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Abstract

In this paper we derive a theory for a linearly elastic residually
stressed rod trough an asymptotic analysis based on Γ-convergence.

1 Introduction

The theory of linear elasticity with residual stress goes back to Cauchy (1829),
but for a long time the attention of researchers was almost exclusively given to
the so-called linear theory of elasticity. In recent years, instead, the theory with
residual stress has been studied and used quite extensively, see [2, 6, 16, 17, 19,
20, 22, 23, 24, 25, 28, 29, 30] and references therein.

The aim of the present paper is to deduce, by means of Γ-convergence, a
variational model for slender rods with residual stress. Beam theories for a linear
elastic material without residual stress have been derived, by Γ-convergence, in
[3, 7, 8, 9, 10, 11, 26].

The presence of residual stress introduces in the constitutive equation for
the Piola-Kirchhoff stress tensor a dependence from the displacement gradient
and not simply on the strain as in the case without residual stress. Precisely,
the Piola-Kirchhoff stress tensor S is given by

S = T̊ +DuT̊ + LEu,

where Du denotes the gradient of the displacement u, Eu is the symmetric part
of Du, T̊ is a second order symmetric tensor representing the residual stress
in the reference configuration and L is a fourth order tensor called incremental
elasticity tensor. The term DuT̊ , that comes into play because of material frame
indifference, makes the theory quite different from the elastic theory without
residual stress; for instance, the elastic energy density is no longer convex.

In our analysis we do not impose any material symmetry on the incremental
elasticity tensor L and we allow it to depend on the longitudinal variable y3, i.e.,
the cross-sections of the beams are assumed to be homogeneous. By assuming
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the rod to be clamped to one of its bases, we find that the elastic energy of the
limit problem (see Theorem 6.2 and (47)) is

I1d(ξ, ϑ) =
1

2

∫ `

0

Q(y3, ξ
′′
1 , ξ
′′
2 , ξ
′
3, ϑ
′) + tr〈T̊ 〉ϑ2 + 〈T̊ 〉(ξ′1, ξ′2) · (ξ′1, ξ′2) dy3,

where ξ is a Bernoulli-Navier displacement and ϑ is a scalar field representing
the twist of the cross-section around the longitudinal axis. The energy density
Q is defined by a minimum problem on the cross-section, see (45), involving the
incremental elasticity tensor L, and

〈T̊ 〉 :=

∫
ω

(
T̊11 T̊12

T̊21 T̊22

)
dy1dy2,

where ω denotes the cross-section.
The paper is organized as follows. In Section 2 we introduce the equilibrium

problem for an elastic rod with residual stress and state some properties implied
by the equilibrium equations on the residual stress. The reference configuration
of the body is assumed to be a cylinder with small ratio between diameter of the
cross-section and length. To find a 1d approximation of this problem, in Section
3 we introduce a sequence of three-dimensional problems on cylinders whose
diameters are proportional to a parameter approaching zero. The existence of
a solution is also discussed. In Section 4, following the idea of Ciarlet and
Destuynder [4], we re-scale the sequence of three-dimensional problems to a
fixed domain. In Section 5 we study the compactness properties of sequences
of displacements with equi-bounded energy and in Section 6 we state and prove
the Γ-convergence result and the convergences of minima and minimizers. The
paper ends with a small section in which we discuss the problem defining Q.

Notation. Repeated Latin indices are summed from 1 to 3 while repeated
Greek indices are summed from 1 to 2. The gradient (i.e. the Jacobian matrix) is
denoted by D and Di will denote the derivative with respect to the i-th variable.
The notation used for Lebesgue and Sobolev spaces is standard (see Adams [1])
while the notation used to describe the operations on tensorial quantities is
similar to that used by Gurtin [14]. Convergence in the norm will be denoted
by → while weak convergence is denoted by ⇀.

2 Elastic rods with residual stress

In this Section we introduce the equilibrium problem for an elastic rod with
residual stress and we study some of the restrictions imposed by the equilibrium
equations on the residual stress; this characterization will be of some use in
Section 6.

Let
Ω := ω × (0, `)

where ω is a connected, simply connected, bounded, open subset of R2 with
Lipschitz boundary. We denote by S(x3) := ω × {x3} for any x3 ∈ [0, `].
Hereafter we take x1, x2 central principal axes of inertia.

We shall refer to Ω as a residually stressed reference configuration of an
elastic body, that is: there is a (residual) stress T̊ not identically equal to zero
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that satisfies the equilibrium equations in the absence of external actions
div T̊ = 0 in Ω,

T̊ = (T̊ )T in Ω,

T̊ n = 0 on ∂Ω,

(1)

where n is the outward unit normal to the boundary of Ω.
In what follows we consider a fully anisotropic material which is also allowed

to be inhomogeneous along the x3-axis, so that the first Piola-Kirchhoff stress
field S can be expressed, see [17, 19, 24, 25], as

S(x) = T̊ (x) +Du(x)T̊ (x) + L(x3)Eu(x)

where Du denotes the gradient of the displacement u,

Eu := sym Du =
Du+ (Du)T

2
,

is the strain, and L(x3) is the incremental elasticity tensor evaluated at the
cross-section of coordinate x3.

We assume L to be essentially bounded,

L ∈ L∞((0, `);R3×3×3×3),

to have the major and minor symmetries,

Lijkl = Ljikl = Lklji,

and to be positive definite,

∃C > 0, s.t. L(x3)A ·A ≥ C|A|2, (2)

for all A ∈ R3×3
sym := {A ∈ R3×3 : A = AT } and for a.e. x3 ∈ (0, `). We

denote by CL the largest of all such constants C. Furthermore we assume
T̊ ∈ L∞(Ω;R3×3

sym ). From this assumption and from the first equation of (1)

we deduce that T̊ and divT̊ are square integrable fields, hence (see Girault and
Raviart [13, equation (2,17)]) the normal trace to the boundary of T̊ is well
defined and in particular the third equation of (1) makes sense.

We consider the body clamped on S(0), and subjected to dead body forces
b̃ ∈ L2(Ω;R3). The weak form of the equilibrium problem is: find u ∈ H1

[ (Ω;R3)
such that ∫

Ω

DuT̊ ·Dv + LEu · Ev dx =

∫
Ω

b̃ · v dx, (3)

for all v ∈ H1
[ (Ω;R3), where

H1
[ (Ω;R3) := {u ∈ H1(Ω;R3) : u = 0 on S(0)}.

We conclude this section by deducing some properties of the residual stress
field which will be used in Section 6. These properties follow from (1) and from
the particular (cylindrical) geometry of the reference configuration.
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Lemma 2.1. Let T̊ ∈ L∞(Ω;R3×3
sym ) be a field that satisfies the equilibrium

equations (1) in Ω = ω × (0, `). Then we have

1.

∫
ω

T̊i3 dx1dx2 = 0 for a.e. x3 ∈ (0, `);

2.

