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1 Introduction, motivations and results

In recent years great attention has being paid to some classes of systems of
partial differential equations that provide a model for the interaction of matter
with electromagnetic field. Such theories are known in literature as Abelian
Gauge Theories, and in this framework a crucial rôle is played by systems whose
field equation is the Klein–Gordon’s one. In particular, we recall the papers [2],
[3], [4], [5], [6], [7], [9], [12], [13], [16], [21], [26], [27], [28], [30], [35] and [38],
where existence or non existence results are proved in the whole physical space
for systems of Klein-Gordon-Maxwell type.
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Here we are interested in a particular class of solutions, consisting in the
so called solitary waves, i.e. solutions of a field equation whose energy travels
as a localized packet. This kind of solutions plays an important rôle in these
theories because of their relationship with solitons. “Soliton” is the name by
which solitary waves are known when they exhibit some strong form of stability;
they appear in many situations of mathematical physics, such as classical and
quantum field theory, nonlinear optics, fluid mechanics and plasma physics (for
example see [14], [18] and [32]). Therefore, the first step to prove the existence
of solitons is to prove the existence of solitary waves, as we will do.

Our starting point is the following system, obtained by the interaction of a
Klein–Gordon field with Maxwell’s equations, which is, therefore, a model for
electrodynamics:

(∂t + iqφ)2ψ − (∇− iqA)2ψ +W ′(ψ) = 0,

div(∂tA +∇φ) = q
(

Im∂tψ
ψ + qφ

)
|ψ|2,

∇× (∇×A) + ∂t(∂A +∇φ) = q
(

Im∂tψ
ψ − qA

)
|ψ|2.

(1.1)

Here ψ : R3 × R → C, φ : R3 → R and A : R3 × R → R3, see [4] for the
derivation of the general system and for a detailed description of the physical
meaning of the unknowns.

We are interested in standing waves solutions of system (1.1), under the
assumption that W possesses some good invariants (necessary to be considered
in Abelian Gauge Theories), typically some conditions of the form

W (eiαu) = W (u) and (W ′)(eiαu) = eiαW ′(u)

for any function u and any α ∈ R. Thus we look for solutions having the special
form

ψ(x, t) = u(x)eiS(x,t), u : R3 → R, S(x, t) = S0(x)− ωt ∈ R, ω ∈ R, (1.2)

∂tA = 0, ∂tφ = 0. (1.3)

In this way the previous system reads as

−∆u+ |∇S − qA|2u−
(∂S
∂t

+ qφ
)2

u+W ′(u) = 0,

∂

∂t

[(∂S
∂t

+ qφ
)
u2
]
− div[(∇S − qA)u2] = 0,

div
(∂A

∂t
+∇φ

)
= q
(∂S
∂t

+ qφ
)
u2,

∇× (∇×A) +
∂

∂t

(∂A

∂t
+∇φ

)
= q(∇S − qA)u2,

(1.4)

where the equations are the matter equation, the charge continuity equation,
the Gauss equation and the Ampère equation, respectively.

Three different types of finite energy, stationary nontrivial solutions can be
considered:
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• electrostatic solutions: A = 0, φ 6= 0;

• magnetostatic solutions: A 6= 0, φ = 0;

• electro-magneto-static solutions: A 6= 0, φ 6= 0.

Under suitable assumptions, all these types of solutions may exist.
Existence and nonexistence of electrostatic solutions for system (1.4) have

been proved under different assumptions on W : in [12] and [13] the following
potential (or more general ones) has been considered:

W (s) =
1

2
s2 − sp

p
, s ≥ 0.

In [4] the case 4 < p < 6, in [13] the case 2 < p < 6 and in [12] the remaining
cases are studied.

In [3] and [30] the existence of electrostatic solutions has been studied for
the first time when the potential W is nonnegative. In particular the existence
of radially symmetric, electrostatic solutions has been analyzed in both papers,
and it turns out that all these solutions have zero angular momentum.

Here we are interested in electro-magneto-static solutions when W ≥ 0; in
particular, we shall study the existence of vortices, which are solutions with non
vanishing angular momentum, namely solutions with S0(x) = lθ(x) - θ is the
polar function in cylindrical coordinates -, i.e. of the form

ψ(t, x) = u(x)ei(lθ(x)−ωt), l ∈ Z \ {0}, (1.5)

and we will see that the angular momentum Mm of the matter field of a vortex
does not vanish (see Remark 2.3); this fact justifies the name “vortex”. These
kinds of solutions are also known as spinning Q–balls; in this regard we recall
the pioneering paper of Rosen [34] and of Coleman [11]. Coleman was the first to
use the name Q–ball, referring to spherically symmetric solutions.Vortices in the
nonlinear Klein–Gordon–Maxwell equations with a nonnegative nonlinear term
W (s) with W (0) = 0 are also considered in Physics literature with the name of
gauged spinning Q-balls, the name balls being used even if they do not exhibit a
spherical symmetry, as in the case treated in this paper. More precisely, spinning
axially symmetric Q-balls have been constructed by Volkov and Wohnert [38],
and have already been analysed also in [1], [9], [19] and [20]. For a review of
the problem of constructing classical field theory solutions describing stationary
vortex rings we refer to [31], where applications in relativistic field theories and
non-linear optics is presented.

However, in most of the previous considerations the existence of such solu-
tions is discussed only qualitatively, so that almost no solutions of this type are
explicitly known. Indeed, the mathematical existence of spinning Q–balls was
given for the first time in [4], though some numerical results are known since
[22]. Therefore, this paper is a contribution to an existence theory which is still
at the very beginning.
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By (1.5), system (1.4) becomes

−∆u+
[
|l∇θ − qA|2 − (ω − qφ)2

]
u+W ′(u) = 0, (1.6)

−∆φ = q(ω − qφ)u2, (1.7)

∇× (∇×A) = q(l∇θ − qA)u2, (1.8)

which is the Klein–Gordon–Maxwell system we have investigated. Moreover,
though the system (1.6)–(1.7)–(1.8) was obtained by means of considerations on
gauge invariance of W , from a mathematical point of view we can also replace
(1.6) with

−∆u+
[
|l∇θ − qA|2 − (ω − qφ)2

]
u+Wu(x, u) = 0,

i.e. we could let W depend on the x–variable. More precisely, in order to use
our functional approach, we let W depend on (

√
x2

1 + x2
2, x3), but we do not

require any positivity far from 0, in contrast to the usual Ambrosetti–Rabinowitz
condition. We think that this fact is quite interesting, both from a mathematical
and a physical point of view: for example, it may happen that the potential is
inactive in some cylinder, or, even more interestingly, out of a cylinder, as it
happens where strong magnetic potential are present in linear accelerators.

According to what just said, in the second section we will show a new ex-
istence result for system (1.6)–(1.7)–(1.8) under general assumptions on the
nonnegative potential W . We were inspired by the approach of [5], and for this
reason, the functional structure is the same one of that article. However, our
hypotheses on W imply, in particular, that the potential W (s) might be 0 for
values of s different from 0, in contrast to all previous results, where the poten-
tial W was assumed to lye above a parabola. This corresponds to the situation
in which, for values of the unknown different from 0, there is no interaction
among particles (see [13], [30]).

Moreover, even more interestingly, we show the existence of solutions for all
possible values of the charge q. We believe this is a very nice result, since for
the first time in literature from the seminal paper by Coleman [11], in which the
charge was supposed small, as in all the subsequent papers in our bibliography,
we give existence results for all values of the charge.

In conclusion, though our assumptions are weaker, our results are stronger
than those found so far.

