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The total variation TV (u) of the Jacobian determinant of non-smooth vector fields u has

recently been studied in [2]. We focus on the subclass u(x) = ϕ(x/|x|) of homogeneous

extensions of smooth functions ϕ : ∂Bn → Rn. In the case n = 2, we explicitely compute

TV (u) for some relevant examples exhibiting a gap with respect to the total variation

|DetDu| of the distributional determinant. We then provide examples of functions with

|DetDu| = 0 and TV (u) = +∞. We finally show that this gap phenomenon doesn’t occur

if n ≥ 3.
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1 Introduction and statements

In a recent paper [2], I. Fonseca, N. Fusco and P. Marcellini address the study of
the Jacobian determinant detDu of fields u : Ω → Rn outside the traditional
regularity Sobolev space W 1,n(Ω;Rn), where Ω ⊂ Rn is a fixed open set and
n ≥ 2. We refer to [2] for motivations, applications and related references. More
precisely, denote

det Du(x) :=
∂(u1, u2, . . . , un)
∂(x1, x2, . . . , xn)

the Jacobian determinant, i.e., the determinant of the n × n Jacobian matrix of
the gradient Du = Du(x) of a smooth vector-valued map u : Ω → Rn, where
u = (u1, u2, . . . , un) and x = (x1, . . . , xn).

If u ∈ W 1,n(Ω;Rn), since

| detDu(x)| ≤ n−n/2 |Du(x)|n, (1.1)

the Jacobian determinant is a function of class L1(Ω). In this case the set function

Ω ⊃ A 7→ m(A) :=
∫

A

detDu(x) dx
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is a measure in Ω, with total variation |m| in Ω given by

|m|(Ω) :=
∫

Ω

|det Du(x)| dx .

Under weaker assumptions on u, taking account of the integration by part
formula after multiplication by a test function, it is possible to consider the dis-
tributional determinant

DetDu :=
n∑

i=1

∂

∂xi
(u1 (adjDu)1i ) , (1.2)

where adjDu is the matrix of the adjoints of Du, so that

(adjDu)1i := (−1)i+1 ∂(u2, . . . , un)
∂(x1, . . . , xi−1, xi+1, . . . , xn)

.

Now, if u : Ω → Rn is a smooth map, by Laplace formula

n∑

i=1

∂

∂xi
(u1 (adjDu)1i )

=
n∑

i=1

∂u1

∂xi
(adjDu)1i + u1

n∑

i=1

∂

∂xi
(adjDu)1i = det Du + 0 .

(1.3)

Then, if u ∈ W 1,n(Ω;Rn), by (1.1) and by W 1,n-density of smooth maps, (1.2)
coincides a.e. with the pointwise Jacobian determinant detDu. Anyway, (1.2) is
well defined e.g. if u is a bounded function in L∞(Ω;Rn) and the distributional
gradient Du is a summable function in the class Ln−1(Ω;Rn2

). Another possibility
to make (1.2) be mathematically precise is to require u ∈ W 1,p(Ω;Rn) for some
p ≥ n2/(n + 1). In this case, in fact, by the Sobolev’s embedding theorem u ∈
Ln2

(Ω;Rn) whereas (adjDu)1i ∈ Ln2/(n2−1)(Ω). Then, since Ln2/(n2−1) is the dual
space to Ln2

, we have

u1 (adjDu)1i ∈ L1(Ω) ∀ i = 1, . . . , n .

Motivated by the study of the relations between the distribution DetDu
and the ”total variation” of the Jacobian determinant, given u ∈ L∞loc(Ω;Rn) ∩
W 1,p(Ω;Rn), the authors in [2] consider the following limit formula

TVp(u,A) := inf
{

lim inf
j→+∞

∫

A

|det Duk(x)| dx | uk ∈ W 1,n(A;Rn) ,

uk ⇀ u weakly in W 1,p(A;Rn)
} (1.4)
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for every open set A ⊂ Ω. It is obtained by a relaxation procedure in the weak
W 1,p topology, where n− 1 < p < n, i.e., below the natural growth exponent n.