∫
ω

T̊αβ dx1dx2 =
∂

∂x3

(∫
ω

xβT̊α3 dx1dx2

)
for a.e. x3 ∈ (0, `),

for i = 1, 2, 3 and α, β = 1, 2.

Proof. Since T̊ and divT̊ are square integrable fields, we are in position to use
Green’s identity (see Girault and Raviart [13, equation (2,17)]) to deduce, from
(1), that ∫

Ω

T̊ ·Dϕdx = 0 ∀ϕ ∈ H1(Ω;R3). (4)

Using text functions depending on x3 only, that is with the choice ϕ(x) = ϕ(x3),
we have ∫

Ω

T̊31ϕ
′
1 + T̊32ϕ

′
2 + T̊33ϕ

′
3 dx = 0.

Let us now fix i ∈ {1, 2, 3} and, for every g ∈ C∞c (0, `), we take ϕi(x3) =
∫ x3

0
g ds

and set the other two components of ϕ to be identically equal to 0, to deduce
that ∫ `

0

∫
ω

T̊3i dx1dx2 g(x3)dx3 = 0 ∀ g ∈ C∞c (0, `).

This implies
∫
ω
T̊3i dx1dx2 = 0 for a.e. x3 ∈ (0, `), and hence claim 1 follows by

symmetry.
To prove 2, having fixed i ∈ {1, 2}, we take in (4) text functions of the

form ϕi = xαf(x3) with f ∈ C∞c (0, `), α ∈ {1, 2} and we set the other two
components of ϕ to be identically equal to 0. This leads to∫

Ω

T̊i1δα1f + T̊i2δα2f + T̊i3xαf
′ dx = 0 ∀ f ∈ C∞c (0, `),

where δ denotes the Kronecker’s symbol. We therefore have deduced that∫ `

0

(∫
ω

(
T̊i1δα1+T̊i2δα2

)
dx1dx2 f+

∫
ω

T̊i3xα dx1dx2f
′
)
dx3 = 0 ∀ f ∈ C∞c (0, `),

and an integration by parts concludes the proof.

3 A sequence of problems

The aim of our investigation is to provide a 1d model that approximates the
problem laid down in Section 2 when the ratio [diameter of ω]/` is small.

To this aim, we introduce in this section a sequence of three-dimensional
problems parametrized by a parameter ε ∈ (0, 1] such that the element of the
sequence corresponding to ε = 1 coincides with the problem of Section 2. The
sequence chosen will Γ-converge as ε → 0, the asymptotic analysis will be the
aim of the subsequent sections, and the Γ-limit will be the 1d approximate
problem.
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For all ε ∈ (0, 1] and ` > 0 let

Ωε := ωε × (0, `),

where ωε := εω. We denote by Sε(x3) := ωε × {x3} for any x3 ∈ [0, `].
On each domain Ωε we consider a problem of the same kind of (3), precisely:

find u ∈ H1
[ (Ωε;R3) such that∫

Ωε

DuT̊ ε ·Dv + LEu · Ev dx =

∫
Ωε

bε · v dx, (5)

for all v ∈ H1
[ (Ωε;R3), where

H1
[ (Ωε;R3) := {u ∈ H1(Ωε;R3) : u = 0 on Sε(0)},

and where the sequences T̊ ε ∈ L∞(Ωε;R3×3
sym ) and bε ∈ L2(Ωε;R3) will be speci-

fied in the next section. According to the promise made at the beginning of the
section we shall have T̊ 1 = T̊ and b1 = b̃.

We will not assume the sequence of tensor fields T̊ ε to be divergence-free.
This will leave us more freedom in the choice of the scaling of this term, which
will be done in Section 4. The effect of a different choice, i.e., the introduction
of a divergence-free condition on T̊ ε, will be discussed in Remark 6.5.

Let us now discuss the existence of a solution u of (5) following the lines
traced in [22]. To this aim, a crucial role is played by Korn’s inequality (see
Anzellotti, Baldo and Percivale [3], Theorem A.1, and for a simpler proof see
[23]).

Theorem 3.1. There exists a constant C > 0, independent of ε, such that∫
Ωε

|u|2 + |Du|2dx ≤ C

ε2

∫
Ωε

|Eu|2dx, (6)

for every u ∈ H1
[ (Ωε;R3) and for every ε ∈ (0, 1].

We denote by CK the smallest constant for which the inequality∫
Ωε

|Du|2dx ≤ CK
ε2

∫
Ωε

|Eu|2dx (7)

holds true for every u ∈ H1
[ (Ωε;R3) and for every ε ∈ (0, 1].

Lemma 3.2. Let S ∈ R3×3
sym and λm its smallest eigenvalue. Then, for all

A ∈ R3×3 it holds that
AS ·A ≥ λm|A|2.

Proof. It is sufficient to write down the components of S and A in the orthonor-
mal basis {ei}3i=1 of R3 that diagonalizes S. Let λi be the eigenvalues of S, and
Aij be the components of A in the basis {ei}3i=1. Then

AS ·A =

3∑
i,l=1

A2
liλi ≥ λm

3∑
i,l=1

A2
li = λm|A|2.
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Let
τ̊εm := essinf

x∈Ωε

min
A∈R3

{T̊ ε(x)A ·A : |A| = 1}, (8)

denote the essential infimum of the smallest eigenvalue of T̊ ε. Of course, for a
generic T̊ ε ∈ L∞(Ωε;R3×3

sym ) the bilinear form in the first member of (5) is not

H1-coercive. This lack of coercivity occurs also if T̊ ε has the physical meaning
of a residual stress tensor, that is if it satisfies (1); indeed, in the latter case,
it can be shown that τ̊εm is either identically equal to 0 or that it also takes
negative values (see [22]). Therefore, to prove existence and uniqueness of the
solution of problem (5), we shall suppose that the absolute value of τ̊εm is small
enough, that is: the compressions due to T̊ ε are not too large.

Theorem 3.3. Assume that

CL > CK
|̊τεm|
ε2

. (9)

Then there exists a unique solution uε ∈ H1
[ (Ωε;R3) of problem (5).

Proof. From (2), (7), (8) and Lemma 3.2 we have, for any v ∈ H1
[ (Ωε;R3),∫

Ωε

DvT̊ ε ·Dv + LEv · Ev dx≥ τ̊εm‖Dv‖2L2(Ωε) + CL‖Ev‖2L2(Ωε)

≥
(
CL − CK

|̊τεm|
ε2

)
‖Ev‖2L2(Ωε).

Using Theorem 3.1 in the last term of the previous inequality, existence and
uniqueness of the solution of problem (5) follow from an application of Lax-
Milgram’s lemma.

Hereafter, we will always assume inequality (9) to hold. Moreover, by The-
orem 3.3, we have that for any ε > 0 the energy functional

Jε(u) =
1

2

∫
Ωε

DuT̊ ε ·Du+ LEu · Eudx−
∫

Ωε

bε · u dx (10)

admits a unique minimizer among all displacements u ∈ H1
[ (Ωε;R3).

