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The most challenging scenario for Kohn-Sham density functional theory, that is when the electrons
move relatively slowly trying to avoid each other as much as possible because of their repulsion
(strong-interaction limit), is reformulated here as an optimal transport (or mass transportation
theory) problem, a well established field of mathematics and economics. In practice, we show that
solving the problem of finding the minimum possible internal repulsion energy for N electrons in a
given density ρ(r) is equivalent to find the optimal way of transporting N − 1 times the density ρ
into itself, with cost function given by the Coulomb repulsion. We use this link to put the strong-
interaction limit of density functional theory on firm grounds and to discuss the potential practical
aspects of this reformulation.

I. INTRODUCTION

Electronic structure theory plays a fundamental role
in many different fields: material science, chemistry and
biochemistry, solid state physics, surface physics. Its
goal is to solve in a reliable and computationally afford-
able way the many-electron problem, a complex combina-
tion of quantum mechanical and many-body effects. The
most widely used technique, which achieves a reasonable
compromise between accuracy and computational cost, is
Kohn-Sham (KS) density functional theory (DFT) [1, 2].

Optimal transport or mass transportation theory stud-
ies the optimal transfer of masses from one location to
another. Mass transportation theory dates back to 1781
when Monge [3] posed the problem of finding the most
economical way of moving soil from one area to another,
and received a boost when Kantorovich in 1942 gener-
alized it to what is now known as the Kantorovich dual
problem [4]. Optimal transport problems appear in var-
ious areas of mathematics and economics.

In this article we show that one of the most challenging
scenario for KS DFT, that is when the repulsion between
the electrons largely dominates over their kinetic energy,
can be reformulated as an optimal transport problem.
As we shall see, the potential of this link between two
different well-established research areas has both formal
and practical aspects.

It is difficult to write a paper fully accessible to two
different communities such as mass transportation and
electronic density functional theory. In an effort towards
this goal we have chosen to use for both the optimal
transport and the DFT part the most commonly used
notation in each case, translating from one to the other
throughout the paper. The article is organized as follows.
We start in Sec. II with a review of the motivations to
study the strong-interaction limit of DFT and the chal-
lenges that this limit poses. Right after, in Sec. III, we
discuss the implications for DFT of our mass transporta-
tion theory reformulation of this limit, anticipating the
results that will be derived in the subsequent sections.

This way, the first part of the paper is a self-contained
presentation written with language that is entirely fa-
miliar to the density functional theory community. The
mass transportation theory problem is then introduced
in Sec. IV and used in Secs. V-VI to address the strong-
interaction limit of DFT and derive the results antici-
pated in Sec. III. Simple examples, mainly thought to
illustrate the problem to the mass transportation theory
community, are given in Sec. VII. This second part of
the paper is thus mainly written in a language familiar
to the optimal transport reader. The last Sec. VIII is
devoted to a final discussion of the connection between
these two different research areas and to conclusions and
perspectives. Finally, many of the technical details are
given in the Appendix.

II. STRONG INTERACTIONS IN DFT

In the formulation of Hohenberg and Kohn (HK) [1],
electronic ground-state properties are calculated by min-
imizing the energy functional E[ρ] with respect to the
particle density ρ(r),

E[ρ] = F [ρ] +
∫
vext(r) ρ(r) dr, (1)

where vext(r) is the external potential and F [ρ] is a
universal functional of the density, defined as the ex-
pectation value of the internal energy (kinetic energy
T̂ = − 1

2

∑N
i=1∇2

i plus electron-electron interaction en-
ergy V̂ee =

∑N
i=1

∑N
j=i+1 |ri − rj |−1) of the minimizing

wave function that yields the density ρ(r) [5],

F [ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ〉. (2)

Here and throughout the paper we use Hartree atomic
units (~ = me = a0 = e = 1).

In the standard Kohn-Sham approach [2] the mini-
mization of E[ρ] in Eq. (1) is done under the assump-



2

tion that the kinetic energy dominates over the electron-
electron interaction by introducing the functional Ts[ρ],
corresponding to the minimum of the expectation value
of T̂ alone over all fermionic (spin- 1

2 particles) wave func-
tions yielding the given ρ [5],

Ts[ρ] = min
Ψ→ρ

〈Ψ|T̂ |Ψ〉. (3)

The functional Ts[ρ] defines a non-interacting reference
system with the same density of the interacting one. The
remaining part of the exact energy functional,

EHxc[ρ] ≡ F [ρ]− Ts[ρ], (4)

is approximated. Usually EHxc[ρ] is split as EHxc[ρ] =
U [ρ] + Exc[ρ], where U [ρ] is the classical Hartree func-
tional,

U [ρ] =
1
2

∫
dr
∫
dr′

ρ(r)ρ(r′)
|r− r′|

, (5)

and the exchange-correlation energy Exc[ρ] is the crucial
quantity that is approximated.

The KS approach works well in many scenarios, but as
expected, runs into difficulty where particle-particle in-
teractions play a more prominent role. In such cases, the
physics of the HK functional F [ρ] is completely different
than the one of the Kohn-Sham non-interacting system,
so that trying to capture the difference F [ρ]− Ts[ρ] with
an approximate functional is a daunting task. A piece
of exact information on Exc[ρ] is provided by the func-
tional V SCE

ee [ρ], defined as the minimum of the expecta-
tion value of V̂ee alone over all wave functions yielding
the given density ρ(r),

V SCE
ee [ρ] = min

Ψ→ρ
〈Ψ|V̂ee|Ψ〉. (6)

The acronym “SCE” stands for “strictly correlated elec-
trons” [6]: V SCE

ee [ρ] defines a system with maximum pos-
sible correlation between the relative electronic positions
(in the density ρ), and it is the natural counterpart of the
KS non-interacting kinetic energy Ts[ρ]. Its relevance for
Exc[ρ] increases with the importance of particle-particle
interactions with respect to the kinetic energy [7, 8]. For
low-density many-particle scenarios, it has been shown
that V SCE

ee [ρ] is a much better zero-order approximation
to F [ρ] than Ts[ρ] [9–11]: this defines a “SCE-DFT” al-
ternative and complementary to standard KS DFT. In
more general cases, the dividing line between the regime
where the KS approach with its current approximations
works well and the regime where a SCE-based approach
is more suitable is a subtle issue, with many complex
systems being not well described by neither KS nor SCE
(see also the discussion in Ref. 11).

