
FRACTIONAL REGULARITY FOR NONLINEAR ELLIPTIC

PROBLEMS WITH MEASURE DATA

AGNESE DI CASTRO AND GIAMPIERO PALATUCCI

Abstract. We consider nonlinear elliptic equations of the type

−div a(x,Du) = µ

having a Radon measure on the right-hand side and prove fractional differ-
entiability results of Calderón-Zygmund type for very weak solutions. We
extend some of the results achieved by G. Mingione (2007) [29], in turn im-
proving a regularity result by Cirmi & Leonardi (2010) [8].
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1. Introduction

We study nonlinear elliptic equations with a right-hand side being merely a mea-
sure. Our aim is to establish quantified higher differentiability properties of Calderón-
Zygmund type for the gradient of the weak solutions to such equations. Precisely, we
deal with the following Dirichlet problems

(1.1)

{
−div a(x,Du) = µ in Ω ⊂ Rn, n ≥ 2

u = 0 on ∂Ω.

Here, we assume that µ, in the most general case, is a signed Radon measure with finite
total mass |µ|(Ω) < ∞, and a : Ω × Rn → Rn is a Carathéodory regular vector field
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satisfying standard monotonicity and p-growth conditions, i. e., for every z1, z2 ∈ Rn,
x ∈ Ω,

(1.2) ν(s2 + |z1|2 + |z2|2)
p−2

2 |z2 − z1|2 ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉,

(1.3) |a(x, z2)− a(x, z1)| ≤ L(s2 + |z1|2 + |z2|2)
p−2

2 |z2 − z1|,

(1.4) |a(x, 0)| ≤ Lsp−1,

where 0 < ν ≤ L and s ≥ 0.
Also, we will deal with a fractional Sobolev type differentiability assumption on the

coefficients of the map x 7→ a(x, z):

(1.5)

|a(x2, z)−a(x1, z)| ≤
(
g(x1)+g(x2)

)
|x2−x1|α(s2+|z|2)

p−1
2 , ∀x1, x2 ∈ Ω, ∀ z ∈ Rn,

for every 0 < α ≤ 1, where 0 ≤ g ∈ Lr(Ω), r ≥ 2χ/(χ − 1), with χ being the
higher integrability exponent of Gehring’s theory (see forthcoming Lemma 3.2). For
an exhaustive discussion about such assumption, introduced as a notion of fractional
differentiability by DeVore & Sharpley ([10]), we refer to Section 7 in [33] and Section
1.2 in [19] (see, also, [17, 18, 21]). Roughly speaking, the function g plays the role of an
α-derivative of the function x → a(x, z) and so (1.5) serves to describe the α-Hölder
continuity in a weak way, since the pointwise Hölder semi-norm g may blow-up at
some points.

We will focus mainly on the case when µ belongs to the Lebesgue space Lq(Ω) in
a range of q that does not necessarily permit to obtain the existence of finite energy
solutions u ∈ W 1,p

0 (Ω) to problem (1.1). However, we can deal with the (very) weak

solutions u ∈W 1,1
0 (Ω) obtained via the Boccardo & Gallouët standard approximation

procedure; that is, a function u ∈W 1,1
0 (Ω) such that a(x,Du) ∈ L1(Ω×Rn) and∫

Ω
a(x,Du)Dφdx =

∫
Ω
φ dµ ∀φ ∈ C∞0 (Ω).

The approach to show existence of weak solutions developed by the aforementioned
authors in [4, 5] is the following: one considers regular right-hand sides fk which con-
verge in the weak sense of measure to µ, and the weak solutions uk to the regularized
problems (1.1) with µ replaced by fk. Then, exploiting the classic theory of elliptic
equations with regular data allows to establish a priori estimates for the solutions uk,
being stable when passing to the limit on k. Finally, when 2− 1/n < p ≤ n, one can
deduce the existence of a solution u to (1.1) such that1

(1.6) Du ∈ Lq, for every 1 ≤ q < n(p− 1)

n− 1
=: m.

On the other hand, when p > n, µ belongs to W−1,p′(Ω), and the existence of a unique

solution in the natural spaceW 1,p
0 (Ω) follows by standard methods (see [27]). For other

related regularity results for the weak solutions to (1.1) in which similar techniques

1 We recall that the lower bound p > 2 − 1/n serves to ensure the existence of the very weak
solutions u, otherwise it is not guaranteed that the gradient of u belongs to L1.
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are involved, we refer for instance to [11, 6, 1, 7, 20] and the references therein; see,
also, [30, 31, 15, 32, 21, 22, 12, 13] for explicit local and potential estimates, both in
the Lebesgue scale and in the Lorentz-Morrey one.

It is worth observing that the integrability of the gradient of the solutions u stated
in (1.6) is optimal, in the sense of the inclusion q < m, since in general Du /∈ Lm(Ω).
In the present paper, we are interested in estimating the oscillations of the gradient
rather than its size; that is, we want to investigate the higher regularity of Du. In this
respect, let us focus for a while on the basic case −∆u = µ; i.e., we are considering
p ≡ 2, a(x,Du) ≡ Du and the assumption in (1.5) does not really take part. In this
case, the standard Calderón-Zygmund theory [23] asserts

f ∈ L1+ε =⇒ Du ∈W 1,1+ε for every ε > 0 .

