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Abstract

We consider the problem of the optimal location of a Dirichlet region
in a d-dimensional domain Ω subjected to a given force f in order to
minimize the p-compliance of the configuration. We look for the optimal
region among the class of all closed connected sets of assigned length l.
Then we let l tends to infinity and we look at the Γ-limit of a suitable
rescaled functional, in order to get information of the asymptotic dis-
tribution of the optimal region. We highlight as well the case where the
Dirichlet region is searched among discrete sets of finite cardinality.

Introduction

We consider the problem of finding the best location of the Dirichlet region
Σ in a d-dimensional domain Ω associated to an elliptic equation in divergence
form, namely {

−∆pu = f in Ω \ Σ
u = 0 inΣ ∪ ∂Ω,

where f is a nonnegative function belonging in Lq(Ω), q being the conjugate
exponent of p and ∆pu stands for div(|∇u|p−2∇u).We are interested in the
minimization of the p-compliance functional defined by

C(Σ) =

∫
Ω

fuf,Σ,Ωdx,

where uf,Σ,Ω stands for the unique solution of the above equation. The ad-
missible class of control variables Σ we consider here is the class of all closed
connected sets with given one dimensional Hausdorff. It is easy to obtain the
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optimal configuration Σl of the above optimization problem (see Theorem 1)
as a consequence of Ševerák result (see e.g. [4], [11]). we are interested in
the asymptotic behavior of Σl as l → +∞; more precisely we want to obtain
the limit distribution of Σl as a limit probability measure that minimizes the
Γ-limit functional of the suitable rescaled p-compliance functional. In the lit-
erature, they are similar results among them we may cite location problems
studied in [2], irrigation problems in [10] and compliance in [6]. This problem
has been considered in the case of dimension 2 in [5] and the result is exactly
as the one in Theorem 2 provided d = 2. This is an extension of this result
in higher dimension i.e. d ≥ 3, assuming that p > d − 1. The proofs follow
the guidelines of [5] and difficulties are mainly of technical nature. In [5], the
two dimensional setting has been used in the proofs of Γ-lim inf and Γ-lim sup
inequalities. More precisely, the Lemma 1 in [5] (analogous of Lemma 3 here)
which is crucial for the Γ-lim inf inequality, follows from the classical Poincaré’s
inequality wile here we consider the Poincaré ’s inequality using the notion of
p-capacity. for the construction of the recovering sequence of the Γ-lim sup
inequality, the analogous of the Lemma 7 is enough in the case where the di-
mension is two. The case of higher dimension require more since the boundary
of the unit cube is not an one dimensional set. To overcome this difficulty, we
prove an other result (Lemma 8) which study the difference between two solu-
tions of the p-Laplacian equation with two different Dirichlet conditions. This
result together with Lemma 7 are sufficient for the construction of the recov-
ering sequence. In the last section, we deal with the case where the Dirichlet
region is searched among the class of discrete sets of a finite numbers of ele-
ments under the assumption that p > d. This problem is in connection with
the location problem studied in [2].

1 The p-compliance under length constraint

Let p > d− 1 be fixed and q = p/(p− 1) the conjugate exponent of p. For an
open set Ω ⊂ Rd and l a positive given real number, we define

Al(Ω) = {Σ ⊂ Ω, closed and connected, 0 < H1(Σ) ≤ l}.

For a nonnegative function f ∈ Lq(Ω) and Σ a compact set with positive
p-capacity, we denote by uf,Σ,Ω the weak solution of the equation{

−∆pu = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,
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that is u ∈ W 1,p
0 (Ω \ Σ) and∫
Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈ W 1,p
0 (Ω \ Σ). (1)

By the maximum principle, the nonnegativity of the function f implies
that of u. For f ≥ 0, we define the p-compliance functional as follows:

C(Σ) = Fp(Σ, f,Ω) =

∫
Ω

fuf,Σ,Ωdx =

∫
Ω

|∇uf,Σ,Ω|pdx

= qmax

{∫
Ω

(v − 1

p
|∇v|p)dx : v ∈ W 1,p

0 (Ω \ Σ)

}
,

where q stands for the conjugate exponent of p. The existence of the mini-
mal p-compliance configuration is just a consequence of a generalized Šverák
compactness-continuity result (see [4]).

Theorem 1 For any real number l > 0, Ω bounded open subset of Rd, d ≥ 2
and f a nonnegative function belonging to Lq(Ω), the problem

min{Cp(Σ) : Σ ∈ Al(Ω)} (2)

admits at least one solution.

Here we are interested to the asymptotic behavior of the optimal set Σl of the
problem (2) as l → +∞. Let us associate to every Σ ∈ Al(Ω) a probability
measure on Ω, given by

µΣ =
H1xΣ
H1(Σ)

and define a functional Fl : P(Ω)→ [0; +∞] by

Fl(µ) =

{
l

q
d−1Cp(Σ) if µ = µΣ,Σ ∈ Al(Ω)

+∞ otherwise.
(3)

The scaling factor l
q

d−1 is needed in order to avoid the functional to de-
generate to the trivial limit functional which vanishes everywhere. Our main
result deals with the behavior as l→ +∞ of the functional Fl, and we state it
in terms of Γ-convergence.

Theorem 2 The functional Fl defined in (3) Γ-converges, with respect to the
weak* topology on the class P(Ω) of probabilities on Ω, to the functional F
defined on P(Ω) by
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F (µ) = θ

∫
Ω

f q

µ
q

d−1
a

dx, (4)

where µa stands for the density of the absolutely continuous part of µ with
respect to the Lebesgue measure, and θ is a positive constant depending only
on d and p and is defined by

θ = inf{lim inf
l→+∞

l
q

d−1Fp(Σl, 1, I
d) : Σl ∈ Al(Id)} (5)

Id = (0, 1)d being the unit cube in Rd.

