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Abstract

The two wells problem consists in finding maps u which satisfy some
boundary conditions and whose gradient Du assumes values in the two
wells SA, SB . Here SA (similarly SB) is the well generated by a square
matrix A, i.e., SA is the set of matrices of the form RA, where R is a
rotation. We study specifically the case when at least one of the two
matrices A, B is singular and we characterize piecewise affine maps u
satisfying almost everywhere the differential inclusion Du (x) ∈ SA ∪ SB .
In particular we describe the lamination and angle properties, which turn
out to be different from those of the nonsingular case described in detail in
[15]. We also show that the two wells problem can be solved in some cases
involving singular matrices, in strict contrast to the nonsingular (and not
orthogonal) case.

1 Introduction

Arrigo Cellina, to whom this paper is dedicated, gave a relevant contribution to
the field of differential inclusions, with application to several different types of
problems, starting from the celebrated book [1] on set-valued maps, published
in 1984 in collaboration with Jean-Pierre Aubin. In the context of vector-valued
maps, which we consider in the research presented here, we mainly refer to the
article [5], in collaboration with Stefania Perrotta, where a Dirichlet problem
for differential inclusions involving orthogonal matrices is studied.

The differential inclusion problem is the following: let A,B be given 2 × 2
matrices and let us denote respectively by SA and SB the wells generated by A
and B. That is, the set of matrices SA (similarly SB) is the well, generated by
A, of the form

SA = SO (2)A = {RA : where R ∈ SO (2) , i.e. R is a rotation} .

For a given open set Ω ⊂ R2 and a given boundary datum ϕ, the 2−dimensional
Dirichlet problem for two wells consists in finding a map u : Ω ⊂ R2 → R2 which
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satisfies the conditions{
Du (x) ∈ SA ∪ SB a.e. x ∈ Ω

u (x) = ϕ (x) x ∈ ∂Ω.
(1)

Above Du represents the 2 × 2 gradient matrix of the map u. The two wells
problem is relevant in nonlinear elasticity and is a model for vector-valued dif-
ferential inclusions. The original mathematical formulation is due to Ball and
James [2], [3] (see [9], [15] for details and references).

The case when A,B are orthogonal matrices has been first considered in the
quoted paper [5] by Cellina and Perrotta (for 3× 3 matrices and zero boundary
condition). Is this a special case? Why to consider only orthogonal matrices
A,B?

The reason relies on the fact that it turns out to be impossible to solve the
same two wells problem in the same context, i.e., by mean of piecewise affine
maps, unless we start from orthogonal matrices A,B. Precisely, we recently
proved in [15] that the two wells problem, for nonsingular matrices A and B,
can be solved by means of piecewise affine maps if and only if

BA−1 ∈ O (2) and det
(
BA−1

)
= −1. (2)

To give a more complete picture we recall that a map u, solving (1) with ϕ
affine and satisfying some natural compatibility conditions, exists in the Sobolev
class W 1,∞(Ω;R2) of Lipschitz continuous maps (see [4], [6], [7], [8], [9], [16],
[18]). However, for orthogonal matrices it was also proved (see [5], [10], [11], [12],
[13], [14], [17]) that solutions exist in the class of piecewise affine maps. As we
said, in the class of nonsingular matrices A, B (i.e., with nonzero determinant)
the Dirichlet problem (1) − for instance with zero boundary datum − can be
solved, in the class of piecewise affine maps, (see [15]) essentially only if A and
B are orthogonal matrices (namely, they satisfy (2)).

What about singular matrices A and/or B? In fact this is a case which does
not enter in the previous analysis. The aim of this paper is to show that if
at least one of the two matrices has zero determinant then different properties
happen to the geometry of the singularities of maps u satisfying the differential
inclusion

Du (x) ∈ SA ∪ SB , a.e. x ∈ Ω; (3)

precisely, if u is a piecewise affine map as in (3), then its gradient matrix Du at
every internal vertex of gradient-discontinuity satisfy new lamination and angle
conditions, different from that one valid in the nonsingular case and described
in detail in [15]. The new geometrical situation is proposed in Section 3 for one
singular matrix and in Section 4 when both matrices A and B are singular.

