) narrowly converge to µ ∈ P(Rd) and let ξn ∈
L2(Rd, µn;Rd). We say that ξn weakly converge to ξ ∈ L2(Rd, µ;Rd) if

(3.13)

∫
Rd
〈ξn, ζ〉 dµn →

∫
Rd
〈ξ, ζ〉 dµ, ∀ζ ∈ C0(Rd;Rd),

where C0(Rd;Rd) is the space of continuous functions vanishing at infinity. We say that the
convergence is strong if (3.13) holds and∫

Rd
|ξn|2 dµn →

∫
Rd
|ξ|2 dµ.

Remark 3.9. LetMd denote the space of d-dimensional vector Radon measures over Rd with
finite total variation. By Riesz representation theorem, Md is the dual space of C0(Rd;Rd),
the total variation being the dual norm, see for instance [AFP]. Since C0(Rd;Rd) is a separable
Banach space, the weak* topology of Md is metrizable on bounded sets.

If µ ∈P(Rd) and ξ ∈ L2(Rd, µ;Rd), then ξµ ∈ Md, since its total variation is |ξµ|(Rd) =∫
Rd |ξ|dµ < +∞. Letting µn narrowly converge to µ and ξn ∈ L2(Rd, µn;Rd), it is clear that

the weak convergence ξn → ξ in the sense of Definition 3.8 is exactly the weak* convergence
in Md of the vector measures ξnµn to the vector measure ξµ. Therefore ξn weakly converge
to ξ in the sense of Definition 3.8 if and only if d(ξnµn, ξµ)→ 0, where d is a distance which
metrizes the weak* topology on BR := {ν ∈Md : |ν|(Rd) ≤ R} and R = supn

∫
Rd |ξn| dµn.

We also need to define the barycentric projection.

Definition 3.10 (Disintegration and barycenter). Let µ, ν ∈P(Rd). Given β ∈ Γ(µ, ν),
we denote by {βx}x∈Rd the Borel family of measures in P(Rd) such that β =

∫
Rd βx dµ(x),

which disintegrates β with respect to µ. The notation above means that the integral of a Borel
function ϕ : Rd × Rd → R such that ϕ ∈ L1(β), can be sliced as∫

Rd×Rd
ϕ(x, y) dβ(x, y) =

∫
Rd

∫
Rd
ϕ(x, y) dβx(y) dµ(x).

The barycentric projection of β ∈ Γ(µ, ν) is defined by

β̄(x) :=

∫
Rd
y dβx(y).
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The family {βx}x∈Rd is uniquely determined for µ-a.e. x ∈ Rd, for more details about

disintegration see [AFP, Theorem 2.28]. Notice that if ν ∈P2(Rd), then β̄ ∈ L2(µ). Indeed,
by Jensen inequality we have

(3.14)

∫
Rd
|β̄(x)|2 dµ(x) =

∫
Rd

∣∣∣∣∫
Rd
y dβx(y)

∣∣∣∣2 dµ(x) ≤
∫
Rd

∫
Rd
|y|2 dβx(y) dµ(x)

=

∫
Rd×Rd

|y|2 dβ(x, y) =

∫
Rd
|y|2 dν(y).

We can prove the following simple

Proposition 3.11. Let {µn} ⊂P2(Rd), {νn} ⊂P2(Rd) be sequences with uniformly bounded
second moments and narrowly converging to µ and ν respectively. For every sequence {γn}
such that γn ∈ Γo(µn, νn), there exists a subsequence {γnk} and γ ∈ Γ(µ, ν) such that γnk
narrowly converge to γ. Moreover, γ ∈ Γo(µ, ν) and

γ̄nk → γ̄ weakly in the sense of Definition 3.8 as k → +∞.

Proof. By the assumptions on the moments of µn and νn we have

(3.15) sup
n

∫
Rd×Rd

(|x|2 + |y|2) dγn(x, y) < +∞,

hence {γn} is tight. By Prokhorov theorem it admits a narrow limit point γ ∈ Γ(µ, ν). For the
proof of optimality of γ, see [AGS, Proposition 7.1.3]. Without relabeling the subsequence,
let γn narrowly converge to γ. Let (γn)x be the disintegration of γn with respect to µn and
γx be the disintegration of γ with respect to µ. Let ζ ∈ C0(Rd;Rd) and f : Rd ×Rd → R the
function defined by f(x, y) = 〈ζ(x), y〉. Since f is continuous and satisfies |f(x, y)| ≤ C|y|
for every (x, y) ∈ Rd × Rd and since (3.15) holds, by [AGS, Lemma 5.1.7] we have that∫
Rd×Rd f(x, y) dγn(x, y) →

∫
Rd×Rd f(x, y) dγ(x, y) as n → +∞. Using this property and the

definition of barycenter, we have∫
Rd
〈ζ, γ̄n〉 dµn =

∫
Rd

〈
ζ(x),

∫
Rd
y d(γn)x(y)

〉
dµn(x)

=

∫
Rd×Rd

〈ζ(x), y〉 dγn(x, y)→
∫
Rd×Rd

〈ζ(x), y〉 dγ(x, y)

=

∫
Rd

〈
ζ(x),

∫
Rd
y dγx(y)

〉
dµ(x) =

∫
Rd
〈ζ, γ̄〉 dµ

as n→ +∞. �

We recall a definition from [AGS, Chapter 10].

Definition 3.12 (Rescaled plan). Let W satisfy assumptions (1.2), (1.3), and (1.4). Let
τ < τ0, as in Proposition 3.6. Given µ ∈P2(Rd), let

µτ ∈ argmin

{
W(ν) +

1

2τ
dW (ν, µ) : ν ∈P2(Rd)

}
.

Given γ̂τ ∈ Γo(µτ , µ), we define the rescaled plan as

γτ :=

(
π1,

π2 − π1

τ

)
#

γ̂τ .
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Next we introduce an abstract result about approximation of the minimal selection in the
subdifferential of W. The argument is indeed a direct consequence of the analysis in [AGS,
§10.3], but requires the concept of plan subdifferential. Since this is a technical definition, we
prefer to postpone a discussion at the end of the paper. Therefore, the proof of the following
proposition is given in the appendix.

Proposition 3.13. Let W satisfy assumptions (1.2), (1.3), and (1.4). Let µ, µτ and γτ be
as in Definition 3.12. Then,

(3.16) lim
τ→0

d2
W (µτ , µ)

τ2
=

∫
Rd
|∂oW(µ)|2 dµ < +∞.

Moreover, denoting by γ̄τ the barycenter of γτ , we have that γ̄τ ∈ ∂SW(µτ ) and

γ̄τ → ∂oW(µ) strongly in the sense of Definition 3.8 as τ → 0.

Making use of Proposition 3.13 we can prove the following

Lemma 3.14. Let µ ∈ P2(Rd). Let W satisfy assumptions (1.2), (1.3), and (1.4). There
exist a sequence {µn}n∈N ⊂ P2(Rd) and a strictly increasing sequence {k(n)}n∈N ⊂ N such
that µn narrowly converge to µ, supn

∫
Rd |x|

2 dµn(x) < +∞ and∫
Rd
∇1Wk(n)(·, y) dµn(y)→ ∂oW(µ) weakly in the sense of Definition 3.8 as n→ +∞.

Proof. Let τ0 be as in Proposition 3.6, and consider a measure µ ∈P2(Rd). Let, for τ < τ0,

µhτ ∈ argmin

{
Wh(ν) +

1

2τ
d2
W (ν, µ) : ν ∈P2(Rd)

}
, h ∈ N, h > λ−.

We claim that there exists τ̃ ∈ (0, τ0) such that

(3.17) sup
h>λ−, τ≤τ̃

∫
Rd
|x|2 dµhτ (x) < +∞.