The functional V SCE
ee [ρ] also contains exact informa-

tion on the important case of the stretching of the chem-
ical bond [11, 12], a typical situation in which restricted
KS DFT encounters severe problems. The relevance of

V SCE
ee [ρ] for constructing a new generation of approxi-

mate Exc[ρ] has also been pointed out very recently by
Becke [13]. Notice that V SCE

ee [ρ] also enters in the deriva-
tion of the Lieb-Oxford bound [14–18], an important ex-
act condition on Exc[ρ].

Overall, constructing the functional V SCE
ee [ρ] for a

given density ρ(r) in an exact and efficient way has
the potential to extensively broaden the applicability of
DFT. Only approximations for V SCE

ee [ρ] were available
[19] until recently, when the mathematical structure of
the exact V SCE

ee [ρ] has been investigated in a systematic
way [20, 21] and exact solutions for spherically-symmetric
densities (which have been used in the first SCE-DFT cal-
culations [9, 11]) have been produced. However, a gen-
eral reliable algorithm to construct V SCE

ee [ρ] is still lack-
ing, and many formal aspects still need to be addressed.
Here is where mass transportation theory can play a cru-
cial role. Reformulating V SCE

ee [ρ] as an optimal transport
problem allows to put the construction of this functional
on firm grounds and to import algorithms from another
well-established research field.

III. RESULTS: AN OVERVIEW

The problem posed by Eq. (6), that is searching for
the minimum possible interaction energy in a given den-
sity, was first addressed, in an approximate way, in the
seminal work of Seidl and coworkers [6, 7, 19]. Later
on, in Refs. 20 and 21, a formal solution was given
in the following way. The admissible configurations
of N electrons in d dimensions are restricted to a d-
dimensional subspace Ω0 of the full Nd-dimensional con-
figuration space. A generic point of Ω0 has the form
RΩ0(s) = (f1(s), ...., fN (s)) where s is a d-dimensional
vector that determines the position of, say, electron “1”,
and fi(s) (i = 1, ..., N , f1(s) = s) are the co-motion func-
tions, which determine the position of the i-th electron in
terms of s. The variable s itself is distributed according
to the normalized density ρ(s)/N . The co-motion func-
tions are implicit functionals of the density, determined
by a set of differential equations that ensure the invari-
ance of the density under the transformation s → fi(s),

ρ(fi(s))dfi(s) = ρ(s)ds. (7)

They also satisfy group properties [20] which ensure the
indistinguishability of the N electrons. The functional
V SCE

ee [ρ] is then given by

V SCE
ee [ρ] =

∫
ds
ρ(s)
N

N∑
i=1

N∑
j=i+1

1
|fi(s)− fj(s)|

. (8)

Notice that while in chemistry only the three-dimensional
case is interesting, in physics systems with reduced effec-
tive dimensionality (quantum dots, quantum wires, point
contacts, etc.) play an important role.

As we shall see in Secs. IV-V, this way of address-
ing the functional V SCE

ee [ρ] corresponds to an attempt



3

of solving the so-called Monge problem associated to the
constrained minimization of Eq. (6). In the Monge prob-
lem, one essentially tries to transport a mass distribution
ρ1(r)dr into a mass distribution ρ2(r)dr in the most eco-
nomical way according to a given definition of the work
necessary to move a unit mass from position r1 to posi-
tion r2. For example, one may wish to move books from
one shelf (“shelf 1”) to another (“shelf 2”), by minimizing
the total work. The goal of solving the Monge problem
is then to find an optimal map which assigns to every
book in shelf 1 a unique final destination in shelf 2. In
Secs. IV-V, it will then become clear that the co-motion
functions are the optimal maps of the Monge problem
associated to V SCE

ee [ρ].
However, it is well known in mass transportation the-

ory that the Monge problem is very delicate and that
proving in general the existence of the optimal maps (or
co-motion functions) is extremely difficult. In 1942 Kan-
torovich proposed a relaxed formulation of the Monge
problem, in which the goal is now to find the probability
that, when minimizing the total cost, a mass element of
ρ1 at position r1 be transported at position r2 in ρ2. As
detailed in Sec. V, this formulation is actually the appro-
priate one for the constrained minimization of Eq. (6).

We were then able to prove in Sec. VI four theorems on
V SCE

ee [ρ]. In the first one, the existence of a generalized
minimizer for Eq. (6) is rigorously established. It is useful
to remind here that the functional V SCE

ee [ρ] corresponds
to the λ → ∞ limit [6, 7] of the traditional adiabatic
connection of DFT [22–25], in which a functional Fλ[ρ]
depending on a real parameter λ is defined as

Fλ[ρ] = min
Ψ→ρ

〈Ψ|T̂ + λ V̂ee|Ψ〉. (9)

If Ψλ[ρ] is the minimizer of Eq. (9), and if we define

Wλ[ρ] ≡ 〈Ψλ[ρ]|V̂ee|Ψλ[ρ]〉 − U [ρ], (10)

we have, under mild assumptions, the well-known exact
formula [24] for the exchange-correlation functional of KS
DFT:

Exc[ρ] =
∫ 1

0

Wλ[ρ] dλ. (11)

When λ→∞ it can be shown that [6, 7, 20, 21]

lim
λ→∞

Wλ[ρ] = V SCE
ee [ρ]− U [ρ], (12)

where U [ρ] is the Hartree functional of Eq. (5). We have
thus put the existence of this limit, which contains a piece
of exact information that can be used to model Exc[ρ]
[7, 11–13, 26, 27], on firm grounds.