Finally in Section 5 we show that the Dirichlet problem can be solved in
some cases involving singular matrices, in strict contrast with respect to what
happens for the nonsingular case, where the Dirichlet problem for the two well
problem lacks a solution in the class of piecewise affine maps, unless A and B
are orthogonal matrices.
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2 General notations

The set of 2 × 2 orthogonal matrices is denoted by O (2) , this is the set of
R ∈ R2×2 such that RtR = I. The set of special orthogonal matrices, denoted
by SO (2) , is the set of R ∈ O (2) such that detR = 1. We write a generic
matrix in SO (2) as

Rϕ =

(
cosϕ − sinϕ

sinϕ cosϕ

)
with ϕ ∈ (−π, π] .

We recall that the singular values of a 2× 2 matrix A, denoted by

0 ≤ λ1 (A) ≤ λ2 (A) ,

are defined to be the square root of the eigenvalues of the symmetric and positive
semidefinite matrix AtA ∈ R2×2. As well known, the singular values decompo-
sition theorem asserts that for any A ∈ R2×2, there exist R,Q ∈ O (2) such
that

RAQ = diag (λ1 (A) , λ2 (A)) =

(
λ1 (A) 0

0 λ2 (A)

)
.

In the sequel we will adopt the following notation and definitions.

Notation 1 If A is a 2× 2 matrix, we denote with SA the set of matrices

SA = SO(2) ·A = {RA : R ∈ SO(2)}.

Definition 2 (Piecewise affine maps) Let Ω ⊂ R2 be an open set and let
u : Ω→ R2.

(i) We define the singular set of u as the set

Σu = {x ∈ Ω: u is not differentiable in x}.

(ii) We say that a map u : Ω→ R2 is piecewise affine in Ω if
- u is continuous on Ω,
- Σu is relatively closed in Ω,
- Ω \ Σu has a finite number of connected components
- Du is constant on each connected component of Ω \ Σu .

(iii) We say that u is locally piecewise affine if for every open set Ω′ such
that Ω′ is a compact subset of Ω, we have that u is piecewise affine in Ω′.

Definition 3 Let Σ be a locally finite union of closed segments in an open set
Ω ⊂ R2. We say that a point of Ω is a vertex of Σ if either it is an end point
of a segment or a point where at least two segments meet.
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3 The semi-degenerate case

In the present section we consider the case where one of the matrix is invertible,
say A, and the other is not. We first fix the notations.

Notation 4 Let µ = λ2
(
BA−1

)
be the largest singular value of BA−1 (the

smallest being, under our hypotheses, necessarily 0). When µ ≥ 1 we let

m =
√
µ2 − 1 and ν± =

(
±1,

√
µ2 − 1

)
= (±1,m) .

Note that if µ = 1, then ν+‖ν−‖e1 . We also define θ ∈ [0, π/2] through

cos θ =
1

µ
and sin θ =

√
µ2 − 1

µ
=
m

µ
. (4)

As in [15], with a change of variables we can reduce all of our analysis to the
case where

A = I and B = Λ = diag (0, µ) ,

with µ ≥ 1, to be consistent with (4). We will assume this special structure in
all the following lemmas.

We now analyze when edges and vertices can occur and we start with edges.

Lemma 5 (Edge) Let ν = (ν1, ν2) 6= 0 and ϕ,ψ ∈ (−π, π] . The map u : R2 →
R2 defined by

R−ϕ u (x) =

{
x if 〈x; ν〉 = x1ν1 + x2ν2 > 0

RψΛx if 〈x; ν〉 = x1ν1 + x2ν2 < 0

is continuous across the line 〈x; ν〉 = 0 if and only if µ ≥ 1, ν is parallel to ν±
and ψ = ±θ. More precisely (see Figure 1, middle case)

R−ϕ u (x) =


x =

(
x1
x2

)
if x1 +mx2 > 0(

0 −m
0 1

)(
x1
x2

)
= RθΛ

(
−mx2
x2

)
if x1 +mx2 < 0

or (see Figure 1, left hand case)