This does not hold when ε = 0, since the inclusion Du ∈ W 1,1 may fail. For this, it
suffices to consider the classic example given by the following Dirichlet problem in the
unit ball {

−∆u = δ0 in B1

u = 0 on ∂B1,

with δ0 being the Dirac measure centered in the origin. The unique solution is now
given by the Green’s function

(1.7) u(x) := c(n)

{
|x|2−n − 1 if n > 2

log |x| if n = 2.

Assume by contradiction that Du ∈ W 1,1(B1). Then, by the critical Sobolev embed-
ding, it follows Du ∈ Lm(B1), where we recall that m = n/(n − 1) since here p = 2,
and this limit case does not hold true, as one can see by computing the summability
of the function u in (1.7).

Therefore, in general we can not have a second derivative of u in some Sobolev space.
On the other hand, it is still possible to establish an optimal Calderón-Zygmund theory
for nonlinear elliptic problems of type (1.1), provided that the right Sobolev spaces
are considered. This has been firstly analyzed by G. Mingione in [29], in which it has
been proved that the solutions to (1.1), under (1.2)–(1.4) and a Lipschitz assumption
on the coefficients, satisfy the following fractional Sobolev inclusion

(1.8) Du ∈W 1−ε,1
loc (Ω), ∀ 0 < ε < 1.

More in general, for p ≥ 2, it holds

(1.9) Du ∈W
2
p
δ− ε

q
,q

loc (Ω), ∀ 0 < ε < 2qδ/p, ∀ p− 1 ≤ q < m,

with

(1.10) δ = δ(p, q) :=
p

2q

(
n− q(n− 1)

p− 1

)
giving the optimal exponent depending on the couple (p, q). We notice that, in accor-
dance with (1.8), p = 2 and q = 1 yield δ = 1, but in general δ ≤ 1.
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Precisely, in order to prove the sharp inclusion (1.8)-(1.9) for the solutions to general
nonlinear elliptic problems as in (1.1), condition (1.5) in the purely Lipschitz case
α = 1 and g ≡ const. is required.

This result has been extended to the purely Hölder case, that is condition (1.5)
with α ≤ 1 and g ≡ const., by Cirmi & Leonardi in [8], in which, among other results
(see, also, [9]), it has been proved that, when p = 2, the following inclusion holds

(1.11) Du ∈W
αδ− ε

q
,q

loc (Ω), ∀ 0 < ε < qαδ, ∀ 1 ≤ q < n/(n− 1).

In the present paper, we will show that, under the assumptions (1.2)–(1.5), the
solutions u to (1.1) when p = 2 satisfy

(1.12) Du ∈W
min{α,δ}− ε

q
,q

loc (Ω), ∀ 0 < ε < qmin{α, δ}, ∀ 1 ≤ q < n/(n− 1).

We immediately notice that in the Lipschitz case when α = 1 all the mentioned results
collapse in the same higher differentiability of the solutions. On the other hand, in
the Hölder case when α < 1 the regularity stated in (1.12) provides an improvement
with respect to that in (1.11), since αδ ≤ min{α, δ} plainly holds.

Precisely, we will prove the following theorems.

Theorem 1.1. Under the assumptions (1.2)–(1.5), with 2 − 1/n < p ≤ n, let u ∈
W 1,1

0 (Ω) be a solution to problem (1.1). Then

Du ∈W
2
p

min{α,δ}− ε
q
,q

loc (Ω), ∀ 0 < ε <
2q

p
min{α, δ}, ∀ 1 ≤ q < m,

where m and δ are given by (1.6) and (1.10), respectively.

Theorem 1.2. Let the assumptions and notation of Theorem 1.1 hold, and let 0 <
σ < 2qmin{α, δ}/p. Then there exists a constant c ≡ c(n, p, q, α, L/ν, ‖g‖Lr) such
that

(1.13) [Du]q
Wσ/q,q(BR/2)

≤ cR−σ
∫
BR

(|Du|q + sq) dx+ cR
2q
p

min{α,δ}−σ|µ|(BR)
q
p−1 ,

for every ball BR ⊂⊂ Ω of radius R > 0; where [ · ]Wσ/q,q denotes the fractional Sobolev
seminorm (see Section 2.2 below). Moreover, for every open subset Ω′ ⊂⊂ Ω there
exists a constant c ≡ c(n, p, q, α, L/ν, dist(Ω′, ∂Ω),Ω, ‖g‖Lr) such that the following
local estimate holds

(1.14)

∫
Ω′
|Du|q dx+ [Du]q

Wσ/q,q(Ω′)
≤ c|µ|(Ω)

q
p−1 + csq|Ω| .

Therefore, in the present paper we will extend the higher differentiability results
in [29] to the more general case involving the weak Hölder continuity assumption (1.5),
as well as providing an improvement to the results in [8] when p = 2 and no functions
g are considered. Moreover, exploiting some techniques from [33], here we will be able
to deal with the case 2− 1/n < p < 2, too.

