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Abstract. We give a simple convexity-based proof of the following fact: the

only eigenfunction of the p−Laplacian that does not change sign is the first one.

The method of proof covers also more general nonlinear eigenvalue problems.

1. Introduction

Let Ω ⊂ RN be a connected open set and p ∈ (1,∞). A (positive) number λ is
said to be a Dirichlet eigenvalue of the p−Laplace operator if

(1.1) −div (|∇u|p−2∇u) = λ |u|p−2 u, in Ω,

holds for some nontrivial function u ∈W 1,p
0 (Ω). In this case the function u is called

eigenfunction. Here solutions to (1.1) are always intended in a weak sense. Observe
that eigenvalues can be characterized as critical values of the nonlinear Dirichlet
integral

∫
Ω
|∇u|p, restricted to the manifold

Sp = {u ∈W 1,p
0 (Ω) : ‖u‖Lp(Ω) = 1}.

The corresponding critical points are the eigenfunctions, normalized by the con-
straint on the Lp norm. The first eigenvalue λ1(Ω) plays a distinguished role, since
it corresponds to the global minimum of the Dirichlet integral on Sp. Modulo the
choice of its sign, the first (normalized) eigenfuction is unique (see [3]).

The aim of this short note is to show that a subtle form of hidden convexity1

implies the well-known result, that the only eigenfunctions with constant sign are
the ones associated with λ1(Ω). This has been derived in various places, under
different assumptions on the regularity of Ω (see [1, 4, 5] and [6] for example). We
believe that the most simple and direct proof of this fact was given by Kawohl and
Lindqvist ([4]), in turn inspired by [6].

The proof in [4] is based on a clever use of the equation, but it does not clearly
display the reason behind such a remarkable result. As we will show, it is just
a matter of convexity of the energy functional

∫
Ω
|∇u|p. More precisely,

∫
Ω
|∇u|p

enjoys a sort of geodesic convexity on the intersection between the cone of positive
functions and the manifold Sp. This allows one to conclude that on this space the
global analysis of

∫
Ω
|∇u|p is trivial, because convexity implies that there can not be

any critical point, except for the global minimizer, which as already said is unique
(except for its sign). In the end, we believe this to be the deep reason why it is
impossible to have positive eigenfunctions corresponding to a λ > λ1(Ω).
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The plan of this small note is the following. In the next section, we prove a con-
vexity property of variational integrals, whose Lagrangians depend homogeneously
on the gradient. This is a variation on the convexity principle used by Belloni and
Kawohl in [3] (see also [2]), in order to prove the uniqueness of the first (normal-
ized) eigenfunction of the p−Laplacian. Then, Section 3 shows how this convexity
can be used to derive the above claimed result about positive eigenfunctions. For
the sake of generality, we will give the result in a slightly more general version (see
Theorem 3.1), that can be applied to more general nonlinear eigenvalue problems
such as

(1.2) −div∇H(x,∇u) = b(x)λ |u|p−2 u,

where H : Ω×RN → R is C1 convex and p−positively homogeneous in the gradient
variable and b ∈ L∞(Ω), with b ≥ 0.

2. The Hidden Convexity Lemma

The main tool of our proof is the following convexity principle, used by Belloni
and Kawohl in [3] for the functional

∫
|∇u|p. In order to make the paper self-

contained, we repeat here the proof. The statement is slightly more general than in
[3] so as to include a wider list of functionals. Moreover, we relax the strict posivity
requirement on the functions.

Lemma 2.1. Given Ω ⊂ RN an open set, let p ≥ 1 and let H : Ω× RN → R+ be
a measurable function such that

z 7→ H(x, z) is convex and positively homogeneous of degree p, i.e.

H(x, tz) = tpH(x, z) for every t ≥ 0, (x, z) ∈ Ω× RN .
(2.1)

If for every u0, u1 ∈W 1,p(Ω) such that u0, u1 ≥ 0 on Ω and∫
Ω

H(x,∇ui(x)) dx < +∞, i = 0, 1,

σt(x) is defined by

σt(x) :=
(

(1− t)u0(x)p + t u1(x)p
) 1

p

, t ∈ [0, 1], x ∈ Ω,

then the mapping

(2.2) t 7→
∫

Ω

H(x,∇σt(x)) dx is convex on [0, 1].

Proof. We claim that∫
Ω

H(x,∇σt(x)) dx ≤ (1− t)
∫

Ω

H(x,∇u0(x)) dx

+ t

∫
Ω

H(x,∇u1(x)) dx, t ∈ [0, 1].