According to the general theory of Γ-convergence (see [7]), we deduce the
following consequence of Theorem 2:

• if Σl is a solution of the minimization problem (2), then up to a subse-
quence µΣl

⇀ µ as l→ +∞, where µ is a minimizer of F ;

• since F has a unique minimizer in P(Ω), the whole sequence µΣl
con-

verges to the unique minimizer µ of F given by µ = cf
q(d−1)
q+d−1Ld where c

is such that µ is a probability measure, that is c = 1/
(∫

Ω
f

q(d−1)
q+d−1dx

)
• the minimal value of F is equal to θc

q+d−1
d−1 , and the sequence of the values

inf {Fp(Σ, f,Ω) : Σ ∈ Al(Ω)} is asymptotically equivalent to

l
q

d−1 θc
q+d−1

d−1 .

2 Γ-convergence result

We will prove the Γ-convergence result in two steps corresponding to Γ-lim inf
and Γ-lim sup.

2.1 Γ-lim inf inequality

Before proving the Γ-lim inf inequality, we need some results and constructions.
We start by a construction of a set Gε,l which will be useful later. Let Ω be
a domain, Id be a unit cube in Rd and a be a positive number such that the
cube (−a, a)d, that we will denote by Ida contains Ω. Let M be a union of d
segments of length 1 joining at the center of the unit cube Id and connecting
two parallel faces of the unit cube in the given direction. The segments are
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made in such a way that their endpoints coincide with the middle points of
the faces of Id. We consider the set Gε,l to be the homogenization of the set
M of order b( εl

2ad
)1/(d−1)c into Ida . It is clear that due to the particularity of the

set M , the set Gε,l is connected and H1(Gε,l) ≈ εl.

Lemma 3 1. Let QR ⊂ Rd be a cube of side R and A ⊂ QR a closed subset
of QR of positive p-capacity, then there exists a constant C = C(d, p)
such that, for all functions v ∈ C∞(QR) with nonnegative mean value
and vanishing on A, we have∫

QR

|v|pdx ≤ CRd

capp(A,Q2R)

∫
QR

|∇v|pdx,

where capp(A,Q2R) stands for the relative p-capacity of the set A inside
Q2R.

2. For any ε > 0, any 0 < l < +∞, any domain Ω and any function with
non zero mean value v ∈ W 1,p

0 (Ω \ Gε,l) ⊂ W 1,p
0 (Ω) (Gε,l is the network

constructed above) it holds ||v||Lp(Ω) ≤ C(d, ε, ε0)l
1

1−d ||v||W 1,p
0 (Ω), where

ε0 = capp(M, 2Id)

3. As a consequence, if we have a nonnegative function f ∈ Lq(Ω), then the

function uf,Gε,l,Ω satisfies ||uf,Gε,l,Ω||Lp(Ω) ≤ C(d, ε, ε0)l
q

1−d ||f ||q/(d−1)
Lq(Ω)

Proof: The first assertion is a variant of the well-known Poincaré inequality.
See [9] for more comment. For proving the second one, we first choose the
function v to be a nonnegative smooth function on a large cube Ida which
vanish outside Ω \Gε,l. We consider the subdivision of cube Ida into subcubes
which are coming from the homogenization of order b( εl

2ad
)1/(d−1)c of the unit

cube into Ida and consider the associated network Gε,l. The side of subcubes
is of order l1/(1−d). Let us denote the subcubes by Qj. The set Ida \ Gε,l can
be seen as the homogenized of order k = b( εl

ad
)1/(d−1)c of Id \M into Ida (M

is the set constructed above). Let us set ε0 = capp(M, 2Id) and notice that
v vanishes on Gε,l. By applying the first statement of this Lemma, it follows
that∫

Qj

|v|pdx ≤ Ck−d

capp(k−1M, 2Qj)

∫
Qj

|∇v|pdx ≤ Clp/(1−d)

capp(M, 2Id)

∫
Qj

|∇v|pdx
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and by summing up over j we get∫
Id
a

|v|pdx ≤ C

ε0

lp/(1−d)

∫
Id
a

|∇v|pdx.

Using the fact that v vanishes outside Ω, we may restrict the integrand to Ω,
raise each term of the inequality to the power 1/p and thus getting the result
by noticing that the Lp norm of the gradient ||∇v||Lp(Ω) stands for the norm
||v||W 1,p

0 (Ω). The general case follows by density. For the last inequality, we use

the weak version of the PDE which gives∫
Ω

|∇uf,Gε,l,Ω|pdx =

∫
Ω

fuf,Gε,l,Ωdx ≤ ||uf,Gε,l,Ω||Lp(Ω)||f ||Lq(Ω).

Since uf,Gε,l,Ω ∈ W
1,p
0 (Ω \Gε,l) we get

||uf,Gε,l,Ω||
p

W 1,p
0 (Ω)

≤ ||uf,Gε,l,Ω||Lp(Ω)||f ||Lq(Ω)

≤ C(d, ε0, ε)l
1/(1−d)||uf,Gε,l,Ω||W 1,p

0 (Ω)||f ||Lq(Ω),
,

and the desired result follows. �

Before proving the Γ-lim inf inequality, we need the following estimate
which will be helpful.