The strategy of the proofs follows the one developed in [29] (see, also, [3] for ex-
tended results in the parabolic framework). In a first step, we will prove some com-
parison estimates for the solutions u to (1.1) and the solutions to the corresponding
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homogeneous problem (see Section 3), by also applying the Hölder continuity the-
ory by De Giorgi-Nash-Moser and the higher integrability theory by Gehring. We
will work locally by combining these estimates together with some properties of the
fractional Sobolev spaces, in order to show that the initial fractional differentiability
of Du can be improved in a precise range depending on α and δ (see Lemma 4.1).
Then, we will show that, thanks to some precise properties of the involved quantities,
this procedure can be iterated to finally obtaining the desired result (see Lemma 4.2).
Clearly, we have to produce some modifications in view of the novel assumptions we
are considering, that is, (1.5), and to handle the case 2− 1/n < p < 2.

The paper is organized as follows. In Section 2, we fix notation; we give details on
the structure of the problem and we briefly recall the definition and a few basic prop-
erties of the fractional Sobolev spaces. In Section 3, we state and prove comparison
regularity estimates and other needed results. Section 4 is devoted to the proof of the
main results, and to further extensions not covered by Theorem 1.1 and 1.2.

2. Preliminaries

As usual, we denote by

BR(x0) = B(x0;R) := {x ∈ Rn : |x− x0| < R}
the open ball centered in x0 ∈ Rn with radius R > 0. When not important and clear
from the context we shall use the shorter notation BR = B(x0;R). We denote by λB
the concentric ball scaled by a factor λ > 0, that is λB := B(x0;λR).

Moreover, if f ∈ L1(A) and the n-dimensional Lebesgue measure |A| of the set A
is finite and strictly positive, we write

(f)A := −
∫
A
f(x) dx =

1

|A|

∫
A
f(x) dx.

2.1. The map V (z) and the monotonicity of a(x, z). For any given s ≥ 0, and
p > 1, consider the locally bi-Lipschitz bijection V of Rn defined as follows

V (z) = Vs(z) := (s2 + |z|2)
p−2

4 z, ∀ z ∈ Rn.

For any z1, z2 ∈ Rn and any s ≥ 0, we have

c−1(s2 + |z1|2 + |z2|2)
p−2

2 ≤ |V (z2)− V (z1)|2

|z2 − z1|2
≤ c(s2 + |z1|2 + |z2|2)

p−2
2 ,

where c ≡ c(n, p) is independent of s. Also,

(2.1)


|V (z)|2 = |z|2 if p = 2,

|z|p ≤ |V (z)|2 ≤ 2(sp + |z|p) if p > 2,

|V (z)|2 ≤ |z|p if p ∈ [1, 2).

The strict monotonicity properties of the vector field a, see (1.2), can be reformu-
lated by means of the map V . Indeed, combining (1.2) and (2.1), it follows

(2.2) c−1|V (z2)− V (z1)|2 ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉, ∀ z1, z2 ∈ Rn,
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where c ≡ c(n, p, ν) > 0. Moreover, when p ≥ 2, assumptions (1.2) also implies

c−1|z2 − z1|p ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉.

Finally inequality (1.2) together with (1.4) and a standard use of Young’s inequality
yields

c−1(s2 + |z|2)
p−2

2 |z|2 − c sp ≤ 〈a(x, z), z〉, ∀ z ∈ Rn,
where c ≡ c(n, p, L/ν); while (1.3) with (1.4), and again Young’s inequality, gives

|a(x, z)| ≤ c(s2 + |z|2)
p−1

2 .

2.2. Fractional Sobolev spaces. We briefly recall the definition of Sobolev spaces
of fractional order W t,q, as well as some related basic facts. We refer to the classics [25,
2, 34], and to the recent books [35, 26]; see, also, [14].

Let A ⊂ Rn and k ∈ N. We start by fixing the fractional exponent t in (0, 1). For
any q ∈ [1,+∞), we define W t,q(A,Rk) ≡W t,q(A) as follows

W t,q(A) :=

{
|w| ∈ Lq(A) :

|w(x)− w(y)|
|x− y|

n
q

+t
∈ Lq(A×A)

}
;

i. e., an intermediary Banach space between Lq(A) and W 1,q(A), endowed with the
natural norm

‖w‖W t,q(A) :=

(∫
A
|w|q dx +

∫
A

∫
A

|w(x)− w(y)|q

|x− y|n+tq
dx dy

) 1
q

,

where the term

[w]W t,q(A) :=

(∫
A

∫
A

|w(x)− w(y)|q

|x− y|n+tq
dx dy

) 1
q

is the so-called Gagliardo (semi )norm of u.
For a vector valued function w : A→ Rk and h ∈ R, we define the finite difference

operator τi,h, for i ∈ {1, ..., n} as

(2.3) τi,hw(x) = τi,h(w)(x) := w(x+ hei)− w(x),

with {ei}i=1,...,n being the standard basis of Rn. In the following we always assume
that x, x+ hei ∈ A in order to make (2.3) worth.