When ρ(r) is ground-state v-representable ∀λ, Ψλ[ρ]
is the ground state of the hamiltonian

Ĥλ[ρ] = T̂ + λ V̂ee + V̂λ[ρ], (13)

where

V̂λ[ρ] =
N∑

i=1

vλ[ρ](ri) (14)

is a one-body local potential that keeps the density equal
to the physical (λ = 1) ρ(r) ∀ λ. In Refs. 20, 21 and 9 it
has been argued that

lim
λ→∞

vλ[ρ](r)
λ

= vSCE[ρ](r), (15)

where vSCE[ρ](r) is related to the co-motion functions via
the classical equilibrium equation [20]

∇vSCE[ρ](r) =
N∑

i=2

r− fi(r)
|r− fi(r)|3

, (16)

and it is the counterpart of the KS potential in the strong-
interaction limit. In fact, we also have

δV SCE
ee [ρ]
δρ(r)

= −vSCE[ρ](r). (17)

While Eq. (16) is only valid if the co-motion functions
(optimal maps) exist, Eq. (17) is more general. As
we shall see in Secs. V-VI, the Kantorovich problem
can be rewritten in a useful dual formulation in which
the so called Kantorovich potential u(r) plays a central
role. The relation between the Kantorovich potential and
vSCE[ρ](r) is simply

u(r) = −vSCE[ρ](r) + C, (18)

where C is a constant that appears if we want to set
vSCE(|r| → ∞) = 0, with |r| denoting the distance from
the center of charge of the external potential. With our
Theorems 2-4 we have proved that under very mild as-
sumptions on ρ(r) this potential exists, it is bounded
and it is differentiable almost everywhere, also for cases
in which the co-motion functions do not exist, thus ad-
dressing the v-representability problem in the strong-
interaction (λ→∞) limit.

Theorem 4 also proves that the value of V SCE
ee [ρ] is

exactly given by the maximum of the Kantorovich dual
problem

V SCE
ee [ρ] = (19)

max
u


∫
u(r)ρ(r)dr :

N∑
i=1

u(ri) ≤
N∑

i=1

N∑
j>i

1
|ri − rj |

 .

The condition
∑N

i=1 u(ri) ≤
∑N

i=1

∑N
j>i

1
|ri−rj | has a

simple physical meaning: it requires that at optimal-
ity the allowed subspace Ω0 of the full Nd configuration
space be a minimum of the classical potential energy.
This can be easily verified by rewriting this condition in
terms of vSCE[ρ](r) using Eq. (18):

N∑
i=1

N∑
j>i

1
|ri − rj |

+
N∑

i=1

vSCE[ρ](ri) ≥ ESCE, (20)

where the equality is satisfied only for configurations be-
longing to Ω0, and ESCE is the total energy in the SCE
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limit [21]: ESCE = limλ→∞ λ−1Eλ, where Eλ is the
ground-state energy of (13).

Equation (20) is related to the Legendre transform for-
mulation of Lieb [28] of the KS functionals, but it has
the advantage of being only a maximization under lin-
ear constraints, meaning that it can be dealt with linear
programming techniques.

We were not able to prove the existence of the co-
motion functions (optimal maps) in the general case, al-
though we have hints that, for reasonable densities, it
migth be possible. As mentioned, this is always a deli-
cate problem. We could only prove the existence of an
optimal map in the special case N = 2 (Appendix B).

In the following sections we introduce the optimal
transport problem and we give the details of the results
anticipated here.

IV. OPTIMAL TRANSPORT

In 1781 Gaspard Monge [3] proposed a model to de-
scribe the work necessary to move a mass distribution
p1 = ρ1 dx into a final destination p2 = ρ2 dx, given the
unitary transportation cost function c(x, y) which mea-
sures the work to move a unit mass from x to y. The
goal is to find a so-called optimal transportation map f
which moves p1 into p2, i.e. such that

p2(S) = p1

(
f−1(S)

)
∀ measurable sets S, (21)

with minimal total transportation cost∫
c
(
x, f(x)

)
dp1. (22)

The measures p1 and p2, which must have equal mass
(normalized to one for simplicity), are called marginals.
The natural framework for this kind of problems is the
one where X is a metric space and p1, p2 are probabilities
on X. However, the existence of an optimal transport
map is a very delicate question (for a simple example,
see Sec. VII), even in the classical Monge case, where X
is the Euclidean space Rd and the cost function is the
distance between x and y, c(x, y) = |x − y|. Thus in
1942 Kantorovich [4] proposed a relaxed formulation of
the Monge transport problem: the goal is now to find
a probability P (x, y) on the product space, which mini-
mizes the relaxed transportation cost∫

c(x, y)P (dx, dy)

over all admissible probabilities P , where admissibility
means that the projections π#

1 P and π#
2 P coincide with

the marginals p1 and p2 respectively. Here the notation
π#

i P means that we integrate P over all variables except
the ith. The Kantorovich problem then reads

min
P

{∫
c(x, y)P (dx, dy) : π#

j P = pj for j = 1, 2
}
,

(23)

where j = 1, 2 denotes, respectively, the variables x and
y. The minimizing P (dx, dy) = P (x, y)dxdy in Eq. (23),
called transport plan, gives the probability that a mass
element in x be transported in y: this is evidently more
general than the Monge transportation map f which as-
signs a unique destination y to each x.