Indeed, since µhτ satisfies the above minimality property, letting γhτ ∈ Γo(µ
h
τ , µ), a direct

estimate using (3.8) and Wh ≤W shows that∫
Rd
|x|2 dµhτ (x) =

∫
Rd×Rd

|x|2 dγhτ (x, y) ≤ 2

∫
Rd×Rd

|y|2 dγhτ (x, y) + 2d2
W (µhτ , µ)

≤ 2

∫
Rd
|y|2 dµ(y) + 4τ

(
Wh(µ)−Wh(µhτ )

)
≤ 2

∫
Rd
|y|2 dµ(y) + 4τW(µ) + 4τK̄

(
1 + 2

∫
Rd
|x|2 dµhτ (x)

)
.

The claim follows choosing τ̃ smaller than 1
8K̄

.

We are going to construct the desired sequence {µn} by extracting it from the family {µhτ},
and showing the suitable convergence properties of the associated optimal transport plans,
rescaled plans and barycenters. For, we let {τ(n)}n∈N ⊂ (0, τ̃) be a vanishing sequence and
we proceed in some steps.

Step 1. For any fixed n ∈ N, by (3.17) the sequence {µhτ(n)}h∈N, h>λ− has uniformly

bounded second moments, hence it is tight and by Prokhorov theorem it has narrow limit
points as h → +∞. With a standard diagonal argument, we can find a strictly increasing
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sequence {h(m)}m∈N ⊂ N such that, for any n ∈ N, the sequence {µh(m)
τ(n) }m∈N narrowly

converges as m → +∞. Let µτ(n) denote the corresponding limit point. Proposition 3.7

yields, for any ν ∈P2(Rd),

W(µτ(n)) +
1

2τ(n)
d2
W (µτ(n), µ) ≤ lim inf

m→∞

(
Wh(m)(µ

h(m)
τ(n) ) +

1

2τ(n)
d2
W (µ

h(m)
τ(n) , µ)

)
≤ lim inf

m→∞

(
Wh(m)(ν) +

1

2τ(n)
d2
W (ν, µ)

)
=W(ν) +

1

2τ(n)
d2
W (ν, µ).

This shows that, for any n ∈ N,

(3.18) µτ(n) ∈ argmin

{
W(ν) +

1

2τ(n)
d2
W (ν, µ) : ν ∈P2(Rd)

}
.

Step 2. Let γ̂
h(m)
τ(n) ∈ Γo(µ

h(m)
τ(n) , µ). Applying Proposition 3.11 to the sequence {γ̂h(m)

τ(n) }m∈N
we find a corresponding narrow limit point γ̂τ(n) ∈ Γo(µτ(n), µ). By possibly extracting from

{h(m)} a subsequence, that we do not relabel, we have the narrow convergence γ̂
h(m)
τ(n) → γ̂τ(n)

as m→ +∞, for any n ∈ N. As in the proof of Proposition 3.11, we also have

lim
m→+∞

∫
Rd×Rd

|x− y| dγ̂h(m)
τ(n) (x, y) =

∫
Rd×Rd

|x− y| dγ̂τ(n)(x, y),

since (x, y) 7→ |x−y| is continuous and has a linear growth. Therefore, it is possible to extract
from {h(m)} another subsequence, still not relabeled, such that

(3.19)

∣∣∣∣∫
Rd×Rd

|x− y| dγ̂h(m)
τ(n) (x, y)−

∫
Rd×Rd

|x− y| dγ̂τ(n)(x, y)

∣∣∣∣ ≤ τ(n) if m > n.

Step 3. If γ
h(m)
τ(n) denotes the rescaled of plan γ̂

h(m)
τ(n) (see Definition 3.12) it easily follows

that γ
h(m)
τ(n) → γτ(n) as m→ +∞, where γτ(n) is the rescaled of γ̂τ(n). Moreover, for any n ∈ N

the sequence of plans {γh(m)
τ(n) }m∈N has uniformly bounded second moments, as seen from the

same property for {γ̂h(m)
τ(n) }m∈N and by definition of rescaled plan, so that reasoning as in the

proof of Proposition 3.11 we get the convergence of the respective barycenters, that is,

(3.20) γ̄
h(m)
τ(n) → γ̄τ(n) weakly in the sense of Definition 3.8 as m→ +∞.

Step 4. We conclude by combining the estimates of the previous steps and the application
of Proposition 3.13. Indeed, since (3.18) holds, µ, µτ(n) and γτ(n) match the assumptions
of Proposition 3.13, which can be applied by passing to the limit as τ → 0 along the se-

quence τ(n). Using the definition of barycenter and rescaled plan (denoting by (γ
h(m)
τ(n) )x the
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disintegration of γ
h(m)
τ(n) with respect to µ

h(m)
τ(n) ), thanks to (3.19) we find the estimate∫

Rd
|γ̄h(m)
τ(n) (x)| dµh(m)

τ(n) (x) ≤
∫
Rd

∫
Rd
|y| d(γ

h(m)
τ(n) )x(y) dµ

h(m)
τ(n) (x) =

∫
Rd×Rd

|y| dγh(m)
τ(n) (x, y)

=

∫
Rd×Rd

|y − x|
τ(n)

dγ̂
h(m)
τ(n) (x, y) ≤ 1 +

∫
Rd×Rd

|y − x|
τ(n)

dγ̂τ(n)(x, y)

≤ 1 +
dW (µτ(n), µ)

τ(n)
,

for any m,n ∈ N such that m > n. But the right hand side is converging as n → ∞,
due to Proposition 3.13, then it is bounded by some constant R > 0. This shows that

the family of vector measures {γ̄h(m)
τ(n) µ

h(m)
τ(n) : n,m ∈ N , m > n} is contained in the ball

BR := {ν ∈ Md : |ν|(Rd) ≤ R}. By the arguments in Remark 3.9, the weak* convergence of
vector measures is metrizable on BR, and letting d denote a corresponding distance, property
(3.20) translates into

d(γ̄
h(m)
τ(n) µ

h(m)
τ(n) , γ̄τ(n)µτ(n))→ 0 as m→ +∞, for any n ∈ N.

Therefore, there exists a strictly increasing sequence {k(n)}n∈N ⊂ {h(m)}m∈N such that

d(γ̄
k(n)
τ(n)µ

k(n)
τ(n), γ̄τ(n)µτ(n)) <

1

n
.

Then we have

d(γ̄
k(n)
τ(n)µ

k(n)
τ(n), ∂

oW(µ)µ) ≤ d(γ̄
k(n)
τ(n)µ

k(n)
τ(n), γ̄τ(n)µτ(n)) + d(γ̄τ(n)µτ(n), ∂

oW(µ)µ)

≤ 1

n
+ d(γ̄τ(n)µτ(n), ∂

oW(µ)µ).

Invoking Proposition 3.13, we know that γ̄τ(n) converge to ∂oW(µ) strongly (and thus weakly)

in the sense of Definition 3.8 as n→ +∞. Hence, letting γn := γ
k(n)
τ(n) , µn := π1

#γn and γ̄n the

barycenter of γn, passing to the limit as n→∞, we see that γ̄n weakly converge to ∂oW(µ)
in the sense of Definition 3.8.

By Proposition 3.13, applied to Wk(n), for any n there holds γ̄n ∈ ∂SWk(n)(µn). Since

Wk(n) ∈ C1(Rd ×Rd), by the characterization of strong subdifferential of Proposition 3.2 we
have

γ̄n(x) =

∫
Rd
∇1Wk(n)(x, y) dµn(y)

and the proof is concluded. �

Proof of Theorem 3.3. Let µ ∈ P2(Rd) and ξ := ∂oW(µ). Let {µn} ⊂ P2(Rd) and
{k(n)} ⊂ N be the sequences given by Lemma 3.14. In particular, µn narrowly converge to µ
and

(3.21) sup
n

∫
Rd
|x|2 dµn(x) < +∞.