Now, we recall the critical Sobolev embedding of W t,q(A) in Lnq/(n−tq)(A), whose
proof can be found in [14, Theorem 6.7]; see, also, [16, Lemma 3].

Proposition 2.1. Let w ∈ W t,q(A), with q ≥ 1 and t ∈ (0, 1], such that tq < n, and

let A ⊂ Rn be an extension domain for W t,q. Then w ∈ Lnq/(n−tq)(A), and there
exists a constant c ≡ c(n, q, t, A) such that

‖w‖
L

nq
n−tq (A)

≤ c‖w‖W t,q(A).

Next result is nothing but a fractional Poincaré inequality; see, for instance, [28]
and related references.
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Proposition 2.2. If BR is a ball and w ∈W t,q(BR), then∫
BR

|w − (w)BR |
q dx ≤ c(n)Rtq[w]qW t,q(BR).

3. Regularity for the homogeneous problem and comparison results

In this section we show some comparison estimates between the solution uk to the
following regularized problem with the regularizing datum fk ∈ L∞(Ω),

(3.1)

{
−div a(x,Duk) = fk in Ω

uk = 0 on ∂Ω,

and the solutions to analogous homogeneous problems. Note that in the remaining
of the paper we will always write u instead of uk. We will show how to recover
regularity and estimates for the original solutions only in the conclusion of the proofs
of Theorem 1.1 and 1.2.

Lemma 3.1. ([33, Theorem 9.1]). Let a0 : Rn → Rn satisfy (1.2)–(1.4), for any
1 < p ≤ n, and let v0 ∈W 1,p(A) be a weak solution to

−div a0(Dv0) = 0 in A.

Then there exists c ≡ c(n, p, L/ν, q) such that, for q ∈ (0, 2], we have

(3.2)

∫
BR/2

|D(V (Dv0))|q dx ≤ c

Rq

∫
BR

|V (Dv0)− V (z)|q dx, ∀ z ∈ Rn,

for every ball BR ⊆ A.

It is important to remark that the constant c in (3.2) is independent of the choice
of z ∈ Rn.

In the following lemma, we collected a few basic consequences of De Giorgi’s reg-
ularity theory and Gehring’s lemma for elliptic problems; see [24, Chapter 6-7], and,
also, [29, Lemma 3.3] for a sketch of the proof.

Lemma 3.2. Let v ∈W 1,p(A), 1 < p ≤ n be a weak solution to

−div a(x,Dv) = 0 in A,

under the assumptions

|a(x, z)| ≤ c(s2 + |z|2)
p−1

2 , c−1|z|p − c sp ≤ 〈a(x, z), z〉

for every x ∈ A and z ∈ Rn, where c ≡ c(L/ν) and ν, L are the numbers given in
(1.2)–(1.4). There exists $ ≡ $(n, p, L/ν) ∈ (0, 1], such that for every q ∈ (0, p] there
exists c ≡ c(n, p, L/ν, q) such that, whenever BR ⊆ A and 0 < ρ ≤ R, it holds∫

Bρ

(|Dv|+ s)q dx ≤ c
( ρ
R

)n−q+$q ∫
BR

(|Dv|+ s)q dx.
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Moreover, there exists χ ≡ χ(n, p, L/ν) > 1, such that Dv ∈ Lpχloc(A,R
n) and

(3.3)

(
−
∫
BR/2

(|Dv|+ s)pχ dx

) 1
pχ

≤ c

(
−
∫
BR

(|Dv|+ s)q dx

) 1
q

,

where again c ≡ c(n, p, L/ν, q).

The next density estimate is of crucial importance in order to get the gradient
differentiability and integrability results in the case p < 2.

Proposition 3.3. ([33, Proposition 9.4]) Under the assumptions (1.2)–(1.4), with

2 − 1/n < p ≤ n, let u ∈ W 1,p
0 (Ω) be the unique solution to (3.1) and let Bρ ⊂⊂ Ω

be a ball with radius ρ > 0, then for every 1 ≤ q < m, with m defined in (1.6), the
following inequality holds

ρ
q(n−1)
p−1 −

∫
Bρ

(|Du|+ s)q dx ≤ c

(∫
Ω
|f | dx

) q
p−1

,

where c ≡ c(n, p, L/ν, q,dist(Bρ, ∂Ω)).

Finally, we are in position to establish some comparison lemmata. For almost every
x0 ∈ Ω, consider a ball BR = B(x0, R) ⊂⊂ Ω, with R ≤ 1, and let v ∈ u+W 1,p

0 (BR)
be the unique weak solution to

(3.4)

{
−div a(x,Dv) = 0 in BR

v = u on ∂BR.

Also, take a ball BR̄ ≡ B(x0, R̄) ⊆ B(x0, R) and let v0 ∈ v+W 1,p
0 (BR̄) be the unique

weak solution to

(3.5)

{
−div a(x0, Dv0) = 0 in BR̄
v0 = v on ∂BR̄.