Remark 1.1. If we consider the electrostatic case, i.e. −∆u + W ′(u) = 0,
calling “rest mass” of the particle u the quantity∫

R3

W (u) dx,

see [7], our assumptions on W imply that we are dealing a priori with systems
for particles having positive mass, which is, of course, the physical interesting
case.
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Entering into details, we shall study system (1.6)–(1.7)–(1.8) under the fol-
lowing hypothesis on the potential W :

W1) W (s) ≥ 0 for all s ≥ 0;

W2) W is of class C2 with W (0) = W ′(0) = 0,W ′′(0) = m2 > 0;

W3) setting

W (s) =
m2

2
s2 +N(s), (1.9)

we assume that there exist positive constants c1, c2, p, `, with 2 < ` ≤ p <
6, such that for all s ≥ 0 there holds

|N ′(s)| ≤ c1s`−1 + c2s
p−1.

Moreover, though we are interested in positive solutions, it is convenient to
extend W to all of R setting

W (s) = W (−s) for every s < 0.

The system (1.6)–(1.7)–(1.8) was introduced in [5] assumingW1), W2), W3)
and the fundamental requirement

inf
s>0

(
W (s)
m2

2 s
2

)
< 1. (1.10)

We immediately see that assumption W3) plus (1.10) is equivalent to require
that there exists s0 > 0 such that N(s0) < 0, the first step in the classical
“Berestycki–Lions” approach. In this paper we will use an hypothesis different
from (1.10), which will let us prove our main result without any restriction on
the charge q, in contrast to all previous results.

Indeed, we will assume

W4) there exist τ > 2,

D ≥

{
3(1 + l2)

τ−2
2 23τ/2−5m4−τ if q ≤ 1,

3(1 + l2)
τ−2
2 23τ/2−5m4−τq3(τ−2) if q > 1

and ε0 > 0 with ε0 = ε0(q) if q > 1, such that

N(s) ≤ −D|s|τ for all s ∈ [0, ε0].

It is clear that functions of the type N(s) = |s|p − |s|q, 2 < q < p, satisfy
W4). Of course, W4) implies that there exists s0 > 0 such that N(s0) < 0, but
W4) permits to prove existence results for any q > 0 and suitable potentials W ,
see Theorem 1.3.
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Remark 1.2. We emphasize the fact that W1) and W4) together imply that
D cannot be as large as desired, since the condition W ≥ 0 forces D to depend
on ε0 and q. However, we remark that the parameter ε0 is allowed to depend on
q only when q > 1, hence D does not depend on the charge q when q ≤ 1, but it
depends only on m and l. As a consequence, the class of admissible potentials
does not depend on the value of the charge q, whenever q ≤ 1.

As usual, for physical reasons, we look for solutions having finite energy, i.e.

(u, φ,A) ∈ H1 × D1 ×
(
D1
)3

, where H1 = H1(R3) is the usual Sobolev space,
and D1 = D1(R3) is the completion of D = C∞C (R3) with respect to the norm
‖u‖2D1 :=

∫
R3 |∇u|2 dx (see Section 2.2 for the precise functional setting).

Before giving our main result, we remark that, as in [5], the parameter ω is
an unknown of the problem.

Theorem 1.3. Assume W1), W2), W3), W4), let l ∈ Z and q ≥ 0. Then sys-
tem (1.6)–(1.7)–(1.8) admits a finite energy solution in the sense of distributions
(u, ω, φ,A), u 6= 0, ω > 0 such that

• the maps u, φ depend only on the variables r =
√
x2

1 + x2
2 and x3;

• ∫
R3

u2

r2
dx ∈ R;

• the magnetic potential A has the following form:

A = a(r, x3)∇θ = a(r, x3)
(x2

r2
e1 −

x1

r2
e2

)
. (1.11)

If q = 0, then φ = 0, A = 0. If q > 0, then φ 6= 0. Moreover, A 6= 0 if and
only if l 6= 0.

Remark 1.4. By definition, the angular momentum is the quantity which is
preserved by virtue of the invariance under space rotations of the Lagrangian
with respect to the origin. Using the gauge invariant variables, we get:

M = Mm + Mf ,

where

Mm =

∫
R3

[
−x× (∇u∂tu) + x× ρj

q2u2

]
dx

and

Mf =

∫
R3

x× (E ×H) dx.

Here Mm refers to the “matter field” and Mf to the “electromagnetic field”,
while ρ and j denote the electric charge and the current density, respectively.

We will see below that the solution found in Theorem 1.3 has nontrivial
angular momentum, see Remark 2.3.
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Remark 1.5. When l = 0 and q > 0 the last part of Theorem 1.3 states
the existence of electrostatic solutions, namely finite energy solutions with u 6=
0, φ 6= 0 and A = 0. This result is a variant of a recent ones (see [3] and [30]).

Moreover, let us observe that under general assumptions on W , magneto-
static solutions (i.e. with ω = φ = 0) do not exist. In fact also the following
proposition is proved in [5]:

Remark 1.6 ([5], Prop.8 p.649). Assume that W satisfies the assumptions
W (0) = 0 and W ′(s)s ≥ 0. Then (1.6), (1.7), (1.8) has no solutions with
ω = φ = 0.

In our setting, we are able to prove the following nonexistence results:

Theorem 1.7. If u is a finite energy solution of (1.6) with∫
R3

N(u) dx ∈ R,

and

• ω2 < m2 and either N ≥ 0 or N ′(s)s ≤ 6N(s) for all s ∈ R,
or

• N ′(s)s ≥ 2N(s) for all s ∈ R,

then u ≡ 0.

A natural consequence is the following

Corollary 1.8. If u ∈ Lp(R3) is a finite energy solution of (1.6)–(1.7)–(1.8),
and

• ω2 < m2 and

N(u) =


|u|p

p
, p ≤ 6,

−|u|
p

p
, p ≥ 6,

or

•

N(u) =


|u|p

p
, p ≥ 2,

−|u|
p

p
, p ≤ 2,

then u ≡ 0.

Remark 1.9. Theorem 1.7 implies that, in general, in order to have vortices
with N ≥ 0 it is necessary to have a “large” frequency. We are not aware of
similar results in the theory of vortices, and we believe such a result can shed a
new light on this subject.
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In Section 4 we shall prove another existence result concerning a different
kind of solutions, namely solutions having fixed L2 norm. In general these solu-
tions cannot be obtained from the solutions found in Theorem 1.3, for example
via a rescaling argument, and we shall focus on the case

∫
R3 u

2dx = 1, which
corresponds to look for solutions having a density of probability equal to 1.
An analogous result could be obtained for

∫
R3 u

2dx = c ∈ R+, but the physical
meaning of this kind of solutions is not clear to us. Indeed, in different situations
it may happen that if

∫
R3 u

2 = c is fixed a priori, then solutions appear only
for certain values of c: a typical example is in the context of boson stars, when
solutions with fixed energy do exist if and only if c < MC , the Chandrasekhar
limit mass (see [23] and [29]).

Our result is the following

Proposition 1.10. Under the hypotheses of Theorem 1.3, there exists µ ∈ R
and a solution in the sense of distributions for the system

−∆u+
[
|l∇θ − qA|2 − (ω − qφ)2

]
u+W ′(u) = µu,

−∆φ = q(ω − qφ)u2,

∇× (∇×A) = q(l∇θ − qA)u2,

such that
∫
R3 u

2dx = 1. Moreover, if ω2 ≤ m2 and N ′(s)s ≥ 0 for all s ∈ R,
then µ > 0.

Due to the presence of the multiplier µ, we give the following

Definition 1.11. We call effective mass of the system the quantity m̃ = m2−µ.

