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Abstract

We study a generalization of classical Poincaré inequalities, and study con-
ditions that link such an inequality with the first order calculus of functions in
the metric measure space setting when the measure is doubling and the metric
is complete. The first order calculus considered in this paper is based on the
approach of the upper gradient notion of Heinonen and Koskela [HeKo]. We
show that under a Vitali type condition on the BMO-Poincaré type inequality
of Franchi, Pérez and Wheeden [FPW], the metric measure space should also
support a p-Poincaré inequality for some 1 ≤ p <∞, and that under weaker as-
sumptions, the metric measure space supports an ∞-Poincaré inequality in the
sense of [DJS].
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1 Introduction

The Poincaré inequality is one of the fundamental inequalities in harmonic analysis
and the theory of partial differential equations; it states that there exists a constant
C > 0 such that the inequality∫

B
|f − fB| dL n ≤ C r

∫
B
|∇f |dL n,
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where B is a ball of radius r and fB := µ(B)−1
∫
B
f dµ is the average of f over B, holds

for each ball B in the Euclidean space and all functions f ∈ W 1,1(B). There have been
many generalizations of Poincaré inequalities. The inequality∫

B
|f − fB| dL n ≤ C r

(∫
B
|∇f |pdL n

)1/p

is called a p-Poincaré inequality. It is important to notice that the exponent p plays a
role. For example, there are Euclidean domains which satisfy a p-Poincaré inequality
for sufficiently large p but not for p = 1.

In the more general setting of metric measure spaces (X, d, µ) (spaces equipped with
a metric d and a Borel regular measure µ), Heinonen and Koskela [HeKo] introduced
the notion of “upper gradients” which serves the role of (modulus) of derivatives;
one can use this notion to make sense of the right-hand side term of the Poincaré
inequalities in this a priori non-linear setting (see Definition 2.3). However, there are
other alternative notions of Sobolev classes of functions in the metric setting, with
their competing notions of Poincaré inequalities; see for example [Sh2] and [KST]. It
is therefore natural to consider a generalization of these various notions of Poincaré
inequalities.

One natural generalization consists of replacing the right-hand side of the inequality
by a more general functional defined over the class B of all balls in X. Namely, for each
function f in a class F we consider a functional af : B → [0,∞) such that whenever
B ∈ B,

(1)

∫
B
|f − fB| dµ ≤ af (B).

These types of functionals, satisfying certain additional conditions, were first con-
sidered in [FPW] and further studied in [LP], [MP1, MP2], [OP], [BJM], and the
references therein. In [HKT] Sobolev-type spaces were studied by means of this gener-
alized Poincaré inequalities, with the additional assumption that the functional af is
given by a Radon measure νf . On the other hand, in [ABKY] BMO-type functions de-
fined by John and Nirenberg were studied in the setting of metric measure spaces. Our
aim in this paper is to establish that, under mild geometric conditions on the functional
af that are different from that of [FPW] (see Definition 3.1), inequality (1) encodes
geometric information of the metric measure space and that it implies the Poincaré
inequalities associated with the upper gradient structure of Heinonen and Koskela.

In the context of spaces of homogeneous type (complete metric measure spaces
equipped with a doubling measure), [FPW] presents a general method based on the
Calderón-Zygmund theory and the good-λ inequalities to establish, under some condi-
tions on the functional af (see Definition 2.5), that the left-hand side of the inequality
(1) can be self-improved (see Theorem 2.6).
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One can consider simple functionals to illustrate that the conditions imposed to the
functional in [FPW] are associated with Lp-theory rather than first order calculus. For
example, for a family of functions F = Lp(X) one can consider the functional given by
the left hand side of the Poincaré inequality

af (B) =

(∫
B
|f − fB|p dµ

)1/p

.

which satisfies all the conditions in Definition 2.5 but would certainly be more related
to Lp-theory. Therefore, without any additional conditions on the functional f 7→ af ,
any self-improvement properties of the generalized Poincaré inequality are related to
the Lp-theory, and are associated with the self-improvement of the left-hand side term
of the inequality. Hence further conditions are needed in order to obtain information
relevant to first order calculus and geometry of metric spaces.

On the other hand, recently Keith and Zhong [KZ] proved a self-improving property
for Poincaré inequalities, that is, if X is a complete metric space equipped with a
doubling measure satisfying a p-Poincaré inequality for some 1 < p < ∞, then there
exists ε > 0 such that X supports a q-Poincaré inequality for all q > p − ε. The
result of [KZ] depends heavily on the fact that the right-hand side of the Poincaré
inequality is given via an integral of the pointwise Lipschitz constant function Lip f
for Lipschitz functions f ; more importantly, it is given in terms of an integral of a
function, and so it is clear what is meant by the self-improvement of the right-hand
side. The second ingredient used in the proof of [KZ] is the fact that the functional
f 7→ af , given via a Sobolev energy, satisfies a stronger truncation property than the
truncation property (4). In particular, they need the fact that the Sobolev energy of
a function that is Lipschitz continuous on a set can be controlled on that set by its
Lipschitz constant. These two characteristics of the proof of [KZ] gives us a hint on
what conditions we should look for in the functional f 7→ af that links the generalized
Poincaré inequality to a real first order calculus.