Lemma 4 Let f, g ∈ Lq(Ω) be given and uf and ug denote the solution of
p-Laplacian equation with respective right hand side f, g and with Dirichlet
boundary condition on Σ

′

l = Σl ∪ Gε,l (where Σl is an element of Al(Ω) and
Gε,l the above constructed network), then

lq/(d−1)||uf − ug||L1(Ω) ≤ C|Ω|1/q||f − g||1/(d−1)
Lq(Ω) ,

where C = C(d, p, ε0, ε). In particular, if Ω = Q a cube centered at x0, g =
f(x0) and x0 is a Lebesgue point for f , then

lq/(d−1)||uf − ug||L1(Q) ≤ C|Q|

(∫
Q
|f(x)− f(x0)|qdx

|Q|

)1/p

= |Q|r(Q).

Proof: For any p ≥ 2, and any pair of vectors (z, w) we have the following
monotonicity formulas (see [8])

|z − w|p ≤ C(|z|p−2z − |w|p−2w) · (z − w).
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Here p > d− 1 ≥ 2 and from monotonicity formulas, it follows that

||uf − ug||pW 1,p
0 (Ω)

≤ C||uf − ug||Lp(Ω)||f − g||Lq(Ω),

where we have used z = ∇uf and w = ∇ug. From Lemma 3, we have the
inequality ||v||Lp(Ω) ≤ Cl1/(1−d)||v||W 1,p

0 (Ω) which holds for every function v

vanishing on Σ
′

l. Since the function uf − ug vanishes on Σ
′

l, we have

||uf − ug||pW 1,p
0 (Ω)

≤ Cl1/(1−d)||uf − ug||W 1,p
0 (Ω)||f − g||Lq(Ω),

which gives

||uf − ug||W 1,p
0 (Ω) ≤ Cl1/(1−d)(p−1)||f − g||1/(p−1)

Lq(Ω) ,

and using Hölder inequality, we get

||uf − ug||L1(Ω) ≤ |Ω|1/q||uf − ug||Lp(Ω)

≤ C|Ω|1/ql1/(1−d)||uf − ug||W 1,p
0 (Ω)

≤ C|Ω|1/qlq/(1−d)||f − g||1/(p−1)
Lq(Ω) ,

and the first part of the statement follows. The second part is an obvious
consequence of the first part. �

In the following proposition, we prove that the Γ-lim inf functional is bounded
below by the candidate limit functional F in (4).

Proposition 5 Under the same hypotheses of Theorem 2, denoting by F− the
functional Γ-lim inf l Fl, it holds F−(µ) ≥ F (µ) for any µ ∈ P(Ω). This means
that for any sequence (Σl)l ⊂ Al(Ω) such that µΣl

weakly* converges to µ, we
have

lim inf
l→+∞

l
q

d−1

∫
Ω

fuf,Σl,Ωdx ≥ F (µ).

Proof: Let Σ
′

l = Σl ∪ Gε,l and set u′l = uf,Σ′l ,Ω
. Since ul ≥ u′l, it is enough to

estimate the integral l
q

d−1

∫
Ω
fu′ldx. It is obvious that 0 ≤ u′l ≤ uf,Gε,l,Ω and

Lemma 3 gives
||uf,Gε,l,Ω||Lp(Ω) ≤ C(d, ε0, ε, f)l

q
1−d .

It follows that l
q

d−1u
′

l is Lp bounded, so up to a subsequence l
q

d−1u
′

l ⇀ w weakly
in Lp(Ω). Thus

lim
l→+∞

l
q

d−1

∫
Ω

gu′ldx =

∫
Ω

gwdx, ∀g ∈ Lq(Ω).
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So it is enough to estimate w from below. We will show that, for almost any
x0 ∈ Ω, it holds

w(x0) ≥ θ
f(x0)1/(p−1)

(µa + ε)
q

d−1

. (6)

To this aim, we first estimate w on a cube Q centered at the point x0 ∈ Ω.
We assume that x0 is a Lebesgue point for f and |Q|−1µ(Q) → µa(x0) as Q
shrinks around x0. Assume also f(x0) > 0 otherwise (6) would be trivial. We
have

lim
l→+∞

l
q

d−1

∫
Q

u′ldx =

∫
Q

wdx,

we use
u′l ≥ uf,Σ′l ,Q

≥ uf(x0),Σ
′
l ,Q
− |uf,Σ′l ,Q − uf(x0),Σ

′
l ,Q
| in Q,

where the first inequality comes from the fact that we add Dirichlet boundary
condition on Q. The second part of Lemma 4 gives∫

Q

|uf,Σ′l ,Q − uf(x0),Σ
′
l ,Q
|dx ≤ l

q
1−d |Q|r(Q).

It remains to estimate the second term. First of all let us define the number
L(l, Q) = H1(Σ

′

l ∩Q) and observe that

uf(x0),Σ
′
l ,Q

= f(x0)1/(p−1)u1,Σ
′
l ,Q
.

For simplicity of the notation, we denote u1,Σ
′
l ,Q

by vl. By a change of variables,

if we assume the side of cube Q to be λ and we define vl,λ = λ−qvl(λx) (thinking
for instance that both cubes are centered at the origin), we get vl,λ = u1,λ−1Σ

′
l ,I

d .