2 Preliminary setting

2.1 Standing wave solutions and vortices

Substituting (1.2) and (1.3) in (1.4), we get the following equations in R3:

−∆u+

[
|∇S0 − qA|2 − (ω − qφ)2

]
u+W ′(u) = 0, (2.12)

− div

[
(∇S0 − qA)u2

]
= 0, (2.13)

−∆φ = q(ω − qφ)u2, (2.14)

∇× (∇×A) = q(∇S0 − qA)u2. (2.15)

We can easily observe that (2.13) follows from (2.15): as a matter of fact,
applying the divergence operator to both sides of (2.15), we immediately get
(2.13). Then we are reduced to study the system (2.12)–(2.14)–(2.15).

We are interested in finite-energy solutions - the most relevant physical case
- i.e. solutions of system (2.12)–(2.14)–(2.15) for which the following energy is
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finite:

E(u) =
1

2

∫
R3

(
|∇u|2 + |∇φ|2 + |∇ ×A|2 + (|∇S0 − qA|2 + (ω − qφ)2)u2

)
dx

+

∫
R3

W (u)dx

(2.16)
Furthermore, in order to study the behavior of some particular functional

which will be introduced later on, it is useful to give the electric charge Q a
specific representation in terms of the solution u, as (see e.g. [5], p.644)

Q = qσ, (2.17)

where

σ =

∫
R3

(ω − qφ)u2 dx. (2.18)

However, our strategy will consist in fixing a real number σ and then find a
solution u which turns out to verify (2.18).

Remark 2.1. When u = 0, the only finite energy gauge potentials which solve
(2.14), (2.15) are the trivial ones A = 0, φ = 0.

In particular, following [5], we shall look for solutions of the above system
which are known in literature as vortices. In order to do that, we need some
preliminaries. First, set

Σ =
{

(x1, x2, x3) ∈ R3 : x1 = x2 = 0
}
,

and define the map

θ : R3 \ Σ→ R
2πZ

,

θ(x1, x2, x3) = Im log(x1 + ix2).

The following definition is crucial:

Definition 2.2. A finite energy solution (u, S0, φ,A) of (2.12)–(2.14)–(2.15) is
called vortex if S0 = lθ for some l ∈ Z \ {0}.

Of course, in this case, ψ has the form

ψ(t, x) = u(x)ei(lθ(x)−ωt), l ∈ Z \ {0}. (2.19)

Remark 2.3. In [5, Proposition 7] it was proved that if (u, ω, φ,A) is a non triv-
ial, finite energy solution of (2.12)–(2.14)–(2.15), then the angular momentum
Mm has the expression

Mm = −
[∫

R3

(l − qa)(ω − qφ)u2dx

]
e3, (2.20)

and, if l 6= 0, it does not vanish. Hence, in this case, the name “vortex” is
justified and by Theorem 1.3 the existence of a spinning Q–ball is guaranteed.
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Now, observe that θ ∈ C∞
(
R3 \ Σ, R

2πZ
)
, and, with an abuse of notation, we

set
∇θ(x) =

x2

x2
1 + x2

2

e1 −
x1

x2
1 + x2

2

e2,

where e1, e2, e3 is the standard frame in R3.
Using the Ansatz (2.19), equations (2.12), (2.14), (2.15) give rise to equations

(1.6), (1.7), (1.8), which is the Klein–Gordon–Maxwell system we shall study
from now on.

Remark 2.4. If A =

(
x2

x2
1 + x2

2

,− x1

x2
1 + x2

2

, 0

)
, we obviously get ∇ ×A = 0.

Viceversa, if A is irrotational and it solves (1.8), then A = l
q∇θ. In such a

case, system (1.6)–(1.7)–(1.8) reduces to the one considered in [30], where, by
Theorem 1.7, we can now say that the nontrivial solution found therein is such
that ω2 ≥ m2.

2.2 Functional approach

We shall follow the functional approach of [5], with minor changes in some
parts. Anyway, our main Theorem 1.3 has been proved thanks to completely
new results (see Lemma 3.4 and Proposition 3.5), which let us avoid any bound
on q, differently from [5].

First, we denote by Lp ≡ Lp(R3) (1 ≤ p < +∞) the usual Lebesgue space
endowed with the norm

‖u‖pp :=

∫
R3

|u|p dx.

We also recall the continuous embeddings

H1(R3) ↪→ D1(R3) ↪→ L6(R3) and H1(R3) ↪→ Lp(R3) ∀ p ∈ [2, 6], (2.21)

being 6 the critical exponent for the Sobolev embedding D1(R3) ↪→ Lp(R3).
Here H1 ≡ H1(R3) denotes the usual Sobolev space with norm

‖u‖2H1 =

∫
R3

(|∇u|2 + u2)dx

and D1 = D1(R3) is the completion of D = C∞C (R3) with respect to the norm

‖u‖2D1 :=

∫
R3

|∇u|2 dx,

induced by the scalar product (u, v)D1 :=
∫
R3 ∇u · ∇v dx.

Moreover, we need the weighted Sobolev space Ĥ1 ≡ Ĥ1
l (R3), depending on

a fixed integer l, whose norm is given by

‖u‖2
Ĥ1 =

∫
R3

[
|∇u|2 +

(
1 +

l2

r2

)
u2

]
dx, l ∈ Z,
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where r =
√
x2

1 + x2
2. Clearly Ĥ1 = H1 if and only if l = 0. Moreover, it is not

hard to see that

C∞C (R3) ∩ Ĥ1(R3) is dense in Ĥ1(R3). (2.22)

We set

H = Ĥ1 ×D1 ×
(
D1
)3
,

‖(u, φ,A)‖2H =

∫
R3

[
|∇u|2 +

(
1 +

l2

r2

)
u2 + |∇φ|2 + |∇A|2

]
dx.

We shall denote by u = u(r, x3) any real function in R3 which depends only on
the cylindrical coordinates (r, x3), and we set

D] =
{
u ∈ D : u = u(r, x3)

}
.

Finally, we shall denote by D1
] the closure of D] in the D1 norm and by Ĥ1

] the

closed subspace of Ĥ1 whose functions are of the form u = u(r, x3).
Now, we consider the functional

J(u, φ,A) =
1

2

∫
R3

[
|∇u|2 − |∇φ|2 + |∇ ×A|2

]
dx

+
1

2

∫
R3

[
|l∇θ − qA|2 − (ω − qφ)2

]
u2dx+

∫
R3

W (u)dx,

(2.23)

where (u, φ,A) ∈ H. Formally, equations (1.6), (1.7) and (1.8) are the Euler–
Lagrange equations of the functional J , and, indeed, standard computations
show that the following lemma holds:

Lemma 2.5. Assume that W satisfies W3). Then the functional J is of class
C1 on H and equations (1.6), (1.7) and (1.8) are its Euler–Lagrange equations.