Note that even if a priori definition (1.4) may depend on the choice of p,
the representation formulas given in [2] turn out to be independent of p. Also, for
certain classes of functions weak convergence in W 1,p may be equivalently replaced
by strong convergence in W 1,p. Moreover, it has been first noted by Malý [7] and
by Giaquinta, Modica and Souček [4], see also Jerrard and Soner [6], that for some
maps u ∈ L∞(Ω;Rn)∩W 1,p(Ω;Rn), with n− 1 < p < n, it may happen that the
distribution DetDu is identically equal to zero whereas the total variation of the
Jacobian determinant is different from zero. Finally, when DetDu is a measure,
it turns out that, in general, the total variation of the Jacobian determinant (1.4)
is not the total variation of the measure DetDu.

In this paper we focus on a particular subclass of Sobolev functions u ∈
L∞loc(Ω;Rn) ∩ W 1,p(Ω;Rn), where n2/(n + 1) < p < n. To this aim, denote by
Bn

r the n-ball of radius r centered at the origin, Bn := Bn
1 , the unit ball, and by

∂Bn
r its boundary, so that Sn−1 := ∂Bn is the unit (n − 1)-sphere in Rn. We

will consider the homogeneous extension u : Bn → Rn of Lipschitz-continuous
functions ϕ : Sn−1 → Rn, given by

u(x) := ϕ

(
x

|x|
)

. (1.5)

Of course u ∈ W 1,p(Bn;Rn) for every p < n whereas, since the image of Bn by u
is at most (n−1)-dimensional, by the area formula [3, 3.2.3] we have det Du(x) = 0
a.e. in Bn. We stress now that condition |DetDu| = 0 is related to a homological
property of such maps u. In fact, in [5, Vol. I], Sec. 3.2.4, it is given the following
result, the proof of which is brought back for the sake of clearness.

Proposition 1.1 If ϕ#[[Sn−1 ]] = 0, then |DetDu| = 0.

Proof: following the notation from Geometric measure theory [3], [[Sn−1 ]] is the
(n− 1)-dimensional current in Rn given by integration of (n− 1)-forms on Sn−1,
equipped with the natural orientation. Also, ϕ#[[ Sn−1 ]] is the current image via
ϕ in the target space Rn, or push forward, defined by duality as ϕ#[[ Sn−1 ]](ω) :=
[[Sn−1 ]](ϕ#ω) for every smooth (n− 1)-form ω in the target Rn. We recall by [5]
that the boundary in Bn ×Rn of the n-current Gu carried by the graph of u is
given by

∂Gu Bn ×Rn = −δ0 × ϕ#[[ Sn−1 ]] , (1.6)

where δx is the Dirac unit mass centered at x ∈ Bn. Hence, if ϕ#[[ Sn−1 ]] = 0
we have that the graph Gu has no boundary in Bn × Rn, i.e., u is a Cartesian
map. This corresponds to a series of integration by part formulas which yield, in

3



particular,

∫

Bn

n∑

i=1

Di(φu1) (adjDu)1i dx = 0 ∀φ ∈ C1
c (Bn) .

By (1.2) and (1.3) this gives

− < DetDu, φ > +
∫

Bn

φ detDudx =
∫

Bn

n∑

i=1

Di(φu1) (adjDu)1i dx

and hence the assertion |DetDu| = 0, since det Du(x) = 0 a.e. in Bn. 2

For example, following [7] and [4], if n = 2 and ϕ : S1 → R2 is defined by

ϕ(θ) :=





(−1 + cos 4θ, sin 4θ) if 0 ≤ θ < π/2

(1− cos 4θ, sin 4θ) if π/2 ≤ θ < π

(−1 + cos 4θ,− sin 4θ) if π ≤ θ < 3π/2

(1− cos 4θ,− sin 4θ) if 3π/2 ≤ θ < 2π

(1.7)

where we identify [0, 2π] with S1 via θ 7→ (cos θ, sin θ), since the image of S1

through ϕ is the boundary of the union of the two unit disks of the target space R2

centered at (−1, 0) and (1, 0) , and ϕ(S1) is covered twice with opposite orientation,
one has ϕ#[[ S1 ]] = 0 and hence |DetDu| = 0, by Proposition 1.1.