It is easy to see that
λ−1Σ

′

l ∈ AL(l,Q)/λ(I
d);

moreover, it holds L(l, Q)→ +∞ as l→ +∞, since

L(l, Q) ≥ H1(Gε,l ∩Q) ≈ εl|Q|. (7)

Using (7) and the fact that µl = l−1H1(Σl), we may estimate the ratio be-
tween L(l, Q) and l. It follows from the weak* convergence of µl to µ that
lim supl→+∞ µl(Q) ≤ µ(Q). So we have

lim sup
l→+∞

L(l, Q)

l
≤ µ(Q) + ε|Q|. (8)
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Using the definition of θ and the change of variables y = λx we have,

lim inf
l→+∞

L(l, Q)
q

d−1

∫
Q

vl(y)dy = lim inf
l→+∞

L(l, Q)
q

d−1λd+q

∫
Id

vl,λ(x)dx

= lim inf
l→+∞

(
λ−1L(l, Q)

) q
d−1 λd+q+ q

d−1

∫
Id

vl,λ(x)dx

≥ λd+q+ q
d−1 θ

.

hence using the fact that λd = |Q| we get

lim inf
l→+∞

l
q

d−1

∫
Q

vl(y)dy ≥ lim inf
l→+∞

(
l

L(l, Q)

) q
d−1

lim inf
l→+∞

L(l, Q)
q

d−1

∫
Q

vl(y)dy

≥ λd+q+ q
d−1 θ

(
1

µ(Q) + ε|Q|

) q
d−1

=

(
|Q|

µ(Q) + ε|Q|

) q
d−1

|Q|θ.

This implies that

|Q|−1

∫
Q

wdx ≥ −r(Q) +

(
|Q|

µ(Q) + ε|Q|

) q
d−1

θf(x0)1/(p−1).

We know that r(Q) tends to 0 when the cube Q shrinks to x0, whenever x0

is a Lebesgue point for f . Now we let the cube Q shrinks toward x0 with x0

satisfying the previous assumption, then we get

w(x0) ≥ θf(x0)1/(p−1)

(µa(x0) + ε)
q

d−1

.

It follows that

lim inf
l→+∞

l
q

d−1

∫
Ω

fuldx ≥
∫

Ω

fwdx ≥ θ

∫
Ω

f q

(µa + ε)
q

d−1

dx,

and the desired inequality holds by letting ε tend to 0 that is

lim inf
l→+∞

l
q

d−1

∫
Ω

fuldx ≥ θ

∫
Ω

f q

µ
q

d−1
a

dx.

�
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2.2 Γ-lim sup inequality

Before proving the Γ-lim sup inequality we introduce a definition and prove
some preliminaries results. We start by the definition of tiling set.

Definition 6 A set Σ ∈ Al(Id) is called tiling set if Σ ∩ ∂Id coincides with
the 2d vertices of Id.

If Σ ∈ Al(Id) is tiling set and Σk is the homogenization of order k of Σ into
Id, then Σk remains connected and

H1(Σk) = kd−1H1(Σ).

Lemma 7 Given Σ0 ∈ Al0(Id) a tiling set, a domain Ω ⊂ Rd and f ∈ Lq(Ω),
we consider the sequence of sets

Σk =
⋃

y∈k−1Zd

(y + k−1Σ0 ∪ ∂Id) ∩ Ω

and consider the sequence of functions (uk)k given by

uk = kquf,Σk,Ω,

then uk ⇀ c(Σ0)f 1/(p−1) in Lp(Ω) as k → +∞, where c(Σ0) is a constant given
by
∫

Ω
u1,Σ0,Iddx.

Proof: Let us set ε0 = capp(Σ0) > 0, then thanks to Lemma 3 the sequence
(uk)k is bounded in Lp(Ω). So up to a subsequence it converges weakly in
Lp(Ω) to some function. Let us consider the subsequence (denoted by the
same indices) (uk)k and its weak limit wf,Σ0,Ω. It is obvious that the pointwise
value of this limit function depends only on the local behavior of f. In fact, we
may produce small cubes around each point x ∈ Ω which do not affect each
other and if f =

∑
j fj1Aj

is piecewise constant (the pieces Aj being disjoint
open sets, for instance), then for k large enough the value of uk at x ∈ Aj
depends only of fj (uk vanishes on k−1∂Id). From the rescaling property of
the p-Laplacian operator ∆p, if f is a piecewise constant function, it holds
wf,Σ0,Ω = f 1/(p−1)w1,Σ0,Ω. It is clear that in the case f = 1, since we are simply
homogenizing the function u1,Σ0,Id , the limit of the whole sequence (uk)k exists
and does not depend on the global geometry of Ω, but it is a constant and it
is the same constant if we have Id instead of Ω. An easy computation shows
that the constant is c(Σ0). It remains to extend the equality for non piecewise
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constant function belonging to Lq(Ω). Let f ∈ Lq(Ω) be a generic function and
(fn)n a sequence of piecewise constant functions approaching f in Lq(Ω). Up

to a subsequence it holds kquf,Σk,Ω ⇀ wf,Σ0,Ω and kqufn,Σk,Ω ⇀ f
1/(p−1)
n c(Σ0)

as k → +∞. By Lemma 4 it holds also

||kquf,Σk,Ω − kqufn,Σk,Ω||L1(Ω) ≤ C||f − fn||1/(p−1)
Lq(Ω) .

taking into account the lower semicontinuity of the L1(Ω)-norm with respect
to the Lp(Ω)-weak topology, we get, passing to the limit as k → +∞,

||wf,Σ0,Ω − f 1/(p−1)
n c(Σ0)||L1(Ω) ≤ C||f − fn||1/(p−1)

Lq(Ω) .