By the above lemma it follows that any critical point (u, φ,A) ∈ H of J is
a weak solutions of system (1.6)–(1.7)–(1.8), namely∫

R3

[
∇u · ∇v +

[
|l∇θ − qA|2 − (ω − qφ)2

]
uv +W ′(u)v

]
dx = 0 ∀ v ∈ Ĥ1,

(2.24)∫
R3

[
∇φ · ∇w − qu2(ω − qφ)w

]
dx = 0 ∀w ∈ D1, (2.25)∫

R3

[
(∇×A) · (∇×V)− qu2(l∇θ − qA) ·V

]
dx = 0 ∀V ∈ (D1)3. (2.26)

2.3 Solutions in the sense of distributions

Since D is not contained in Ĥ1, a solution (u, φ,A) ∈ H of (2.24), (2.25), (2.26)
need not be a solution of (1.6), (1.7), (1.8) in the sense of distributions on R3.
However, we will show that the singularity of ∇θ(x) on Σ is removable in the
following sense:
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Theorem 2.6. Let (u0, φ0,A0) ∈ H,u0 ≥ 0 be a solution of (2.24), (2.25),
(2.26) (i.e. a critical point of J). Then (u0, φ0,A0) is a solution of system
(1.6)–(1.7)–(1.8) in the sense of distributions, namely∫

R3

[
∇u0 · ∇v +

[
|l∇θ − qA0|2 − (ω − qφ0)2

]
u0v +W ′(u0)v

]
dx = 0 ∀ v ∈ D ,

(2.27)∫
R3

[
∇φ0 · ∇w − qu2

0(ω − qφ0)w
]
dx = 0 ∀w ∈ D , (2.28)∫

R3

[
(∇×A0) · (∇×V)− qu2

0(l∇θ − qA0) ·V
]
dx = 0 ∀V ∈ (D)3. (2.29)

A proof of Theorem 2.6 was given in [5].
Let us now remark that the presence of the term −

∫
R3 |∇φ|2dx gives the

functional J a strong indefiniteness, namely any nontrivial critical point of J
has infinite Morse index. It turns out that a direct approach to finding critical
points for J is very hard. For this reason, as usual in this setting, it is convenient
to introduce a reduced functional.

2.4 The reduced functional

Writing equation (1.7) as

−∆φ+ q2u2φ = qωu2, (2.30)

then we can verify that the following holds:

Proposition 2.7 ([13], Proposition 2.2). For every u ∈ H1(R3), there exists a
unique φ = φu ∈ D1 which solves (2.30) and there exists S > 0 such that

‖φu‖ ≤ qS‖u‖212/5 for every u ∈ H1(R3). (2.31)

Lemma 2.8. If u ∈ Ĥ1
] (R3), then the solution φ = φu of (2.30) belongs to

D1
] (R3).

The proof is an adaptation of the analogue in [13] and is thus omitted.
By the lemma above, we can define the map

u ∈ Ĥ1
] (R3) 7→ Zω(u) = φu ∈ D1

] solution of (2.30). (2.32)

Since φu solves (2.30), clearly we have

dφJ(u, Zω(u),A) = 0, (2.33)

where J is defined in (2.23) and dφJ denotes the partial differential of J with
respect to φ.

Following the lines of the proof of [12, Proposition 2.1], using Lemma 2.8,
we can easily prove the following result:
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Proposition 2.9. The map Zω defined in (2.32) is of class C1 and

(Z ′ω[u])[v] = 2q
(
∆− q2u2

)−1
[(qφu − ω)uv] ∀u, v ∈ D1

] . (2.34)

For u ∈ H1(R3), let Φ = Φu be the solution of (2.30) with ω = 1; then Φ
solves the equation

−∆Φu + q2u2Φu = qu2, (2.35)

and clearly
φu = ωΦu. (2.36)

Now let q > 0; then, by maximum principle arguments, one can show that for
any u ∈ H1(R3) the solution Φu of (2.35) satisfies the following estimate, first
proved in [28],

0 ≤ Φu ≤
1

q
. (2.37)

Now, if (u,A) ∈ Ĥ1 ×
(
D1
)3

, we introduce the reduced action functional

J̃(u,A) = J(u, Zω(u),A).

Recalling that J and the map u → Zω(u) = φu are of class C1 by Lemma 2.5
and Proposition 2.9), respectively, also the functional J̃ is of class C1. Now, by
using the chain rule and (2.33), it is standard to show that the following Lemma
holds:

Lemma 2.10. If (u,A) is a critical point of J̃ , then (u, Zω(u),A) is a critical
point of J (and viceversa).

From (2.35) we have∫
R3

qu2Φudx =

∫
R3

|∇Φu|2dx+ q2

∫
R3

u2Φ2
udx, (2.38)

which is another way of writing (2.33).
Now, by (2.36) and (2.38), we have:

J̃(u,A) = J(u, Zω(u),A) =
1

2

∫
R3

[
|∇u|2 − |∇φu|2 + |∇ ×A|2

]
dx

+
1

2

∫
R3

[
|l∇θ − qA|2 − (ω − qφu)2

]
u2dx+

∫
R3

W (u)dx

=
1

2

∫
R3

[
|∇u|2 + |∇ ×A|2 + |l∇θ − qA|2u2

]
dx+

∫
R3

W (u)dx

− ω2

2

∫
R3

(1− qΦu)u2dx.

Then

J̃(u,A) = I(u,A)− ω2

2
Kq(u), (2.39)
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where I : Ĥ1 ×
(
D1
)3 → R and Kq : Ĥ1 → R are defined as

I(u,A) =
1

2

∫
R3

(
|∇u|2 + |∇ ×A|2 + |l∇θ − qA|2u2

)
dx+

∫
R3

W (u)dx (2.40)

and

Kq(u) =

∫
R3

(1− qΦu)u2dx. (2.41)

Now, let us introduce the reduced energy functional, defined as

Ê(u,A) = E(u, Zω(u),A),

where, as in (2.16),

E(u, φ,A) =
1

2

∫
R3

(
|∇u|2 + |∇φ|2 + |∇ ×A|2 + (|l∇θ − qA|2 + (ω − qφ)2)u2

)
dx

+

∫
R3

W (u)dx.

(2.42)
By using (2.38) and (2.36), we easily find that

Ê(u,A) = I(u,A) +
ω2

2
Kq(u). (2.43)

Recalling (2.17) and (2.18), we note that

Q = qσ = qωKq(u)

represents the (electric) charge, so that, if u 6= 0, we can write

Ê(u,A) = I(u,A) +
ω2

2
Kq(u) = I(u,A) +

σ2

2Kq(u)
.

Then for any σ 6= 0, the functional Eσ,q : (Ĥ1 \ {0})×
(
D1
)3 → R, defined by

Eσ,q(u,A) = I(u,A) +
ω2

2
Kq(u) = I(u,A) +

σ2

2Kq(u)
(2.44)

represents the energy on the configuration (u, ωΦu,A) having charge Q = qσ
or, equivalently, frequency ω = σ

Kq(u) .

The following lemma holds (see [5, Lemma 13]):

Lemma 2.11. The functional

Ĥ1 3 u 7→ K(u) =

∫
R3

(1− qΦu)u2dx

is differentiable and for any u, v ∈ Ĥ1 we have

K ′(u)[v] = 2

∫
R3

(1− qΦu)2uv dx. (2.45)
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Introducing Eσ,q turns out to be a useful choice, as the following easy con-
sequence shows (see [5, Proposition 14]):

Proposition 2.12. Let σ 6= 0 and let (u,A) ∈ Ĥ1 × (D1)3, u 6= 0 be a critical
point of Eσ,q. Then, if we set ω = σ

Kq(u) , (u, Zω(u),A) is a critical point of J .

Therefore, by Proposition 2.12 and Theorem 2.6 we are reduced to study
the critical points of Eσ,q, which is a functional bounded from below, since all
its components are nonnegative.

However Eσ,q contains the term
∫
R3 |∇ ×A|2, which is not a Sobolev norm

in
(
D1
)3

. In order to avoid consequent difficulties, we introduce a suitable

manifold V ⊂ Ĥ1 ×
(
D1
)3

in the following way: first, we set

A0 :=
{

X ∈ C∞C (R3 \ Σ,R3) : X = b(r, z)∇θ; b ∈ C∞C (R3 \ Σ,R)
}
,

and we denote by A the closure of A0 with respect to the norm of
(
D1
)3

. We
now consider the space

V := Ĥ1
] ×A, (2.46)

and we set U = (u,A) ∈ V with

‖U‖V = ‖(u,A)‖V = ‖u‖Ĥ1
]

+ ‖A‖(D1)3 .