Lemma 3.4. ([29, Lemma 4.1]) and ([33, Lemma 9.5]). Under the assumptions (1.2)–

(1.4), with 2 − 1/n < p ≤ n, let u ∈ W 1,p
0 (Ω) be the unique solution to (3.1) and

v ∈ u + W 1,p
0 (BR) to (3.4). Then, for any 1 ≤ q < m, with m defined in (1.6), the

following inequality holds∫
BR

(
|V (Du)− V (Dv)|

2q
p + |Du−Dv|q

)
dx

≤ cRσ(q)

(∫
BR

|f | dx
) q
p−1

(3.6)

+ c1{p<2}R
σ(q)(p−1)

(∫
BR

|f | dx
)q (∫

BR

(|Du|+ s)q dx

)2−p
,

where σ(q) := n − q(n− 1)/(p− 1), c ≡ c(n, p, ν, q) and 1{p<2} denotes the usual
characteristic function of the set {p < 2}, that is 1{p<2} = 1 if p < 2 and 1{p<2} = 0
if p ≥ 2.
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Lemma 3.5. Under the assumptions (1.2)–(1.5), let v and v0 be the unique weak
solutions to (3.4) and (3.5), respectively. Then the following inequality holds whenever
q ∈ (0, p]

−
∫
BR̄

|V (Dv0)− V (Dv)|
2q
p dx ≤ c R̄

2qα
p −
∫
B2R̄

(|Dv|q + sq) dx,

where c ≡ c
(
n, p, L/ν, ‖g‖Lr

)
.

Proof. The proof relies on that of [33, Lemma 9.6] and extends that of [8, Lemma
4.3], in which the case g ≡ const. has been considered.

It is known (see Theorem 6.1 of [24]) that v0 is a Q-minimum of the functional

w 7→ −
∫
BR

(|Dw|p + sp) dx with Q ≡ Q(n, p, L/ν). This fact implies that

(3.7) −
∫
BR̄

|Dv0|p dx ≤ c(n, p, L/ν)−
∫
BR̄

(|Dv|p + sp) dx.

Using Lemma 3.2 and some standard calculations, we get

(3.8)

(
−
∫
BR̄

(|Dv|p + sp) dx

) q
p

≤ c−
∫
B2R̄

(|Dv|+ s)q dx

Now using (2.1), (2.2), the facts that v and v0 are solutions to (3.4) and (3.5) respec-
tively, the assumption (1.5) and Young’s inequality, we get

−
∫
BR̄

(s2 + |Dv0|2 + |Dv|2)
p−2

2 |Dv −Dv0|2 dx ≤ −
∫
BR̄

|V (Dv0)− V (Dv)|2 dx

≤ −
∫
BR̄

〈a(x0, Dv)− a(x0, Dv0), Dv −Dv0〉 dx

= −
∫
BR̄

〈a(x0, Dv)− a(x,Dv), Dv −Dv0〉dx

≤ c R̄α−
∫
BR̄

(g(x0) + g(x))(s2 + |Dv0|2 + |Dv|2)
p−1

2 |Dv −Dv0| dx

≤ 1

2
−
∫
BR̄

(s2 + |Dv0|2 + |Dv|2)
p−2

2 |Dv −Dv0|2 dx(3.9)

+ c R̄2α−
∫
BR̄

(g(x0) + g(x))2(s2 + |Dv0|2 + |Dv|2)
p
2 dx.

Absorbing the first term in the right-hand side of (3.9), using again (2.1) and Hölder’s
inequality with exponents r/2 > 1 and r/(r− 2) to the second term in the right-hand
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side, we arrive at

−
∫
BR̄

|V (Dv)− V (Dv0)|2 dx

≤ c R̄2α ‖g‖2Lr(Ω)

(
−
∫
BR̄

(s2 + |Dv0|2 + |Dv|2)
pr

2(r−2) dx

) r−2
r

.

Now, in view on the integrability assumptions on g (recall (1.5)), one can choose r
such that pr/(2(r − 2)) = pχ/2; and thus, by applying (3.3) to Dv and Dv0 with
q = p, it follows

−
∫
BR̄

|V (Dv)− V (Dv0)|2 dx ≤ c R̄2α ‖g‖2Lr(Ω)−
∫
BR̄

(sp + |Dv0|p + |Dv|p) dx.

Finally, using (3.7), (3.8) and Hölder’s inequality (with exponents p/q > 1 and p/(p−
q)), we arrive at the desired result.

�

Combining Lemma 3.4 with Lemma 3.5, and in particular using (3.6) twice, we
obtain the following

Lemma 3.6. Let u, v and v0 as in Lemma 3.4 and Lemma 3.5. Then the following
inequality holds∫

BR

|V (Du)− V (Dv0)|
2q
p dx

≤ cRσ(q)

(∫
B2R

|f |dx
) q
p−1

+ c1{p<2}R
σ(q)(p−1)

(∫
B2R

|f |dx
)q (∫

B2R

(|Du|+ s)q dx

)2−p

+ cR
2qα
p

∫
B2R

(|Du|+ s)q dx.

4. Proofs of the main results

In this section we will prove Theorem 1.1 and 1.2. First, we recall the definition of
δ in (1.10),

(4.1) δ =
p

2q

(
n− q(n− 1)

p− 1

)
≤ 1,

and we define

(4.2) γ(t, τ) :=
τ

τ + 1− t
, ∀ t, τ ≥ 0.