We now pass to the limit as n → +∞ and using Fatou’s Lemma (up to a
subsequence fn converges pointwise a.e. to f), we get wf,Σ0,Ω = f 1/(p−1)c(Σ0)
and the proof is over. �

This result remains true even if Σ0 is not tiling. In fact we have never
used the fact that Σ0 is tiling in the proof. We keep it for the up coming
construction. One problem in the previous Lemma is that we have used the
whole boundary of the unit cube which is not an one dimensional set (if d ≥ 3)
and consequently the set Σk is not an one dimensional set. In the following
Lemma, we prove an estimate on an unit cube which will be useful for proving
that uf,Σk,Ω may be approximated by uf,Σk

l ,Ω
where Σk

l is an one dimensional
closed and connected set.

Lemma 8 Let Σ ∈ Al(Id) be a tiling set such that the corresponding rescaled

state functions l
q

1−duf,Σ,Id are uniformly Lp bounded, then there exists Tl ∈
Al(Id) such that H1(Tl) � l and if we denote by ul = uf,Σ∪Tl,Id and vl the
solution of the equation{

−∆pu = f in Id \ Σ ∪ Tαl
u = 0 in Σ ∪ Tl,

then vl ≤ ul + cll
q

1−d on Id where cl is a constant dependent of l and goes to
zero as l goes to infinity.

Proof: Let Σ ∈ Al(Id) be a tiling set such that the sequence

(ũl)l = (l
q

d−1uf,Σ,Id)l is Lp bounded and denote by ul the solution of the equa-
tion {

−∆pu = f in Id \ Σ

u = 0 on Σ ∪ ∂Id,
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and by vkl the solution of the equation{
−∆pu = f in Id \ Σ ∪ Σk

u = 0 on Σ ∪ Σk,

where Σk is grid of length k contained in the boundary of Id and converges to
it in Hausdorff distance. Since Σ is tiling, we may choose Σk such that Σ∪Σk is
connected for all k. For l fixed, (Σ∪Σk)k is a sequence of connected sets which
converges to the connected set Σ ∪ ∂Id then by generalized Šverak continuity
result (see [4]) the sequence (vkl )k converges strongly to ul in W 1,p(Iq) as k →
+∞. As consequence (l

q
d−1vkl )l (as well as l

q
d−1 (vkl − ul)) is Lp bounded more

precisely there exists a constant ck such that

‖l
q

d−1 (vkl − ul)‖Lp(Id) ≤ ck. (9)

Moreover ck may be as small as we want for k large enough. Now let k
depends on l say k = k(l) and consider the set Σl = Σ ∪ Σk(l). We may
choose k(l) such that k(l) � l and k(l) → +∞ as l → +∞. This make
the length of Σl to be asymptotically equivalent to l. (Σl)l is a sequence of

connected sets converging to the connected set I
d

the closure of the unit cube
then the associated sequence of solutions converges strongly to zero in W 1,p(Id)

and (l
q

d−1v
k(l)
l )l are Lp bounded. Moreover l

q
d−1v

k(l)
l satisfies the inequality (9).

From the maximum principle we get vl − ul ≥ 0 (setting vl = v
k(l)
l ) and from

the above boundedness and Hölder inequality it holds

0 ≤
∫
Id

(vl − ul)dx ≤ cll
q

1−d .

We obtain easily the existence of some constant cl (it may be different from
the above constant cl but it goes to zero as l→ +∞) such that the inequality

vl − ul ≤ cll
q

1−d

holds in Id and the proof is over. �

Due to the terminology suggested in [5], the sets satisfying the hypothesis of
the Lemma 8 will be called almost boundary-covering sets. We have proved
the Lemma for the unit cube but the result remains true for a cube of any side
as well as an open domain with Lipschitz boundary. Now we built an almost
boundary-covering set that will be used for the construction of the recovering
sequence for the Γ-lim sup inequality.

12



Lemma 9 For any ε > 0, there exists l0 > 0 such that for all l > l0 we find a
set Σ ∈ Al(Id) which is almost boundary-covering, with

l
q

d−1

∫
Id

u1,Σ,Iddx < (1 + ε)θ

and consequently if we denote by u1,Σ the solution of the same equation which
vanish only on Σ and not on whole the boundary of Id we get

l
q

d−1

∫
Id

u1,Σdx < (1 + ε)θ + cl.

Proof: Given a small positive number δ (0 < δ � 1), by definition of θ, we
may find a set Σ1 ∈ Al1(Id) such that

l
q

d−1

1

∫
Id

u1,Σ1,Iddx < (1 + δ)θ

and moreover the number l1 may be chosen as large as we want. Now, we want
to enlarge the set Σ1 to get a set Σ2 which is almost boundary-covering. Let
γ = ∪2d

j=1Sj where Sj is the shortest segment joining Σ1 to the jth vertice of Id

cube. We set Σ2 = Σ1 ∪Tl1 ∪ γ where Tl1 is the grid Tl of the previous Lemma
with l replaced by l1. Up to adding one segment, we may assume Σ2 connected.
The length l2 = H1(Σ2) does not exceed the number l1 +H1(Tl1) + (2d+ 1)

√
d.

It is possible to chose l1 so that(
l1 +H1(Tl1) + (2d + 1)

√
d

l1

) q
d−1

≤ 1 + δ.

This implies

l
q

d−1

2

∫
Id

u1,Σ2,Iddx ≤
(
l2
l1

) q
d−1

l
q

d−1

1

∫
Id

u1,Σ1,Iddx ≤ (1 + δ)2θ.