We need the following result, for whose proof see [5, Lemma 15]:

Lemma 2.13. If A ∈ A, then∫
R3

|∇ ×A|2dx =

∫
R3

|∇A|2dx.

Working in V has two advantages: first, the components A of the elements
in V are divergence free, so that the term

∫
R3 |∇ ×A|2 can be replaced by

‖A‖2(D1)3 =
∫
R3 |∇A|2. Second, the critical points of J constrained on V satisfy

system (1.6)–(1.7)–(1.8); namely V is a “natural constraint” for J .

3 Proof of Theorem 1.3

In this section we shall always assume that W satisfies W1), W2), W3) and we
will show that Eσ,q constrained on V as in (2.46) has a minimum which is a
nontrivial solution of system (1.6)–(1.7)–(1.8).

We start with the following a priori estimate on minimizing sequences, whose
proof is similar to the proof of [5, Lemma 18]:

Lemma 3.1. For any σ, q > 0, any minimizing sequence (un,An) ⊂ V for

Eσ,q|V is bounded in Ĥ1 ×
(
D1
)3

.
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Proposition 3.2. For any σ, q > 0 there exists a minimizing sequence Un =
(un,An) of Eσ,q|V , with un ≥ 0 and which is also a Palais–Smale sequence for
Eσ,q, i.e.

E′σ,q(un,An)→ 0.

Proof. Let (un,An) ⊂ V be a minimizing sequence for Eσ,q|V . It is not restric-
tive to assume that un ≥ 0. Otherwise, we can replace un with |un| and we
still have a minimizing sequence (see (2.42)). By Ekeland’s Variational Princi-
ple (see [15]) we can also assume that (un,An) is a Palais–Smale sequence for
Eσ,q|V , namely we can assume that

E′σ,q|V (un,An)→ 0.

By using the same technique used to prove Theorem 16 in [6], it follows that
(un,An) is a Palais–Smale sequence also for Eσ,q, that is

E′σ,q(un,An)→ 0.

A fundamental tool in proving the existence result, is given by the following

Lemma 3.3. For any σ, q > 0 and for any minimizing sequence (un,An) ⊂ V
for Eσ,q|V , there exist positive numbers a1 < a2 such that

a1 ≤
∫
R3

(1− qΦun)u2
ndx ≤ a2 for every n ∈ N

and

a1 ≤
∫
R3

u2
ndx ≤ a2 for every n ∈ N.

Proof. The upper bounds are an obvious consequence of Lemma 3.1 and of
(2.37), so that we only prove the lower bounds.

Since Eσ,q(un,An) → infV Eσ,q, from (2.44) we immediately get that there
exists a1 > 0 such that

1∫
R3(1− qΦun)u2

ndx
≤ 1

a1
for every n ∈ N,

and thus all the claims follow.

As a corollary of the previous Lemma, we have the following result, whose
proof is now very easy, but whose consequences are crucial:

Lemma 3.4. For any σ, q > 0

inf
V
Eσ,q > 0.
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Proof. Assume by contradiction that infV Eσ,q = 0. Hence, there would exist a
sequence (un,An)n ⊂ V such that Eσ,q(un,An) → 0 as n → ∞. Since both I
and Kq are nonnegative, from (2.44) we get

I(un,An)→ 0 and
1

Kq(un)
→ 0 as n→∞.

In particular, ∫
R3

(1− qΦun)u2
ndx→∞ as n→∞,

and thus, by (2.37), ∫
R3

u2
ndx→∞ as n→∞,

a contradiction to Lemma 3.3.

The following result, which turns out to be a crucial one, is the only point
where assumption W4) is used.

Lemma 3.5. There exists σ0 > 0 such that there exists u0 ∈ Ĥ1 with

Eσ0,q(u0, 0) < mσ0.

Moreover, if q ≤ 1, then σ0 depends only on D and m, while, if q > 1, then σ0

depends on D, m and q.

Proof. Let us define

v(x) :=

{
1−

√
(r − 2)2 + x2

3, (r − 2)2 + x2
3 ≤ 1,

0, elsewhere.

We define the set Aλ := {(r, x3) ∈ R3 s.t. (r− 2λ)2 + x2
3 ≤ λ2} and we compute

|Aλ| =
∫
Aλ

dx1dx2dx3 = 4π2λ3 = λ3|A1|. (3.47)

Of course, v ∈ Ĥ1
r and, for a future need, we also compute∫

R3

v2dx =

∫
A1

(
1−

√
(r − 2)2 + x2

3

)2

dx1dx2dx3 =
2

3
π2,∫

R3

vdx =

∫
A1

(
1−

√
(r − 2)2 + x2

3

)
dx1dx2dx3 =

4

3
π2,∫

R3

|∇v|2dx =

∫
A1

dx1dx2dx3 = 4π2.

(3.48)

Moreover, for ε ∈ (0, ε0) and λ ≥ 1 we define

uε,λ(x) = ε2λv
(x
λ

)
.
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We also choose ε and λ such that

ελ ≤ 1, (3.49)

so that 0 ≤ uε,λ ≤ ε < ε0 in R3.
Then we have

Eσλ,q(uε,λ, 0) =

∫
R3

[
1

2
|∇uε,λ|2 +

l2

r2

u2
ε,λ

2
+W (uε,λ)

]
dx+

σ2

2Kq(uε,λ)

=
1

2

∫
R3

|∇uε,λ|2 +
l2

2

∫
R3

u2
ε,λ

r2
+
m2

2

∫
R3

u2
ε,λ

+

∫
R3

N(uε,λ) dx+
σ2

2Kq(uε,λ)
.

(3.50)

Now, observe that in Aλ we have

r ≥ 2λ−
√
λ2 − x2

3 ≥ λ,

so that, thanks to (3.47), we can estimate

∫
R3

u2
ε,λ

r2
dx1dx2dx3 = ε4

∫
Aλ

(
λ− λ

√( r
λ
− 2
)2

+
x2

3

λ2

)2

r2
drdx3

≤ ε4

∫
Aλ

(
λ−

√
(r − 2λ)2 + x2

3

)2

λ2
drdx3

≤ ε4

∫
Aλ

(
λ−

√
(r − 2λ)2 + x2

3

λ

)2

drdx3 ≤ ε4|Aλ| = 4π2ε4λ3.

(3.51)

By the change of variable y = x/λ we immediately get∫
Aλ

|∇uε,λ|2dx = ε4λ3

∫
A1

|∇v|2dx,∫
Aλ

(uε,λ)ϑdx = ε2ϑλϑ+3

∫
A1

vϑdx ∀ θ > 0.

Therefore, (3.48), (3.50), (3.51) and W4) imply

Eσ,q(uε,λ, 0) ≤ 2π2ε4λ3 +
m2π2

3
ε4λ5 + 2π2l2ε4λ3

−Dε2τλτ+3

∫
A1

vτdx+
σ2

2Kq(uε,λ)
.