Let us consider the maps (i,∇Wk(n)) : Rd × Rd −→ (Rd)4 given by

(i,∇Wk(n))(x, y) = (x, y,∇Wk(n)(x, y)),
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and let us introduce the measures

νn := (i,∇Wk(n))#(µn × µn).

Since∫
(Rd)4

(
|x|2 + |y|2 + |v|2 + |w|2

)
dνn(x, y, v, w) =∫

Rd

∫
Rd

(
|x|2 + |y|2 + |∇1Wk(n)(x, y)|2 + |∇2Wk(n)(x, y)|2

)
dµn(x) dµn(y),

from (3.9) and (3.21) we infer that the second moments of νn are uniformly bounded. Then
the sequence {νn} is tight and by Prokhorov theorem there exists a subsequence (that we do
not relabel) which narrowly converges to some ν ∈P((Rd)4). Moreover, for ζ ∈ C0(Rd;Rd),
we have

(3.22) lim
n→∞

∫
(Rd)4
〈v, ζ(x)〉 dνn(x, y, v, w) =

∫
(Rd)4
〈v, ζ(x)〉 dν(x, y, v, w),

due to the linear growth of the integrand (as in the proof of Proposition 3.11). As a conse-
quence,

(3.23)

∫
(Rd)4
〈v, ζ(x)〉 dν(x, y, v, w) =

∫
(Rd)4
〈w, ζ(y)〉 dν(x, y, v, w),

since this identity holds for νn (being Wn symmetric).
The narrow convergence of measures implies that supp(ν) is contained in the Kuratowski

minimum limit of the supports of νn (see for instance [AGS, Proposition 5.1.8]), i.e. for every
(x, y,η) ∈ supp(ν) there exists a sequence (xn, yn,ηn) ∈ supp(νn) such that (xn, yn,ηn)
converges to (x, y,η). Since, by definition of νn, supp(νn) ⊂ graph(∂Wk(n)), then supp(ν) ⊂
graph(∂W). Indeed ηn ∈ ∂Wk(n)(xn, yn) and passing to the limit in the subdifferential
inequality we obtain that η ∈ ∂W(x, y).

Disintegrating ν with respect to µ × µ, we obtain the measurable family of measures
(x, y) 7→ νx, y such that

ν =

∫
Rd×Rd

νx, y d(µ× µ)(x, y).

Since supp(ν) ⊂ graph(∂W), it follows that supp(νx, y) ⊂ ∂W(x, y).
Making use of (3.22) and (3.23) we have,

(3.24)

lim
n→∞

∫
(Rd)4
〈v,ζ(x)〉 dνn(x, y, v, w) =

∫
(Rd)4
〈v, ζ(x)〉 dν(x, y, v, w)

=
1

2

∫
(Rd)4
〈v, ζ(x)〉 dν(x, y, v, w) +

1

2

∫
(Rd)4
〈w, ζ(y)〉 dν(x, y, v, w)

=
1

2

∫
Rd

〈∫
Rd

∫
Rd×Rd

v dνx, y(v, w) dµ(y), ζ(x)

〉
dµ(x)

+
1

2

∫
Rd

〈∫
Rd

∫
Rd×Rd

w dνx, y(v, w) dµ(x), ζ(y)

〉
dµ(y)

=

∫
Rd

〈∫
Rd

∫
Rd×Rd

1

2
(v dνx, y + w dνy, x) (v, w) dµ(y), ζ(x)

〉
dµ(x).
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We define

(η1(x, y),η2(x, y)) := ν̄(x, y) =

(∫
Rd×Rd

v dνx, y(v, w),

∫
Rd×Rd

w dνx, y(v, w)

)
,

that is, (η1,η2) is the barycenter of ν. This way, (3.24) becomes

lim
n→∞

∫
(Rd)4
〈v, ζ(x)〉 dνn(x, y, v, w) =

∫
Rd

〈∫
Rd

1

2

(
η1(x, y) + η2(y, x)

)
dµ(y), ζ(x)

〉
dµ(x).

Now, invoking Lemma 3.14 we have the weak convergence in the sense of Definition 3.8 of∫
Rd ∇1Wk(n)(·, y) dµn(y) to ξ = ∂oW(µ) as n → +∞. Using the definition of νn, it follows

that for any ζ ∈ C0(Rd;Rd)

lim
n→∞

∫
(Rd)4
〈v, ζ(x)〉 dνn(x, y, v, w) = lim

n→∞

∫
Rd

〈∫
Rd
∇1Wk(n)(x, y) dµ(y), ζ(x)

〉
dµn(x)

=

∫
Rd
〈ξ(x), ζ(x)〉 dµ(x).

We conclude

ξ(x) =

∫
Rd

1

2

(
η1(x, y) + η2(y, x)

)
dµ(y) for µ-a.e. x ∈ Rd.

On the other hand, we proved that supp(νx, y) ⊂ ∂W(x, y). Since (η1,η2) is the barycenter
of ν and ∂W(x, y) is convex, we have that

(
η1(x, y),η2(x, y)

)
∈ ∂W(x, y). �

4. The convolution case

4.1. The case of W depending on the difference. In the case of assumption (1.8) we
can particularize the results above.

Lemma 4.1. Let W satisfy (1.2), (1.3), and (1.4). Let moreover (1.8) hold. Then, (η1,η2) ∈
∂W if and only if there exists η ∈ ∂W such that (η1,η2) = (η,−η).

Proof. Assume that W is convex, the general case follows considering x 7→W (x)− λ
2 |x|

2.

If η ∈ ∂W we have for every (x̃, ỹ) ∈ Rd × Rd

W(x̃, ỹ)−W(x, y) = W (x̃− ỹ)−W (x− y) ≥ 〈η(x− y), x̃− ỹ − (x− y)〉
= 〈(η(x− y),−η(x− y)) , (x̃, ỹ)− (x, y)〉 ,

which means that (η(x−y),−η(x−y)) ∈ ∂W(x, y) by making the abuse of notation η(x, y) ≡
η(x− y).

On the other hand, if (η1, η2) ∈ ∂W, then for every (x̃, ỹ) ∈ Rd × Rd we have

W (x̃− ỹ)−W (x− y) = W(x̃, ỹ)−W(x, y) ≥
〈(
η1(x, y),η2(x, y)

)
, ((x̃, ỹ)− (x, y))

〉
= 〈η1(x, y), (x̃− x)〉+ 〈η2(x, y), (ỹ − y)〉.(4.1)

Assuming in particular that x− y = x̃− ỹ the inequality above reduces to

0 ≥ 〈η1(x, y) + η2(x, y), (ỹ − y)〉,
and the arbitrariness of ỹ implies that η1 = −η2. Using this relation in (4.1) we obtain

W (x̃− ỹ)−W (x− y) ≥ 〈η1(x, y), (x̃− ỹ)− (x− y)〉 ,
which means that η1 ∈ ∂W . �
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Applying the main results of the general case we obtain the following

Corollary 4.2. Let the assumptions of Lemma 4.1 hold. If η is a Borel measurable anti-
symmetric selection of ∂W , then

(4.2) η ∗ µ ∈ ∂SW(µ) for any µ ∈P2(Rd),

where (η ∗ µ)(x) =
∫
Rd η(x− y) dµ(y).

Conversely, if µ ∈ P2(Rd), then there exists a Borel measurable anti-symmetric selection
η ∈ ∂W such that ∂oW(µ) = η ∗ µ .