Now if we are given a large number l, we homogenize the set Σ2 of order

k = b
(
l
l2

) 1
d−1 c into Id and the homogenized set Σ belongs to Akd−1l2(I

d) and

is still almost boundary-covering. For this set Σ it holds (using the rescaling
property of the p-Laplacian operator)

(kd−1l2)
q

d−1

∫
Id

u1,Σ,Iddx = l
q

d−1

2

∫
Id

u1,Σ2,Iddx.

13



Noticing that l
q

d−1 ≤
(
k+1
k

)q (
kd−1l2

) q
d−1 , we get

l
q

d−1

∫
Id

u1,Σ,Iddx ≤
(
k + 1

k

)q
(1 + δ)2θ.

If l > l2δ
−1, using the fact that δ � 1, an easy computation shows that

1 + 1/k < 1 + δ so that we get

l
q

d−1

∫
Id

u1,Σ,Iddx ≤ (1 + δ)2+qθ.

Now it is sufficient to choose δ so small that (1+δ)2+q < 1+ε, choose l0 = l2δ
−1

and the result follows. �

We have all the ingredients for proving the Γ-lim sup inequality. We will
start from a particular class of measures. Let us call piecewise constant prob-
ability measures those probability measures µ ∈ P(Ω) which are of the form

µ = ρdx, with, ρ ∈ L1(Ω),

∫
Ω

ρdx = 1, ρ > 0,

for a piecewise constant function ρ =
∑m

j=1 ρjIΩj
, the pieces Ωj being disjoint

Lipschitz open subsets with the possible exception of Ω0 = Ω \ ∪mj=1Ωj.

Proposition 10 Under the same hypotheses of Theorem 2, we have

F+(µ) ≤ F (µ), where F+ = Γ− lim sup
l→+∞

Fl,

for any piecewise constant measure µ ∈ P(Ω). This means that for any such
a measure µ and ε > 0, there exists a family of sets (Σl)l ⊂ Al(Ω) such that
the measure µΣl

weakly* converges to the measure µ and moreover

lim sup
l→+∞

l
q

d−1

∫
Ω

fuf,Σl,Ωdx ≤ (1 + ε)θ

∫
Ω

f q

ρ
q

d−1

dx.

Proof: Apply Lemma 9 and take an almost boundary-covering set Σ0 ∈ Al0(Id)
such that

l
q

d−1

0

∫
Id

u1,Σ0,Iddx < (1 + ε)θ.

14



Now, we define the set Σj
l by homogenizing into Ωj the set Σ0 of order k(l, j)

that is
Σj
l = Ωj ∩ k(l, j)−1(Zd + Σ0).

Since Σ0 is tiling , for k(l, j) large enough Σj
l remains connected and

H1(Σj
l ) = |Ωj|K(l, j)d−1H1(Σ0) ≤ |Ωj|K(l, j)d−1l0.

Let Σl1 ∈ Al1(Ω) be a set contained in the internal boundary of the union of Ωj

and converges to it in the Hausdorff topology as l1 → +∞ (Σl1 may obtained
by homogenizing some kind of grid contained in ∂Id of some order into ∪mj=0∂Ωj

). Due to the connectedness of Σl1 , the corresponding solution converges to
the solution associated to the internal boundary of ∪mj=0Ωj as well. Then we

choose Σl = ∪mj=0Σj
l ∪ Σl1 . We may assume Σl connected otherwise we add

some segments to connect all the pieces. The family of sets Σl is admissible
(i.e. Σl ∈ Al(Ω) and µΣl

⇀ µ) if we have, as l→ +∞,

m∑
j=0

|Ωj|k(l, j)d−1l0 + l1 ≤ l and is asymptotic to l;

k(l, j)d−1l0
l

→ ρj for j = 0, · · · ,m.

It is easy to see that all theses conditions are satisfied if we set

k(l, j) =

⌊(
l − l1
l0

ρj

) 1
d−1

⌋
.

Let us introduce the following sets

Γjl = Ωj ∩ k(l, j)−1(Zd + ∂Id), Γl =
⋃
j

Γjl .

Thanks to Lemma 8 we have∫
Ωj

fk(l, j)quf,Σj
l ,Ωj

dx ≤
∫

Ωj

fk(l, j)quf,Σl∪Γj
l ,Ωj

dx+ cll
q

1−d

0 .

In fact, we consider subcubes Qk(l,j) which are obtained by the partition of Ωj

made by Γjl , then in each subcube Qk(l,j), the Lemma 8 gives

uf,Σj
l
≤ uf,Σj

l ,Qk(l,j)
+ cl(k(l, j)l

1
d−1

0 )−q.

15



By multiplying this inequality by f (notice that f ≥ 0), Integrating over Qk(l,j)

and summing up, we get∫
Ωj

fuf,Σj
l ,Ωj

dx ≤
∫

Ωj

fuf,Σj
l
dx ≤

∫
Ωj

fuf,Σj
l∪Γj

l ,Ωj
dx+ cl(k(l, j)l

1
d−1

0 )−q

where the first inequality comes from the maximum principle and the second is
obtained by observing that on each cube Qk(l,j) it holds uf,Σj

l∪Γj
l ,Ωj

= uf,Σj
l ,Qk(l,j)

We choose l1 to be a function of l (for example l1 = l
d−1

d ) in such a way
that l1 goes to +∞ whenever l goes to +∞. We are interested in the estimate
of the value of Fl(Σl)

l
q

d−1

∫
Ω

fuf,Σl,Ωdx =
m∑
j=0

(
l

k(l, j)d−1

) q
d−1
∫

Ωj

fk(l, j)quf,Σl,Ωdx

≤
m∑
j=0

(
l

k(l, j)d−1

) q
d−1

(∫
Ωj

fk(l, j)quf,Σl,Ωj
dx+ cl1

)