Most importantly, due to the non-trivial homotopy type of the mapping ϕ,
it is proved that u cannot be approximated by smooth maps {uk} neither in the
strong W 1,p topology with det Duk → detDu in Lp, if p < 2, see [7], nor weakly
with the mass in the sense of currents, i.e., Guk

⇀ Gu and M(Guk
) → M(Gu),

see [4].
In [2], an upper and a lower bound for the total variation of the Jacobian

determinant are provided. This formulas allow to compute exactly (1.4) for a large
class of functions, but do not comprehend the examples of the type (1.7) or similar
ones, in which the geometry of the target space comes into play.

In this note we give a contribution in this direction by proving the follow-
ing results. In the first one we explicitly compute the gap between |DetDu| and
TVp(u,B2) in the relevant example (1.7). In the second one we give an example of
Sobolev function for which the distributional determinant is zero, whereas the to-
tal variation of the Jacobian determinant is +∞. Finally, in the third one we show
that this gap phenomenon does not occur in case of dimension n ≥ 3. This is due
to the Hurewicz homomorphism theorem, compare [8], and to the commutativity
of the higher order homotopy groups, see Remark 2.2.
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Theorem 1.2 If n = 2, 4/3 < p < 2, u : B2 → R2 is given by (1.5) and
ϕ : S1 → R2 is defined by (1.7), then for every radius 0 < r < 1

TVp(u,B2
r ) = 2 ω2 , (1.8)

ω2 being the measure of the unit disk in R2.

Theorem 1.3 If n = 2 and 4/3 < p < 2, there exist functions u ∈ W 1,p(B2;R2)
such that |DetDu| = 0 in B2 and TVp(u,B2) = +∞.

Theorem 1.4 Let n ≥ 3, n2/(n + 1) < p < n and u : Bn → Rn be given by
(1.5), where ϕ : Sn−1 → Rn is Lipschitz-continuous. Then, if ϕ#[[ Sn−1 ]] = 0,
we have that TVp(u,Bn) = 0.

Remark 1.5 The result of Theorem 1.2 has been independently obtained by E.
Paolini [10].

2 Proofs

We first show that in (1.4) we can actually impose a Dirichlet type condition.

Proposition 2.1 Let n2/(n + 1) < p < n and u : Bn → Rn be given by (1.5),
where ϕ : Sn−1 → Rn is Lipschitz-continuous. Then for every 0 < r < 1

TVp(u,Bn
r ) = inf

{
lim inf
j→+∞

∫

Bn
r

| detDuk(x)| dx | uk ∈ Lip(Bn
r ;Rn) ,

uk ⇀ u weakly in W 1,p(Bn
r ;Rn) , uk|∂Bn

r
= u|∂Bn

r

}
.

(2.1)

Proof: due to the invariance of
∫ | detDv| dx under reparametrization, and to

the homogeneity of u, it suffices to prove the claim for r = 1. By (1.1), for
every v ∈ W 1,n(Bn;Rn) we can find in a standard way a sequence {vk} ⊂
Lip(Bn;Rn) converging to u in strong W 1,n-sense, hence in weak W 1,p-sense
and with

∫
Bn | detDvk| dx → ∫

Bn |det Dv| dx. Then by a diagonal procedure we
can suppose uk ∈ Lip(Bn

r ;Rn) in (1.4). To prove the claim, it then suffices
to find, for every given sequence {uk} ⊂ Lip(Bn;Rn) weakly converging to u
in W 1,p(Bn;Rn), a sequence {vk} ⊂ Lip(Bn;Rn) weakly converging to u in
W 1,p(Bn;Rn), with vk|∂Bn = u|∂Bn , such that

lim inf
k→+∞

∫

Bn

| detDvk(x)| dx ≤ lim inf
k→+∞

∫

Bn

|det Duk(x)| dx . (2.2)

To this aim, denote by ν and τ := (τ1, . . . , τn−1) the outward unit normal and an
orthonormal basis to the tangent (n−1)-space to ∂Bn

ρ , respectively. Then, setting
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Dτu := (Dτ1u, . . . , Dτn−1u), we have that |Du|2 = |Dνu|2 + |Dτu|2. Moreover, if
G ∈ RnN is an N ×n matrix, we denote by |M(j)(G)| the square root of the sum
of the squares of the determinants of all minors of order j of G, for j = 1, . . . , n :=
min (n,N), and set |M(0)(G)| := 1. If uk ⇀ u weakly in W 1,p(Bn;Rn) , and
the right-hand side of (2.2) is finite, otherwise there is nothing to prove, possibly
passing to a subsequence we can suppose that it is a finite limit. Then |M(j)(Duk)|
is equibounded in Lp/j(Bn) for every j = 1, . . . , n− 1, whereas uk → u strongly
in Ln2