The generalization to more than two marginals is cru-
cial for our purpose and is written as

min
P

{∫
c(x1, . . . , xN )P (dx1, . . . , dxN ) :

π#
j P = pj for j = 1, . . . , N

}
. (24)

The analogous of the Monge problem in this case is to
find N maps fi such that f1(x) = x, pi(S) = p1

(
f−1

i (S)
)

for every measurable set S, and (f1, . . . , fN ) minimizes∫
c(f1(x1), . . . , fN (x1)) p1(dx1),

among all maps with the same property.

V. REFORMULATION OF V SCE
ee [ρ]

We can now see that the way in which V SCE
ee [ρ] was ad-

dressed in Refs. 20 and 21 (briefly reviewed in Sec. III)
corresponds to an attempt of solving the Monge problem
associated to the constrained minimization of Eq. (6),
where the co-motion functions are the optimal maps. In-
deed, Eq. (21) is a weak form of Eq. (7) which does not
require f to be differentiable.

However, as said, proving the existence of the optimal
maps is in general a delicate problem. Moreover, the
problem posed by Eq. (6) has actually the more general
Kantorovich form (24). This can be seen by doing the
following (with x ∈ Rd):

• identify the probability P (dx1, . . . , dxN ) with
|Ψ(x1, . . . , xN )|2dx1, . . . , dxN ;

• set all the marginals pi equal to the density divided
by the number of particles N , pi = 1

N ρ dx;

• set the cost function equal to the electron-electron
Coulomb repulsion,

c(x1, x2, . . . , xN ) =
N∑

i=1

N∑
j=i+1

1
|xi − xj |

. (25)

Thus, solving the problem of finding the minimum possi-
ble electron-electron repulsion energy in a given density is
equivalent to find the optimal way of transporting N − 1
times the density ρ into itself, with cost function given
by the Coulomb repulsion, in the relaxed Kantorovich
formulation.

What are the advantages of this reformulation? As an-
ticipated in Sec. III, we can put many of the conjectures
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on V SCE
ee [ρ] [9, 11, 20] on firm grounds, and we can rewrite

Eq. (6) in a convenient dual form that allows to use lin-
ear programming techniques, with the potential of giving
access to a toolbox of algorithms already developed in a
different, well-established, context.

VI. THEOREMS ON V SCE
ee [ρ]

From the point of view of mass transportation the-
ory, the problem of Eq. (6) poses two challenges: i) the
cost function corresponding to the Coulomb potential,
Eq. (25), is different from the usual cost considered in
the field. In particular, it is not bounded at the origin
and it decreases with distance, thus requiring a general-
ized formal framework; ii) the literature on the problem
with several marginals is not very extensive (see, e.g.,
[29, 30]). Nonetheless, we could prove several results. In
what follows, we state them, relegating many technical
details of the proofs in the Appendix.

Theorem 1. If the cost function c is nonnegative and
lower semicontinuous there exists an optimal probability
Popt for the minimum problem (24).

Proof. The proof is an application of the Prokhorov com-
pactness theorem for measures. In fact, taken a mini-
mizing sequence (Pn) for problem (24), since they are all
probabilities, the sequence (Pn) is compact in the weak*
convergence of measures, so (a subsequence of) it con-
verges weakly* to a nonnegative measure P , and this is
enough to obtain∫

c dP ≤ lim inf
n

∫
c dPn.

Then P is a good candidate for being an optimal proba-
bility for problem (24). To achieve the proof it remains to
show that P is a probability and that the marginal condi-
tion π#

j P = pj is fulfilled. This is true if the convergence
of (Pn) to P is “narrow”, which by Prokhorov theorem
amounts to show the so-called tightness condition:

∀ε > 0 ∃K compact in RNd : Pn(RNd \K) < ε, ∀n ∈ N.

The tightness condition above follows easily by the fact
that all Pn satisfy the marginal conditions π#

j Pn = pj

(j = 1, . . . , N).

Remark 1. If the marginals p1, . . . , pN are all equal and
if the cost function c satisfies the symmetry condition

c(x1, . . . , xN ) = c(xk1 , . . . , xkN
) (26)

for all permutations k, then the existence theorem above
holds with Popt which satisfies the same symmetry con-
dition. In fact, it is enough to notice that, taken a prob-
ability P , the new probability

P̃ (x1, . . . , xN ) =
1
N !

∑
k

P (xk1 , . . . , xkN
),

where k runs over all permutations of {1, . . . , N}, has
a cost less than or equal to the one of P and the same
marginals.

We now turn to the important dual reformulation. The
standard dual problem in optimal transport theory is:

Theorem 2. Let c be a lower semicontinuous and finite
valued function, then

min
P

{∫
c(x1, . . . , xN )P (dx1, . . . , dxN ) :

π#
j P = pj for j = 1, . . . , N

}
= max

uj

{ N∑
j=1

∫
uj dpj :

N∑
j=1

uj(xj) ≤ c(x1, . . . , xN )
}
.

Moreover, the dual maximization problem also admits a
solution.

Remark 2. Again, if p1 = · · · = pN = p and if the cost
function c satisfies the symmetry condition (26), then
the dual problem admits a solution u1 = · · · = uN = u.
In fact, if u1, . . . , uN is an optimal solution of the dual
problem, the function

u(x) =
1
N

(
u1(x) + · · ·+ uN (x)

)
has the same maximal dual cost, and satisfies the con-
straint

u(x1) + · · ·+ u(xN ) ≤ c(x1, . . . , xN ).

Therefore, in this situation the dual problem becomes

max
u

{
N

∫
u dp :

N∑
i=1

u(xi) ≤ c(x1, . . . , xN )
}
. (27)

An optimal function u for the dual problem (27) is called
Kantorovich potential.

However, the theorem above does not apply directly to
the optimal transport problem of interest here, because
the cost, given by Eq. (25), takes the value +∞ on the
set {xi = xj for some i 6= j}. The dual formulation then
takes the following aspect (see for instance [31]).