In the present work we study geometric and analytical properties of the functional
F 3 f 7→ af that guarantee that the af are indeed related to the Sobolev energy rather
than to Lp-energy. We consider the choice of F = N1,∞(X), the Newtonian-Sobolev
space of ∞-type considered in [DJ] and [DJS]; however, much of the results also hold
when F is the class of all bounded Lipschitz functions on X, under some additional
mild geometric hypotheses on X; we will point these results out in remarks along this
note.

The paper is organized as follows. In Section 2 we give an exposition of the notions
of upper gradients, p-Poincaré inequalities, and the geometric notion of p-thick quasi-
convexity of a metric measure space. We also discuss here the conditions imposed to
the functional in [FPW] and illustrate throughout examples that these conditions by

3



themselves, are not an indicative of first order calculus but are more associated with
the Lp-theory.

In Section 3 we propose conditions on the functional f 7→ af (Definition 3.2) to
link the generalized Poincaré inequality with first order calculus, and show that some
of these conditions imply versions of quasiconvexity of the metric space. We also give
some examples in this section to illustrate these conditions.

In Section 4 we study the links between the generalized Poincaré inequality and
the p-Poincaré inequality that is associated with the upper gradient structure. In
the main result of this paper, Theorem 4.1, we show that if the functional f 7→ af ,
associated with the generalized Poincaré inequality, satisfies the all the conditions given
in Definition 3.2, then the metric space also supports a p-Poincaré inequality (for the
index p associated with Condition (Vp) of Definition 3.2). We also show that if the
functional f 7→ af is associated with a Radon measure as in [HKT], then for each
Lipschitz function f the functional af is associated to the integral average of an upper
gradient of f ; see Proposition 4.4. The second main result of this paper, Theorem 4.5,
also appears in Section 4; it shows that when the functional f 7→ af satisfies one of the
conditions given in Definition 3.2, Condition (iii), then the metric space also supports
an ∞-Poincaré inequality associated with the upper gradient structure.

Acknowledgement: We wish to thank Rafael Esṕınola Garcia and Carlos Pérez for
their encouragement and for the questions that motivated the research of this paper,
and the two anonymous referees whose suggestions significantly helped to improve the
exposition of the paper. This research began during the visit of the third author to
Universidad Complutense de Madrid, and continued during the time the first and third
authors visited Universidad de Sevilla; they wish to thank those institutions for their
kind hospitality.

2 Notation and Preliminaries

We assume that (X, d, µ) is a metric measure space, that is, a metric space equipped
with a metric d and a Borel measure µ such that 0 < µ(B) < ∞ for each open ball
B ⊂ X. We assume in addition that µ is doubling, that is, there is a constant Cµ > 0
such that for all x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Cµ µ(B(x, r)).

In the above definition of doubling measure, we can equivalently replace open balls
B(x,R) with closed balls B(x,R) = {y ∈ X : d(y, x) ≤ R}, at the penalty of a larger
constant Cµ.

4



By a path γ we mean a continuous mapping γ : [a, b] → X. Recall that the length
of a path γ : [a, b]→ X is given by

`(γ) = sup
{ n−1∑

i=0

d(γ(ti), γ(ti+1))
}

where the supremum is taken over all finite partitions a = t0 < t1 < · · · < tn = b of the
interval [a, b]. We say that a path γ is rectifiable if `(γ) <∞. The integral of a Borel
function g over a rectifiable path γ is defined via the arc-length parametrization γ0 of
γ as follows: ∫

γ

g ds =

∫ `(γ)

0

g ◦ γ0(t)dt.

Recall here that every rectifiable path γ admits a parametrization by arc-length; that
is, with γ0 : [a, b] → X, for all t1, t2 ∈ [a, b] with t1 ≤ t2, we have `(γ0|[t1,t2]

) = t2 − t1.
Hence from now on we only consider paths that are arc-length parametrized. We say
that a metric space X is quasiconvex if there is a constant C ≥ 1 such that for each pair
of points x, y ∈ X there is a curve γ, with endpoints x and y, such that `(γ) ≤ C d(x, y).
We also say that X is a geodesic space if it is quasiconvex with constant C = 1.

We next recall the definition of p-modulus, an outer measure on the collection of
all paths in X.

Definition 2.1. (Modulus of a family of paths) Let Γ be a family of non-constant
rectifiable paths in X. For 1 ≤ p ≤ ∞ we define the p-modulus of Γ by

Modp(Γ) =

{
infg

∫
X
gp dµ if 1 ≤ p <∞,

infg ‖g‖L∞(X) if p =∞,

where the infimum is taken over all non-negative Borel functions g : X → [0,∞] such
that

∫
γ
g ds ≥ 1 for all γ ∈ Γ. If a property holds for all rectifiable paths in X except

for a family Γ with Modp Γ = 0, then we say that the property holds for p-a.e. path.