Proof. Let η be a Borel measurable antisymmetric selection in ∂W . In particular η(x− y) =
−η(y−x) for every x, y ∈ Rd and by Lemma 4.1 (η1(x, y), η2(x, y)) := (η(x−y),η(y−x)) ∈
∂W(x, y). By applying Theorem 3.1 to the Borel measurable selection (η1,η2) just defined,
we get (4.2).

Conversely, let µ ∈ P2(Rd), ξ = ∂oW(µ) and (η1,η2) ∈ ∂W be the selection given by
Theorem 3.3. By Lemma 4.1 we obtain that η2 = −η1, then

ξ(x) =

∫
Rd

1

2
(η1(x− y)− η1(y − x)) dµ(y) for µ-a.e. x ∈ Rd.

By choosing η(z) = 1
2 (η1(z)− η1(−z)), we conclude. �

Remark 4.3. Under the assumptions of Lemma 4.1, we observe that if η is a Borel measurable
selection of ∂W such that (4.2) holds, then η is antisymmetric.

Indeed, supposing for simplicity that W is convex, in such a case η satisfies

W(ν)−W(µ) ≥
∫
Rd

〈∫
Rd
η(x− y) dµ(y), z − x

〉
dγ(x, z)

for any γ ∈ Γ(µ, ν). Choosing µ = δx1 and ν = δx3 , γ = µ× ν, the inequality becomes

0 ≥ 〈η(0), x2 − x1〉,

and since this must hold for any x1, x2 ∈ Rd, we deduce η(0) = 0. Moreover, taking into
account that η(0) = 0, if µ = 1

2δx1 + 1
2δx2 , ν = 1

2δx3 + 1
2δx4 , with |x1 − x3| ≤ |x1 − x4| and

|x2−x4| ≤ |x2−x3|, and γ = 1
2 (δx1×δx3)+ 1

2 (δx2×δx4), the subdifferential inequality reduces
to

W (x3 − x4)−W (x1 − x2) ≥ 〈η(x1 − x2), x3 − x1〉+ 〈η(x2 − x1), x4 − x2〉.
In particular, for x3 − x4 = x1 − x2 we get

0 ≥ 〈η(x1 − x2) + η(x2 − x1), x3 − x1〉,

which yields η(x1 − x2) = −η(x2 − x1) for any x1, x2 ∈ Rd.

Remark 4.4. Still under the assumptions of Lemma 4.1, if µ � Ld we can conclude that
η ∗ µ ∈ ∂W(µ) for any Borel selection η in ∂W .

Indeed, in this case the set where ∂W is not a singleton is µ-negligible. That is, in the
convolution integral we can restrict to the points where W has a gradient (there is no need
to select), and in that case ∇W ∗ µ belongs to the Wasserstein subdifferential of W at µ (it
is actually its minimal selection), as shown in [CDFLS].
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4.2. The radial case. In the radial case, we are able to give an explicit characterization
of the minimal selection of the Wasserstein subdifferential. Before stating our theorem, we
recall that ∂oW (x) = argmin{|y| : y ∈ ∂W (x)}. We have the following

Theorem 4.5. Let W be convex and satisfying assumptions (1.4) and (1.9). Then

(4.3) ∂oW(µ) = ∂oW ∗ µ ∀µ ∈P2(Rd).

Proof. Let µ ∈P2(Rd). By Corollary 4.2, we know that ∂oW(µ) has the form of a convolution
with an anti-symmetric selection in the subdifferential of W . Hence, in order to find the
explicit form of ∂oW(µ), we have to minimize the quantity

‖η ∗ µ‖2L2(Rd,µ;Rd) =

∫
Rd

∣∣∣∣∫
Rd
η(x− y) dµ(y)

∣∣∣∣2 dµ(x)

among all measurable anti-symmetric selections η ∈ ∂W . Clearly the above quantity can also
be written as

(4.4)

‖η ∗ µ‖2L2(Rd,µ;Rd) =

∫
Rd

〈∫
Rd
η(x− y) dµ(y),

∫
Rd
η(x− z) dµ(z)

〉
dµ(x)

=

∫
Rd

∫
Rd

∫
Rd
〈η(x− y),η(x− z)〉 dµ(x) dµ(y) dµ(z).

Let us first discuss the consequences of our assumptions. Since W is radial, given a generic
anti-symmetric measurable selection η ∈ ∂W , we have the representation

(4.5) η(v) =
η(v)

|v|
v, η(v) ∈ ∂w(|v|), η(v) = η(−v), ∀v ∈ Rd,

where w is the profile function in (1.9). Notice that in general η is not radial, but it satisfies
η(v) = η(−v) since η is anti-symmetric. If η = ∂oW , then η is radial and precisely η(v) =
∂ow(|v|), where ∂ow denotes the minimal selection in the subdifferential ∂w. Moreover, the
convexity hypothesis implies that η(v) ≥ 0, and in particular

(4.6) η(v) ≥ ∂ow(|v|) ≥ 0, ∀v ∈ Rd.

Convexity also yields monotonicity of the subdifferential, that is, for any x, y, z ∈ Rd,

(4.7) 〈x− y,η(x− z)− η(y − z)〉 ≥ 0.

Next, define

Iµ(η, η̃) :=

∫
Rd

∫
Rd

∫
Rd
〈η(x− y), η̃(x− z)〉 dµ(x) dµ(y) dµ(z),

where η and η̃ are any two anti-symmetric selections in the subdifferential of W . It is readily
seen that

(4.8) Iµ(η, η̃) = Iµ(η̃,η),

simply exchanging y with z in the integral above. We claim that

(4.9) Iµ(η, η̃) ≥ Iµ(∂oW, η̃) ≥ 0.
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For, let us consider the following representation of Iµ obtained by exchanging x with y and
using anti-symmetry of η:

Iµ(η, η̃) =
1

2

∫
Rd

∫
Rd

∫
Rd
〈η(x− y), η̃(x− z)〉 dµ(x) dµ(y) dµ(z)

+
1

2

∫
Rd

∫
Rd

∫
Rd
〈η(y − x), η̃(y − z)〉 dµ(y) dµ(x) dµ(z)

=
1

2

∫
Rd

∫
Rd

∫
Rd
〈η(x− y), η̃(x− z)− η̃(y − z)〉 dµ(x) dµ(y) dµ(z).

Thanks to the monotonicity of the subdifferential we have that the last scalar product is
pointwise nonnegative. More precisely, combining (4.5), (4.6) and (4.7) we get pointwise

〈η(x− y), η̃(x− z)− η̃(y − z)〉 =
η(x− y)

|x− y|
〈x− y, η̃(x− z)− η̃(y − z)〉

≥ ∂ow(|x− y|)
|x− y|

〈x− y, η̃(x− z)− η̃(y − z)〉

= 〈∂oW (x− y), η̃(x− z)− η̃(y − z)〉 ≥ 0.

Inserting this inequality in the representation of Iµ the claim is proven.
Now, consider an arbitrary anti-symmetric selection η in ∂W . Using (4.9) twice and the

symmetry (4.8) we get

Iµ(η,η) ≥ Iµ(∂oW,η) = Iµ(η, ∂oW ) ≥ Iµ(∂oW,∂oW ).

Recalling (4.4), we have Iµ(η,η) = ‖η ∗ µ‖2
L2(Rd,µ;Rd)

, thus the above inequality is equivalent

to

‖η ∗ µ‖2L2(Rd,µ;Rd) ≥ ‖∂
oW ∗ µ‖2L2(Rd,µ;Rd)

for any anti-symmetric selection η in the subdifferential of ∂W . Therefore, ∂oW minimizes
‖η ∗ µ‖2

L2(Rd,µ;Rd)
among all measurable anti-symmetric selections η in ∂W and then (4.3)

holds. �

Example 4.6. The above result fails if we omit the convexity assumption. Indeed, let us
consider a 1-dimensional example. Let

Ŵ (x) =
1

2
|x2 − 1|.