R−ϕ u (x) =


x =

(
x1
x2

)
if x1 −mx2 < 0(

0 m
0 1

)(
x1
x2

)
= R−θΛ

(
mx2
x2

)
if x1 −mx2 > 0.
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ν+

〈x; e2〉 = 0

〈x; ν−〉 = 0 〈x; ν+〉 = 0

B

RψB
A

R−θB
RθB

A

ν−

e2

Figure 1: a scheme of 3 possible edges in the semi-degenerate case

Remark 6 (i) Note that within the well SB there might be rank one connections,
while this cannot happen within the well SA . More precisely if ϕ,ψ ∈ (−π, π] ,
then the map u : R2 → R2 defined by

R−ϕ u (x) =

{
Λx if 〈x; ν〉 = x1ν1 + x2ν2 > 0

RψΛx if 〈x; ν〉 = x1ν1 + x2ν2 < 0

is continuous across the line 〈x; ν〉 = 0 if and only if ν is parallel to e2 = (0, 1) .
In other words, for every ϕ,ψ ∈ (−π, π] , the map R−ϕ u does not depend on x1
more precisely (see Figure 1, right hand case)

R−ϕ u (x) =

{
x = (0, µx2) if x2 > 0

((−µ sinψ)x2, (µ cosψ)x2) if x2 < 0.

(ii) If µ = 1, the lemma reads as

R−ϕ u (x) =


x =

(
x1
x2

)
if x1 > 0(

0 0
0 1

)(
x1
x2

)
=

(
0

x2

)
if x1 < 0

Proof The map u is continuous only if

det(I −RψΛ) = 1− µ cosψ = 0.

This can happen if and only if µ ≥ 1 and ψ = ±θ where

cos θ =
1

µ
and sin θ =

√
µ2 − 1

µ
=
m

µ
.

It remains to show that ν is parallel to ν± = (±1,m) . We discuss only the
case where ψ = θ, the case ψ = −θ being handled similarly. Since the map is
continuous across the line 〈x; ν〉 = 0, we should have(

1 µ sin θ

0 1− µ cos θ

)(
x1

x2

)
=

(
1 m

0 0

)(
x1

x2

)
= 0.
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This is equivalent to x1 + mx2 = 0 and thus ν is parallel to ν+ = (1,m) , as
wished.

Recall that µ ≥ 1. If µ = 1 then the directions ν± = (±1, 0) are parallel to
e1 while ν is parallel to e2 , hence all the edges of the singular set are parallel to
e2 , respectively e1 , and a vertex can occur either with a T-shaped configuration
(i.e., 3 angles of measure π/2, π/2, and π) or with 4 orthogonal angles; a direct
verification excludes both cases. Thus a vertex can exist only if µ > 1.

We will show that these vertices can only be of order 3, 4, 5 and 6. We now
consider separately all these cases. In the following lemmas we assume that
µ > 1. The configurations considered in each lemma are schematized in Figure
2 below.

Lemma 7 (Vertex of order 3) Let ϕ, χ, ψ ∈ (−π, π] . The map u : R2 → R2

defined by

R−ϕ u(x) =


x if 〈x; ν+〉 < 0 and 〈x; ν−〉 < 0

RχΛx if 〈x; ν+〉 > 0 and 〈x; e2〉 < 0

RψΛx otherwise

is continuous, across the lines of discontinuities of the gradient, if and only if
χ = −ψ = θ.

Remark 8 (i) Therefore the only possibility of having, under the hypotheses of
the lemma, a continuous u is that (see Figure 2, the four cases in (3a))

R−ϕ u (x1, x2) =


(x1, x2) if x1 +mx2 < 0 and x1 −mx2 > 0

RθΛx = (−mx2, x2) if x1 +mx2 > 0 and x2 < 0

R−θΛx = (mx2, x2) otherwise.

(ii) There can also be, for example, (but it is essentially the same, the only
difference is the aperture of the angles) a vertex of order 3 of the form (see
Figure 2, the four cases in (3b))

R−ϕ u (x1, x2) =


(mx2, x2) if x1 −mx2 > 0 and x2 > 0

(−mx2, x2) if x1 +mx2 > 0 and x2 < 0

(x1, x2) otherwise.

Proof We can apply Lemma 5 to the two lines of discontinuity (〈x; ν+〉 = 0
and 〈x; ν−〉 = 0) to find that

χ = −ψ = θ.