Lemma 4.1. Let u ∈ W 1,p
0 (Ω) be the unique solution to (3.1), under the assump-

tions (1.2)–(1.5) with 2 − 1/n < p ≤ n, and let q be such that 1 ≤ q < m, with m
defined in (1.6). Assume that there exists t̄ ∈ [0,min{α, δ}) such that

(4.3) V (Du) ∈W t̄,2q/p
loc (Ω)
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and that, for every couple of open subsets Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, there exists c1 =
c1(dist(Ω′, ∂Ω′′)) such that

[V (Du)]
2q/p

W t̄,2q/p(Ω′)
≤ c1

∫
Ω′′

(|Du|q + sq) dx+ c1

(∫
Ω′′
|f | dx

) q
p−1

.

Then

(4.4) V (Du) ∈W t,2q/p
loc (Ω), for every t ∈ [0, γ̄),

where

γ̄ :=

{
γ(t̄, δ) if α > δ

γ(t̄, α) if α ≤ δ ,
with δ and γ defined by (4.1) and (4.2), respectively. Also,

[V (Du)]
2q/p

W t,2q/p(Ω′)
≤ c

∫
Ω′′

(|Du|q + sq) dx+ c

(∫
Ω′′
|f | dx

) q
p−1

for every open subsets Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω; c being a constant depending only on n, p, L/ν,
q, ‖g‖Lr , dist(Ω′, ∂Ω′′), t. Moreover, the following estimate holds, for any 1 ≤ i ≤ n,

sup
0<|h|<dist(Ω′,∂Ω′′)

∫
Ω′

|τi,hV (Du(x))|2q/p

|h|γ̄2q/p
dx ≤ c

∫
Ω′′

(|Du|q+sq) dx+c

(∫
Ω′′
|f |dx

) q
p−1

.

Proof. The proof extends that of Lemma 6.2 in [29] and Lemma 11.1 in [33]. Neverthe-
less, we have to make some modifications due to the different regularity assumptions
on the maps x 7→ a(x, z) that we are handling. For this, we will focus on the steps
where the Hölder regularity does arise. Also, we would note that here we deal with
the super and the sub-quadratic case in a unified way.

Fix a couple of arbitrary open subsets Ω′ and Ω′′ such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, and
consider a real number h such that

0 < |h| << min
{

1,dist(Ω′,Ω′′)
}
.

Take x0 ∈ Ω′ and denote by
B := B(x0, |h|β)

the ball centered in x0 with radius |h|β. We need to make use of the auxiliary homoge-

neous problems in the enlarged balls 8B and 4B. Thus, we define v ∈ u+W 1,p
0 (8B) as

the unique solutions to problem (3.4), with BR replaced by 8B and v0 ∈ v+W 1,p
0 (4B)

the one to problem (3.5) with BR̄ replaced by 4B. Now, for any fixed 1 ≤ i ≤ n, we
have the following estimate∫

B
|τi,hV (Du)|

2q
p dx ≤ c

∫
B
|τi,hV (Dv0)|

2q
p dx+ c

∫
B
|V (Du)− V (Dv0)|

2q
p dx

+ c

∫
B
|V (Du(x+ hei))− V (Dv0(x+ hei))|

2q
p dx

≤ c

∫
4B
|V (Du)− V (Dv0)|

2q
p dx+ c

∫
B
|τi,hV (Dv0)|

2q
p dx

:= I1 + I2,



12 A. DI CASTRO AND G. PALATUCCI

where we have also used that, since |h| < 1, B(x0, |h|β)+B(0, |h|) ⊂ B(x0, 4|h|β) = 4B.
In order to estimate I1 we start using Lemma 3.6, which gives∫

4B
|V (Du)− V (Dv0)|

2q
p dx

≤ c |h|β
(
n− q(n−1)

p−1

)(∫
8B
|f | dx

) q
p−1

+ c1{p<2} |h|β[n−q(n−1)]

(∫
8B
|f |dx

)q (
−
∫

8B
(|Du|+ s)q dx

)2−p

+ c |h|
2βαq
p

∫
8B

(|Du|+ s)q dx.

When 2− 1/n < p < 2 we can estimate the second term in the right-hand side of the
previous inequality using Proposition 3.3. We have

|h|β[n−q(n−1)]

(∫
8B
|f |dx

)q (
−
∫

8B
(|Du|+ s)q dx

)2−p

≤ c |h|β[n−q(n−1)]−β q(n−1)(2−p)
p−1

(∫
8B
|f | dx

)q (∫
8B
|f | dx

) q(2−p)
p−1

= c |h|β
(
n− q(n−1)

p−1

) (∫
8B
|f | dx

) q
p−1

.

Therefore,

I1 ≤ c |h|β
(
n− q(n−1)

p−1

)(∫
8B
|f | dx

) q
p−1

+ c |h|
2βαq
p

∫
8B

(|Du|+ s)q dx

≤ c
(
|h|

2βδq
p + |h|

2βαq
p
)
Λ(8B)

≤ c |h|
2βq
p

min{α,δ}
Λ(8B) ,(4.5)

where we have set

(4.6) Λ(A) :=

∫
A

(|Du|+ s)q dx+

(∫
A
|f |dx

) q
p−1

for every measurable set A ⊂ Rn.