(3.52)

Now, let us note that

−∆Φuε,λ = qu2
ε,λ(1− qΦuε,λ) ≤ qu2

ε,λ,
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so that, by the Comparison Principle, for every x ∈ R3 we have

Φuε,λ(x) ≤ q

4π

∫
R3

u2
ε,λ(x− y)

|y|
dy =

qε4λ5

4π

∫
R3

v2(y)

|x− λy|
dy ≤ q

2
ε4λ4. (3.53)

Indeed: ∫
R3

v2(y)

|x− λy|
dy ≤

∫
A1

1

|x− λy|
dy =

1

λ3

∫
A1/λ

1

|x− z|
dz

=
1

λ3

∫
A1/λ−x

1

|z|
dz ≤ 1

λ3

∫
B(0,1/λ)

1

|z|
dz =

2π

λ
,

and (3.53) follows.
As a consequence,

Kq(uε,λ) =

∫
R3

u2
ε,λ(1− qΦuε,λ) dx ≥

∫
R3

u2
ε,λ(1− q2

2
ε4λ4) dx

=
2

3
π2(1− q2

2
ε4λ4)ε4λ5.

Hence, choosing
ε4λ4 ≤ 1/q2, (3.54)

(3.52) becomes

Eσ,q(uε,λ, 0) ≤ 2π2ε4λ3 +
m2π2

3
ε4λ5 + 2π2l2ε4λ3

−Dε2τλτ+3

∫
A1

vτdx+
3σ2

π2ε4λ5
.

Now, take

ε4λ5 =
6σ

mπ2
, (3.55)

so that (3.54) implies

λ ≥ 6σ

mπ2
q2. (3.56)

With this choice we find

Eσ,q(uε,λ, 0) ≤ 12
σ

m
(1 + l2)λ−2 + 2mσ − Eλ3−3τ/2 +

mσ

2
,

where we have set E = D(6σ/mπ2)τ/2
∫
vτ .

Let us show that we can find λ ≥ max{1, 3q2σ/mπ2} (and thus ε ≤ 1)
satisfying (3.49) and (3.54) such that

12
σ

m
(1 + l2)λ−2 +

5

2
mσ − Eλ3−3τ/2 ≤ mσ,

that is
12

m
(1 + l2) +

3

2
mλ2 − Fλ5−3τ/2 ≤ 0, (3.57)
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where F = D(6/mπ2)τ/2στ/2−1
∫
vτ . Also note that 5− 3τ/2 < 2, since τ > 2.

Indeed, we choose

λ ≥
√

8(1 + l2)

m
, (3.58)

so that we can estimate the left hand side of (3.57) with

12

m
(1 + l2) +

3

2
mλ2 − Fλ5−3τ/2 ≤ 3mλ2 − Fλ5−3τ/2,

and the last quantity is non positive as soon as

λ ≤
(
F

3m

)2/3(τ−2)

. (3.59)

Summing up, from (3.49), (3.54), (3.55), (3.56), (3.58) and (3.59), we are led to
solve the following set of conditions:

6σ

mπ2
≤ λ (3.60)

6σ

mπ2
q2 ≤ λ (3.61)√

8(1 + l2)

m
≤ λ (3.62)

λ ≤
(
F

3m

)2/3(τ−2)

. (3.63)

Now, if q ≤ 1, (3.60) implies (3.61). Then, choose σ such that

6σ

mπ2
≥
√

8(1 + l2)

m
,

i.e.

σ ≥
π2
√

8(1 + l2)

6
. (3.64)

Hence, from (3.60) and (3.63), we must solve

6σ

mπ2
≤ λ ≤

(
G

3m

)2/3(τ−2)

σ1/3,

where F = Gσ
τ−2
2 , so that G is independent of σ.

Of course, such a choice of λ is possible provided that

σ ≤
(
mτ−4π2τ−6

6τ−33
D

∫
R3

vτdx

)1/(τ−2)

≤
(
mτ−4π2τ−6

6τ−33
D

∫
R3

v2dx

)1/(τ−2)
(3.65)
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In conclusion, (3.64), (3.65) and (3.48) imply

π2
√

8(1 + l2)

6
≤ cD1/(τ−2)m(τ−4)/(τ−2),

which is true by W4).
On the other hand, if q > 1, proceeding as above, we find a suitable λ

provided that

π2
√

8(1 + l2)

6
≤ cD1/(τ−2)m(τ−4)/(τ−2) 1

q3
.

In any case, the lemma holds.

As a consequence, we can prove the following

Lemma 3.6. There exists c > 0 and a minimizing sequence Un = (un,An) ⊂ V
of Eσ0,q|V such that∫

R3

(|un|` + |un|p)dx ≥ c > 0 for every n ∈ N.

Proof. By Lemma 3.5 we know that there exists δ > 0 and n0 ∈ N such that

Eσ0,q(un,An) ≤ mσ0 − δ,

which implies in particular that

m2

2

∫
R3

u2
ndx+

∫
R3

N(un) dx+
σ2

0

2
∫
R3 u2

ndx
≤ mσ0 − δ.

Thus ∫
R3

N(un) dx ≤ mσ0 − δ −
(
m2

2

∫
R3

u2
ndx+

σ2

2
∫
R3 u2

ndx

)
≤ −δ,

since a/(2b) + b/(2a) ≥ 1 for any a, b > 0. Then∣∣∣∣∫
R3

N(un) dx

∣∣∣∣ ≥ δ for all n ≥ n0,

and W2) imply the claim, up to a relabelling of the sequence.

By Lemma 3.1 we know that any minimizing sequence Un := (un,An) ⊂ V of
Eσ0,q|V weakly converges (up to a subsequence). Observe that Eσ0,q is invariant
by translations along the z-axis, namely for every U ∈ V and L ∈ R we have

Eσ0,q(TLU) = Eσ0,q(U),

where
TL(U)(x, y, z) = U(x, y, z + L). (3.66)
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As a consequence of this invariance, we have that (un,An) does not contain
in general a strongly convergent subsequence. To overcome this difficulty, we
will show that there exists a minimizing sequence (un,An) of Eσ0,q|V which,
up to translations along the z-direction, weakly converges to a non–trivial limit
(u0,A0). Eventually, we will show that (u0,A0) is a critical point of Eσ,q for a
suitable σ > 0.

In order to proceed with this strategy, we start proving the following weak
compactness result, whose proof is an adaptation of [5, Proposition 22], but
whose statement is much more general:

Proposition 3.7. There exists a Palais–Smale sequence Un = (un,An) of Eσ0,q

which weakly converges to (u0,A0), u0 ≥ 0 and u0 6= 0.

Proof. By Proposition 3.2, we know that there exists a minimizing sequence
Un = (un,An) of Eσ0,q|V , with un ≥ 0 and which is also a Palais–Smale se-
quence for Eσ0,q. Moreover, by Lemma 3.6, we know that there exists c > 0
such that

‖un‖`L` + ‖un‖pLp ≥ c > 0 for n large. (3.67)

By Lemma 3.1 the sequence {Un} is bounded in Ĥ1×
(
D1
)3

, so we can assume
that it weakly converges. However the weak limit could be trivial. We will show
that there is a sequence of integers jn such that Vn := TjnUn ⇀ U0 = (u0,A0)

in H1 ×
(
D1
)3

, with u0 6= 0, see (3.66).
For any integer j we set

Ωj = {(x1, x2, x3) : j ≤ x3 < j + 1}.

In the following we denote by c various positive absolute constants which may
vary also from line to line. We have for all n,

‖un‖`L` =
∑
j

(∫
Ωj

|un|`dx

)1/`(∫
Ωj

|un|`dx

) `−1
`

≤ sup
j
‖un‖L`(Ωj)

∑
j

(∫
Ωj

|un|`dx

) `−1
`

≤ c sup
j
‖un‖L`(Ωj)

∑
j

‖un‖`−1
H1(Ωj)

= c sup
j
‖un‖L`(Ωj)‖un‖

`−1
H1(R3) ≤ (since ‖un‖H1(R3) is bounded)

≤ c sup
j
‖un‖L`(Ωj) for all n ≥ 1.