Remark 6 ensures the continuity across x2 = 0.
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Lemma 9 (Vertex of order 4) Let ϕ, χ1, χ2, ψ ∈ (−π, π] . The map u : R2 →
R2 defined by

R−ϕ u(x) =


x if 〈x; ν+〉 < 0 and 〈x; ν−〉 < 0

Rχ1Λx if 〈x; ν−〉 > 0 and 〈x; e2〉 < 0

Rχ2Λx if 〈x; ν+〉 > 0 and 〈x; e2〉 < 0

RψΛx if 〈x; e2〉 > 0

is continuous, across the lines of discontinuities of the gradient, if and only if
χ1 = −χ2 = θ.

Remark 10 (i) Therefore the only possibility of having, under the hypotheses
of the lemma, a continuous u is that (see Figure 2, the first case in (4))

R−ϕ u(x) =


(x1, x2) if x1 +mx2 < 0 and x1 −mx2 > 0

R−θΛx = (mx2, x2) if x1 −mx2 < 0 and x2 < 0

RθΛx = (−mx2, x2) if x1 +mx2 > 0 and x2 < 0

RψΛx = ((−µ sinψ)x2, (µ cosψ)x2) if x2 > 0.

(ii) There can also be (but it is essentially the same, the only difference is
the aperture of the angles) one other vertex of order 4 (see Figure 2, the second
case in (4)).

(iii) However there cannot be a vertex of order 4 of the form

R−ϕ u(x) =


x if 〈x; ν+〉 > 0 and 〈x; ν−〉 < 0

Rχ1
Λx if 〈x; ν+〉 > 0 and 〈x; ν−〉 > 0

Rψx if 〈x; ν+〉 < 0 and 〈x; ν−〉 > 0

Rχ2
Λx if 〈x; ν+〉 < 0 and 〈x; ν−〉 < 0

i.e. necessarily χ1 = −χ2 = θ but no ψ can verify the third part

R−ϕ u(x) =



(x1, x2) if x1 +mx2 > 0 and x1 −mx2 > 0

(mx2, x2) if x1 +mx2 > 0 and x1 −mx2 < 0(
x1 cosψ − x2 sinψ
x1 sinψ + x2 cosψ

)
if x1 +mx2 < 0 and x1 −mx2 < 0

(−mx2, x2) if x1 +mx2 < 0 and x1 −mx2 > 0.

Proof We can apply Lemma 5 to the two lines of discontinuity (〈x; ν+〉 = 0
and 〈x; ν−〉 = 0) to find that

χ = −ψ = θ.

Remark 6 ensures the continuity across x2 = 0.

The proofs of the next two lemmas is similar to the above ones and we do
not discuss the details.

7



Lemma 11 (Vertex of order 5) Let ϕ, χ1, χ2, χ3, ψ ∈ (−π, π] . The map u :
R2 → R2 defined by

R−ϕ u(x) =



x if 〈x; ν+〉 < 0 and 〈x; ν−〉 < 0

Rχ1
Λx if 〈x; ν+〉 < 0 and 〈x; ν−〉 > 0

Rψx if 〈x; ν+〉 > 0 and 〈x; ν−〉 > 0

Rχ2
Λx if 〈x; ν−〉 < 0 and 〈x; e2〉 > 0

Rχ3
Λx if 〈x; ν+〉 > 0 and 〈x; e2〉 < 0

is continuous, across the lines of discontinuities of the gradient, if and only if

χ1 = −θ, χ2 = −3θ, χ3 = θ, ψ = −2θ.

Remark 12 (i) Therefore the only possibility, under the hypotheses of the lemma,
to have a continuous u is that (see Figure 2, the first case in (5))

R−ϕ u (x1, x2) =



(x1, x2) if x1 +mx2 < 0 and x1 −mx2 > 0

R−θΛx = (mx2, x2) if x1 +mx2 < 0 and x1 −mx2 < 0

R−2θx if x1 +mx2 > 0 and x1 −mx2 < 0

R−3θΛx = R−2θ (mx2, x2) if x1 −mx2 > 0 and x2 > 0

RθΛx = (−mx2, x2) if x1 +mx2 > 0 and x2 < 0.

(ii) There can also be another vertex of order 5 (essentially the symmetric
one), see Figure 2, the second case in (5).