Notice that this function is radial and −1-convex, and its subdifferential is

∂Ŵ (x) =


x for |x| > 1,

−x for |x| < 1,

[−1, 1] for x = ±1.

Let us consider the measure µ = 1
3δx1 + 1

3δx2 + 1
3δx3 . We have to minimize the quantity

‖η ∗ µ‖L2(R,µ;R) =
1

27

3∑
j=1

∣∣∣∣∣
3∑
i=1

η(xj − xi)

∣∣∣∣∣
2

among all measurable antisymmetric selections η in ∂Ŵ .
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If we let x1 = 1, x2 = 0, x3 = 3/4, the only points where it is needed to select are ±1,
corresponding to ±(x1 − x2), hence expanding the sum above (using the antisymmetry) it is
clear that we reduce to find the minimizer of

min{η(x1 − x2)2 + η(x1 − x2)(η(x1 − x3)− η(x2 − x3)) : η(x1 − x2) ∈ [−1, 1]}.

Here x1−x3 = 1/4 (so that η(x1−x3) = −1/4) and x2−x3 = −3/4 (so that η(x2−x3) = 3/4).
Then, letting y = η(x1 − x2), we are left with the problem min{y2 − y : y ∈ [−1, 1]}, whose
solution is y = 1/2. This is different from the element of minimal norm in ∂W (x2 − x1),
which of course is 0.

We also point out that in this non convex case the choice of the selection is not independent
from the measure µ. Indeed, if we change the value of x3 to be, for instance, −1/4, we have
η(x1− x3) = 5/4 and η(x2− x3) = −1/4, then we have to solve min{y2 + 3y/2 : y ∈ [−1, 1]},
and the solution is y = η(1) = −η(−1) = −3/4.

Example 4.7. The result of Theorem 4.5 fails if we omit the radial hypothesis on W . As
a counterexample we provide a convex function W satisfying all the assumptions (1.2),(1.3),
(1.4), (1.8) and a measure µ ∈P2(R2) such that

∂oW(µ) 6= ∂oW ∗ µ.

Let θ > 2 and W : R2 → R be the function defined, for x = (u, v) ∈ R2, by

W (u, v) =

{
max{|u|, |v|} for max{|u|, |v|} ≤ 1,

θmax{|u|, |v|}+ 1− θ, for max{|u|, |v|} > 1.

The graph of W is a reversed pyramid with varying slopes, with vertex in the origin. W is
symmetric and its level sets are squares centered in the origin. Then, we have

∇W (u, v) =

{
(1, 0) for 0 < u < 1, −u < v < u,

(θ, 0) for u > 1, −u < v < u,

and ∇W is given by analogous expressions in the other three regions of the plane.
Let x1, x2, x3 be points in R2 such that

x2 − x1 = (1, 1), x3 − x2 = (−1/2− ε, 1/2), x3 − x1 = (1/2− ε, 3/2).

Among these points, for small enough ε > 0, ∂W is not a singleton only at x2 − x1, and in
particular it is the convex set K of R2 defined as

K = {(u, v) ∈ R2 : u ≥ 0, v ≥ 0, 1− u ≤ v ≤ θ − u}.

We let ηij , i, j = 1, 2, 3 denote the generic element of ∂W at xi − xj . We also let µ =
1
3δx1 + 1

3δx2 + 1
3δx3 . In this particular case

∂oW(µ) = argmin

 1

27

3∑
j=1

∣∣∣∣∣
3∑
i=1

ηji

∣∣∣∣∣
2

: η ∈ ∂W,ηji = −ηij

 .

Since η13 = ∇W (x1 − x3),η23 = ∇W (x2 − x3), we are left to minimize with respect to the
unique variable η21, that is, the minimization problem above reduces to

min
η21∈K

(
1

27
| − η21 + η13|2 +

1

27
|η23 + η21|2 +

1

27
|η32 + η31|2

)
.
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We have η13 = (0,−θ) and η23 = (1, 0), and hence it is immediate to check the solution is
the minimizer of

(4.10) |η21|2 + 〈η21, (1, θ)〉.

If η = ∂oW we have that η21 is the element of minimal norm in K, that is (1/2, 1/2), and in
this case the quantity above takes the value 1 + θ/2. But θ > 2, so that the minimum value
in K of the quadratic expression (4.10) is 2, attained in a different point, that is η21 = (1, 0).

Remark 4.8 (Particle system). As in [CDFLS], the well-posedness result in Theorem 2.4
for measure solutions allows to put in the same framework particle and continuum solutions.
Assume that we are given N pointwise particles, each carrying a mass mi, with

∑
imi = 1.

Let xi(t) be the position in Rd of the i-th particle at time t. Let η1 : Rd × Rd → Rd and
η2 : Rd × Rd → Rd be selections in the subdifferentials ∂1W and ∂2W respectively. We
consider the system

dxi
dt

=
1

2

N∑
j=1

mj(η
1(xj , xi) + η2(xi, xj)), i = 1, . . . , N.

If the t 7→ xi(t) are absolutely continuous curves, the empirical measure µt =
∑N

i=1miδxi(t)
solves the following PDE in the sense of distribution

∂tµt −
1

2
div

((∫
Rd
η1(·, y) + η2(y, ·) dµt(y)

)
µt

)
= 0.

Now, if we choose η1,η2 as depending on t and realizing, for any t, the minimal selection in
∂W(µt) (according to Theorem 3.3), we have correspondence between equation (2.7) and the
ODE system above. If we are in the framework of assumption (1.8), the velocity vector field
of the continuity equation is written as a convolution and the corresponding ODE system
takes the form (1.14), where, for any t, ηt is the suitable measurable anti-symmetric selection
in ∂W . If we are in the hypotheses of Theorem 4.5, then ηt = ∂oW for any t (in particular,
as previously observed, the selection does not depend on t). In this case, (1.14) reads

dxi
dt

=

N∑
j=1

mj∂
ow(|xj − xi|)

xj − xi
|xj − xi|

, i = 1, . . . , N,

as usual w denoting the radial profile of W as assumption (1.9) holds.
We would like to remark that in the latter, radial and convex case, the finite-time col-

lapse argument in [CDFLS] carries over. Indeed, it is enough to substitute ∇W therein
with the new object ∂oW . Let x0 be the fixed center of mass (since ∂oW is anti-symmetric,

the center of mass x0 :=
∑N

j=1mjxj does not move during the evolution). From such re-

lation, following [CDFLS, Proposition 4.2], one obtains d
dtR

2(t) ≤ −DR(t), where R(t) :=
maxi∈{1,...,N}{|xi(t) − x0|} and D := infr∈(0,+∞) ∂

ow(r). The solution then reaches the as-
ymptotic state µ∞ = δx0 in finite time if D > 0. It is also possible to generalize the result
to the case D = 0 under suitable assumptions on the behavior of w at the origin such that a

Gronwall estimate can be achieved. For instance if we ask ∂ow(x)
x to be decreasing on some

interval (0, ε) we are done. For all the details and a more general discussion on this issue we
refer to [CDFLS]. We only remark that if we have finite time collapse in the center of mass
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for a system of particles, by the general stability properties of gradient flow solutions we can
also deduce the finite time collapse for general compactly supported initial data.

5. Examples of stationary states in the non convex case

In this section, we are dealing with stationary states to (1.5), that is, solutions µ to (1.5)
which do not depend on time. In view of Theorem 2.4, they are characterized by v =
−∂oW(µ) = 0 µ-a.e.