A useful generalization of Sobolev spaces to general metric spaces is the Newtonian
Spaces N1,p(X) introduced in [Sh, Sh1]. The space N1,∞(X) was introduced and
studied in [DJ]. The definition is based on the notion of upper gradients of Heinonen
and Koskela [HeKo] and weak upper gradients of Koskela and MacManus [KoMc].

Definition 2.2. A non-negative Borel function g on X is a p-weak upper gradient of
an extended real-valued function f on X if

|f(γ(a))− f(γ(b))| ≤
∫
γ

g ds
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for p-a.e. rectifiable path γ in X. We interpret the above inequality as also requiring
that

∫
γ
g ds = ∞ whenever at least one of f(γ(a)), f(γ(b)) is not finite. We say that

a p-weak upper gradient g is an upper gradient if the above inequality holds for each
rectifiable curve γ on X.

For 1 ≤ p ≤ ∞, let Ñ1,p(X, d, µ) be the class of all p-integrable functions on X that

have a p-weak upper gradient in Lp(X). For f ∈ Ñ1,p(X, d, µ) we define

‖f‖N1,p := ‖f‖Lp(X) + inf
g
‖g‖Lp(X),

where the infimum is taken over all p-weak upper gradients g of f . Now, we define in
Ñ1,p(X, d, µ) an equivalence relation by f1 ∼ f2 if and only if ‖f1 − f2‖N1,p = 0. Then

the space N1,p(X, d, µ) = N1,p(X) is defined as the quotient Ñ1,p(X, d, µ)/ ∼ and it is
equipped with the norm ‖f‖N1,p(X) := ‖f‖N1,p .

The following Poincaré inequality is now standard in literature on analysis on metric
spaces. It was first formulated in [HeKo] for 1 ≤ p < ∞. The case p = ∞ was
introduced in [DJS].

Definition 2.3. Let 1 ≤ p ≤ ∞. We say that (X, d, µ) supports a weak p-Poincaré
inequality if there are constants λp, Cp > 0 such that when f : X → R∪ {−∞,∞} is a
measurable function, g : X → [0,∞] an upper gradient of f , and B(x, r) a ball in X,
then

(2)

∫
B(x,r)

|f − fB(x,r)| dµ ≤ Cp r
(∫

B(x,λpr)
gpdµ

)1/p
if 1 ≤ p <∞, and ∫

B(x,r)
|f − fB(x,r)| dµ ≤ C∞ r‖g‖L∞(B(x,λ∞r))

if p =∞. Note that it is necessary to have λp ≥ 1. The word weak refers to the possi-
bility that λp may be larger than 1. Since the constant λp does not play a significant
role in this paper (recall that the measure µ is doubling on X), and so in subsequent
reference to this inequality in this paper we will suppress the term “weak”. Here for
measurable sets A ⊂ X with 0 < µ(A) <∞ we write

fA =

∫
A
f :=

1

µ(A)

∫
A

f dµ.

Recall the definition of Modp(Γ) for a family Γ of paths in X from Definition 2.1.
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Definition 2.4. Fix 1 ≤ p ≤ ∞. We say that X is p-thick quasiconvex if there is
a constant C ≥ 1 such that whenever x, y ∈ X with x 6= y and 0 < ε < d(x, y)/4,
and whenever E ⊂ B(x, ε) and F ⊂ B(y, ε) are measurable sets with µ(E)µ(F ) > 0,
with Γ denoting the collection of all paths γ in X connecting E to F with length
`(γ) ≤ C d(x, y), we have

Modp(Γ) > 0.

It is easy to verify that a p-thick quasiconvex complete metric measure space is
quasiconvex, that is, there is a constant C ≥ 1 such that whenever x, y ∈ X, there is
a path γ connecting x to y with length `(γ) ≤ C d(x, y).

It was demonstrated in [DJS] that ∞-Poincaré inequality is equivalent to ∞-thick
quasiconvexity. It was also shown in [DSW] that a p-Poincaré inequality implies p-
thick quasiconvexity, but that p-thick quasiconvexity does not in turn imply p-Poincaré
inequality when 1 ≤ p <∞.

In the following we will recall some definitions and results in [FPW] that are the
starting point and motivation for our work. In the setting of spaces of homogeneous
type the authors in [FPW] establish, under the following mild geometric conditions on
the functional af , that the left-hand side of the inequality (1) can be self-improved.
They consider families F of functions, that together with the functional f 7→ af satisfy
the following natural properties:

1. f + λ, λf ∈ F with af = af+λ whenever f ∈ F and λ ∈ R,

2. |f | ∈ F and a|f | ≤ af if f ∈ F ,

3. fλ := max{λ,min{2λ, f}} − λ ∈ F whenever f ∈ F with f ≥ 0 and λ ≥ 0.

Definition 2.5. ([FPW, Section 3]) Let 1 ≤ p < ∞. The functional f 7→ af satisfies
Condition (Dp) if there is a constant C > 0 such that for every f ∈ F , every ball
B ∈ B, and every family {Bi} of pairwise disjoint subballs of B,

(3)
∑
i

af (Bi)
pµ(Bi) ≤ Caf (B)pµ(B).