(2.3)

It is easily seen that for every t ∈ [0, 1], σt defines an element of W 1,p(Ω). Indeed,
this is nothing but the composition of the vector-valued Sobolev map(

(1− t)
1
p u0, t

1
p u1

)
∈W 1,p(Ω;R2),
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with the `p norm, i.e. ‖(x, y)‖`p = (|x|p + |y|p)1/p. Moreover, the latter is a C1

function outside the origin and∇ui vanishes almost everywhere on the set u−1
i ({0}),

i = 0, 1. Thus the usual chain rule formula holds, i.e. we obtain

∇σt = σ1−p
t

[
(1− t)∇u0(x)up−1

0 + t∇u1(x)up−1
1

]
= σt

[
(1− t)up0

σpt

∇u0

u0
+
t up1
σpt

∇u1

u1

]
,

almost everywhere in Ω. Observe that the latter is a convex combination of ∇u0/u0

and ∇u1/u1. Using the convexity and homogeneity of H in the z variable, we then
get

H(x,∇σt) ≤ σpt
[

(1− t)up0
σpt

H

(
x,
∇u0

u0

)
+
t up1
σpt

H

(
x,
∇u1

u1

)]
= (1− t)up0 H

(
x,
∇u0

u0

)
+ t up1 H

(
x,
∇u1

u1

)
= (1− t)H(x,∇u0) + tH(x,∇u1).

By integrating over Ω, the claim (2.3) is proved. Finally, for every t0, t1 ∈ [0, 1] we
have

σ(1−λ) t0+λ t1 =
(

(1− λ)σpt0 + λσpt1

) 1
p

, λ ∈ [0, 1].

Thus (2.2) follows by inequality (2.3), replacing u0 and u1 by σt0 and σt1 , respec-
tively. �

Remark 2.2. It is noteworthy that the curves of the form

σt(x) =
(

(1− t)u0(x)p + t u1(x)p
) 1

p

, t ∈ [0, 1],

are the constant speed geodesics of Cp = {u ∈ Lp(Ω) : u ≥ 0}, endowed with the
metric

dp(u0, u1) =

(∫
Ω

|u0(x)p − u1(x)p| dx
) 1

p

.

Indeed, we have

dp(σt, σs) =

(∫
Ω

|σt(x)p − σs(x)p| dx
) 1

p

= |t− s|
(∫

Ω

|u0(x)p − u1(x)p| dx
) 1

p

= |t− s| dp(u0, u1),

for all s, t ∈ [0, 1].

3. The main result

We are going to prove the main result of this note. The argument is very simple
and just based on the convexity principle of Lemma 2.1, but a mild approximation
argument is needed. Since this is essentially a uniqueness result, we do not insist
on the sharp hypotheses needed to obtain existence for the problem defining λ1(Ω)
below. Rather, we will directly assume that this is well-defined. In what follows,
for simplicity we will denote by ∇H(x, z) the gradient of H with respect to the z
variable.
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Theorem 3.1. Let Ω ⊂ RN be an open set, having finite measure and p > 1. Let
H : Ω× RN → R+ be a function such that

z 7→ H(x, z) is C1 convex and homogeneous of degree p, i.e.

H(x, tz) = |t|pH(x, z) for every t ∈ R, (x, z) ∈ Ω× RN .
(3.1)

Assume that the variational problem

λ1(Ω) = min
u∈W 1,p

0 (Ω)

{∫
Ω

H(x,∇u) dx : ‖u‖Lp(Ω) = 1

}
,

admits at least one solution. If there exist λ and a strictly positive v ∈ W 1,p
0 (Ω)

such that

(3.2)
1

p

∫
Ω

〈∇H(x,∇v(x)),∇ϕ(x)〉 dx = λ

∫
Ω

|v(x)|p−2 v(x)ϕ(x) dx,

for all ϕ ∈W 1,p
0 (Ω), then

(3.3) λ = λ1(Ω).

Proof. First of all, we can assume that ‖v‖Lp(Ω) = 1, since equation (3.2) is (p−1)-
homogeneous and v 6≡ 0. Moreover, by testing the equation with ϕ = v and by
homogeneity of H, we get∫

Ω

H(x,∇v(x)) dx =
1

p

∫
Ω

〈∇H(x,∇v(x)),∇v(x)〉 dx = λ ≥ λ1(Ω),

since v is admissible for the problem defining λ1(Ω). Let us assume by contradiction
that (3.3) is not true. This means that we have

(3.4) λ1(Ω)− λ < 0.

Then we take a minimizer u ∈ W 1,p
0 (Ω) for (3.3). Thanks to the homogeneity of

H, we can suppose that u ≥ 0 without loss of generality. Indeed, the function
ũ = |u| is nonnegative and still satisfies the constraint on the Lp norm. Since
H(x, z) = H(x,−z), we get H(x,∇ũ) = H(x,∇u) almost everywhere and∫

Ω

H(x,∇ũ(x)) dx =

∫
Ω

H(x,∇u(x)) dx = λ1(Ω).