We have already seen in the case of particle collapse (see Remark 4.8) that, for convex
nonnegative potentials, a single Dirac mass is the stationary state characterizing the long
time asymptotics. It is easily seen that any Dirac mass minimizes the functional W. So,
in this case, by the translation invariance property, the only asymptotic solution is in fact
the Dirac Delta at the center of mass of the initial datum. Dirac Deltas with all the mass
concentrated at the center of mass are the only stationary states for purely attractive or
purely repulsive potentials.

In the repulsive-attractive case, one can expect a much wider variety of stationary solutions.
In [FR1, FR2] the authors show that the set of stationary states for short-range repulsive long-
range attractive potentials even in 1D can be very large and complicated. Moreover, they
give examples in which the stationary states are composed of a finite number of Dirac Deltas
at points and others in which one has integrable compactly supported stationary solutions.
They also show that having integrable or not stationary states depends on how strong the
repulsion is at the origin. Numerical computations indicate that this is also the case in
more dimensions [KSUB], and the dimensionality of the support dependence on the repulsion
strength has been recently proved in any dimension in [BCLR2]. They show that the set of
stable stationary states can be large and with complicated supports arising from instability
modes of the uniform distribution on a sphere. Finally, [BCLR] contains a stability analysis
for radial perturbations of the uniform distribution on a suitable sphere for general radial
repulsive-attractive potentials. We will show a related example below.

In this section we are going to present some examples of stationary solutions based on the
available characterization of the velocity vector field of the continuity equation. In particular,
we will consider the (−1)-convex potentials in one dimension given by

W̃ (x) =
1

2
|x2 − 1|2, Ŵ (x) =

1

2
|x2 − 1|.

Both cases correspond to attractive-repulsive potentials with the same behavior in the repul-
sive part at the origin. However, the change from repulsive to attractive in one case is smooth
and in the other, it is only Lipschitz. In fact, in the two cases there many analogies, but also
some different behaviors, as we are going to show with the next propositions. Let us remark

that the potential W̃ (x) has behavior larger than quadratic at infinity, and thus the theory
developed in previous sections does not directly apply. In any case, we can reduce the growth
of the potential outside a large ball not changing the discussion below about stationary states
as soon as they have compact support. First of all, we search for stationary states made by
a finite number of particles.

Proposition 5.1. There exist two-particles stationary states for W̃ and Ŵ .
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Proof. Let µ = m1δx1 + m2δx2 , with m1 + m2 = 1. For the potential W̃ , we have to impose
the condition

(5.1)
dxi
dt

= mj∇W̃ (xj − xi) = 0,

for i, j = 1, 2, i 6= j. But ∇W̃ (x) = 2x(x2 − 1). Hence it is enough to choose x1, x2 such that
|x1 − x2| = 1, independently of the weights. Notice that we have infinitely many stationary

states made by two Dirac Deltas. In the case of Ŵ , the subdifferential is

(5.2) ∂Ŵ (x) =


x if |x| > 1,

−x if |x| < 1,

[−1, 1] if |x| = 1.

In order to find a stationary state, we have to solve (5.1) with η in place of ∇W̃ , where

η is the suitable anti-symmetric selection in ∂Ŵ realizing the minimal norm in ∂W(µ) (see
Corollary 4.2). Such selection is then found minimizing the quantity

‖η ∗ µ‖2L2(R,µ;R) =

2∑
j=1

mj

∣∣∣∣∣
2∑
i=1

miη(xj − x1)

∣∣∣∣∣
2

= m1m2(m1 +m2)(η(x1 − x2))2

among the admissible selections η (we are using the anti-symmetry). Let again |x2−x1| = 1,
so that it is clear that the minimum above is zero, attained for η(1) = −η(−1) = 0. And this
way, the two equations (5.1) are still satisfied. �

Proposition 5.2. For both potentials W̃ and Ŵ , there are no absolutely continuous stationary
states in one dimension.

Proof. Let us consider Ŵ . The argument is based on the fact that, if µ is absolutely con-

tinuous, it does not charge the points of non-differentiability of Ŵ . For a measure µ to be
stationary, we have to verify that the corresponding velocity vector field vanishes. That is

η ∗ µ = 0, where η is the usual optimal selection in ∂Ŵ , as in Corollary 4.2. Suppose that µ
is a stationary state and that µ = ρL1, for some ρ ∈ L1(R), then∫

{|x−y|>1}
(x− y)ρ(y) dy −

∫
{|x−y|<1}

(x− y)ρ(y) dy = 0.

By the translation invariance property, we can fix without loss of generality the center of
mass, so we let

∫
R yρ(y) dy = 0. We deduce

2x

∫
{|x−y|>1}

ρ(y) dy − x = 2

∫
{|x−y|>1}

yρ(y) dy,

hence

2x

(∫ x−1

−∞
ρ(y) dy +

∫ +∞

x+1
ρ(y) dy

)
− x = 2

(∫ x−1

−∞
yρ(y) dy +

∫ +∞

x+1
yρ(y) dy

)
.

Let us denote the term in the parenthesis in the left side by Θ(x) and let us take the derivative
with respect to x. We have

2Θ(x) + 2x(ρ(x− 1)− ρ(x+ 1))− 1 = 2((x− 1)ρ(x− 1)− (x+ 1)ρ(x+ 1)),
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which yields 2Θ(x)− 1 = −2(ρ(x− 1)− ρ(x+ 1)), that is Θ′(x) = −Θ(x) + 1
2 . We find

Θ(x) = ke−x +
1

2
, k ∈ R,

then ρ(x − 1) − ρ(x + 1) = −ke−x. But the integral of ρ is 1, so k = 0 and we are left with
ρ(x − 1) = ρ(x + 1). This is a contradiction, since ρ can not be periodic in this case. The

proof for W̃ is analogous, we omit the details. �

The following are more examples of stationary states

Example 5.3. There are stationary states for potential Ŵ of the form

µ = m1δx1 +m2δx2 +m3δx3,

with m1 +m2 +m3 = 1. Indeed, we have to verify that

(5.3)



dx1

dt
= m2η(x2 − x1) +m3η(x3 − x1) = 0

dx2

dt
= m1η(x1 − x2) +m3η(x3 − x2) = 0

dx3

dt
= m1η(x1 − x3) +m2η(x2 − x3) = 0,

where, as usual, η represents the anti-symmetric selection in the subdifferential (5.2) given
by Corollary 4.2.

For instance, let us search for a solution in the following range

(5.4) x2 − x1 = 1, x3 − x1 > 1, 0 < x3 − x2 < 1.

We begin searching for the right selection. As usual, we use the notation ηij := η(xi − xj).
This is exactly the case treated in Example 4.6, and we need to select only at ±(x2 − x1).

Taking the anti-symmetry into account, and recalling that the subdifferential of Ŵ is (5.2)
and that the relations (5.4) hold, there is

‖η ∗ µ‖2L2(R,µ;R) =
3∑
j=1

mj

∣∣∣∣∣
3∑
i=1

miη(xj − x1)

∣∣∣∣∣
2

= m1(m2
2η

2
12 + 2m2m3(x1 − x3)η12) +m2(m2

1η
2
21 + 2m1m3(x3 − x2)η21) +R1

= m1m2(m1 +m2)η2
12 + 2m1m2m3(x1 + x2 − 2x3)η12 +R2,

where the remainders R1, R2 do not depend on the value of η at ±1, hence we only have to
minimize, as in Example 4.6, with respect to η12 on the interval [−1, 1]. We have a quadratic
function, so that if the vertex of the parabola is on the right of the interval [−1, 1], then
the minimizer is found for η12 = 1, hence we get η(−1) = 1 and then, by anti-symmetry,
η(1) = −1. Computing the vertex position, this condition is

(5.5)
m3(x3 − x2) +m3(x3 − x1)

m1 +m2
≥ 1.