In order to estimate I2, firstly we apply (3.2) in Lemma 3.1, with a0(·) ≡ a(x0, ·)
and q replaced by 2q/p ≤ 2, there. We get∫

B
|D(V (Dv0))|

2q
p dx ≤ c |h|−

2βq
p

∫
2B
|V (Dv0)− V (z)|

2q
p dx, ∀ z ∈ Rn.
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Therefore, using the last estimate with the definition of the operator τi,h and the fact
that |h| < 1 and 0 < β < 1, it follows

I2 ≤ c |h|
2q
p

∫
2B
|D(V (Dv0))|

2q
p dx

≤ c |h|(1−β) 2q
p

∫
4B
|V (Dv0)− V (z)|

2q
p dx

≤ c |h|(1−β) 2q
p

∫
4B
|V (Du)− V (z)|

2q
p dx+ c

∫
4B
|V (Du)− V (Dv0)|

2q
p dx, ∀ z ∈ Rn.

Combining the last inequality with (4.5),∫
B
|τi,hV (Du)|

2q
p dx

≤ c |h|
2βq
p

min{α,δ}
Λ(8B) + c |h|(1−β) 2q

p

∫
4B
|V (Du)− V (z)|

2q
p dx.(4.7)

Now we have to choose z ∈ Rn in the latter inequality. First, suppose t̄ = 0. In this
case, we take z = 0 and thus, (2.1) gives∫

B
|τi,hV (Du)|

2q
p dx ≤ c

(
|h|

2βq
p

min{α,δ}
+ |h|(1−β) 2q

p

)
Λ(8B).

In the case t̄ > 0, we take z := V −1((V (Du))8B). Keeping in mind this choice,
in view of the assumption (4.3) we can use fractional Poincaré inequality given in
Proposition 2.2 to get

(4.8)

∫
8B
|V (Du)− V ((Du)8B)|

2q
p dx ≤ c |h|

2βqt̄
p [V (Du)]

2q
p

W t̄,2q/p(8B)
.

Summing up (4.7) with (4.8), we obtain∫
B
|τi,hV (Du)|

2q
p dx ≤ c |h|

2βq
p

min{α,δ}
Λ(8B) + c |h|

2βqt̄
p

+(1−β) 2q
p [V (Du)]

2q
p

W t̄,2q/p(8B)
.

Now, consider the characteristic function 1{t̄>0} such that 1{t̄>0} = 0 if t̄ = 0 and

1{t̄>0} = 1 if t̄ > 0, and the set function Λ̄ defined by

Λ̄(A) := Λ(A) + 1{t̄>0}[V (Du)]
2q
p

W t̄,2q/p(A)
, ∀ A ⊂ Rn,

where Λ is defined by (4.6). Thus, for any 0 ≤ t̄ < min{α, δ}, we get∫
Ω′
|τi,hV (Du)|

2q
p dx ≤ c

(
|h|

2βq
p

min{α,δ}
+ |h|

2βqt̄
p

+(1−β) 2q
p

)
Λ̄(Ω′′),

where a covering argument has been also used.
Finally, we take β = 1/(min{α, δ}+1−t̄), and this is admissible, since t̄ < min{α, δ}

yields β < 1. We obtain∫
Ω′
|τi,hV (Du)|

2q
p dx ≤ c Λ̄(Ω′′)

|h|
2γ(t̄,δ)q

p if α > δ

|h|
2γ(t̄,α)q

p if α ≤ δ.

From now on, the proof can be completed arguing exactly as in the proof of [29,
Lemma 6.2], by taking into account our different function γ. �
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Lemma 4.2. Let u ∈ W 1,p
0 (Ω) be the unique solution to (3.1), under the assump-

tions (1.2)–(1.5), with 2 − 1/n < p ≤ n, and let q be such that 1 ≤ q < m, with m
defined in (1.6). Then

V (Du) ∈W t,2q/p
loc (Ω), Du ∈W 2t/p,q

loc (Ω), for every 0 ≤ t < min{α, δ}

and

[V (Du)]
2q/p

W t,2q/p(Ω′)
+ [Du]q

W 2t/p,q(Ω′)
≤ c

∫
Ω′′

(|Du|q + sq) dx+ c

(∫
Ω′′
|f |dx

) q
p−1

for every open subsets Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω; c being a constant depending only on n, p, L/ν,
q, t, dist(Ω′, ∂Ω′′), ‖g‖Lr . Moreover, the following estimate holds, for any 1 ≤ i ≤ n,

sup
0<|h|<dist(Ω′,∂Ω′′)

∫
Ω′

|τi,hDu(x)|q

|h|t2q/p
dx ≤ c

∫
Ω′′

(|Du|q + sq) dx+ c

(∫
Ω′′
|f |dx

) q
p−1

.