4 The rescaled problem

In order to study the behaviour of the energy functionals (10), as ε → 0, fol-
lowing the idea of Ciarlet and Destuynder [4], we rescale the problem on a fixed
domain. We consider the map pε : Ω→ Ωε defined by

pε(y) := (εy1, εy2, y3)

and introduce the rescaled energy Fε : H1
[ (Ω;R3)→ R by

Fε(u) :=
1

ε2
Jε(u ◦ p−1

ε ).

Note that now the domain of the displacement u is Ω and no longer Ωε. We
denote by Eεu := sym(Hεu) the rescaled strain, where

Hεu :=

(
D1u

ε
,
D2u

ε
,D3u

)
,
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and Diu denotes the column vector of the partial derivatives of u with respect
to yi, i = 1, 2, 3. Furthermore we also denote W εu := skw(Hεu), the skew-
symmetric part of Hεu. With T̊ as in Section 2, i.e., T̊ ∈ L∞(Ω,R3×3

sym ) and
satisfying (1), we set

T̊ ε = ε2T̊ ◦ p−1
ε , (11)

and denote by τ̊m the smallest eigenvalue of T̊ . We note that, under the change
of variable x = pε(y), the inequality (7) becomes∫

Ω

|Hεu|2dy ≤ CK
ε2

∫
Ω

|Eεu|2dy (12)

for every u ∈ H1
[ (Ω;R3) and for every ε ∈ (0, 1].

Let us assume that
CL > CK |̊τm|. (13)

Note that by (11) this is equivalent to ask that the inequalities (9) be satisfied
for any ε.

We consider the following splitting of the body forces b̃ introduced in Section
2:

b̃(y) = b1(y)− m(y3)

IO
y2, b̃(y) = b2(y) +

m(y3)

IO
y1,

b̃(y) = b3(y),

(14)

with b = (b1, b2, b3) ∈ L2(Ω;R3), m ∈ L2(0, `) and IO :=
∫
ω

(y2
1 + y2

2) dy1 dy2 the
polar moment of inertia of the section ω, and we define the sequence of body
force densities bε, mentioned in Section 3, to be

bε1 ◦ pε(y) = ε2b1(y)− εm(y3)

IO
y2, bε2 ◦ pε(y) = ε2b2(y) + ε

m(y3)

IO
y1,

bε3 ◦ pε(y) = εb3(y).

(15)

With these choices, and by performing the change of variable x = pε(y), the
rescaled energy Fε turns out to be

Fε(u) = Iε(u)− Lε(u) (16)

with

Iε(u) :=
1

2

∫
Ω

LEεu · Eεu+ ε2HεuT̊ ·Hεu dy, (17)

Lε(u) := ε2

∫
Ω

b · (u1, u2,
u3

ε
) dy − ε2

∫ `

0

mϑε(u) dy3, (18)

and where we have set

ϑε(u)(y3) :=
1

IO

∫
ω

y1

ε
u2(y1, y2, y3)− y2

ε
u1(y1, y2, y3) dy1dy2. (19)

We note that if u ∈ L2(Ω;R3) then ϑε(u) ∈ L2(0, `). A similar statement holds
if we replace L2 with H1.
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Remark 4.1. It is worth notice that (13) is satisfied whenever the magnitude
of the compressions “produced” by T̊ ε are small enough. Together with the
choice of scaling of T̊ ε made in (11), assumption (13) ensures equi-coercivity of
the sequence of the scaled energy functionals, as it will be proven in Lemma
6.1. That proof shows that assumption (11) is suggested by the scaled Korn’s
inequality (Theorem 5.1). Another thing to notice is that, by the composition
with pε, the scaling (11) transforms the assumption divT̊ = 0 into

εT̊ εi1,1 + εT̊ εi2,2 + T̊ εi3,3 = 0,

so, in general, T̊ ε is not a divergence-free tensor field, but it is still symmetric
and the normal trace at the boundary is still zero. It will be seen toward the
end of the paper (see Remark 6.5) that if we further impose a divergence-free
assumption on T̊ ε, then the average on the cross-section of T̊ vanishes and, as
a consequence, the residual stress tensor would disappear in the limit problem,
meaning that the divergence-free condition is, in some sense, not compatible
with the chosen scaling.

5 Compactness lemmata

The following scaled Korn inequality will be used to prove compactness.

Theorem 5.1. There exists a positive constant K, independent of ε, such that∫
Ω

|(u1, u2,
u3

ε
)|2 + |H εu|2 dy ≤ K

ε2

∫
Ω

|E εu|2 dy,

for every u ∈ H1
[ (Ω;R3) and every ε ∈ (0, 1].

Proof. Setting v = (u1, u2, u3/ε) and noticing that |Eεu| ≥ ε|Ev| and applying
the standard Korn’s inequality to v on Ω (see, for instance, Oleinik, Shamaev
and Yosifian [21], Theorem 2.7) we obtain that there exists a positive constant
K such that ∫

Ω

|(u1, u2,
u3

ε
)|2dy ≤ K

ε2

∫
Ω

|E εu|2 dy.

Using inequality (12) we conclude the proof.

It will be useful also the following standard two-dimensional Korn’s inequal-
ity:

‖w − ℘w‖2H1(ω;R2) ≤ C‖Ew‖
2
L2(ω;R2×2), (20)

for all w ∈ H1(ω;R2), where ℘ denotes the projection of L2(ω;R2) on the
subspace

R2 = {r∈L2(ω;R2) : ∃ϕ∈R, c∈R2 : r1(y) = −y2ϕ+ c1, r2(y) = y1ϕ+ c2}

of the infinitesimal rigid displacements on ω (see [21], Theorem 2.5 and Corollary
2.6, and [8]). It is easy to see that R2 is a closed subspace of H1(ω;R2).
Moreover, if w ∈ L2(ω;R2) we have that

(℘w)α = Eβαyβ
( 1

IO

∫
ω

Eγδyγwδ dy1dy2

)
+

1

|ω|

∫
ω

wα dy1dy2, (21)
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where Eαβ denotes the Ricci’s symbol.

Let HBN (Ω;R3) := {v ∈ H1
[ (Ω;R3) : (Ev)iα = 0 for i = 1, 2, 3, α = 1, 2} be

the space of Bernoulli-Navier displacements on Ω. It is well-known that it can
be characterized also as follows (see Le Dret [18], Section 4.1)

HBN (Ω;R3) = { v ∈ H1
[ (Ω;R3) : ∃ ξα ∈ H2

[ (0, `),∃ ξ3 ∈ H1
[ (0, `),

s. t. vα(y) = ξα(y3), v3(y) = ξ3(y3)− yαξ′α(y3)},
(22)

where

H1
[ (0, `) = {ξ ∈ H1(0, `) : ξ(0) = 0},

H2
[ (0, `) = {ξ ∈ H1(0, `) : ξ(0) = ξ′(0) = 0}.