(Bn), by Rellich’s theorem. As a consequence, since

j

p
+

n− 1− j

p
=

n− 1
p

<
n2 − 1

n2
∀ j = 0, . . . , n− 1 ,

by duality we obtain

lim
k→+∞

∫

Bn

|uk − u|
(n−1∑

j=0

|M(j)(Duk)| |M(n−1−j)(Du)|
)

dx = 0 .

Setting then

fk(ρ) :=
∫

∂Bn
ρ

|uk − u|
(n−1∑

j=0

|M(j)(Dτuk)| |M(n−1−j)(Dτu)|
)

dHn−1 ,

gk(ρ) :=
∫

∂Bn
ρ

|uk − u|p dHn−1 ,

hk(ρ) :=
∫

∂Bn
ρ

|Dτuk|p dHn−1 ,

where Hn−1 is the (n−1)-dimensional Hausdorff measure in Rn, possibly passing
to a subsequence, by the coarea formula [3, 3.2.12] we have

∫ 1

0

fk(ρ) dρ ≤ εk ,

∫ 1

0

gk(ρ) dρ ≤ εk and
∫ 1

0

hk(ρ) dρ ≤ C ,

where C > 0 is an absolute constant and {εk} ⊂ (0, 1) is a decreasing sequence
with εk ↘ 0. Then

meas({ρ ∈ (0, 1) | fk(ρ) ≤ √
εk}) ≥ (1−√εk) ,

meas({ρ ∈ (0, 1) | gk(ρ) ≤ √
εk}) ≥ (1−√εk) ,

meas({ρ ∈ (0, 1) | hk(ρ) ≤ C/
√

εk}) ≥ (1−√εk) .

As a consequence, for k large enough we can find a sequence {rk} ⊂ (0, 1) of radii
with rk → 1 and

0 < 1− 4
√

εk ≤ rk ≤ 1−√εk ∀ k (2.3)

6



for which

fk(rk) ≤ √
εk , gk(rk) ≤ √

εk and hk(rk) ≤ C√
εk

. (2.4)

Define now vk : Bn → Rn by

vk(x) :=





uk(x) if |x| ≤ rk

|x| − rk

1− rk
u(x) +

1− |x|
1− rk

uk

(
rk

x

|x|
)

if rk < |x| < 1 .

For a.e. rk < |x| < 1 we have

Dνvk(x) =
1

1− rk

(
u(x)− uk

(
rk

x

|x|
))

and for every i = 1, . . . , n− 1

Dτivk(x) = tDτiu(x) + (1− t)Dτiuk

(
rk

x

|x|
)

for some 0 ≤ t ≤ 1. Moreover if u(x) = v(y) , y := R
x

|x| , we have Dτiu(x) =

R

|x| Dτiv(y). Hence for a.e. rk < |x| < 1, writing det Dvk in coordinates (ν, τ),

and using the Laplace formula, we estimate

| detDvk(x)| ≤ c(n)
1− rk

(
rk

|x|
)n−1 ∣∣∣∣u(x)− uk

(
rk

x

|x|
)∣∣∣∣×

(n−1∑

j=0

|M(j)(Dτuk(yk))| |M(n−1−j)(Dτu(yk))|
)

,

where yk(x) := rk
x

|x| . Then by the coarea formula and by changing variables

∫

Bn\Bn
rk

| detDvk(x)| dx ≤ c(n) fk(rk)

which goes to zero by (2.4), so that (2.2) holds. Moreover {vk} ⊂ Lip(Bn;Rn)
and vk|∂Bn = u|∂Bn . Finally, to show that vk ⇀ u weakly in W 1,p(Bn;Rn), and
conclude with the assertion, since rk < ρ < 1 yields 1 < ρ/rk < 2 for k large, we
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readily estimate
∫

Bn\Bn
rk

|Duk|p dx ≤ c (p)
∫

Bn\Bn
rk

(|Dνuk|p + |Dτuk|p) dx

≤ c (n, p)
(

(1− rk)1−p gk(rk) + (1− rk) hk(rk) + (1− rk)
∫

∂Bn

|Dτu|p dHn−1

)

which is equibounded since rk → 1 and by (2.3) and (2.4)

(1− rk)1−p gk(rk) ≤ √
εk

2−p and (1− rk)hk(rk) ≤ 4C .