For every ε� 1, we set for simplicity

uε = u+ ε and vε = v + ε.

Now we define as before the following curve of functions

σt(x) =
(

(1− t) vε(x)p + t uε(x)p
) 1

p

, x ∈ Ω, t ∈ [0, 1],

connecting vε and uε. By Lemma 2.1 we can infer that∫
Ω

H(x,∇σt(x)) dx ≤ (1− t)
∫

Ω

H(x,∇vε(x)) dx+ t

∫
Ω

H(x,∇uε(x)) dx

= t

[∫
Ω

H(x,∇u(x)) dx−
∫

Ω

H(x,∇v(x)) dx

]
+

∫
Ω

H(x,∇vε(x)) dx, t ∈ [0, 1],
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where we used that ∇uε = ∇u and ∇vε = ∇v. The last estimate implies that∫
Ω

H(x,∇σt(x))−H(x,∇σ0(x))

t
dx ≤

∫
Ω

[
H(x,∇u(x))−H(x,∇v(x))

]
dx

= λ1(Ω)− λ, t ∈ (0, 1],

where we used that σ0 = vε by construction. By the convexity of H in the left-hand
side we can infer∫

Ω

〈
∇H(x,∇σ0(x)),

∇σt(x)−∇σ0(x)

t

〉
dx ≤ λ1(Ω)− λ.

Since∇σ0 = ∇vε = ∇v, we can use the equation (3.2) and test it with ϕ = σt−σ0 ∈
W 1,p

0 (Ω). This yields

p λ

∫
Ω

v(x)p−1 σt(x)− σ0(x)

t
dx ≤ λ1(Ω)− λ, for every ε� 1, t ∈ (0, 1].

We first pass to the limit as t goes to 0. Observe that by concavity of the function
s 7→ s1/p, we have

vp−1 σt − σ0

t
≥ vp−1 (σ1 − σ0) = vp−1 (uε − vε) ∈ L1(Ω), t ∈ (0, 1],

then by Fatou Lemma the limit as t goes to 0 gives

λ

∫
Ω

(
v(x)

vε(x)

)p−1 [
uε(x)p − vε(x)p

]
dx ≤ λ1(Ω)− λ, for every ε� 1.

We now send ε to 0. Since u and v have the same Lp norm, we finally end up with

0 = λ

[∫
Ω

u(x)p dx−
∫

Ω

v(x)p dx

]
≤ λ1(Ω)− λ,

where we also used that v > 0 on Ω. This contradicts assumption (3.4), hence the
Theorem is proved. �

Remark 3.2. Observe that we required the solution v to (3.2) to be strictly positive
on Ω. This is not a big deal, since in many situations of interest Harnack’s inequality
holds true and guarantees that nontrivial nonnegative solutions of (3.2) do not
vanish at interior points of Ω. This is the case for example for H : Ω× RN → R+

satisfying (3.1) and the growth conditions

c1 |z|p ≤ H(x, z) ≤ c2 |z|p, (x, z) ∈ Ω× RN ,

with two positive constants c1 ≥ c2 > 0.

The uniqueness of positive eigenfunctions of the p−Laplacian is now an easy
consequence of Theorem 3.1.

Corollary 3.3. Let Ω ⊂ RN be a connected open set having finite measure. Then
the only Dirichlet eigenfunctions of the p−Laplacian having constant sign are those
corresponding to the first eigenvalue, that is defined by

λ1(Ω) = min
u∈W 1,p

0 (Ω)

{∫
Ω

|∇u(x)|p dx : ‖u‖Lp(Ω) = 1

}
.
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Remark 3.4. The same conclusions can be drawn for the Dirichlet eigenfunctions

of the so called pseudo p−Laplacian ∆̃p, defined by

∆̃pu :=

N∑
i=1

∂xi

(
|∂xiu|p−2 ∂xiu

)
.

Here the eigenvalue problem (introduced in [2]) consists in finding the positive
numbers λ > 0, such that the equation

−∆̃pu = λ |u|p−2 u,

has nontrivial solutions in W 1,p
0 (Ω). The proof amounts to applying again Theorem

3.1, now with the variational integral

N∑
i=1

∫
Ω

|∂xi
u(x)|p dx.

Remark 3.5. We observe that the statement of Theorem 3.1 holds true and the
proof is exactly the same if we replace the Lp constraint ‖u‖Lp(Ω) = 1 by the
following weighted one ∫

Ω

b(x) |u(x)|p dx = 1.

Here b(x) is any nonnegative bounded measurable weight such that the nonlinear
eigenvalue problem

−div∇H(x,∇u(x)) = λ b(x) |u(x)|p−2 u(x),

admits a first eigenfunction.
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