≤
m∑
j=0

(
l

k(l, j)d−1

) q
d−1

(∫
Ωj

fk(l, j)quf,Σj
l∪Γj

l ,Ωj
dx+ cl1 + cll

q
1−d

0

)

where cl1 goes to zero as l1 tend to infinity. By applying Lemma 7 to each Ωj

we get the following weak convergence in Lp.

k(l, j)quf,Σj
l∪Γj

l ,Ωj
⇀ c(Σ0)f 1/(p−1) as l→ +∞

and the term
(

l
k(l,j)d−1

) q
d−1

converges to
(
l0
ρj

) q
d−1

as l→ +∞ for j = 0, · · · ,m.

The choice of the set Σ0 implies that l
q

d−1

0 c(Σ0) < (1 + ε)θ, so we have

lim sup
l→+∞

l
q

d−1

∫
Ωj

fuf,Σl,Ωdx ≤ (1 + ε)θρ
q

d−1

j

∫
Ωj

f qdx, for j = 0, · · · ,m

and summing up we get

lim sup
l→+∞

l
q

d−1

∫
Ω

fuf,Σl,Ωdx ≤ (1 + ε)θ

∫
Ω

f q

ρ
q

d−1

dx.

�

16



We have to extend the result to non piecewise constant measures. By the
general theory of Γ-convergence, we know that it is enough to prove the Γ-
lim sup inequality on a class which is dense in energy. Hence, due to the lower
semicontinuity of the functional F , it is sufficient to prove the following

Proposition 11 For any measure µ ∈ P(Ω) there exists a sequence (µn)n of
piecewise constant measures such that µn ⇀ µ and

lim sup
n

F (µn) ≤ F (µ) = θ

∫
Ω

f q

µ
q

d−1
a

dx.

Proof: First observe that the inequality is trivial whenever F (µ) = +∞. As-
sume now that F (µ) < +∞ and start proving the inequality for measures
which are absolutely continuous with respect to the Lebesgue measure and
have positive densities bounded away from zero. Given a measure µ = ρdx,
with ρ ≥ c > 0, it is possible to find a sequence of measures µn = ρndx
such ρn → ρ strongly in L1 and µn are piecewise constant with ρn ≥ c.
The pointwise a.e convergence of ρn to ρ may be assumed and the inequality
F (µ) ≥ lim supn F (µn) follows easily (we have even an equality). So we have
extended the result to any absolutely continuous measure with density bounded
below away from zero. To get the result for any measure µ ∈ P(Ω), it is suf-
ficient to prove that any measure µ may be approximated weakly* by abso-
lutely continuous measure µn with densities bounded below away from zero and
lim supn F (µn) ≤ F (µ). Let us take µ = ρdx+µs, where µs is the singular part
of the measure µ with respect to the Lebesgue measure and ρ the density of the
absolutely continuous part. We construct the sequence of absolutely continu-
ous measure µn by setting µn = ((1−1/n)ρ+an+φn)dx, where an = n−1

∫
Ω
ρdx

and φndx ⇀ µs with
∫

Ω
φndx =

∫
Ω
dµs. The fact that F (µ) < +∞ implies that

ρ cannot vanish, hence an > 0 and ρn = (1−1/n)ρ+an+φn is bounded below
by the positive constant an. We have as well that µn weakly* converges to µ
and

F (µn) = θ

∫
Ω

f q

((1− 1/n)ρ+ an + φn)
q

d−1

≤ θ

∫
Ω

f q

((1− 1/n)ρ)
q

d−1

dx

= (1− 1

n
)−q/(d−1)F (µ)

.

Passing to the lim sup on the inequality, we get the desired result. �
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3 Some estimate on θ

In this section we will prove some estimate on the constant θ and in particular
we will show that θ is neither 0 nor +∞ so that our limit functional is not
trivial.

Proposition 12 We have
θ < +∞.

Proof: Let Σl ∈ Al(Id) be a tiling set. For any positive integer number n, let
us denote by Σn

l the homogenization of the set Σl of order n into Id. Clearly,
Σn
l is connected and H1(Σn

l ) ≤ nd−1l. Using the rescaling property of the
p-Laplacian operator, it follows that

θ ≤ lim inf
n

(nd−1l)
q

d−1Fp(Σ
n
l , 1, I

d) = l
q

d−1Fp(Σl, 1, I
d) < +∞

which concludes the proof. �

Proposition 13

θ ≥ (d− 1)q−q

(q + d− 1)w
q

d−1

d−1

,

where wr stands for the volume of unit ball in Rr.

Proof: First, we prove that

Fp(Σl, 1, I
d) ≥ q−qDq(Σl ∪ ∂Id),

where Dr(Σ) =
∫
Id hΣ(x)rdx and hΣ(x) = d(x,Σ) is the distance from x to Σ.

For every real number A and for every real number r > 1, we have

Fp(Σl, 1, I
d) = qmax

{∫
Id

(v − 1

p
|∇v|p)dx : v ∈ W 1,p

0 (Id \ Σl)

}
≥ q

∫
Id

(AhΣl∪∂Id(x)r − 1

p
|∇(AhΣl∪∂Id(x)r)|p)dx.