The functional f 7→ af satisfies a truncation property if there exists a constant C such
that for every f ∈ F with f ≥ 0 and λ > 0, the truncations f2kλ together satisfy

(4)
∑
k∈Z

af
2kλ

(B)p ≤ C af (B)p

for all B ∈ B.
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Note that by Hölder’s inequality, Condition (Dp) implies Condition (Dq) for each
1 ≤ q ≤ p.

The conditions given in the above definition, by themselves, do not indicate a first
order calculus but are more associated with the Lp-theory, as we will show next; hence
further conditions are needed in order to obtain information relevant to first order
calculus and geometry of metric spaces.

To see that the conditions given in the above definition are associated with Lp-
theory, observe that F = Lp(X) together with the functional given by

(5) af (B) =

(∫
B

∫
B
|f(x)− f(y)|p dµ(y) dµ(x)

)1/p

satisfies all of the conditions of [FPW]. If f ≥ 0 and λ > 0, then f =
∑

k∈Z f2kλ, and
moreover, for x, y ∈ X we also have that if f(x) ≤ f(y) then f2kλ(x) ≤ f2kλ(y), and so

|f(x)− f(y)| =
∑
k∈Z

|f2kλ(x)− f2kλ(y)|.

Hence af satisfies the truncation property with constant C = 1. Observe that the
functional given by

ãf (B) =

(∫
B
|f − fB|p dµ

)1/p

is comparable to the above functional af in the sense that(∫
B
|f − fB|p dµ

)1/p

≤
(∫

B

∫
B
|f(x)− f(y)|p dµ(y) dµ(x)

)1/p

≤ 2

(∫
B
|f − fB|p dµ

)1/p

.

Hence ãf also satisfies all the properties of [FPW] with constant C = 2. Therefore,
without any additional conditions on the functional f 7→ af , any self-improvement
properties of the generalized Poincaré inequality are related to the Lp-theory, and is
associated with the self-improvement of the left-hand side term of the inequality; this
is the content of the theorem of Franchi, Perez, and Wheeden.

Theorem 2.6 (Theorem 3.1 of [FPW]). Let (X, d, µ) be a metric measure space with µ
a doubling measure and 1 ≤ p <∞. Suppose that the functional af satisfies inequality
(1) for each f ∈ F and satisfies the conditions of Definition 2.5. Then there is a
positive number η > 0 such that for each such f we have(∫

B
|f − fB|pdµ

)1/p
≤ Caf (ηB)

for all B ∈ B, with C independent of B and f .
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As mentioned above, the functional given in (5) satisfies the (Dp) Condition (3) of
Definition 2.5 for every f ∈ Lploc(X), and so by itself should not be considered to be
associated with Sobolev space theory; further conditions are needed on the functional
af for f ∈ N1,∞(X). In the next section we will consider two possible such conditions.

3 First order Poincaré inequality

In this section we will give a definition of first order Poincaré inequality as a further
generalization of the p-Poincaré inequality described in the previous section, and con-
sider certain conditions on this generalization that together relate the inequality to
first-order calculus. We use notation similar to that adopted in [FPW]. We will con-
sider either F = N1,∞(X) or F = LIP∞(X), the collection of all bounded Lipschitz
functions on X.

Definition 3.1. Let B be the collection of all balls in X. We say that (X, d, µ)
supports a first order Poincaré inequality for F if for each function f ∈ F there exists
a functional af : B → [0,∞) such that

(6)

∫
B
|f − fB| dµ ≤ af (B)

for each ball B ∈ B.

Our aim in this section is to establish that, under mild geometric conditions on the
functional af , the inequality (6) encodes geometric information of the metric measure
space.

Definition 3.2. In the following, we state certain geometric conditions that might be
satisfied by the functional f 7→ af in the case F = N1,∞(X):

(i) akf = k af whenever k ≥ 0 (scaling property).

(ii) There is a real number λ ≥ 1 such that if f1, f2 ∈ F with f1 = f2 on λB, then
af1(B) = af2(B) (locality).

(iii) (Modulus of continuity) If F = N1,∞(X), there exists C > 0 such that whenever
f ∈ F and gf is an upper gradient of f such that ‖gf‖L∞(X) ≤ 1, then af (B) ≤
C rad(B) for all B ∈ B. If F = LIP∞(X), the class of all bounded Lipschitz
functions on X, then there is a constant C > 0 such that whenever f ∈ F and
‖Lipf‖L∞(X) ≤ 1, then af (B) ≤ C rad(B) for all B ∈ B.

(Vp) There exist 1 ≤ p <∞ and C > 0 such that whenever f ∈ N1,∞(X), B ∈ B, and
{Bi}i∈N is a family of balls with
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(a) Bi ∩Bj = ∅ for each i 6= j, and

(b) µ(B \
⋃
i∈NBi) = 0,

then (
af (B)

rad(B)

)p
µ(B) ≤ C

∑
i∈N

(
af (Bi)

rad(Bi)

)p
µ(Bi).