Lemma 13 (Vertex of order 6) Let ϕ, χ, χ′, ψ, ψ′, ω ∈ (−π, π] . The map u :
R2 → R2 defined by

R−ϕ u(x) =



x if 〈x; ν+〉 < 0 and 〈x; ν−〉 < 0

RχΛx if 〈x; ν+〉 > 0 and 〈x; e2〉 < 0

Rχ′Λx if 〈x; ν−〉 > 0 and 〈x; e2〉 < 0

Rωx if 〈x; ν+〉 > 0 and 〈x; ν−〉 > 0

Rω+ψΛx if 〈x; ν−〉 < 0 and 〈x; e2〉 > 0

Rω+ψ′Λx if 〈x; ν+〉 < 0 and 〈x; e2〉 > 0

is continuous, across the lines of discontinuities of the gradient, if and only if

χ = ψ′ = −χ′ = −ψ = θ.

Remark 14 Therefore the only possibility, under the hypotheses of the lemma,
to have a continuous u is that (see Figure 2, (6))

R−ϕ u (x1, x2) =



(x1, x2) if x1 +mx2 < 0 and x1 −mx2 > 0

RθΛx = (−mx2, x2) if x1 +mx2 > 0 and x2 < 0

R−θΛx = (mx2, x2) if x1 −mx2 < 0 and x2 < 0

Rωx = Rω (x1, x2) if x1 +mx2 > 0 and x1 −mx2 < 0

Rω−θΛx = Rω (mx2, x2) if x1 −mx2 > 0 and x2 > 0

Rω+θΛx = Rω (−mx2, x2) if x1 +mx2 < 0 and x2 > 0
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Finally we have the main result of the present section, which follows from
the previous lemmas in a straightforward way. In the theorem we will assume
that A,B ∈ R2×2 with A invertible and B 6= 0 non-invertible (the case where
B = 0 is elementary, see Remark 16). We recall that µ = λ2(BA−1) (while, of
course, λ1(BA−1) = 0) and, if µ ≥ 1,

ν± =
(
±1,

√
µ2 − 1

)
= (±1,m) .

We let ν 6= 0 be a (uniquely defined up to rescaling) vector such that Bν = 0.

Theorem 15 (The semi-degenerate case) Let Ω be an open set of R2. Let
A,B ∈ R2×2 with A invertible and B 6= 0 non-invertible. Let u : Ω → R2 be a
piecewise affine map satisfying

Du ∈ SA ∪ SB a.e. in Ω.

Case 1: µ > 1. Then every edge of Σu is perpendicular to one of the three
vectors: ν+, ν−, ν. Moreover if an edge perpendicular to ν± is crossed, then the
matrix Du changes from a rotation of A to a rotation of B or vice-versa. While
if an edge perpendicular to ν is crossed, then the matrix Du changes between
two different rotations of B. The segments can possibly meet in vertices of order
3, 4, 5 or 6. The possible local configurations around a vertex are the 13 cases
depicted in Figure 2.

Case 2: µ = 1. In this case ν+, ν− are parallel each other and every edge
of Σu is perpendicular either to ν+ (and ν−) or ν. Moreover if an edge perpen-
dicular to ν± is crossed, then the matrix Du changes from a rotation of A to
a rotation of B or vice-versa. While if an edge perpendicular to ν is crossed,
then the matrix Du changes between two different rotations of B. In this case
no vertex is possible.

Case 3: µ < 1. No interface between A and B can exist. Hence either
Σu = ∅ or Σu is composed by segments perpendicular to ν and Du(x) ∈ SB for
a.e. x ∈ Ω.

Remark 16 When A is invertible and B = 0, we are in the case of incompatible
wells with no rank one connection inside each of the wells. Therefore if u is a
piecewise C1 solution of

Du ∈ SA ∪ SB a.e. in Ω,

then u is affine and thus Σu = ∅.

Proof If µ < 1 then there is not a θ satisfying (4); hence no edge between A
and B can exist, as stated in Lemma 5 and Remark 6. If µ = 1 the directions
ν± = (±1, 0) are parallel each other, hence all the edges of the singular set are
parallel either to ν± or to ν. As we already said a vertex cannot occur. We
therefore discuss only the last possibility µ > 1.
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(4)
RψB

A
R−θB RθB

(5)
R−θB RθB

R−3θB (6)

R−2θA RωA

Rω+θB

R−θB
A

RθB

Rω−θB

A

(3a)

(3b) A
RθB

R−θB

A

R−θB

RθB

Figure 2: vertices of order 3, 4, 5 and 6

As in [15], by mean of a change of variables, we can reduce ourselves to the
case when A = I and B = diag(0, µ). By Lemma 5 and Remark 6 we know that
every segment of Σu is perpendicular to one of the vectors: ν, ν± . Then around
a vertex of Σu we can have edges with 6 possible directions.