In the remaining part of this section we assume uε to be a sequence of functions
in H1

[ (Ω;R3) such that
‖Eεuε‖L2(Ω;R3×3) ≤ Cε, (23)

for some constant C and for every ε. The next lemma summarizes and improves
some results proven in [7, 8].

Lemma 5.2. Let (23) hold for a sequence uε ∈ H1(Ω;R3). Then

1. there exist a subsequence (not relabelled) and a couple of functions v ∈
HBN (Ω;R3) and ϑ ∈ L2(Ω) such that

(uε1, u
ε
2, u

ε
3/ε) ⇀ v in H1(Ω;R3), (24)

W εuε ⇀ H(v, ϑ) in L2(Ω;R3×3), (25)

H εuε ⇀ H(v, ϑ) in L2(Ω;R3×3), (26)

where

H(v, ϑ) :=

 0 −ϑ D3v1

ϑ 0 D3v2

−D3v1 −D3v2 0

 ; (27)

2. ‖ϑε(uε) + (W εuε)12‖L2(Ω) ≤ Cε for some constant C > 0 and for every
ε ∈ (0, 1];

3. ‖ϑε(uε)‖L2(Ω) ≤
C

ε
‖E εuε‖L2(Ω;R3×3) for some constant C > 0 and for

every ε ∈ (0, 1];

4. ϑε(uε) → ϑ in L2(Ω) as ε → 0; therefore ϑ does not depend on y1 and
y2;

5. (Hεuε)12 → −ϑ in L2(Ω), and (Hεuε)21 → ϑ in L2(Ω) as ε→ 0;

6. ϑ ∈ H1
[ (Ω).

Proof. 1. It is convenient to set vε := (uε1, u
ε
2, u

ε
3/ε). Since |Eεuε| ≥ ε|Evε|,

by (23), Evε is uniformly bounded in L2(Ω;R3×3) and by Korn’s inequality
vε is uniformly bounded in H1(Ω;R3). Then, there exist a v ∈ H1

[ (Ω;R3)
and a subsequence (not relabelled) such that vε ⇀ v in H1(Ω;R3). Again, it
is easy to check that |(Eεuε)iα| ≥ |(Evε)iα|, thus, using (23) we deduce that
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Cε ≥ ‖(Evε)iα‖L2(Ω) and consequently (Ev)iα = 0 for i = 1, 2, 3 and α =
1, 2. Hence v ∈ HBN (Ω;R3). Using (23) and Theorem 5.1 we obtain that the
sequence Hεuε is bounded in L2(Ω;R3×3) so that, up to subsequences, it weakly
converges in L2(Ω;R3×3) to some H ∈ L2(Ω;R3×3). Since, from (23), Eεuε → 0
in L2(Ω;R3×3), we have W εuε ⇀ H in L2(Ω;R3×3). In particular, H is, almost
everywhere, a skew-symmetric matrix. Since (Hεuε)13 = D3u

ε
1 = D3v

ε
1 and

(Hεuε)23 = D3u
ε
2 = D3v

ε
2, we deduce that (H)13 = D3v1 and (H)23 = D3v2.

We conclude the proof of 1 by denoting (H)12 := −ϑ.
2. It is convenient to set wε := (uε1/ε, u

ε
2/ε). Then for almost y3 ∈ (0, `)

and any ε ∈ (0, 1] we consider the projection of wε(·, y3) on the space R2 of
the infinitesimal rigid displacements on ω. From the expression (21) of the
projection ℘ and recalling the definition (19) of ϑε, we have

(℘wε)α = Eβαyβϑε(uε) +
1

|ω|

∫
ω

wεα dy1dy2.

Since (Ewε)11 = (Eεuε)11, (Ewε)12 = (Eεuε)12 and (Ewε)22 = (Eεuε)22, we
get ‖(Ewε)αβ‖L2(Ω;R2×2) = ‖(Eεuε)αβ‖L2(Ω;R2×2) for α, β = 1, 2. Then, writ-
ing (20) with wε in place of w and integrating on (0, `), we deduce that∫ `

0

‖wε − ℘wε‖H1(ω;R2)dy3 ≤ C‖Eεuε‖L2(Ω;R3×3), (28)

and taking also into account (23) we have

‖Dα(wεβ − ℘wεβ)‖L2(Ω;R) ≤ Cε (α, β = 1, 2).

Since (W℘wε)12 = −ϑε(uε) and (Wwε)12 = (W εuε)12, we obtain 2 from the
identity

ϑε(uε) = −(W℘wε)12 = (W (wε − ℘wε))12 − (W εuε)12. (29)

From this last identity, using (28) and the scaled Korn’s inequality Theorem 5.1
we get also claim 3.

The weak convergence in 4 follows by taking the limit as ε → 0 in (29) by
using (25). Since ϑε(uε) does not depend on y1 and y2, so does ϑ. The strong
convergence in 4 can be proven by adapting an argument of [8], Lemma 4.6,
which consists in taking ξ ∈ C∞0 (ω) such that∫

ω

ξ dy1 dy2 = −I0
2

and define

ϑ̃ε =
1

I0

∫
ω

Eαγ(Dαξ)w
ε
γ dy1 dy2.

Proceeding as in [8] we can prove that ϑ̃ε − ϑε(uε) → 0 in L2(Ω) and that
ϑ̃ε ⇀ ϑ in H1(Ω), which implies the claimed strong convergence and 6.

5 follows from 2, 4 and the fact that (Eεuε)12 → 0 in L2(Ω).

We now characterize the components of the limit strain E. Hereafter, we denote
by

H1
m(ω) := {v ∈ H1(ω) :

∫
ω

v = 0}

and
H1
℘(ω;R2) := {v ∈ H1(ω;R2) : ℘v = 0}.

10



Lemma 5.3. Let (23) hold for a sequence uε. Then there exist a subsequence,
not relabeled, and a E ∈ L2(Ω;R3×3) such that

Eεuε

ε
⇀ E in L2(Ω).

Moreover, there exist

ϕ ∈ Q1 := L2((0, `);H1
m(ω)), w = (w1, w2) ∈ Q2 := L2((0, `);H1

℘(ω;R2))

such that
E11 = (Ew)11, E22 = (Ew)22, E12 = (Ew)12, (30)

E13 = D1ϕ−
y2

2
D3ϑ, E23 = D2ϕ+

y1

2
D3ϑ, (31)

E33 = D3v3, (32)

where v and ϑ have been defined in Lemma 5.2.

Proof. Let ūε be the vector whose components are the first two of uε, i.e. ūε :=
(uε1, u

ε
2). We have (Eūε)αβ/ε = (Eεūε)αβ , for α, β = 1, 2. Using (23) and

integrating on (0, `) the inequality (20) applied to the ūε, we find that

‖ ū
ε − ℘ūε

ε2
‖L2((0,`);H1(ω;R2)) ≤ C.