In (iii), for Lipschitz functions f on X, the local Lipschitz constant function Lipf
is defined by

Lip f(x) = lim sup
y→x
y 6=x

|f(x)− f(y)|
d(x, y)

.

The scaling property in turn implies that if f is identically zero on X then af (B) = 0
for all B ∈ B. This, together with the locality property, indicates a strong locality
property of f 7→ af , namely, if f vanishes on a ball λB then af (B) = 0.

The conditions given in Definition 3.2 are intended to enforce that the functionals
af have the natural properties one expects of first-order calculus. The paper [HKT]
considers the special case where the functional af is given by a Radon measure νf :

af (B) = rad(B)

(
νf (B)

µ(B)

)1/p

.

As with Condition (iii) of Definition 3.2, the above choice of af (B) incorporates the
radius of B. In this setting [HKT] shows that a function f ∈ Lp(X) for which af
has an associated measure νf as above is necessarily in the Sobolev class N1,p(X) if
p > 1, and is in the class BV (X) if p = 1. In this paper we assume the existence of a
functional f 7→ af , without knowing whether such af is given in terms of the integral
of a function or in terms of a measure.

Theorem 3.3 ([HKT, Theorem 1.1]). If a function f ∈ L1
loc(X) has associated with it

a measure νf as above with p = 1, then f is a BV function on X with

‖Df‖(X) ≤ C νf (X).

If instead 1 < p <∞ and f ∈ Lp(X), then f ∈ N1,p(X) with

‖f‖N1,p(X) ≤ ‖f‖Lp(X) + C (νf (X))1/p .

However, [HKT] does not require νf to satisfy the conditions we study, and the
situation considered there is too specific on the type of functional f 7→ af to provide any
geometric information aboutX. They also do not expect all functions in a Sobolev class
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to satisfy such an inequality. Furthermore, the functionals af considered in [HKT] need
not be driven solely by the Sobolev energy of f , as demonstrated by the example [HKT,
Example 6.1]. The focus of this paper is different from that of [HKT]. In [HKT] the
functional af is of specific type, namely, it is associated with a Radon measure νf ,
but no property is assumed on the function f . We, on the other hand, do not assume
that af is associated with a Radon measure, but we only focus on functions f that
are known to be in the Newtonian class N1,∞(X) or is both bounded and Lipschitz
continuous. We use the term first order Poincaré inequality rather than the term
generalized Poincaré inequality since this latter term has been used in a much more
general context (as explained above) in the papers [HKT] and [FPW].

Example 3.4. The conditions we consider in this paper are modeled after the following
functional af . Suppose that X supports a p-Poincaré inequality. Then, given f ∈
N1,∞(X) and 1 ≤ p <∞, consider the functional af given by

af (B) = Crad(B) inf
g

(∫
λB
gp dµ

)1/p
,

where the infimum is taken over all upper gradients g of f on X. Here C and λ are
the constants related to the p-Poincaré inequality. This functional satisfies all of the
conditions of Definition 3.2, but not all metric measure spaces support a generalized
Poincaré inequality with respect to this functional. The choice af ≡ ‖f‖BMO corre-
sponds to functions in the BMO(X) class, but this functional in general would not
satisfy any (except (i)) of the conditions given in Definition 3.2. The choice (5) of

af (B) =

(∫
B

∫
B
|f(y)− f(x)|p dµ(y) dµ(x)

)1/p

satisfies all but Conditions (iii) and (Vp) of Definition 3.2. If F = LIP∞(X), then this
functional satisfies Condition (iii) as well. Furthermore, if F = N1,∞(X) and X is
an ∞-thick quasiconvex space in the sense of [DJS], then the above choice of f 7→ af
also satisfies the corresponding Condition (iii). Such thick quasiconvexity property is
guaranteed if X supports an∞-Poincaré inequality in the sense of Section 2. Moreover,
even without knowing whether X is thick quasiconvex, this choice of af also can be
seen to satisfy all the conditions of Definition 2.5; see the discussion in Section 2. Thus
from the point of view of potential theory and Sobolev spaces, all the conditions given
in Definition 3.2 seem to be needed.

Lemma 3.5. Condition (Vp) implies Condition (Vq) for each q ≥ p.

Proof. Fix f ∈ F and the related functional af . With B a ball in X and {Bi}i a cover
(up to a set of measure zero) of B as in Condition (Vp), we define the function

ϕ(x) =


af (Bi)

radBi
if x ∈ Bi

0 if x /∈
⋃
iBi.
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Observe that ∫
B

ϕp dµ =
∑
i∈N

(
af (Bi)

rad(Bi)

)p
µ(Bi),

and so verification of Condition (Vp) is equivalent to the verification that there exists
a constant C > 0 satisfying

(7)

(
af (B)

rad(B)

)p
µ(B) ≤ C

∫
B

ϕp dµ.

By Hölder’s inequality it is clear that for each q ≥ p,(∫
B
ϕp dµ

)1/p
≤
(∫

B
ϕq dµ

)1/q
.