Hence, if such condition holds, making use of (5.2) the first two equations in (5.3) reduce to

(5.6)

{
−m2 +m3(x3 − x1) = 0,

m1 −m3(x3 − x2) = 0.
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If we define, for 0 < α < 1
4 ,

m1 =
1

4
− α, m2 =

1

2
, m3 =

1

4
+ α, x1 = −1, x2 = 0, x3 =

1− 4α

1 + 4α
,

straightforward computations show that (5.3)-(5.4)-(5.5)-(5.6) are satisfied and that

µ =

(
1

4
− α

)
δ−1 +

1

2
δ0 +

(
1

4
+ α

)
δ 1−4α

1+4α

is a stationary state.

Remark 5.4. In the case of W̃ , it is very easy to construct an analogous example, solving

system (5.3), where this time the actual gradient of W̃ appears. In both cases, it seems clear
that the procedure can be repeated for finding infinitely many stationary states with N Dirac
masses for any N > 3.

We conclude with an example in two space dimensions. The reference functional is simply

the radial version of Ŵ , still denoted by Ŵ , that is

Ŵ (x) =
1

2
||x|2 − 1|, x ∈ R2.

The potential is still (−1)-convex, and in this case

∂Ŵ (x) =


x if |x| > 1

−x if |x| ≤ 1

[−1, 1]x if |x| = 1.

Example 5.5. Let σR denote the uniform measure on the circumference ∂BR(0), of radius
R, centered in the origin. There exists R > 0 such that the measure σR is a stationary state

for functional Ŵ .
Indeed, we can show that for any x ∈ ∂BR(0) there holds η ∗ σR = 0 for a suitable choice

of the radius R, η being the optimal selection of Corollary 4.2. Explicitly, the convolution is∫
{|x−y|>1}

(x− y) dσR(y)−
∫
{|x−y|≤1}

(x− y) dσR(y),

and the set of points {y : |x − y| = 1}, where one should select, is negligible. Fix x on the
circle. We let (e1, e2) be an orthogonal base in R2, where e1 is the direction of x, so that
x = Re1. Hence we have to solve

Re1σR({|x− y|> 1})−Re1σR({|x− y|≤ 1})−
∫
{|x−y|>1}

y dσR(y) +

∫
{|x−y|≤1}

y dσR(y) = 0.

We write the integrals in polar coordinates with respect to the origin and the vector e1. In this
system, we let α = α(R) denote the (positive) angle corresponding to the intersection point
between ∂BR(0) and the circle of radius 1 centered in x (see Figure 1 below). In particular

(5.7) sinα(R) =

√
R2 − 1

4

R2
.

Since y = R cos θe1 + R sin θe2, it is immediately seen, by oddness of the sine function, that
the equation in the direction of e2 is identically satisfied. In the direction of e1 we find

2R

∫ π

α
Rdθ − 2R

∫ α

0
Rdθ − 2R

∫ π

α
cos θR dθ + 2R

∫ α

0
cos θR dθ = 0.
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Hence we have to solve
f(R) := π − 2α(R) + 2 sinα(R) = 0.

If R < 1
2 , the computation does not make sense, but indeed we can not have a stationary

state for R < 1
2 , since in this case any point in ∂BR(0) has distance lower than 1 from x, so

that for each of them the effect on x is a repulsion, and x tend to move far from the origin.
Taking (5.7) into account, if R = 1

2 , we have α(R) = π, hence the value of f at 1
2 is −π. As

R increases from 1
2 to +∞, the angle α(R) decreases from π to 0. Notice that the function

R 7→

√
R2 − 1

4

R2

is increasing from 1
2 to

√
2

2 , where it has its maximum, and is decreasing in (
√

2
2 ,+∞). On the

other hand, sin(x) − x is a decreasing function. Since f(
√

2/2) = 2, we conclude that f has
only one zero, found in the interval (1/2,

√
2/2). If R0 is the zero, for R = R0 the measure

σR is stationary.

Figure 1. The construction of Example 5.5

6. Appendix: vector and plan subdifferential

Here we give a more complete overview about the Wasserstein subdifferential. In [AGS,
§10.3], the theory is developed for functionals Φ : P2(Rd)→ (−∞,+∞] such that

(6.1) Φ : P2(Rd)→ (−∞,+∞] is proper and lower semicontinuous in P2(Rd)
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and

(6.2) Φ(·) +
1

2τ
d2
W (·, µ) admits minimizers for any small enough τ > 0 and µ ∈P2(Rd).

Indeed, after Proposition 3.6 we know that W satisfies these hypotheses. Hence, we are in
the framework of [AGS, §10.3]. We will show how the results therein work for the case of W.

First of all, we provide a characterization of the the Wasserstein subdifferential introduced
in Definition 2.3.

Proposition 6.1. ξ ∈ L2(Rd, µ; Rd) belongs to the Wasserstein subdifferential of W at µ ∈
P2(Rd) if and only if

(6.3) W(ν)−W(µ) ≥
∫
Rd
〈ξ(x), y − x〉 dγ(x, y) + o(C(µ, ν; γ))

as ν → µ in P2(Rd), for suitable optimal transport plans γ ∈ Γo(µ, ν). Moreover, ξ is a
strong subdifferential if and only if (6.3) holds whenever ν → µ in P2(Rd) and Γ(µ, ν) 3 γ →
(i, i)#µ in P2(Rd × Rd).

Proof. It is clear that (6.3) holds if ξ is in the Wasserstein subdifferential of W at µ (and the
same for strong versions). On the other hand, suppose that (6.3) holds. Let γ ∈ Γ(µ, ν) and
define the interpolating curve θγ(t) = ((1− t)π1 + tπ2)#γ between µ and ν, so that θγ(0) = µ
and θγ(1) = ν. We take advantage of a property of Wasserstein constant speed geodesics,
shown in [AGS, Lemma 7.2.1]: there exists γ∗ in Γo(µ, ν) such that Γo(µ, θ

γ∗(t)) contains a
unique element for any t ∈ [0, 1), given by γt := (π1, (1− t)π1 + tπ2)#γ

∗. Then, (6.3) can be
applied in correspondence of γt and with θγ(t) in place of ν, and together with (2.4), it gives,
for t→ 0,

W(ν)−W(µ) ≥ W(θγ
∗
(t))−W(µ)

t
+
λ

2
(1− t)C2(µ, ν; γ∗)

≥
∫
Rd×Rd

〈ξ(x), y − x〉 dγ∗(x, y) +
λ

2
(1− t)C2(µ, ν; γ∗) +

1

t
o(C(µ, θγ∗(t); γt)).

Passing to the limit as t → 0, since C(µ, θγ∗(t); γt) = tC(µ, ν; γ∗), we get (2.5) for the plan
γ∗ ∈ Γo(µ, ν). By a similar argument one can recover the result for strong subdifferentials:
indeed, one considers the generic plan γ ∈ Γ(µ, ν) and makes use of the convexity of W along
any interpolating curve t 7→ θγ(t) (see Proposition 2.2). �

On the other hand, the general definition of subdifferential, given in [AGS, §10.3], is more
technical. According to that notion, the subdifferential is in fact a plan β ∈P2(Rd ×Rd), as
in the following

Definition 6.2 (Plan subdifferential). Let µ ∈ P2(Rd). We say that β ∈ P2(Rd × Rd)
belongs to the extended subdifferential of W at µ if π1

#β = µ and, for any ν ∈P2(Rd), there
holds

(6.4) W(ν)−W(µ) ≥
∫
Rd×Rd×Rd

〈y, z − x〉 dµ(x, y, z) +
λ

2

∫
Rd×Rd×Rd

|z − x|2 dµ(x, y, z)

for some µ ∈ Γo(β, ν) (we say that β is a strong subdifferential if moreover the above inequality
holds for any plan µ ∈ Γ(β, ν)). We write β ∈∂W(µ) (resp. β ∈∂SW(µ) ). Here the elements
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of Γ(β, µ) are three-plans, that is, measures in P(Rd × Rd × Rd), such that π1, 2
# µ= β and

π3
#µ= ν. The definition of optimal plan in this case is

Γo(β, ν) := {γ ∈ Γ(β, ν) : π1, 3γ ∈ Γo(µ, ν)}.