Hence, up to subsequences, (ūε−℘ūε)/ε2 ⇀ w in L2((0, `);H1(ω;R2)) for some
w ∈ Q2. Moreover

(Eεuε)αβ
ε

=
E(ūε − ℘ūε)αβ

ε2
⇀ (Ew)αβ in L2(Ω),

for α, β = 1, 2, and hence (30) has been proven. Equation (32) follows from
(24). We now prove (31). Note that

D3(W εuε)12 = D2

( (Eεuε)13

ε

)
−D1

( (Eεuε)23

ε

)
,

in the sense of distributions. Hence for ψ ∈ C∞c (Ω) we obtain∫
Ω

(W εuε)12D3ψ dy =

∫
Ω

(Eεuε)13

ε
D2ψ dy −

∫
Ω

(Eεuε)23

ε
D1ψ dy.

Passing to the limit in the previous equality we find∫
Ω

−ϑD3ψ dy =

∫
Ω

E13D2ψ dy −
∫

Ω

E23D1ψ dy.

Thus D3ϑ = −D2E13 +D1E23 in the sense of distributions. We can rewrite this
equation as

D2(E13 +
y2

2
D3ϑ) = D1(E23 −

y1

2
D3ϑ)

in the sense of distributions. By the weak version of Poincaré’s lemma (see
Girault and Raviart [13], Theorem 2.9) there exists a function ϕ ∈ Q1 such that

E13 +
y2

2
D3ϑ = D1ϕ,

E23 −
y1

2
D3ϑ = D2ϕ,

which concludes the poof.
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From (30), (31) and (32) we have that the limit strain can be written as

E = E(v, ϑ, ϕ,w)

:=


(Ew)11 (Ew)12 D1ϕ−

y2

2
D3ϑ

(Ew)12 (Ew)22 D2ϕ+
y1

2
D3ϑ

D1ϕ−
y2

2
D3ϑ D2ϕ+

y1

2
D3ϑ D3v3

 .
(33)

6 The convergence result

Let Fε = Iε − Lε be the energy functionals defined by (16)-(18).

Lemma 6.1. Let uε be a sequence of functions in the space H1
[ (Ω;R3) such

that

sup
ε

Fε(u
ε)

ε2
< +∞.

Then (23) holds for some constant C > 0 and for every ε.

Proof. It is convenient to set vε := (uε1, u
ε
2, u

ε
3/ε) and R := CL − CK |̊τm|. By

assumption (13), we have R > 0. With this notation and by using (2) and
Lemma 3.2, for any ε we find

1

ε2
Fε(u

ε) =
1

2

∫
Ω

L
Eεuε

ε
· E

εuε

ε
+HεuεT̊ ·Hεuε dy+

−
∫

Ω

b · vε dy −
∫ `

0

mϑε(uε) dy3

≥ CL
2
‖E

εuε

ε
‖2L2(Ω) +

τ̊m
2
‖Hεuε‖2L2(Ω)+

−‖b‖L2(Ω)‖vε‖L2(Ω) − ‖m‖L2(0,`)‖ϑε(uε)‖L2(0,`)

≥ R

2
‖E

εuε

ε
‖2L2(Ω) − ‖b‖L2(Ω)‖vε‖L2(Ω) − ‖m‖L2(0,`)‖ϑε(uε)‖L2(0,`)

where (12) has been used in the last inequality. From 3 of Lemma 5.2, the
Young’s inequality and Theorem 5.1 we obtain

1

ε2
Fε(u

ε)≥ R

2
‖E

εuε

ε
‖2L2(Ω) −

1

2C1
‖b‖2L2(Ω) −

C1K

2
‖E

εuε

ε
‖2L2(Ω)+

− 1

2C2
‖m‖2L2(0,`) −

C2

2
‖E

εuε

ε
‖2L2(Ω),

where C1 and C2 are arbitrary positive constants. By choosing, for instance,
C2 = R/2 and C1 = R/(4K), we have

1

ε2
Fε(u

ε) ≥ R

8
‖E

εuε

ε
‖2L2(Ω) −

2K

R
‖b‖2L2(Ω) −

1

R
‖m‖2L2(0,`) (34)

from which we get estimate (23).
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Lemma 6.1 and 1 of Lemma 5.2 imply that the family of functionals (1/ε2)Fε
is coercive in the space H1(Ω;R3)× L2(Ω;R) with respect to the weak conver-
gence of the sequence qε(u

ε) := (uε1, u
ε
2, u

ε
3/ε, (W

εuε)12), uniformly with re-
spect to ε. Hence, for any sequence uε which is bounded in energy, that is
(1/ε2)Fε(u

ε) ≤ C for a suitable constant C > 0, and satisfies the boundary con-
ditions uε = 0 on S(0), the corresponding sequence qε(u

ε) is weakly relatively
compact in H1(Ω;R3)× L2(Ω;R).

Theorem 6.2 (Γ-convergence). Let F : H1
[ (Ω;R3)×H1

[ (Ω;R)→ R∪{+∞} be
defined by

F (v, ϑ) = I(v, ϑ)− L(v, ϑ) (35)

where

I(v, ϑ) :=
1

2
min

ϕ∈Q1,w∈Q2

{∫
Ω

LE(v, ϑ, ϕ,w) · E(v, ϑ, ϕ,w) dy
}

+

+
1

2

∫
Ω

H(v, ϑ)T̊ ·H(v, ϑ) dy,

L(v, ϑ) :=

∫
Ω

b · v dy +

∫ `

0

mϑdy3,

(36)

if v ∈ HBN (Ω;R3) and D1ϑ = D2ϑ = 0, and +∞ otherwise, where Q1 =
L2((0, `);H1

m(ω)), Q2 = L2((0, `);H1
℘(ω;R2)) and H(v, ϑ) and E(v, ϑ, ϕ,w) are

defined by (27) and (33). As ε → 0, the sequence of functionals (1/ε2)Fε Γ-
converges to the functional F , in the following sense:

1. (liminf inequality) for every sequence of positive numbers εk converging to
0 and for every sequence {uk} ⊂ H1

[ (Ω;R3) such that

(uk1 , u
k
2 ,
uk3
εk

) ⇀ v in H1(Ω;R3), (W εkuk)12 → −ϑ in L2(Ω), (37)

as k →∞, we have

F (v, ϑ) ≤ lim inf
k→+∞

Fεk(uk)

ε2
k

;

2. (recovery sequence) for every sequence of positive numbers εk converging
to 0 and for every (v, ϑ) ∈ H1

[ (Ω;R3) ×H1
[ (Ω;R) there exists a sequence

{uk} ⊂ H1
[ (Ω;R3) such that

(uk1 , u
k
2 ,
uk3
εk

) ⇀ v in H1(Ω;R3), (W εkuk)12 → −ϑ in L2(Ω),

as k →∞, and

lim sup
k→+∞

Fεk(uk)

ε2
k

≤ F (v, ϑ).