In particular, (∫
B

ϕp dµ
)1/p
≤ 1

(µ(B))
1
q
− 1
p

(∫
B

ϕq dµ
)1/q

,

and using (7) one obtains that(
af (B)

rad(B)

)p
µ(B) ≤ C

∫
B

ϕp dµ ≤ C(µ(B))1−
p
q

(∫
B

ϕq dµ
)p/q

.

Therefore,
af (B)

rad(B)
(µ(B))1/q ≤ C

(∫
B

ϕq dµ
)1/q

,

and so ( af (B)

rad(B)

)q
µ(B) ≤ C

∫
B

ϕq dµ.

We next study some geometric properties of metric measure spaces that satisfy
some of the conditions in Definition 3.2.

One of the most useful geometric consequences of the combination of the properties
of completeness, doubling of the measure, and the support of a p-Poincaré inequality
is the quasiconvexity of a metric space that has all these properties: there exists a
constant such that each pair of points can be connected with a curve whose length is
at most the constant times the distance between the points (see [Se]). In what follows
we will see that the first order Poincaré inequality that satisfies one of the conditions of
Definition 3.2 also encodes this type of geometric information. As pointed out in [HKT,
Example 6.1], all the conditions except (iii) of Definition 3.2 together will not imply
that the metric measure space X is even connected, let alone quasiconvex.
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Theorem 3.6. Let (X, d, µ) be a complete metric space with µ doubling. Assume also
that (X, d, µ) supports a first order Poincaré inequality with either F = N1,∞(X) or
F = LIP∞(X), and the functional f 7→ af satisfies the geometric Condition (iii) of
Definition 3.2. Then (X, d, µ) is quasiconvex.

Proof. Let ε > 0. We say that x, z ∈ X lie in the same ε-component of X if there exists
an ε-chain joining x with z, that is, there exists a finite sequence z0, z1, . . . , zn such
that z0 = x, zn = z and d(zi, zi+1) ≤ ε for all i = 0, . . . , n− 1. Note that ε-components
are open sets, and the distance between two distinct components is at least ε. Let U
be such a component. We wish to show that U = X.

If x and y lie in different ε-components, say U and V , then it is obvious that
there does not exist a rectifiable path joining x and y. Thus, the function g ≡ 0 is
an upper gradient for fn = n · χU (observe that because such components are open
sets, it follows also that Lipfn ≡ 0; this observation is relevant for the case that F =
LIP∞(X)). Obviously, fn ∈ N1,∞(X) is n/ε-Lipschitz continuous, with ‖g‖L∞(X) ≤ 1
and ‖Lipfn‖L∞(X) ≤ 1. Therefore by choosing a ball B such that both B ∩ U 6= ∅ and
B \U 6= ∅, and applying first order Poincaré inequality and Condition (iii), we obtain

0 <
µ(B ∩ U)µ(B \ U)

µ(B)2
≤ 2nµ(B ∩ U)µ(B \ U)

µ(B)2
=

∫
B
|fn − (fn)B|dµ

≤ afn(B) ≤ C rad(B) <∞

for each n ∈ N, which is not possible. Therefore, all the points of X lie in the same
ε-component.

Now, let us fix x, y ∈ X and prove that there exists a path γ joining x and y
such that `(γ) ≤ Cd(x, y), where C is a constant which depends only on the doubling
constant and the constants involved in the first order Poincaré inequality. We define
the ε-distance of x to z to be

ρx,ε(z) := inf
N−1∑
i=0

d(zi, zi+1),

where the infimum is taken over all finite ε-chains {zi} from x to z. Note that ρx,ε(z) <
∞ for all z ∈ X. In addition, if d(z, w) ≤ ε then |ρx,ε(z)− ρx,ε(w)| ≤ d(z, w). Hence,
the function ρ̂x,ε given by

ρ̂x,ε(z) = min{ρx,ε(z), ε−1}

is a locally 1-Lipschitz function, in particular, every point is a Lebesgue point of ρ̂x,ε and
in addition, for all ε > 0, the function g ≡ 1 is an upper gradient of ρ̂x,ε ∈ N1,∞(X). To
take care of the situation F = LIP∞(X), we now show that ρ̂x,ε is Lipschitz continuous.
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Let y, z ∈ X. If d(y, z) < ε, then clearly |ρ̂x,ε(y) − ρ̂x,ε(z)| ≤ d(y, z). If d(y, z) ≥ ε,
then we have an ε-chain from y to z. Let N be the number of points in this chain.
Then using the fact that ρ̂x,ε is bounded above by 1/ε and the fact that d(y, z) ≥ ε,

|ρ̂x,ε(y)− ρ̂x,ε(z)| ≤ |ρ̂x,ε(y)|+ |ρ̂x,ε(z)| ≤ 2

ε
=

2

ε d(y, z)
d(y, z) ≤ 2

ε2
d(y, z).

It follows that ρ̂x,ε is max{1, 2/ε2}-Lipschitz on X.