Remark 6.3. Since W is convex along any linearly interpolating curve, as noticed in Propo-
sition 2.2, from [AGS, Theorem 10.3.6] we learn that we can equivalently define the extended
subdifferential of W by asking inequality (6.4) for any µ ∈ Γo(β, ν).

Remark 6.4. We observe that if β is concentrated on the graph of a vector field ξ, we have
β = (i, ξ)#µ and in particular y = ξ(x) for µ-a.e. (x, y, z) ∈ Rd × Rd × Rd. In this case the
definition reduces to (2.5).

We recall that, also for extended subdifferentials, there holds

(6.5) |∂W|(µ) = min

{(∫
Rd
|y|2 dπ2

#β(y)

)1/2

: β ∈ ∂W(µ)

}
.

Moreover, the corresponding minimizer is unique. See [AGS, Theorem 10.3.11]. We denote it
by ∂oW(µ).

We have the following

Lemma 6.5. Let µ ∈P2(Rd). The following assertions hold:

(6.6) β ∈ ∂SW(µ)⇒ β̄ ∈ ∂SW(µ) and β ∈ ∂W(µ)⇒ β̄ ∈ ∂W(µ),

where β̄ is the barycenter of the plan β (see Definition 3.10).

Proof. We begin with the proof for strong subdifferentials. Let β ∈ ∂SW(µ) and we write
β =

∫
Rd βx dµ(x). For any ν ∈P2(Rd) and γ ∈ Γ(µ, ν) there holds∫

Rd×Rd
〈β̄(x), z − x〉 dγ(x, z) =

∫
Rd×Rd

〈∫
Rd
y dβx(y), z − x

〉
dγ(x, z)

=

∫
Rd×Rd

∫
Rd
〈y, z − x〉 dβx(y) dγ(x, z).

Moreover, taking into account that
∫
Rd dβx(y) = 1 for µ-a.e. x ∈ Rd, we have that∫

Rd×Rd
|z − x|2 dγ(x, z) =

∫
Rd×Rd

∫
Rd
|z − x|2 dβx(y) dγ(x, z).

Let us define the three-plan µ ∈P(Rd × Rd × Rd) by∫
Rd×Rd×Rd

φ(x, y, z)dµ(x, y, z) :=

∫
Rd×Rd

∫
Rd
φ(x, y, z)dβx(y) dγ(x, z)

for all continuous and bounded functions φ : Rd×Rd×Rd → R. Then, µ belongs to Γ(β, ν).
Making use of (6.4) for this particular choice of µ∈ Γ(β, ν), we see that β̄ satisfies inequality
(2.5). Therefore, β̄ ∈ ∂SW(µ).

Recalling Remark 6.3, since γ ∈ Γo(µ, ν) ⇒ µ ∈ Γo(β, ν), reasoning as done for strong
subdifferentials the second implication in (6.6) follows. �

Corollary 6.6. If βo = ∂oW(µ), then βo = (i, β̄o)#µ and β̄o = ∂oW(µ).
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Proof. By (3.14) we have that∫
Rd
|y|2 dπ2

#β(y) ≥
∫
Rd
|β̄(x)|2 dµ(x) for any β ∈ ∂W(µ).

If βo is the minimizer in (6.5), taking into account that β̄o ∈ ∂W(µ), by uniqueness we have
that βo = (i, β̄o)#µ. By (2.6) and (6.5) we also obtain that β̄o = ∂oW(µ). �

Remark 6.7. Because of (6.6), under the same assumptions of Proposition 3.2 one sees that
if β ∈∂SW(µ), then its barycenter β̄ is given by (3.3).

Remark 6.8. We refer to [BCDP] for an example of a geodesically convex interaction func-
tional W (associated to a non λ-convex potential W) such that, for suitable choice of µ,
∂oW(µ) is not concentrated on a graph. In such case ∂W(µ) is empty.

Remark 6.9. In the case of strong subdifferentials, the implication of Lemma 6.5 is true for
any functional Φ satisfying the assumptions (6.1) and (6.2). It is shown in Lemma 10.3.4 and
Remark 10.3.5 of [AGS] that, given µ ∈P2(Rd), a minimizer µτ to Φ(·) + 1

2τ d
2
W (·, µ) and a

plan γ̂τ ∈ Γo(µτ , µ), there holds
γτ ∈ ∂SΦ(µτ ),

where γτ is the rescaled of γ̂τ (see Definition 3.12). Moreover, among these rescaled plans,
there exists a plan whose barycenter belongs to ∂SΦ(µ). After Lemma 6.5, we may indeed
infer that this holds true for the rescaled of any optimal plan in Γo(µτ , µ).

Eventually, we are ready for the proof of Proposition 3.13. We make use of the general
convergence properties of rescaled plan subdifferentials shown in [AGS, Theorem 10.3.10],
passing to barycenters by means of Lemma 6.5 and Corollary 6.6.

Proof of Proposition 3.13. Let τ > 0 be small enough. Once more, let µ ∈ P2(Rd), let
µτ minimize W(·) + 1

2τ d
2
W (·, µ) and let γ̂τ ∈ Γo(µτ , µ). Moreover, let γτ be the rescaled of γ̂τ

(as given by Definition 3.12). By [AGS, Lemma 10.3.4], γτ ∈ ∂SW(µτ ), and then by Lemma
6.5 we have γ̄τ ∈ ∂SW(µτ ). By Theorem 3.1, ∂W(µ) is not empty, therefore we are in the
hypotheses of [AGS, Theorem 10.3.10], which entails, taking into account also [AGS, Remark
10.3.14],

lim
τ→0

γτ = ∂oW(µ) in P2(Rd × Rd).

But Corollary 6.6 implies that ∂oW(µ) = (i, ∂oW(µ))#µ. The convergence above then means
that, as τ → 0,

(6.7)

∫
Rd

∫
Rd
φ(x, y) d(γτ )x(y) dµτ (x)→

∫
Rd×Rd

φ(x, y) d(i, ∂oW(µ))#µ(x, y)

for any continuous function φ : Rd×Rd → R with at most quadratic growth at infinity, where
(γτ )x denotes the family of measures which disintegrates γτ with respect to µτ . Letting
ζ ∈ C0(Rd;Rd), and choosing φ(x, y) = 〈y, ζ(x)〉 in (6.7), we obtain the weak convergence in
the sense of Definition 3.8 of γ̄τ to ∂oW(µ). On the other hand, using Jensen inequality as
in (3.14) and (6.7) with φ(x, y) = |y|2 we obtain

lim sup
τ→0

∫
Rd
|γ̄τ |2 dµτ ≤ lim

τ→0

∫
Rd×Rd

|y|2 dγτ =

∫
Rd×Rd

|y|2 d(i, ∂oW(µ))#µ =

∫
Rd
|∂oW(µ)|2 dµ,

hence we also have the strong convergence in the sense of Definition 3.8. Notice that the
second term in the last formula is d2

W (µτ , µ)/τ2, hence (3.16) holds. �
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