Theorem 3. Let c be a Borel function with values in
[0,+∞] and assume that c is p1⊗ · · · ⊗ pN almost every-
where finite. Assume moreover that there exists a finite
cost transport plan P̂ . Then there exists Borel measur-
able dual maximizers ui with values in [−∞,+∞) such
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that

min
P

{∫
c(x1, . . . , xN )P (dx1, . . . , dxN ) :

π#
j P = pj forj = 1, . . . , N

}
= max

uj

{∫ N∑
j=1

uj(xj) dP̂ (dx1, . . . , dxN ) :

N∑
j=1

uj(xj) ≤ c(x1, . . . , xN )
}
.

The assumption that c is a Borel function is large enough
to include continuous and lower semicontinuous functions
(also taking the value +∞), in particular the Coulomb
potential in Eq. (25).

The dual form of Theorem 3 does not allow explicit
computations since it involves a plan P̂ which may be
not explicitly known. To overcome this difficulty we were
able to prove that, for the cost (25) under consideration,
the more useful dual form (27) still holds:

Theorem 4. Let c be the cost (25) and assume all
marginal measures pj coincide. Then there exists a maxi-
mizer u for the dual problem of Theorem 3 which satisfies
the formula

u(x) = inf
yi

{
c(x, y1 . . . , yN−1)−

N−1∑
i=1

u(yi) : yi ∈ Rd
}
.

Such Kantorovich potential u is also bounded and verifies
the equality∫ N∑

j=1

u(xj) dP̂ (dx1, . . . , dxN ) = N

∫
u(x) dp(x).

Moreover, if p = 1
N ρ(x) dx, then u is differentiable al-

most everywhere and ∇u is locally bounded.

In Sec. III we have already discussed the physical
meaning of the Kantorovich potential u: it is an effec-
tive single particle potential, playing the same role of the
KS potential in the strong-interaction limit.

The proof of Theorem 4 is discussed in Appendix A.
We were also able to prove, as reported in Appendix B,
the existence of an optimal map (co-motion function) f
in the special case N = 2, in any dimension d. In the
following section we show some explicit computations for
simple cases.

VII. ANALYTICAL EXAMPLES

The purpose of this section is to illustrate the optimal
transport reformulation of the strictly correlated electron
problem using simple examples. Results similar to those

reported here have been already obtained from physi-
cal considerations in Refs. 6, 11, 20 and 18, where so-
lutions using chemical and physical densities have been
presented and discussed. In a way, this section is mainly
addressed to the mass transportation community, with
examples of the SCE problem translated in their familiar
language. The DFT reader can also gain insight about
the mass transportation formulation of the SCE problem
from these examples by comparing them with those of
Refs. 6, 11, 20 and 18.

We first consider the radial problem for two particles
in a given dimension d, and then the case of N particles
in d = 1 dimension.

A. The radial d-dimensional case for N = 2

Here we deal with the radial case ρ(x) = ρ(|x|) when
the number N of particles is two.

The mass density ρ(|x|) is transported on itself in
an optimal way by a transport map f whose existence
has been proved in Appendix B. According to the one-
dimensional calculations of the next subsection, for ev-
ery half-line starting from the origin the mass density
rd−1ρ(r) is transported on the opposite half-line in an
optimal way. In other words we have

f(x) = − x

|x|
a(|x|)

where the function a(r) can be computed by solving the
ordinary differential equation (ODE)

a′(r)
(
a(r)

)d−1
ρ
(
a(r)

)
= −rd−1ρ(r)

which gives∫ a(r)

0

sd−1ρ(s) ds =
1
dωd

−
∫ r

0

sd−1ρ(s) ds

being ωd the d-volume of the unit ball in Rd. The
Kantorovich potential u(r) is obtained differentiating the
dual relation u(x)+u(y) = 1/|x−y| at the optimal points,
which gives

u(r) = −
∫ r

0

1
(s+ a(s))2

ds+
1
2

∫ +∞

0

1
(s+ a(s))2

ds .

For instance, if d = 2 and ρ(r) is the Gaussian function
ρ(r) = ke−kr2

/π we find

a(r) =

√
−1
k

log(1− e−kr2).

Notice that these results were already obtained from
physical arguments by Seidl [6] in his first paper on
strictly correlated electrons.

It must be also noticed that replacing the Coulomb
repulsion 1/|x− y| by the more moderate repulsion (har-
monic interaction) −|x− y|2/2, similar calculations give,
due to the concavity of the cost function,

f(x) = −x, with Kantorovich potential u(r) = −r2,
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as it was already discussed in the appendix of Ref. 20.

B. The case N = 2 and d = 1 dimension

We take N = 2 particles in one dimension and we first
consider the simple case

ρ1(x) = ρ2(x) =
{
a if |x| ≤ a/2
0 otherwise (28)

and

c(x, y) =
1

|x− y|
.

By symmetry, the goal is to send the interval [0, a/2] into
[−a/2, 0] by a transportation map f with minimal cost

F (f) = a

∫ a/2

0

1
x− f(x)

dx.

Since the function t 7→ 1/t is convex on R+, by Jensen
inequality we have

F (f) ≥ a3

4

(∫ a/2

0

x− f(x) dx

)−1

.

Taking into account that
∫ a/2

0
x dx = a2/8 and∫ a/2

0

f(x) dx =
∫ 0

−a/2

y dy = −a
2

8

we obtain that F (f) ≥ a for every transport map f .
Choosing

f(x) = x− a

2

we have F (f) = a which shows that f is optimal. The
plot of the optimal map f on [−a/2, a/2] is shown in
Fig. 1. This is the same optimal map used in Ref. 18.