For each i ∈ Z, define Bi = B(x, 21−id(x, y)) if i ≥ 0, and Bi = B(y, 21+id(x, y)) if
i ≤ −1. Thus, a telescopic argument, together with first order Poincaré inequality and
Condition (iii), gives us the following chain of inequalities:

|ρ̂x,ε(y)| = |ρ̂x,ε(x)− ρ̂x,ε(y)| ≤
∑
i∈Z

∣∣∣ ∫
Bi
ρ̂x,εdµ−

∫
Bi+1

ρ̂x,εdµ
∣∣∣

≤C
∑
i∈Z

∫
Bi

∣∣∣ρ̂x,ε − ∫
Bi
ρ̂x,ε dµ

∣∣∣dµ
≤C

∑
i∈Z

aρ̂x,ε(Bi) ≤ C
∑
i∈Z

Cd(x, y)2−|i| ≤ Cd(x, y),(8)

where C is a constant that depends only on X. For fixed x, y ∈ X observe that for
sufficiently small ε > 0 we have ρ̂x,ε(y) = ρx,ε(y).

Since X is complete, the existence of a non trivial doubling measure implies that
closed balls are compact. Using a standard limiting argument, which involves Arzela-
Ascoli’s theorem and inequality (8), we can construct a 1-Lipschitz rectifiable path
connecting x and y with length at most Cd(x, y). For further details about the con-
struction of the curve we refer the reader to [Ko, Theorem 3.1].

In the following we try to weaken Condition (iii). A metric space is said to be
ϕ−convex if there exists a homeomorphism ϕ : [0,∞)→ [0,∞) such that each pair of
distinct points x and y can be joined by a path whose length does not exceed ϕ(d(x, y)).
A C-quasiconvex space is ϕ-convex with ϕ(t) = Ct.

Definition 3.7. We say that the functional f 7→ af satisfies Condition (iiia) if
there exist two homeomorphisms ϕ, ψ : [0,∞) → [0,∞) satisfying the following two
conditions:

(I) There is a constant C > 0 such that whenever f ∈ N1,∞(X) has an upper
gradient gf with ‖gf‖L∞(X) ≤ 1, we must have af (B) ≤ Cψ(rad(B)) for each
B ∈ B.
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(II)
∑

i∈N ψ(2−ir) ≤ ϕ(r) for r ∈ [0,∞).

Observe that Condition (iii) of Definition 3.2 implies Condition (iiia). This is seen
by making the choice of ψ(t) = 2t = ϕ(t).

We point out that we assume in this paper that X is a complete metric space with
µ a doubling measure.

Lemma 3.8. Let X be locally rectifiably connected. Assume that (X, d, µ) supports a
first order Poincaré inequality for F = N1,∞(X) with the functional f 7→ af satisfying
Condition (iiia). Then (X, d, µ) is ϕ-convex.

We do not at this time know whether the above lemma holds if F = LIP∞(X),
even though for Theorem 3.6 this choice also is valid. The reason is that the proof
of Theorem 3.6 is not adaptable to the proof of this lemma. Indeed, the function
constructed in the proof of Theorem 3.6 can also be considered here, but all that leads
to is the estimate that for each x ∈ X and ε > 0, ρ̂ε,x(y) ≤ C ψ(d(x, y)). Unlike with
quasiconvex curves, this does not lead to the existence of rectifiable curves connecting
x to y with length at most Cψ(d(x, y)); hence the difficulty.

Proof. Fix x ∈ X and set Ux to be the rectifiable path-component of X containing x.
Since X is locally rectifiably connected, it follows that Ux is open; on the other hand,
X \ Ux is also open for the same reason. Thus by considering the function f given by
f(y) = infγ `(γ) with the infimum taken over all rectifiable paths in X connecting x
to y when y ∈ Ux, and f(y) = 0 if y ∈ X \ Ux, we see from a repeat of the argument
found in the proof of Theorem 3.6 that X = Ux.

Now we fix x ∈ X and ε > 0, and set

ρx,ε(y) = min

{
inf
γ
`(γ), ε−1

}
where the infimum is taken over all rectifiable paths γ connecting B(x, ε) to y. Note
that ρx,ε = 0 on B(x, ε), and that g ≡ 1 is an upper gradient of ρx,ε. It follows from
the results in [JJRRS] (see also [HKST]) that ρx,ε is measurable, and so belongs to
N1,∞(X). Fix y ∈ X \B(x, 2ε) such that y is a Lebesgue point of ρx,ε.

For each i ∈ Z, define Bi = B(x, 21−id(x, y)) if i ≥ 0, and Bi = B(y, 21+id(x, y)) if
i ≤ −1. Thus, a telescopic argument, together with first order Poincaré inequality and
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Condition (iiia), gives us the following chain of inequalities:

|ρx(y)| = |ρx,ε(x)− ρx,ε(y)| ≤
∑
i∈Z

∣∣∣ ∫
Bi
ρx,εdµ−

∫
Bi+1

ρx,εdµ
∣∣∣

≤C
∑
i∈Z

∫
Bi

∣∣∣ρx,ε − ∫
Bi
ρx,ε dµ

∣∣∣dµ
≤C

∑
i∈Z

aρx,ε(Bi) ≤ C
∑
i∈Z

ψ(d(x, y)2−|i|) ≤ 3Cϕ(d(x, y))(9)

where C is a constant that depends only on X. Thus there is a set Zε ⊂ X with
µ(Zε) = 0 such that every y ∈ X \Zε ∪B(x, 2ε) can be connected to B(x, ε) by a path
of length at most C ϕ(d(x, y)) or else each path connecting y to B(x, ε) has length at
least ε−1. Let Z :=