2

Proof of Theorem 1.2: first note that if v : B2
r → R2 is a Lipschitz-continuous

function such that v(x) = u(x) for each point x ∈ ∂B2
r , then

∫

B2
r

| detDv(x)| dx ≥ 2 ω2. (2.5)

In fact, v|∂B2
ρ

: ∂B2
ρ → R2, ρ ∈ [0, r], defines a 1-parameter continuous family

of loops in R2, moving u|∂B2
r

to one point. Then, by definition of u and by the
non-trivial homotopy type of the loop ϕ|S1 , see [8], v|B2

r
must completely cover

at least one of the two disks B2(pi, 1) ⊂ R2, pi := ((−1)i, 0), i = 1, 2. Also,
since v|∂B2

r
= u|∂B2

r
has index zero with respect to any point of R2 \ ϕ(S1), the

multiplicity function of v is at least 2 in each point contained in such disk, see
[1] . By the area formula we finally obtain (2.5) . As a consequence, by Proposition
2.1 we obtain the lower bound ”≥” in (1.8). To obtain the upper bound ”≤”, it
suffices to define a weakly approximating smooth sequence uk : B2

r → R2 such
that

lim
k→+∞

∫

B2
r

| detDuk| dx = 2 ω2 . (2.6)

To this aim, taking polar coordinates x := ρ (cos θ, sin θ), we define for each
k ∈ N, k > 3/r,

uk(ρ, θ) :=





ϕ(θ) if 3/k ≤ ρ < r

ũk(ρ, θ) if 2/k ≤ ρ ≤ 3/k

ûk(ρ, θ) if 1/k ≤ ρ ≤ 2/k

(0, 0) if 0 ≤ ρ ≤ 1/k

where ϕ is given by (1.7), for 2/k ≤ ρ ≤ 3/k

ũk(ρ, θ) :=

{
ϕ(θ) if θ ∈ [0, π/2] ∪ [π, 3π/2]

(kρ− 2) ϕ(θ) if θ ∈ [π/2, π] ∪ [3π/2, 2π]
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and finally for 1/k ≤ ρ ≤ 2/k

ûk(ρ, θ) :=





ϕ(θ) if θ ∈ [0, (kρ− 1)π/2]

ϕ((kρ− 1)π/2) if θ ∈ [(kρ− 1) π/2, (4− kρ)π/2]

ϕ(θ) if θ ∈ [(4− kρ) π/2, 3π/2]

(0, 0) if θ ∈ [3π/2, 2π] .

Clearly uk : B2
r → R2 is a sequence of Lipschitz continuous functions with

Lip(uk, B2
r ) ≤ c/k and uk ≡ u in B2

r \ B2
3/k; moreover, since p < 2, it is not

difficult to show that uk ⇀ u weakly in W 1,p(B2
r ;R2). Finally, by the area for-

mula
∫

B2
3/k

| detDuk(x)| dx =
∫

uk(B2
3/k

)

H0(B3/k ∩ u−1
k (y)) dH2(y) = 2 ω2

for each k, so that (2.6) holds. 2

Proof of Theorem 1.3: it suffices to define a function u ∈ W 1,p(B2;R2),
with 1-dimensional image, such that the current Gu carried by its graph has
no boundary in B2 × R2 and for which there is a sequence {Bj} of pairwise
disjoint balls contained in B2 such that the restriction u|Bj

behaves like the
function of Theorem 1.2, so that TVp(u, Bj) = 2ω2 for every j. In fact, arguing
as in Proposition 1.1, conditions ∂Gu B2 ×R2 = 0 and det Du = 0 will give
|DetDu| = 0 whereas, by superadditivity of the set function A 7→ TVp(u,A), we
will obtain

TVp(u,B2) ≥
+∞∑

j=1

TVp(u,Bj) =
+∞∑

j=1

2 ω2 = +∞ .