By deciding if a direction is or is not used, we obtain a total of 26 = 64
possible configurations. However only 13 (cf. Figure 2) of them are possible.
To exclude the others we notice that the map u must satisfy the following
conditions:

(i) the configuration must have at least a vertex where at least two edges with
different directions meet; i.e., we exclude the empty configuration, configurations
with only one edge and configurations with two aligned edges;

(ii) on both sides of the edges which are perpendicular to ν (the horizontal
edges) the matrix Du must be a rotation of B;

(iii) crossing a side which is perpendicular to ν± the matrix Du changes from
a rotation of A to a rotation of B (or vice-versa);
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(iv) the configuration with order 4 where the two directions perpendicular
to ν are not used is not possible in view of Remark 10 (iii). In fact this config-
uration would be possible only if λµ = −1 (see [15], where the two matrices are
invertible), but we have here λ = 0.

Figure 3: the represented vertices cannot be in the singular set of any map u

Conditions (ii)-(iv) allow us to exclude the vertices represented in Figure 3.
Notice that in the configurations with 4 and 6 edges, the map is not uniquely
determined even if we fix the value in one region.

We end this section with some other considerations. An example of a com-
plete singular set Σu is depicted in Figure 4.

Figure 4: an example of the singular set: in the dark regions the map has
gradient in the non-singular well SA, while in the complementary regions its
gradient belong to the singular well SB

Interestingly enough we can show, with the example depicted in Figure 5,
that a set Σ satisfying the local properties considered in the previous proposition,
is not always the singular set of some Lipschitz continuous map u.
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Figure 5: a set Σ which locally satisfies the conditions stated in Lemmas 5, 7 at
every vertex and every edge, but which does not correpond to the singular set
of any map

Thus in this case we cannot have a recovery theorem (as in Theorem 4.9
of [11] or in the sufficient condition of Theorem 25 in [15]). Moreover there
are also cases (when we use the configuration with vertices of order 4 or 6)
where a map with the prescribed singular set can be constructed but is not
uniquely determined even if we fix the value in one region and the set Ω is
simply connected.

4 The fully-degenerate case

We will now discuss the case where both matrices A and B are not invertible.
We start with a very elementary lemma whose proof is straightforward.

Lemma 17 Let A ∈ R2×2 with detA = 0. Then there exists α ∈ R2 such that

SA = (SO(2)e1)⊗ α.

Thus if A,B ∈ R2×2 with detA = detB = 0. Then there exist α, β ∈ R2 such
that

SA ∪ SB = (SO(2)e1)⊗ {α, β} .

We now have a lemma concerning edges between two different wells.

Lemma 18 Let α, β ∈ R2 and Ω ⊂ R2 be an open set. Let u be piecewise affine
and such that

Du ∈ (SO(2)e1)⊗ {α, β} a.e. in Ω.

Then three cases can happen for the lamination between the two different wells
(we do not consider here discontinuities in the same well; see the remark below).

Case 1 (double laminations). If the vectors α and β are linearly independent,
then only two lines of discontinuity are possible; one with normal α+β and the
other one with normal α− β.

Case 2 (single lamination). If the vectors α and β are linearly dependent and
α 6= 0 (or β 6= 0), then only one line of discontinuity is possible, with normal α
(respectively β).
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Case 3 (no lamination). If α = β = 0, then u is constant on every connected
component.