Proof. 1. To prove the liminf inequality we can assume, possibly passing to
subsequences, that

lim inf
k→+∞

Fεk(uk)

ε2
k

= lim
k→+∞

Fεk(uk)

ε2
k

< +∞.
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Then Lemma 6.1 applies to the sequence uk and thereby the results of Lemma
5.2 and Lemma 5.3 hold. In particular, v ∈ HBN (Ω;R3) and D1ϑ = D2ϑ = 0;
moreover, besides (37) we have that

Eεkuk

εk
⇀ E(v, ϑ, ϕ,w) (hence Eεkuk → 0) in L2(Ω;R3×3) (38)

and
(Hεkuk)12 → −ϑ in L2(Ω), (Hεkuk)21 → ϑ in L2(Ω). (39)

Assumption (37) implies that

Lεk(uk)

ε2
k

=

∫
Ω

b · (uk1 , uk2 ,
uk3
εk

) dy +

∫ `

0

mϑεk(uk) dy3 →
∫

Ω

b · v dy +

∫ `

0

mϑdy3

and therefore we have only to prove that

lim inf
k→+∞

Iεk(uk)

ε2
k

≥ 1

2
min

ϕ∈Q1,w∈Q2

{∫
Ω

LE(v, ϑ, ϕ,w) · E(v, ϑ, ϕ,w) dy
}

+

+
1

2

∫
Ω

H(v, ϑ)T̊ ·H(v, ϑ) dy.

By setting vk := (uk1 , u
k
2 , u

k
3/εk), we can write

Iεk(uk)

ε2
k

=
1

2

∫
Ω

(
L
Eεkuk

εk
· E

εkuk

εk
+ T̊11(D1v

k
3 )2 + T̊33

(
(D3v

k
1 )2 + (D3v

k
2 )2
)
+

+T̊22(D2v
k
3 )2 + 2T̊12(D1v

k
3 )(D2v

k
3 ) + CL

3∑
i=1

2∑
α=1

|(Evk)iα|2+

−CL
3∑
i=1

2∑
α=1

|(Evk)iα|2+

+T̊11

( (D1v
k
1 )2

ε2
k

+
(D1v

k
2 )2

ε2
k

)
+

+T̊33ε
2
k(D3v

k
3 )2 + T̊22

( (D2v
k
1 )2

ε2
k

+
(D2v

k
2 )2

ε2
k

)
+

+2T̊12

(D1v
k
1

εk

D2v
k
1

εk
+
D1v

k
2

εk

D2v
k
2

εk

)
+

+2T̊13

(D1v
k
1

εk
D3v

k
1 +

D1v
k
2

εk
D3v

k
2 + εk(D1v

k
3 )(D3v

k
3 )
)

+

+2T̊23

(D2v
k
1

εk
D3v

k
1 +

D2v
k
2

εk
D3v

k
2 + εk(D2v

k
3 )(D3v

k
3 )
))

dy.

(40)
Due to (37), (38) and (39), the last six lines in the inequality above converge to

1

2

∫
Ω

(T̊11 + T̊22)ϑ2 + 2T̊13ϑD3v2 − 2T̊23ϑD3v1 dy.

Indeed, in terms of uk the third line writes

−CL
(
ε2

2∑
i=1

2∑
α=1

|(Eεkuk)iα|2 +

2∑
α=1

|(Eεkuk)3α|2
)
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which, as k → ∞, goes to zero strongly in L1(Ω) by (38). Analogously, the
fourth line writes

T̊11

(
|(Eεkuk)11|2 +

|(Hεkuk)21|2

ε2
k

)
and strongly converges to T̊11ϑ

2 in L1(Ω) due to (38) and (39), and so on.
Let us introduce now the following auxiliary quadratic functional

G(γ, ψ) :=
1

2

∫
Ω

Lγ · γ dy + CL

3∑
i=1

2∑
α=1

|(Eψ)iα|2 +

+

 0 0 D1ψ3

0 0 D3ψ2

D3ψ1 D2ψ3 0

T̊ ·
 0 0 D1ψ3

0 0 D3ψ2

D3ψ1 D2ψ3 0

 dy

with γ ∈ L2(Ω;R3×3) and ψ ∈W 1,2(Ω;R3). Then the first two lines in (40) are

given by G(E
εkuk

εk
, vk), and we have

G(E
εkuk

εk
, vk) = G(E

εkuk

εk
− E + E, vk − v + v)

≥ G(E, v) +G(E
εkuk

εk
− E, v) +G(E, vk − v)

(41)

since G(E
εkuk

εk
− E, vk − v) ≥ 0; indeed, by (2), the definitions of CL and τ̊m,

Lemma 3.2, the standard Korn’s inequality and assumption (13), we have

G(
Eεkuk

εk
− E, vk − v) ≥

≥ 1

2

(
CL‖

Eεkuk

εk
− E‖2 − |̊τm|‖D(vk − v)‖2 + CL

3∑
i=1

2∑
α=1

‖(E(vk − v))iα‖2
)

≥ 1

2

(
CL‖

(Eεkuk
εk

− E
)

33
‖2 − |̊τm|‖D(vk − v)‖2 + CL

3∑
i=1

2∑
α=1

‖(E(vk − v))iα‖2
)

=
1

2

(
CL‖E(vk − v)‖2 − |̊τm|‖D(vk − v)‖2

)
=

1

2
(CL − CK |̊τm|)‖E(vk − v)‖2 ≥ 0.

Hence, taking the limit as k →∞ in (40) and (41), we obtain

lim inf
k→+∞

Iεk(uk)

ε2
k

≥

≥ 1

2

∫
Ω

(
LE(v, ϑ, ϕ,w) · E(v, ϑ, ϕ,w) + T̊11(D1v3)2 + T̊22(D2v3)2 +

+T̊33

(
(D3v1)2 + (D3v2)2

)
+ 2T̊12(D1v3)(D2v3) +

+(T̊11 + T̊22)ϑ2 + 2T̊13ϑD3v2 − 2T̊23ϑD3v1

)
dy

=
1

2

∫
Ω

LE(v, ϑ, ϕ,w) · E(v, ϑ, ϕ,w) +H(v, ϑ)T̊ ·H(v, ϑ) dy

≥ 1

2
inf

ϕ∈Q1,w∈Q2

{∫
Ω

LE(v, ϑ, ϕ,w) · E(v, ϑ, ϕ,w) dy
}

+

+
1

2

∫
Ω

H(v, ϑ)T̊ ·H(v, ϑ) dy.
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The existence of the minimum in the previous inequality follows by a standard
application of the direct method of the Calculus of Variations. Hence we have
proven the liminf inequality.

2. Let us now find a recovery sequence. Let F (v, ϑ) < +∞, since otherwise
there is nothing to prove. Then v ∈ HBN (Ω;R3) and ϑ ∈ H1

[ (Ω;R) with
D1ϑ = D2ϑ = 0.

By (22), there exist ξα ∈ H2(0, `) and ξ3 ∈ H1(0, `) with ξ3(0) = ξα(0) =
ξ′α(0) = 0 (α = 1, 2), such that vα(y) = ξα(y3), and v3(y) = ξ3(y3) − yαξ′α(y3).
Let ŵ and ϕ̂ be the minimizers in the definition (36) of F (v, ϑ).