Similar computations can be made for different densi-
ties ρ. Let us denote by r1 the “first half” of ρ and by
r2 the “second half”; there is no loss of generality if we
assume that the point where ρ splits is the origin. In
other words,

r1 = ρ on ]−∞, 0[, r2 = ρ on ]0,+∞[,

with
∫ 0

−∞
r1 dx =

∫ +∞

0

r2 dx = 1/2.

The best transport map f sends r1 onto r2, so from the
differential relation

f ′(x)r2
(
f(x)

)
= r1(x),

taking into account that f(−∞) = 0, we find

f(x) = R−1
2

(
R1(x) +

1
2

)
for x < 0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0 f HxL

x

FIG. 1: The optimal map f for the density of Eq. (28) with
a = 2.

where R1 and R2 are the two primitives of r1 and r2
respectively, vanishing at the origin. Analogously, we
obtain

f(x) = R−1
1

(
R2(x)−

1
2

)
for x > 0,

which agrees with the results of Refs. 6 and 20. For
instance, if

ρ(x) =
a− |x|
a2

defined in [−a, a] (29)

we get

f(x) =
x

|x|

(√
2a|x| − x2 − a

)
on [−a, a]

plotted in Fig. 2 for a = 1.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0 f HxL

x

FIG. 2: The optimal map f for the density of Eq. (29) in the
case a = 1.

Taking the Gaussian

ρ(x) = (π)−1/2e−x2
(30)
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we obtain the optimal map shown in Fig. 3.

-2 -1 1 2

-2

-1

1

2

f HxL

x

FIG. 3: The optimal map f for the Gaussian density of
Eq. (30).

C. The case N ≥ 3 and d = 1 dimension

We consider the case of three particles in R, with cost

c(x, y, z) =
1

|x− y|
+

1
|y − z|

+
1

|z − x|
.

The transport maps formulation aims to find two maps
f1 : R → R and f2 : R → R such that f#

1 ρ = f#
2 ρ = ρ

which minimize the quantity∫
R

(
1

|x− f1(x)|
+

1
|f1(x)− f2(x)|

+
1

|f2(x)− x|

)
dρ(x),

with f2 = f1 ◦ f1, as it follows from the indistinguisha-
bility of the three particles.

The simplest case occurs when the marginal source ρ
is of the form

ρ =
1
3

3∑
i=1

δxi

in which the optimal transport maps f1 are all the per-
mutations of the points {xi}i=1,2,3 that do not send any
point in itself. In the case of a diffuse source ρ we split
ρ into its three tertiles ρ1, ρ2, ρ3 with

∫
ρi dx = 1/3 and

we send ρ1 → ρ2, ρ2 → ρ3, ρ3 → ρ1 through mono-
tone transport maps. For instance, if ρ is the Lebesgue
measure on the interval [0, 1] we have that the optimal
transport map f1 is

f1(x) =
{
x+ 1/3 if x ≤ 2/3
x− 2/3 if x > 2/3,

and correspondingly

f2(x) = f2
1 (x) =

{
x+ 2/3 if x ≤ 1/3
x− 1/3 if x > 1/3.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0 f1HxL

x

f2HxL

x
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

FIG. 4: The optimal maps f1 and f2 = f2
1 for N = 3 and

ρ = dx on [0, 1].

Let us show that f1 and f2 induce an optimal plan
P . We check the optimality by calculating an explicit
Kantorovich potential u which satisfies, for all x, y, z:

u(x) + u(y) + u(z) ≤ 1
|x− y|

+
1

|x− z|
+

1
|y − z|

(31)

and, ∀ x,

u(x) + u(f1(x)) + u(f2(x)) =
1

|x− f1(x)|
+

1
|x− f2(x)|

+
1

|f1(x)− f2(x)|
. (32)

We remark that the right-hand side in equation (32) is
equal to 15/2. To calculate u we observe that the in-
equality (31) holds everywhere, then differentiating with
respect to x we obtain at a point (x, y, z) of equality

u′(x) = − x− y

|x− y|3
− x− z

|x− z|3
.
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Replacing y by f1(x) and z by f2(x) we obtain

u′(x) =


45
4 if x ∈ [0, 1

3 ),
0 if x ∈ ( 1

3 ,
2
3 ),

− 45
4 if x ∈ ( 2

3 , 1].
(33)

Then we find that

u(x) =


45
4 x+ c if x ∈ [0, 1

3 ],
15
4 + c if x ∈ [ 13 ,

2
3 ],

− 45
4 x+ 45

4 + c if x ∈ [ 23 , 1].
(34)

Equation (32) gives c = 0. By construction, then, u
satisfies (32) and we only need to show that it satisfies
also (31). To see this we remark that by symmetry it is
enough to check the inequality in the set where x < y < z
and that on this set the function

(x, y, z) 7→ 1
|x− y|

+
1

|x− z|
+

1
|y − z|

is convex. On the other hand by the concavity of u the
function

(x, y, z) 7→ u(x) + u(y) + u(z)

is concave. These two maps coincide together with their
gradients at the point (1/6, 3/6, 5/6) and then the convex
one has to stay above the concave.

In the case of a possibly singular source optimal maps
do not in general exist, and the optimal configurations
are given by probability plans P . For instance, if

ρ =
1
4

4∑
i=1

δxi

with xi ordered in an increasing way, we have that the
optimal transport plan sends:

δx1 + 1
3δx2 → 2

3δx2 + 2
3δx3

2
3δx2 + 2

3δx3 → 1
3δx3 + δx4

1
3δx3 + δx4 → δx1 + 1

3δx2 .

When N ≥ 4 similar arguments as above can be de-
veloped, giving transport maps f1, f2

1 , . . . , fN−1
1 that

minimize the total cost∫
c
(
x, f1(x), f2

1 (x), . . . , fN−1
1 (x)

)
dρ(x),

where c(x1, . . . , xN ) is given in Eq. (25). Some of these
results were also obtained by Seidl [6], again using phys-
ical arguments.