Remark 19 As in the semi-degenerate case, lamination can occur within the
same well. The line of discontinuities are then orthogonal to α and β respec-
tively. For example in the first well we can have, for every ϕ,ψ ∈ (−π, π] ,

u (x) =


(Rϕe1 ⊗ α)x =

(
(α1x1 + α2x2) cosϕ

(α1x1 + α2x2) sinϕ

)
if 〈α;x〉 = α1x1 + α2x2 > 0

(Rψe1 ⊗ α)x =

(
(α1x1 + α2x2) cosψ

(α1x1 + α2x2) sinψ

)
if 〈α;x〉 = α1x1 + α2x2 < 0

Proof In Case 3 nothing is to be proved, so we discuss the two other cases.
We start with the following observation. Along a line of discontinuity of the
gradient we have that

Du =


Rθe1 ⊗ α =

(
α1 cos θ α2 cos θ
α1 sin θ α2 sin θ

)
Rϕe1 ⊗ β =

(
β1 cosϕ β2 cosϕ
β1 sinϕ β2 sinϕ

)
.

Since the map u is continuous across the line of discontinuity of the gradient we
should have

det (Rθe1 ⊗ α−Rϕe1 ⊗ β) = det
(
R(θ−ϕ)e1 ⊗ α− e1 ⊗ β

)
= 0

which leads to
(α2β1 − α1β2) sin (θ − ϕ) = 0.

Therefore only three possibilities can happen

α2β1 − α1β2 = 0, ϕ = θ or ϕ = θ + π.

Case 1. We now consider the case where α and β are linearly independent.
According to the previous computations we must have ϕ = θ or ϕ = θ + π.
Therefore only two possibilities happen for the gradient

Du =


Rθe1 ⊗ α =

(
α1 cos θ α2 cos θ
α1 sin θ α2 sin θ

)
Rθe1 ⊗ β =

(
β1 cos θ β2 cos θ
β1 sin θ β2 sin θ

)
or

Du =


Rθe1 ⊗ α =

(
α1 cos θ α2 cos θ
α1 sin θ α2 sin θ

)
R(θ+π)e1 ⊗ β = Rθe1 ⊗ (−β) = −

(
β1 cos θ β2 cos θ
β1 sin θ β2 sin θ

)
.

13



The two lines of discontinuities of the gradient are therefore orthogonal in the
first case to α − β and in the second case to α + β. More precisely in the first
case the line of discontinuity is parallel to

(α1 − β1)x1 + (α2 − β2)x2 = 0

and in the second case the line is parallel to

(α1 + β1)x1 + (α2 + β2)x2 = 0

The case 1 is therefore settled.

Case 2. We now consider the case where α and β are linearly dependent.
Assume, without loss of generality, that α 6= 0, we therefore have β = tα and
hence along a line of discontinuity of the gradient we have that

Du =

{
Rθe1 ⊗ α

Rϕ (te1)⊗ α.

Thus the only possible line of discontinuity has normal α. More precisely the
line of discontinuity is parallel to the line

α1x1 + α2x2 = 0.

Case 2 is established and hence the proof of the theorem is complete.

5 The Dirichlet problem in the degenerate case

We finally discuss an example of the Dirichlet problem in the degenerate case.
This turns out to be elementary. It is in fact essentially a reduction to a scalar
problem. We emphasize that this example strictly contrasts with the nonsingu-
lar case; in fact, if A and B are invertible but not orthogonal matrices (in the
sense of (2)), then we proved in [15] that the corresponding Dirichlet problem
lacks a solution in the class of piecewise affine maps.

Example 20 Let a, b, c be positive real numbers. Let Ω be the rectangle in R2

with vertices in (a, b) , (−a, b) , (a,−b) , (−a,−b). Let us consider the degenerate
matrices

A =

(
c
a 0
c
a 0

)
, B =

(
0 c

b
0 c

b

)
.

Then there exists a piecewise (in fact with only four pieces) affine solution of{
Du (x) ∈ SA ∪ SB a.e. x ∈ Ω

u (x) = 0 x ∈ ∂Ω.

14



Proof We will solve a scalar differential problem for each component u1, u2

of the map u : Ω → R2, as in the more general ”pyramid” construction in
Theorem 2.10 in [9]. In this specific case we can exhibit an explicit solution

given by u =

(
u1

u2

)
with

u1 (x1, x2) = u2 (x1, x2) =

{
c− c

a |x1| , when a |x2| ≤ b |x1|
c− c

b |x2| , when a |x2| > b |x1|

whose gradient is given by

Du =

 u1x1
u1x2

u2x1
u2x2

 = ±
(

c
a 0
c
a 0

)
= ±A ∈ SA

when a |x2| < b |x1|, and similarly Du = ±B ∈ SB in the other case.
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