It is well known that the distance function is 1-Lipschitz and satisfies |∇hΣl∪∂Id | =
1 (and consequently |∇(hΣl∪∂Id)r| = r(hΣl∪∂Id)r−1). Choosing r = q the con-
jugate exponent of p, we get

Fp(Σl, 1, I
d) ≥ q(A− Aq

(
qp

p

)
)

∫
Id

hΣl∪∂Id(x)qdx.
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The result follows by optimizing on A (the optimal choice is A = q−q). In [10]
it has been proved that for any set Σl ∈ Al(Id) it holds

lim inf
l

l
q

d−1

∫
Id

hΣl
(x)qdx ≥ d− 1

(q + d− 1)w
q

d−1

d−1

.

Here the same proof may be adapted by doing some modification and getting
the same result even if Σl ∪ ∂Id is not an one dimensional set i.e.

lim inf
l

l
q

d−1

∫
Id

hΣl∪∂Id(x)qdx ≥ d− 1

(q + d− 1)w
q

d−1

d−1

,

and the desired result holds. �

4 asymptotic of p-compliance-location problem

In this section we consider the case where the control variable is look for
among discrete sets of finite elements. Let p > d be fixed and q = p/(p − 1)
the conjugate exponent of p. For an open set Ω ⊂ Rd and n a positive given
integer number, we define

An(Ω) = {Σ ⊂ Ω : 0 < H0(Σ) ≤ n}.

For a nonnegative function f ∈ Lq(Ω) and Σ a compact set with positive p-
capacity(since p > d, every point has positive p-capacity), we denote as before
by uf,Σ,Ω the weak solution of the equation{

−∆pu = f in Ω \ Σ

u = 0 in Σ ∪ ∂Ω,

that is u ∈ W 1,p
0 (Ω \ Σ) and∫
Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈ W 1,p
0 (Ω \ Σ). (10)

For f ≥ 0, we define the p-compliance functional as before and the existence
of the minimal p-compliance configuration is a consequence of the continuity
of Sobolev functions when p > d.
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Theorem 14 For any integer number n > 0, Ω bounded open subset of Rd,
d ≥ 2 and f a nonnegative function belonging to Lq(Ω), the problem

min{Cp(Σ) : Σ ∈ An(Ω)} (11)

admits at least one solution.

As before, we are interested to the asymptotic behavior of the optimal set
Σn of the problem (11) as n → +∞. Let us associate to every Σ ∈ An(Ω) a
probability measure on Ω, given by

µΣ = n−1δΣ

and define a functional Gn : P(Ω)→ [0; +∞] by

Gn(µ) =

{
n

q
dCp(Σ) if µ = µΣ,Σ ∈ An(Ω)

+∞ otherwise.
(12)

The scaling factor n
q
d is needed in order to avoid the functional to degener-

ate to the trivial limit functional which vanishes everywhere. Again the main
result deals with the behavior as n→ +∞ of the functional Gn, and is stated
in terms of Γ-convergence.

Theorem 15 The functional Gn defined in (12) Γ-converges, with respect to
the weak* topology on the class P(Ω) of probabilities on Ω, to the functional
G defined on P(Ω) by

G(µ) = θ1

∫
Ω

f q

µ
q
d
a

dx, (13)

where µa stands for the density of the absolutely continuous part of µ with
respect to the Lebesgue measure, and θ1 is a positive constant depending only
on d and p and is defined by

θ1 = inf{lim inf
n→+∞

n
q
dFp(Σn, 1, I

d) : Σn ∈ An(Id)} (14)

Id = (0, 1)d being the unit cube in Rd.

We deduce the following consequence of Theorem 15:

• if Σn is a solution of the minimization problem (11), then up to a subse-
quence µΣn ⇀ µ as n→ +∞, where µ is a minimizer of G;
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• since G has a unique minimizer in P(Ω), the whole sequence µΣn con-

verges to the unique minimizer µ of G given by µ = cf
qd

q+dLd where c is

such that µ is a probability measure that is c = 1/
(∫

Ω
f

qd
q+ddx

)
• the minimal value of G is equal to θ1c

q+d
d , and the sequence of the values

inf {Fp(Σ, f,Ω) : Σ ∈ An(Ω)} is asymptotically equivalent to
n

q
d inf

{
G(µ) : µ ∈ P(Ω)

}
.

This problem is in connection with the location problem, that is the minimiza-
tion of the functional

∫
Ω
f(x)dΣ(x)dx where dΣ(x) stands for the distance from

x to Σ and Σ ∈ An(Ω). For more details, the reader may consult [2]. We will
not prove Theorem 15 since the proof follows the same line as the proof of
Theorem 2 but we will point out some necessaries modifications. The Lemma
3 is crucial for the proof of the Γ-lim inf inequality. This Lemma remains valid
in the case of discrete set provided that the power d − 1 is replaced by d.
In this case it suffices that v vanishes on one point since point has positive
p-capacity (remember that p > d). An other important element in the proof
of the Γ-lim inf inequality is the set Gε,l. Here, we will call it Gε,n and its con-

struction is obtained by the homogenization of order b
(
εn
2ad

)1/dc of the center of
the unit cube into the cube Ida = (−a, a)d which contains Ω. For the Γ-lim sup
inequality, proofs are essentially the same except the fact that we do not need
tiling set and replace l by n. We conclude this section with the estimate of the
constant θ1. To prove the finiteness it suffice to use the set Σn which is the
homogenization of order n of the center of the unit cube into the unit cube.
For the lower bound, the proof follows that of Proposition 13 and gives

θ1 ≥
d

(q + d)w
q
d
d

.
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