For any δ > 0, we can find, by density, functions ξδ ∈ C∞(Ω;R3), ϑδ ∈
C∞(Ω) with D1ϑ

δ = D2ϑ
δ = 0, ŵδ ∈ C∞(Ω;R2) and ϕ̂δ ∈ C∞(Ω), which are

all equal to zero near by y3 = 0 and such that

ξδα → ξα in H2(0, `), ξδ3 → ξ3 in H1(0, `), ϑδ → ϑ in L2(Ω),

ŵδ → ŵ in L2((0, `), H1(ω;R2)), ϕ̂δ → ϕ̂ in L2((0, `);H1(ω)).

For any δ > 0, let uδ,k be the sequence defined by

uδ,k1 := ξδ1 − εky2ϑ
δ + ε2

kŵ
δ
1,

uδ,k2 := ξδ2 + εky1ϑ
δ + ε2

kŵ
δ
2,

uδ,k3 := εk(ξδ3 − y1ξ
δ′
1 − y2ξ

δ′
2 ) + 2ε2

kϕ̂
δ.

(42)

We have that uδ,k is equal to zero in y3 = 0 and it is easily checked that, setting
vδα(y) := ξδα(y3), and vδ3(y) := ξδ3(y3)−yαξδ′α (y3) and taking the limit as k →∞,
we have

(uδ,k1 , uδ,k2 ,
uδ,k3

εk
)→ vδ in H1(Ω;R3),

and
(W εkuδ,k)12 → −ϑδ in L2(Ω).

This implies that

lim
δ→0+

lim
k→∞

Lεk(uδ,εk) = lim
δ→0+

L(vδ, ϑδ) = L(v, ϑ).

Moreover, it is easy to check that, taking the limit as k → ∞ and then as
δ → 0+, we have

Eεkuδ,k

εk
→ E(vδ, ϑδ, ϕ̂δ, ŵδ)→ E(v, ϑ, ϕ̂, ŵ) in L2(Ω;R3×3), (43)

and
Hεkuδ,k → H(vδ, ϑδ)→ H(v, ϑ) in L2(Ω;R3×3). (44)

By (43) and (44) then we have

lim
δ→0+

lim
k→∞

1

ε2
k

Iεk(uδ,k) =

=
1

2

∫
Ω

LE(v, ϑ, ϕ̂, ŵ) · E(v, ϑ, ϕ̂, ŵ) dy +
1

2

∫
Ω

H(v, ϑ)T̊ ·H(v, ϑ) dy.

Thus, there exists a sequence of positive numbers δk → 0 such that the sequence
uk := uδk,k is a recovery sequence.
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For every ε ∈ (0, 1], let us denote by ũε the solution of the following mini-
mization problem

min{Fε(u) : u ∈ H1
[ (Ω;R3)}.

The next theorem follows from the Γ-convergence Theorem 6.2, the uniform
coercivity of the sequence of the functionals (1/ε2)Fε and the variational prop-
erty of Γ-convergence (see for instance Dal Maso [5], Proposition 3.4).

Theorem 6.3. The minimization problem for the Γ-limit functional F defined
in (35)

min{F (v, ϑ) : v ∈ HBN (Ω;R3), ϑ ∈ H1
[ (0, `)}

admits a unique solution (ṽ, ϑ̃). Moreover, as ε→ 0,

1. (ũε1, ũ
ε
2, ũ

ε
3/ε) ⇀ ṽ in H1(Ω;R3);

2. (W εũε)12 → −ϑ̃ in L2(Ω);

3. (1/ε2)Fε(ũ
ε) converges to F (ṽ, ϑ̃).

By using the Bernoulli-Navier structure of the domain, we show that the
Γ-limit functional can be rewritten as a functional on (0, `). To this aim, let
Q : (0, `)× R4 → [0,+∞) be defined by

Q(y3, a, b, c, d) := min
{∫

ω

L(y3)Ê · Ê dy1dy2 : w ∈ H1
℘(ω;R2), ϕ ∈ H1

m(ω)
}

(45)
where

Ê :=


(Ew)11 (Ew)12 D1ϕ−

y2

2
d

(Ew)12 (Ew)22 D2ϕ+
y1

2
d

D1ϕ−
y2

2
d D2ϕ+

y1

2
d c− ay1 − by2

 .

Let

〈T̊ 〉 :=

∫
ω

(
T̊11 T̊12

T̊21 T̊22

)
dy1dy2 (46)

and

〈bi〉 :=

∫
ω

bi dy1dy2, 〈b3yα〉 :=

∫
ω

b3yα dy1dy2.

Let BN(0, `) := H2
[ (0, `) × H2

[ (0, `) × H1
[ (0, `). Let I1d, L1d : BN(0, `) ×

H1
[ (0, `)→ R, be the functionals defined by

I1d(ξ, ϑ) := 1
2

∫ `
0
Q(y3, ξ

′′
1 , ξ
′′
2 , ξ
′
3, ϑ
′) + tr〈T̊ 〉ϑ2 + 〈T̊ 〉(ξ′1, ξ′2) · (ξ′1, ξ′2) dy3

L1d(ξ, ϑ) :=
∫ `

0
〈bi〉 ξi − 〈b3yα〉 ξ′α +mϑdy3

(47)
with the Einstein summation convention on i = 1, 2, 3 and α = 1, 2, and where
tr denotes the trace. If ξi are the Bernoulli-Navier components of v (see (22)),
also thanks to Lemma 2.1 it can be shown that

I(v, ϑ) = I1d(ξ, ϑ), L(v, ϑ) = L1d(ξ, ϑ).
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Within this framework, one has to solve the minimum problem (45) on the
cross-section just like happens in Scardia [27] (Theorems 4.4 and 5.1) where a
1d linear model without residual stress is deduced starting from 3d nonlinear
elasticity for a curved thin beam.

From (46) it would seem that only the averages of the in-section components
of the residual stress influence the behavior of the beam but, in fact, the in-
section components are in relation with the T̊α3 components (see Lemma 2.1).

The next example shows that, in general, the contribution of the residual
stress in the limit 1d model is non trivial.

Example 6.4. Let f ∈ C2
c (0, `) and ω = {y ∈ R2 : |y| < 1}. Then the tensor

field T̊ with components

T̊11(y) = (y1y
3
2 + y2

1y
4
2)f ′′(y3),

T̊22(y) = (y3
1y2 + y4

1y
2
2)f ′′(y3),

T̊12(y) = −(y2
1y

2
2 + y3

1y
3
2)f ′′(y3),

T̊13(y) = (2y2
1y2 − y3

2 + 3y3
1y

2
2 − 2y1y

4
2)f ′(y3),

T̊23(y) = (2y1y
2
2 − y3

1 + 3y2
1y

3
2 − 2y4

1y2)f ′(y3),

T̊33(y) = (4y1y2 + 2y4
1 + 2y4

2 − 18y2
1y

2
2)f(y3),

satisfies (1) on Ω = ω × (0, `). Moreover∫
ω

T̊11 dy > 0,

∫
ω

T̊22 dy > 0,

∫
ω

T̊12 dy < 0,

on every section y3 for which f ′′(y3) > 0.