To this aim, following an example by [9], we set Bj := B2(cj , 2−(j+1)), where

cj =
(
−1 +

j−1∑

k=0

2−k, 0
)

, j = 1, 2, . . .

Moreover we define u|Bj
:= u(j) : Bj → R2 by

u(j)(x) :=





ϕ

(
x− cj

|x− cj |
)

if j = 1, 3, 5, . . .

ψ

(
x− cj

|x− cj |
)

if j = 2, 4, 6, . . .
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where ϕ is given by (1.7) and ψ : S1 → R2 is defined by

ψ(θ) := ϕ(−θ + π) .

If Qj := cj+[−2−(j+1), 2−(j+1)] 2 denotes the square circumscribing Bj , we extend
u|Bj

to Qj as the continuous map which is constant in the x1-variable (note that
Qj ⊂ B2 for every j ≥ 1). Then u ≡ 0 over all the sides of the boundary of the
Qj ’s which are parallel to the x1-axis, whereas on the sides parallel to the x2-axis,

Lk
j := cj + {((−1)k 2−(j+1), x2) | −2−(j+1) ≤ x2 ≤ 2−(j+1)} , k = 1, 2 ,

u|L2
j

and u|L1
j+1

parametrize the circles ∂B2(pi, 1) ⊂ R2, pi = ((−1)i, 0), i = 1, 2,
with the same order and orientation. We can thus define u over the convex hull
of L2

j and L1
j+1, the right-hand side of ∂Qj and the left-hand side of ∂Qj+1,

as the continuous map which is constant along the straight lines connecting the
corresponding points in L2

j and L1
j+1 (points on which u takes the same value).

We finally define u in the strip connecting L1
1 to the boundary of B2 as the

continuous map constant in the x1-variable, and set u ≡ 0 in the rest of B2.
Then, it is not difficult to show that u ∈ W 1,p(B2;R2) and that det Du = 0 in
B2, whereas due to the construction

∂Gu Bj ×R2 = −δcj × f#[[ S1 ]],

where f = ϕ if j is odd, f = ψ if j is even, so that since f#[[ S1 ]] = 0 we have
∂Gu B2 ×R2 = 0, as required. 2

Proof of Theorem 1.4: let N ≥ n, f : Sn−1 → RN be a Lipschitz-continuous
function and T ∈ Rn(RN ) be an n-dimensional integer multiplicity rectifiable
current with boundary ∂T = f#[[Sn−1 ]]. Then, by Thm. 1 and Prop. 1 in [11],
for every ε > 0 it can be performed a Lipschitz-continuous function vε : Bn →
RN with boundary values f , vε|∂Bn = f , and with n-dimensional mapping area
comparable to the mass of T . In particular, if N = n and f = ϕ, this means

∫

Bn

| detDvε| dx ≤ M(T ) + ε . (2.7)

Remark 2.2 This result does hold under the condition n ≥ 3, and it is based
on the Hurewicz theorem. Roughly speaking, if n ≥ 3, a homologically trivial
(n − 1)-dimensional cycle of a 1-connected (n − 1)-skeleton K is homotopically
trivial, hence contractible in K. Note that Theorem 1.2 actually shows that it is
false if n = 2, simply by taking T = 0.
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Now, since ϕ#[[ Sn−1 ]] = 0, we may apply this result, with T = 0 and f = ϕ,
and define u

(ε)
k : Bn → Rn by

u
(ε)
k (x) :=





vε(kx) if |x| < 1/k

u(x) if 1/k ≤ |x| < 1 .

Then by the area formula and (2.7) we have
∫

Bn

| detDu
(ε)
k (x)| dx =

∫

Bn
1/k

| detDvε(kx)| dx =
∫

Bn

|detDvε(x)| dx ≤ ε .

Moreover u
(ε)
k ∈ Lip(Bn;Rn) and since

∫

Bn
1/k

|Du
(ε)
k |p dx = kp−n

∫

Bn

|Dvε|p dx

and p < n, we infer that u
(ε)
k ⇀ u weakly in W 1,p(Bn;Rn) as k → +∞. We then

obtain TVp(u, Bn) ≤ ε and hence the assertion, as ε → 0+. 2
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D’Azeglio 85/A, 43100 Parma (Italy), E-mail: domenico.mucci@unipr.it

12