(3.68)

In the same way we get

‖un‖pLp ≤ c sup
j
‖un‖Lp(Ωj) for all n ≥ 1. (3.69)
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Then, by (3.67), (3.68) and (3.69) it immediately follows that, for n large, we
can choose an integer jn such that

‖un‖L`(Ωjn ) + ‖un‖Lp(Ωjn ) ≥ c > 0. (3.70)

Now set

(u′n,A
′
n) = U ′n(x1, x2, x3) = Tjn(Un) = Un(x1, x2, x3 + jn).

Since (U ′n)n is again a minimizing sequence for Eσ0,q|V , by Lemma 3.1 the

sequence {u′n} is bounded in Ĥ1(R3); then (up to a subsequence) it weakly
converges to u0 ∈ Ĥ1(R3). Clearly u0 ≥ 0, since u′n ≥ 0. We want to show
that u0 6= 0. Now, let ϕ = ϕ(x3) be a nonnegative, C∞–function whose value
is 1 for 0 < x3 < 1 and 0 for |x3| > 2. Then, the sequence ϕu′n is bounded in
H1

0 (R2× (−2, 2)), and moreover ϕu′n has cylindrical symmetry. Then, using the
compactness result of Esteban–Lions [17], we have that, up to a subsequence,

ϕu′n → ϕu0 in L`(R2 × (−2, 2)), in Lp(R2 × (−2, 2)) and a.e. in R2 × (−2, 2).
(3.71)

Moreover for r = p, ` we clearly have

‖ϕu′n‖Lr(R2×(−2,2)) ≥ ‖u′n‖Lr(Ω0) = ‖un‖Lr(Ωjn ). (3.72)

Then by (3.71), (3.72) and (3.70) we have

‖ϕu0‖L`(R2×(−2,2)) + ‖ϕu0‖Lp(R2×(−2,2)) ≥ c > 0.

Thus we have that u0 6= 0, as claimed.

In order to approach the conclusion, we need

Proposition 3.8. For every q > 0 there exists σ > 0 such that Eσ,q has a
critical point (u0,A0), u0 6= 0, u0 ≥ 0.

Proof. By Proposition 3.7, there exists a sequence Un = (un,An) in V , with
un ≥ 0 and such that

E′σ0,q(un,An)→ 0 (3.73)

and
(un,An) ⇀ (u0,A0) , u0 ≥ 0, u0 6= 0.

We now show that there exists σ > 0 such that U0 = (u0,A0) is a critical
point of Eσ,q.

By (3.73), in particular we get that

dEσ0,q(Un)[w, 0]→ 0 and dEσ0,q(Un)[0,w]→ 0 , for any (w,w) ∈ Ĥ1×(C∞C )
3
.

Then for any w ∈ Ĥ1 and w ∈ (C∞C )
3

we have

∂uI(Un)[w] + ∂u

(
σ2

0

2Kq(un)

)
[w]→ 0 (3.74)
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and
∂AI(Un)[w]→ 0, (3.75)

where ∂u and ∂A denote the partial derivatives of I with respect to u and A,
respectively. So from (3.74) we get for any w ∈ Ĥ1,

∂uI(Un)[w]−
σ2

0K
′
q(un)

2 (Kq(un))
2 [w]→ 0,

which can be written as follows:

∂uI(Un)[w]−
ω2
nK
′
q(un)

2
[w]→ 0, (3.76)

where we have set
ωn =

σ0

Kq(un)
.

By Lemma 3.3 we have that (up to a subsequence)

ωn → ω0 > 0.

Then by (3.76) we get for any w ∈ Ĥ1

∂uI(Un)[w]−
ω2

0K
′
q(un)

2
[w]→ 0. (3.77)

Now, let Φn be the solution in D1 of the equation

−∆Φn + q2u2
nΦn = qu2

n. (3.78)

Since {un} is bounded in H1 and since Φn solves (3.78), by (2.31) we have that
{Φn} is bounded in D1 and, checking with test functions in C∞C (R3), it is easy
to see that (up to a subsequence) its weak limit Φ0 is a weak solution of

−∆Φ0 + q2u2
0Φ0 = qu2

0. (3.79)

Moreover, by Lemma 2.11, we have

K ′q(un)[w] = 2

∫
R3

unw(1− qΦn)2dx and K ′q(u0)[w] = 2

∫
R3

u0w(1− qΦ0)2dx

(3.80)
for every w ∈ Ĥ1.

We claim that

K ′q(un)[w]→ K ′q(u0)[w] for any w ∈ Ĥ1. (3.81)

Indeed, by (2.22), for any w ∈ Ĥ1 and every ε > 0, there exists wε ∈ C∞C ∩ Ĥ1

such that ‖w − wε‖Ĥ1 < ε. Then,

K ′q(un)[w]−K ′q(u0)[w] = K ′q(un)[w − wε]
+ [K ′q(un)−K ′q(u0)][wε]−K ′q(u0)[wε − w].
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But the sequence of operators (K ′(un))n is bounded in (Ĥ1)′, while [K ′q(un)−
K ′q(u0)][wε]→ 0 by the Rellich Theorem. The claim follows.

Similar estimates show that for any w ∈ Ĥ1

∂uI(Un)[w]→ ∂uI(U0)[w]. (3.82)

Then, passing to the limit in (3.77), by (3.81) and (3.82), we get

∂uI(U0)[w]−
ω2

0K
′
q(u0)

2
[w] = 0 for any w ∈ Ĥ1. (3.83)

On the other hand, similar arguments show that we can pass to the limit also
in ∂AI(Un)[w] and have

∂AI(Un)[w]→ ∂AI(U0)[w] for all w ∈ (C∞C )
3
. (3.84)

From (3.75) and (3.84) we get

∂AI(U0)[w] = 0 for all w ∈ (C∞C )
3
,

and, by density, for any w ∈
(
D1
)3

. From (3.83) we thus deduce that U0 =
(u0,A0) is a critical point of Eσ,q with σ = ω0Kq(u0) > 0.

Now we are ready to prove the main existence Theorem 1.3.

Proof of Theorem 1.3. The first part of Theorem 1.3 immediately follows from
Propositions 2.12, 3.8 and Theorem 2.6. In fact, if the couple (u0,A0) is
like in Proposition 3.8, by Proposition 2.12 and Theorem 2.6 we deduce that
(u0, ω0, φ0,A0) with ω0 = σ

Kq(u0) , φ0 = Zω0(u0), solves (1.6)–(1.7)–(1.8).

Now assume q = 0, then, by (1.7) and (1.8), we easily deduce that φ0 = 0
and A0 = 0. Finally assume that q > 0. Then, since ω0 > 0, by (1.7) we deduce
that φ0 6= 0. Moreover by (1.8) we deduce that A0 6= 0 if and only if l 6= 0.

4 Solutions with full probability

Throughout this section we are concerned with a different approach to system
(1.6)–(1.7)–(1.8): namely, we look for solutions having full probability and we
prove Proposition 1.10. From a physical point of view such solutions are the
most relevant ones, and in general they cannot be obtained from the solutions
found in Theorem 1.3 by a rescaling argument, unless some homogeneity in the
potential is given. However, this is not the case if N 6= 0.

Therefore, we will work in the new manifold Ṽ := V ∩ S, where

S =
{

(u,A) ∈ V :

∫
R3

u2dx = 1
}
.

We follow the lines of the previous part of the paper, and for this reason
we will be sketchy, though some differences will appear. For example, we begin
with the following
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Proposition 4.1. For any σ, q ≥ 0 there exists a minimizing sequence Un =
(un,An) of Eσ,q|Ṽ , with un ≥ 0, and a sequence (µn)n ∈ R, such that

E′σ,q(un,An)(v,B)− µn
∫
R3

unv dx→ 0 ∀ (v,B) ∈ Ṽ .