Remark 6.5. For T̊ ε defined as in (11) the additional requirement divT̊ ε = 0
would lead to

T̊i1,1 + T̊i2,2 + εT̊i3,3 = 0

for i = 1, 2, 3. Since this holds for every ε ∈ (0, 1], then we have

T̊i1,1 + T̊i2,2 = 0 and T̊i3,3 = 0, (48)

which are conditions much stronger than divT̊ = 0, see (1). The last equality
implies that T̊i3 is a function of x1 and x2 only and, in fact, T̊i3 ∈ H1(0, `;L2(ω)).
Since T̊ n = 0 on ∂Ω, we have that the trace of T̊i3 on the bases x3 = 0 vanishes
and therefore we obtain

T̊i3 = 0, (i = 1, 2, 3). (49)

By 2 of Lemma 2.1 we immediately get∫
ω

T̊αβ dy1dy2 = 0, (α, β = 1, 2),

and the residual stress tensor would completely disappear in the limit problem.
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7 Remarks on the explicit computation of Q

This section is devoted to shed some light on the problem (45) defining Q.
For fixed (a, b, c, d) ∈ R4, w ∈ H1

℘(ω;R2) and ϕ ∈ H1
m(ω), let

Ew := (Ew)αβ eα � eβ ,

Eϕ := 2(D1ϕ− y2
2 d) e1 � e3 + 2(D2ϕ+ y1

2 d) e2 � e3,

Ev := (c− ay1 − by2) e3 ⊗ e3,

where (e1, e2, e3) is the orthonormal basis associated to the axes x1, x2 and
x3. Above ⊗ denotes the dyadic product and � is the associated symmetric
product.

The minimizers w ∈ H1
℘(ω;R2) and ϕ ∈ H1

m(ω) of problem (45) satisfy the
Euler-Lagrange equations

∫
ω

L(y3)(Ew + Eϕ + Ev) · Eη dy1dy2 = 0 ∀ η ∈ H1
℘(ω;R2),∫

ω

L(y3)(Ew + Eϕ + Ev) ·Dψ � e3 dy1dy2 = 0 ∀ψ ∈ H1
m(ω),

(50)

where in computing Eη we consider η as a three component vector field with
third component equal to 0 and, similarly, we consider ψ as a function of three
variables.

We note that if
L3αβγ = 0 (α, β, γ = 1, 2), (51)

then
L(y3)Eϕ · Eη = L(y3)Ew ·Dψ � e3 = 0,

hence (50) decouples into two separate problems, one for w and one for ϕ. If,
moreover, also

L333γ = 0 (γ = 1, 2), (52)

then
L(y3)Ev ·Dψ � e3 = 0.

Thus, under (51) and (52), problem (50) reduces to
∫
ω

L(y3)(Ew + Ev) · Eη dy1dy2 = 0 ∀ η ∈ H1
℘(ω;R2),∫

ω

L(y3)Eϕ ·Dψ � e3 dy1dy2 = 0 ∀ψ ∈ H1
m(ω),

(53)

from which we deduce that the unknown ϕ depends only on the constant d, i.e.
on D3ϑ, and not on a, b, c.

Equations (51) and (52) are satisfied for a monoclinic material with uniform
axis of symmetry e3. If we impose the same kind of symmetry on the residual
stress, i.e.

T̊0 = R T̊RT (54)

for every rotation R in the monoclinic symmetry group, we would deduce T̊i3 =
0, i = 1, 2, 3, see Hoger [16, (5.9)]. From Lemma 2.1 we then deduce that

19



〈T̊12〉 = 0 which would imply that the Γ-limit does not depend on the residual
stress.

We note that the symmetry group G of a material is contained in the orthog-
onal group only if the body is in its undistorted reference configuration. In any
other reference, κ, the symmetry group will be FGF−1 where F is the gradient
of the mapping from the undistorted reference configuration to κ (see Truesdell
[31]). Thus, we believe that it is restrictive to assume the symmetry group to
be contained in the orthogonal group (see also [24]) and hence also (54).

We conclude by looking at the case of a slender rod made of isotropic, ho-
mogeneous material with a stress-free reference configuration.

In this case we have

LE(v, ϑ, ϕ,w) · E(v, ϑ, ϕ,w) = 2µ|E(v, ϑ, ϕ,w)|2 + λ|tr(E(v, ϑ, ϕ,w))|2,

where µ > 0 and λ ≥ 0 are the Lamé moduli of the material.
With the isotropy symmetry condition the unknowns w and ϕ satisfy prob-

lem (53) which rewrites as
∫
ω

(
(2µEw + λ(trEw + c− ay1 − by2)I

)
·Dη dy1dy2 = 0 ∀ η ∈ H1

℘(ω;R2),∫
ω

Dϕ ·Dψ +
d

2
(−y2, y1) ·Dψ d1dy2 = 0 ∀ψ ∈ H1

m(ω).

(55)
It can be checked that the solution of (55)1 is

w1 = −ν
(
cy1 − a

y2
1 + y2

2

2
− by1y2)− k3y2 + k1,

w2 = −ν
(
cy2 − b

y2
1 + y2

2

2
− ay1y2) + k3y2 + k2,

where k1, k2 and k3 are found by imposing that ℘w = 0, and where ν :=
λ/(2λ+ 2µ) denotes the Poisson’s ratio. The solution of (55)2 is given by

ϕ =
d

2
ϕT ,

where ϕT is the torsion function{
4ϕT = 0 in ω,

DϕT · n = −(−y2, y1) · n on ∂ω.

With w and ϕ as above we can explicitly compute the function Q given by (45):

Q(y3, a, b, c, d) =

∫
ω

(c− ay1 − by2)2E + d2µ|DϕT + (−y2, y1)|2 dy1dy2

= EAc2 + EJ2a
2 + EJ1b

2 + d2µ

∫
ω

|DψT |2 dy1dy2,

where E := (2µ2 + 3λµ)/(µ+ λ) denotes the Young modulus, A, J1 and J2 are
the area and the principal moments of inertia of the cross-section ω, and ψT is
the so-called Prandtl stress function defined by{

4ψT = −2,

ψT ∈ H1
0 (ω).
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Hence, the energy I1d given by (47) reduces to

I1d(ξ, ϑ) =
1

2

∫ `

0

EAξ′3
2

+ EJ2ξ
′′
1

2
+ EJ1ξ

′′
2

2
+ µJTϑ

′2 dy3,

where

JT :=

∫
ω

|DψT |2 dy1dy2,

and it coincides with the energy obtained by Anzellotti, Baldo and Percivale [3]
(in the case of a circular cross-section), Percivale [26], and also in [7].
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