VIII. CONCLUSIONS AND PERSPECTIVES

We have shown that the strong-interaction limit of
electronic density functional theory can be rewritten as a
mass transportation theory problem, thus creating a link
between two different, well established, research areas.

This is already interesting per se: it allows to import and
generalize results from one domain to the other. In par-
ticular, with our reformulation we were able to prove im-
mediately several results on the strong-interaction limit
of DFT. Even more interesting, we could show that the
problem of finding the minimum interaction energy in a
given density can be rewritten in a convenient dual form
consisting of a minimization under linear constraints,
paving the way to the use of linear programming tech-
niques to solve the strictly-correlated electron problem.

Dual reformulations have been already proved very
useful in the context of electronic structure calculations:
for example, in Ref. 32 the solution of the physical hamil-
tonian by optimizing the second-order reduced density
matrix has been tackled with a suitable dual problem.
The use of Legendre transform techniques for the simpli-
fication of minimizations involving permutations in the
many electron problem has also been stressed and ap-
plied in Refs. 33 and 34, with very interesting results.
All these approaches focused on the quantum mechanical
problem, while here we deal with a special problem that
is essentially of classical nature, but contains quantum-
mechanical information via the electronic density. We
know now that the optimal transport formulation is the
right mathematical framework for the strong-interaction
limit of density functional theory.

It is also worth to mention that the formalism devel-
oped here can be of interest for approaches to the many-
electron problem which use k-electron distribution func-
tions (i.e., the diagonal of the kth order reduced density
matrix), such as those of Refs. 35 and 36. In fact, in these
approaches one usually constructs a k-electron distribu-
tion function ρk(r1, . . . , rk) with a given density, possibly
minimizing the electron-electron repulsion energy. This
would result in the same Kantorovich formulation con-
sidered here.

The formal and practical aspects of our new reformu-
lation are enticing for DFT: making routinely available
the piece of exact information contained in the strong-
interaction limit can largely broaden its applicability,
both by developing a “SCE DFT” [9–11] (which uses a
strong interacting system as a reference), and via new
exchange-correlation functionals for standard KS DFT
[8, 11, 13]. Future work will be devoted to exploit the
practical aspects of this reformulation.

Note added in proof: While this article was in review,
we become aware that a related work [37] was posted
on arXiv. In [37] the particle-particle interaction term
is minimized by only considering the pair density. By
neglecting the N -representability issue, this leads to a
two-particle problem with only one map (or co-motion
function).
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Appendix A: Proof of Theorem 4

For the sake of simplicity we give a sketch of the proof
only in the case of two particles, the general case can
be obtained in a similar way. We thus consider the case
N = 2 in Rd with two equal marginals, p1 = p2 = p with
p ∈ P (Rd). The problem is then

min
{∫ 1

|x− y|
dP (x, y) : π#

j P = pj , for j = 1, 2
}
,

(A1)
and p will be assumed absolutely continuous i.e. of the
form ρ(x) dx with 0 ≤ ρ(x) and

∫
ρ(x) dx = 1.

By definition, the Kantorovich potential u is a maxi-
mizer for the dual problem according to Theorem 3 and
Remark 1. If we denote by P an optimal plan of trans-
port (which exists by Theorem 1) then in the case N = 2
considered here u maximizes the functional∫

Rd×Rd

(
u(x) + u(y)

)
dP (x, y) (A2)

among all the functions which satisfies the constraint

u(x) + u(y) ≤ 1
|x− y|

. (A3)

Under the current assumptions such a maximizer exists
by Theorem 3 above, but u is only a Borel function which
takes values in [−∞,+∞). Much more then is needed to
carry on the necessary computations and we will deduce
the needed properties. The proof will be made of several
steps. But first, let us fix the following notation: for a
transport plan P we denote by spt(P ) the support of P ,
i.e. the smallest closed set F such that P (Rd×Rd \F ) =
0.

Step 1 The first step is the following intuitive fact
about optimal transport plans. If Popt is an optimal
transport plan, then

0 < |x− y| ∀(x, y) ∈ spt(Popt).

Indeed, if by contradiction a point (x, x) ∈ spt(Popt) we
may find a better transport plan P̃ by exchanging the
mass around (x, x) with the one around another point
(x̃, ỹ) ∈ spt(Popt) having x̃ 6= ỹ 6= x.

Step 2 Actually something more can be said. Let Popt

be an optimal transport plan; then for all R > 0 there
exists α(R) > 0 such that

α(R) < |x− y| ∀x ∈ B(0, R), ∀(x, y) ∈ spt(P ).

Indeed let x ∈ B(0, R) and (x, y) ∈ spt(Popt); by the
point above and by compactness, the diagonal and the
support of Popt have positive distance in the set B(0, R)×
B(0, 2R) and we denote by β(R) such a distance. It
follows that

min{β(R), R} ≤ |x− y|.

We then define α(R) := min{β(R), R}. Moreover, we
may choose the function α non increasing.

Step 3 Using the second step we now prove that there
are Kantorovich potentials which are bounded. First we
remark that we can choose a Kantorovich potential v
which satisfies

v(x) = inf
y∈Rd

{ 1
|x− y|

− v(y)
}
. (A4)

We start with a potential u and we notice that by defi-
nition

u(x) ≤ inf
y∈Rd

{ 1
|x− y|

− u(y)
}
.

Then we can consider

u(x) = inf
y∈Rd

{ 1
|x− y|

− u(y)
}
.