Moreover, (µn)n converges to some µ ∈ R as n→∞.

Proof. Let (un,An) ⊂ V be a minimizing sequence for Eσ,q|Ṽ . Working with
un ≥ 0, or replacing un with |un| if necessary, we still have a minimizing se-
quence (see (2.42)). By Ekeland’s Variational Principle we can also assume that
(un,An) is a Palais–Smale sequence for Eσ,q|Ṽ , namely we can assume that

E′σ,q|Ṽ (un,An)→ 0,

i.e. there exists a sequence (µn)n ∈ R with

E′σ,q(un,An)(v,B)− µn
∫
R3

unvdx→ 0, ∀ v ∈ Ĥ1
] , ∀B ∈ A. (4.85)

Taking (un,An) as a test function and using
∫
R3 u

2
ndx = 1 for all n ∈ N, we get

E′σ,q(un,An)(un,An)−µn
∫
R3

u2
ndx = E′σ,q(un,An)(un,An)−µn → 0. (4.86)

From (4.86) we get

µn = E′σ,q(un,An)(un,An) + o(1)

=

∫
R3

|∇un|2dx+

∫
R3

|l∇θ − qAn|2u2
ndx+

∫
R3

W ′(un)undx

+

∫
R3

|∇ ×An|2dx+ q

∫
R3

u2
n|An|2dx+ σK ′q(un)undx+ o(1),

(4.87)

where o(1) → 0 as n → ∞. Thus, since all the terms in the right-hand-side of
(4.87) are bounded, as already shown for Lemma 3.1, we get that also (µn)n is
bounded; hence, there exists µ ∈ R such that, up to a subsequence, µn → µ as
n→∞.

Now we restate Proposition 3.7 which still holds in this case thanks to Propo-
sition 4.1, hence we get

Proposition 4.2. There exists a Palais–Smale sequence Un = (un,An) of Eσ0,q

which weakly converges to (u0,A0), u0 ≥ 0 and u0 6= 0.

In order to prove Proposition 1.10 we should just notice that the analogue
of Proposition 3.8 still holds using Proposition 4.1 and Proposition 4.2. Hence,
we just restate the result of Proposition 3.8 as follows:

Proposition 4.3. For every q > 0 there exists σ > 0 such that Eσ,q has a
critical point (u0,A0), u0 6= 0, u0 ≥ 0.
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Finally, we conclude with the

Proof of Proposition 1.10. It is a natural consequence of what already proved,
exactly as done for the proof of Theorem 1.3 in the previous section. Namely,
since Proposition 4.3 holds by Proposition 4.1 and Proposition 4.2, we can
conclude that our claim is true thanks to Propositions 4.3, 2.12 and Theorem
2.6.

Now, suppose that ω2 ≤ m2 and N ′(s)s ≥ 0. Passing to the limit as n→∞
in (4.85) with v = u0 and B = 0, as in the proof of Proposition 3.8, we get∫

R3

[|∇u0|2 + |l∇θ − qA0|2u2
0 − (ω − qφu0

)2u2
0 +W ′(u0)u0]dx = µ

∫
R3

u2
0dx,

which can be written as∫
R3

[|∇u0|2 + |l∇θ − qA|2u2
0 + (m2 − ω2)u2

0 − (qφ− 2ω)u2
0qφu0

+N ′(u0)u0]dx = µ

∫
R3

u2
0dx.

Thanks to (2.36), (2.37) and to the hypotheses under consideration, we get
µ > 0, so that the effective mass (see Definition 1.11) is strictly less than the
original mass.

5 Non-existence of standing solutions

In this section we shall prove Theorem 1.7. To this purpose, we re–write the
usual system using (1.9), so that we deal with

−∆u+
[
|l∇θ − qA|2 +m2 − (ω − qφ)2

]
u+N ′(u) = 0, (5.88)

−∆φ = q(ω − qφ)u2, (5.89)

∇× (∇×A) = q(l∇θ − qA)u2. (5.90)

Proof of Theorem 1.7. If A = 0, in [12] a variational identity for solutions of
(5.88) was given. However, the same identity holds when A 6= 0, and it reads
as follows:

0 =−
∫
R3

|∇u|2dx+

∫
R3

|∇φ|2dx− 3Ω

∫
R3

u2dx

− 3q

∫
R3

(2ω − qφ)φu2dx+ 6

∫
R3

F (u)dx,

(5.91)

where we have set Ω = m2 − ω2, F (s) =
∫ s

0
f(t) dt and

f(u) = −|l∇θ − qA|2u−N ′(u).

Since φ solves (5.89), we have∫
R3

|∇φ|2dx = q

∫
R3

(ω − qφ)u2φdx; (5.92)
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substituting (5.92) into (5.91) and computing F (u) we get

0 =−
∫
R3

|∇u|2dx−
∫
R3

[
3Ω + 5qωφ− 2q2φ2 + 3|l∇θ − qA|2

]
u2dx

− 6

∫
R3

N(u) dx.

(5.93)

By (2.36) and (2.37), if N ≥ 0 and ω2 < m2, we get u ≡ 0.
Moreover, since u solves (5.88), we have∫

R3

|∇u|2dx+

∫
R3

|l∇θ−qA|2u2dx+m2

∫
R3

u2dx−
∫
R3

(ω−qφ)2u2+

∫
R3

N ′(u)udx = 0;

(5.94)
substituting the expression

∫
R3 |∇u|2dx taken from (5.94) into (5.93), we obtain

0 =q

∫
R3

(qφ− 3ω)u2φdx− 2

∫
R3

|l∇θ − qA|2u2dx

+ 2(ω2 −m2)

∫
R3

u2dx+

∫
R3

[N ′(u)u− 6N(u)]dx.

(5.95)

Thanks to (2.36) and (2.37), all the terms in (5.95) are non–positive if ω2 < m2,
N ′(s)s− 6N(s) ≤ 0; hence u ≡ 0.

Finally, when N ′(s)s ≥ 2N(s), we proceed as follows: from (5.94) we get

Ω

∫
R3

u2dx =−
∫
R3

|∇u|2dx−
∫
R3

|lθ − qA|2u2dx

− 2qω

∫
R3

u2φdx+ q2

∫
R3

u2φ2dx−
∫
R3

N ′(u)u dx.

(5.96)

Substituting (5.96) into (5.93) we get

0 = 2

∫
R3

|∇u|2dx+

∫
R3

qu2φ(ω − qφ)dx+

∫
R3

[3N ′(u)u− 6N(u)] dx. (5.97)

Analogously, now all the coefficients are non–negative, and thus u ≡ 0.
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Linéaire 1 (1984), no.4, 223–283.

[26] E. Long, Existence and stability of solitary waves in non–linear Klein–
Gordon–Maxwell equations, Rev. Math. Phys. 18 (2006), 747–779.

[27] M. Machedon and J. Sterbenz, Almost optimal local well-posedness for the
(3+1)–dimensional Maxwell–Klein–Gordon equations, J. Amer. Math. Soc.
17 (2004), no. 2, 297–359.

[28] D. Mugnai, Coupled Klein–Gordon and Born–Infeld type equations: looking
for solitary waves, R. Soc. Lond. Proc. Ser. A 460 (2004), 1519–1528.

[29] D. Mugnai, The pseudorelativistic Hartree equation with a general nonlin-
earity: existence, non existence and variational identities, 28 p, submitted.

[30] D. Mugnai, Solitary waves in Abelian Gauge Theories with strongly non-
linear potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010),
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