Proof. The proof will follow by using the iterative argument in the proof of Lemma 6.3
in [29]. We just have to take into account the different range of validity of (4.4)
depending of α. The key-point is in the structure of the function t 7→ γ(t, τ) defined
by (4.2). For any fixed 0 < τ ≤ 1, we have

γ(·, τ) is increasing, γ(τ, τ) = τ and t ∈ (0, τ) −→ γ(t, τ) ∈ (t, τ).

For this, if we consider the sequence {sk}k≥1 and {tk}k≥1 defined inductively by

s1 :=
τ

4(1 + τ)
, sk+1 := γ(sk, τ), and t1 = 2s1, tk+1 :=

γ(sk, τ) + γ(tk, τ)

2
,

it follows that

sk ↗ τ, sk < tk < τ for any k ≥ 1 and tk ↗ τ.

At this time, we have to distinguish the case α > δ versus that α ≤ δ. In the first
case, we fix τ = δ and start the iteration with t̄ = 0 by proceeding as in the proof
of [29, Lemma 6.3]. In the second case, we can argue in the same way, but we can
simply remember to fix τ = α. �

Proof of Theorem 1.1 and 1.2.
Once we established the previous lemmata in which the regularity exponents derived

by the weak Hölder assumption in (1.5) have arisen, the proofs of Theorem 1.1 and
1.2 closely follow those of Theorem 1.2 and Theorem 1.3 in [29] (and in turn that of [8,
Theorem 2.8]). For the reader’s convenience, we sketch the main steps.

Firstly, we recall that all the regularity results and the estimates established in the
previous section are valid for the weak solutions uk ∈ W 1,p

0 (Ω) to problem (1.1) with
µ replaced by a regular function fk (see the beginning of Section 3). As stated in the
Introduction, it is known that, up to subsequences,

uk → u weakly in W 1,q
0 (Ω),

(4.9)
uk → u strong in Lq(Ω) and a. e. in Ω,
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for all 1 ≤ q < n(p − 1)/(n − 1); with u being a solution to problem (1.1). Now,
applying Lemma 4.2 to each uk, we deduce, for any k ∈ N,

Duk ∈W
σ
q
,q

(Ω), ∀ 0 ≤ σ < min

{
2qα

p
,
2qδ

p

}
, ∀ 1 ≤ q < m;

and, for every Ω′ ⊂⊂ Ω,
(4.10)

‖Duk‖q
W

σ
q ,q(Ω′)

≤ c
∫

Ω
(sq + |Duk|q) dx+

(∫
Ω
|fk|dx

) q
p−1

≤ c [|µ|(Ω)]
q
p−1 + c sq|Ω|,

where we used some uniform estimates established in [29] (see, in particular, (5.3)–
(5.5) there). Therefore (1.14) plainly follows from (4.9), (4.10) and a standard lower
semicontinuity argument. Finally, in order to obtain estimate (1.13), it suffices to use
standard scaling arguments. The proof is complete. �

4.1. Further extensions. We conclude this section by stating the natural extensions
of [29, Theorem 1.4] and [29, Corollary 1.5], in which a gain in differentiability is shown
passing to V (Du) and considering non-degerate problems, respectively. The proofs in
the weak Hölder case do not present any relevant variations with respect to those in
the Lipschitz case.

Theorem 4.3. Let the assumptions in Theorem 1.1 hold, and let u ∈ W 1,1
0 (Ω) be a

solution to problem (1.1). Then

• If p ≥ 2, then

V (Du) ∈Wmin
{
α, p

2(p−1)

}
−ε, 2(p−1)

p (Ω), ∀ ε ∈
(

0,min

{
α,

p

2(p− 1)

})
.

Morevorer, for any open subset Ω′ ⊂⊂ Ω,

[V (Du)]
2(p−1)/p

W
min

{
α,

p
2(p−1)

}
,

2(p−1)
p (Ω′)

≤ c̄ |µ|(Ω) + c̄ sp−1|Ω|, ∀Ω′ ⊂⊂ Ω.

• If 2− 1/n < p < 2, then

V (Du) ∈Wmin
{
α,

(np−2n+1)p
2(p−1)

}
−ε, 2

p (Ω), ∀ ε ∈
(

0,min

{
α,

(np− 2n+ 1)p

2(p− 1)

})
.

Morevorer, for any open subset Ω′ ⊂⊂ Ω,

(4.11) [V (Du)]
2/p

W
min

{
α,

(np−2n+1)p
2(p−1)

}
, 2
p (Ω′)

≤ c̄ |µ|(Ω)
1
p−1 + c̄ s |Ω|,

where c̄ ≡ c̄(n, p, L/ν, ε, dist(Ω′, ∂Ω),Ω, ‖g‖Lr).

Corollary 4.4. Let the assumptions in Theorem 1.1 hold. Let u ∈ W 1,1
0 (Ω) be a

solution to problem (1.1). In addition, assume that s > 0. Then

Du ∈Wmin
{
α, p

2(p−1)

}
−ε, 2(p−1)

p (Ω), ∀ ε ∈
(

0,min

{
α,

p

2(p− 1)

})
.

Also, estimate (4.11) holds with V (Du) replaced by Du, provided that the constant c̄

is substituted with s(2−p)(p−1)/pc(n, p)c̄.
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