Clearly u ≤ u. Even if u does not satisfy the constraint,
from the definition we get

u(x)+u(y) = inf
z∈Rd

{ 1
|x− z|

−u(z)
}

+ inf
z∈Rd

{ 1
|z − y|

−u(z)
}
,

and taking y as test in the first term of the right-hand-
side and x in the second it follows that

u(x) + u(y) ≤ 2
|x− y|

− u(y)− u(x),

or equivalently if we define ũ(x) = 2−1
(
u(x) + u(x)

)
u(x) ≤ ũ(x) ≤ u(x) and ũ(x) + ũ(y) ≤ 1

|x− y|
.

We may now define

v(x) = sup
{
w(x) : u(x) ≤ w(x) ≤ u(x)

and w satisfies (A3)
}
.

The function v(x) clearly satisfies (A3), and if v 6= v since

v(x) = inf
y∈Rd

{ 1
|x− y|

− v(y)
}

≤ inf
y∈Rd

{ 1
|x− y|

− u(y)
}

= u(x)

then v < ṽ ≤ u which contradicts the maximality of v.
Finally, v maximizes the cost (A2) since u ≤ v.
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Step 4 As anticipated in Theorem 4 if v is a Kan-
torovich potential which satisfies (A4), then there exists
a costant C such that |v| ≤ C. Let Popt be an optimal
plan of transport. The condition∫

Rd×Rd

(
v(x) + v(y)

)
dPopt(x, y) =

∫
Rd×Rd

dPopt(x, y)
|x− y|

together with the condition

v(x) + v(y) ≤ 1
|x− y|

implies that

v(x) + v(y) =
1

|x− y|
for Popt-a.e. x and y,

and then in particular v is finite ρ-a.e. Moreover, setting

G =
{
x : −∞ < v(x) and ∃ y s.t. v(x)+v(y) =

1
|x− y|

}
it follows from the discussion above that ρ(G) = 1. Let
x ∈ G be a point of density 1 for G and let α and r be
such that α > r and

1. for all s ≤ r we have |B(x, s) ∩G|/|B(x, s)| ≥ 3/4,

2. for all x ∈ B(x, r) if (x, y) ∈ spt(P ) then α <
|x− y|.

Setting L = v(x) we have that for every z ∈ Rd\B(x, r/4)

v(z) = inf
y∈Rd

{ 1
|y − z|

− v(y)
}
≤ 4
r
− L. (A5)

On the other hand for every z ∈ B(x, r/4) ∩ G there
exists y such that α < |z − y|, (z, y) ∈ spt(Popt) and
v(z) + v(y) = 1/|z − y|. Then

v(z) = inf
y∈Rd

{ 1
|y − z|

− v(y)
}

≤ inf
|y−z|≥α

{ 1
|y − z|

− v(y)
}

= v(z)

since r < α, Rd \B(z, α) ⊂ Rd \B(x, r/4), and then from
the estimate (A5)

v(z) = inf
|y−z|≥α

{ 1
|y − z|

− v(y)
}
≥ L− 1

r
. (A6)

To get a control of v from above in B(x, r/4) we observe
that if λ ≤ r4−1/d and z ∈ B(x, r/4), since

|B(z, λ)| = ωdλ
d ≤ ωd

4
rd ,

then there exists at least one yz ∈ G∩B(x, r/4)\B(z, λ)
such that, from the estimate (A6),

v(z) ≤ inf
|y−z|≥λ

{ 1
|y − z|

− v(y)
}

≤ 1
|yz − z|

− v(yz) ≤
1
λ

+
1
r
− L. (A7)

Estimates (A5) and (A7) give a bound from above on
v by a constant K. The estimate from below is now
straightforward since

v(x) = inf
Rd

{ 1
|x− y|

− v(y)
}
≥ −K.

Step 5 The previous steps permit to gain more regu-
larity on the potential v. Let indeed v be a Kantorovich
potential which satisfies (A4); we show that v is differ-
entiable almost everywhere. To see this we consider the
family of functions

vn(x) = inf
α(n)<|x−y|

{ 1
|x− y|

− v(y)
}
.

Since α is nonincreasing we have

vn+1(x) ≤ vn(x).

Moreover each vn is a Lipschitz function of Lipschitz con-
stant 1/α2(n). By Step 2 for x ∈ G if |x| < m < n then
v(x) = vn(x) = vm(x). Then on G the potential v coin-
cide locally with a Lipschitz function which is well known
to be differentiable almost everywhere.

Appendix B: Proof of the existence of an optimal
transport map for N = 2

Once the existence of an a.e. differentiable Kantorovich
potential v is established, we may consider the problem
of showing the existence of an optimal transport map
(co-motion function) f . In the case N = 2 the proof
can be achieved by using the basic idea of differentiating
inequality (A3) at the points of equality.

Let Popt be an optimal transport plan and let G be
defined as above. If GN := G ∩ B(0, N) we prove that
for almost every x ∈ GN there exists only one y such
that (x, y) ∈ spt(Popt) and we give an explicit expression
for such y. It follows that Popt is induced by an optimal
transport map. Let vN be the function defined above;
since vN coincides with v on GN , for every x ∈ GN and
y the inequality

vN (x) + v(y) ≤ 1
|x− y|

holds. Since Popt is an optimal transport plan and ρ =
a(x) dx, then for Popt-a.e. (x, y) ∈ spt(Popt), x belongs
to GN for a suitable N , x is a density point for GN and
vN is differentiable at x. Since for z ∈ GN

vN (z) ≤ 1
|z − y|

− v(y)

and equality holds for z = x then if we differentiate the
functions vN and ψ(z) = 1

|z−y| − v(y) we obtain

∇vN (x) = − x− y

|x− y|3
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from which it follows

y = x+
1

|∇vN (x)|3/2
∇vN (x). (B1)

From equation (B1) we deduce that for Popt-a.e. (x, y)
the point y is uniquely determined by x and this con-
cludes the proof of the existence of an optimal transport

map f , by defining

f(x) = x+
1

|∇vN (x)|3/2
∇vN (x)

whenever x ∈ B(0, N).
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