⋃
n∈N Z1/n; note that µ(Z) = 0. Fix y ∈ X \ Z with y 6= x. Then

for each n ∈ N either each path connecting B(x, ε) to y has length at least n, or else
we can find a path γn connecting y to a point xn ∈ X with d(x, xn) ≤ 1/n such that
`(γn) ≤ C ϕ(x, y). Since X is complete, the existence of a non trivial doubling measure
implies that closed balls are compact. Using a standard limiting argument involving
Arzela-Ascoli’s theorem, and the fact that X is rectifiably connected (see the first part
of the proof), we can construct a 1-Lipschitz rectifiable path connecting x and y as in
the proof of [Ko, Theorem 3.1], with length at most Cϕ(d(x, y)).

Finally, another application of Arzela-Ascoli’s theorem together with the fact that
X \ Z is dense in X, allows us to connect each y ∈ X to x by a rectifiable path of
length at most C ϕ(d(x, y)). Since the above argument holds for all x ∈ X, the lemma
is now proved.

Notice that the space in Example 3.9 below is a ϕ−convex space which is not
quasiconvex.

Example 3.9. Let us consider the following domain X given by

X := {(x1, x2) ∈ R2 : −1 ≤ x1 ≤ 1 and − x21 ≤ x32 ≤ x21},

endowed with the restriction to X of the Euclidean metric of R2, denoted d, and the
2-dimensional Lebesgue measure µ = L 2

|X . Observe that (X, d, µ) is a complete and
doubling non-quasiconvex metric space. Therefore, it does not support any p-Poincaré
inequality, 1 ≤ p ≤ ∞. However, we will see that it supports a first order Poincaré
inequality. First of all notice that each function f ∈ N1,∞(X) is α-Hölder continuous
with α = 2/3. Indeed, if x, y ∈ X, 0 < ε < d(x, y)/10, and E ⊂ B(x, ε) and
F ⊂ B(y, ε) are measurable sets such that µ(E)µ(F ) > 0, then the ∞-modulus of the
collection of paths in X connecting E to F with length no more than 10 d(x, y)α is
positive. To see this, note that if both x and y belong to the same lobe of X (that is,
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with x = (x1, x2) and y = (y1, y2), both x1 and y1 have the same sign), then a standard
Fubini-type argument applied to the tube of straight line segments connecting F to E
shows that the p-modulus of the sub-family of straight line segments is positive for any
1 ≤ p < ∞, and hence so is the ∞-modulus. If x and y belong to different lobes of
X, then the sub-family of curves formed by connecting F to the point (0, 0) ∈ R2 by
straight line segments and then from (0, 0) to E, has positive p-modulus when p > 2,
see [Va]. These curves have length no more than 10d(x, y)α.

From the above observation, together with the arguments found in the proof of [DJS,
Lemma 4.4], we see that functions inN1,∞(X) are 2/3-Hölder continuous. In particular,
given a ball B ∈ B and x, y ∈ B,

|f(x)− f(y)| ≤ C d(x, y)α‖gf‖L∞(CB),

whenever gf is an upper gradient of f . If we define the functional af : B → [0,∞) by
af (B) = C rad(B)α‖gf‖L∞(CB) we have that∫

B
|f − fB| dµ ≤

∫
B

∫
B

|f(y)− f(x)| dµ(y) dµ(x)

≤ C

∫
B

∫
B

d(x, y)α‖gf‖L∞(CB) dµ(y) dµ(x)

≤ C rad(B)α‖gf‖L∞(CB) = af (B)

for each ball B ∈ B, as wanted. That is, with the choices of ψ(r) = r2/3 and
ϕ(r) =

(∑
i∈N 2−2i/3

)
r2/3, we know that Condition (iiia) holds. However, the stronger

Condition (iii) fails, for X is not quasiconvex.

The book of Saloff-Coste [S-C], Section 5.6.3, has a nice discussion of the Poincaré
type inequalities for Riemannian manifolds of negative lower-bounded Ricci curvature,
and in this case the function ψ(r) = C r eCn

√
−Kr. Here K is the lower bound for the

Ricci curvature, K > 0, and Cn depends on the dimension n of the manifold. In this
case note that there are such manifolds that are geodesic spaces (for example, the model
spaces Hn), and so the result of Lemma 3.8 is far from being optimal. Observe that
we can choose ϕ = ψ for such ψ in this lemma. See [BJM], [CW], [FW] for discussions
on other choices of ψ.

4 First order Poincaré vs. p-Poincaré inequalities

In this section we state the main theorem of this work. The following theorem relates
first order Poincaré inequalities to p-Poincaré inequalities when the functional satisfies
the conditions of Definition 3.2.
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Theorem 4.1. If (X, d, µ) is a complete metric space with µ a doubling measure, then
it supports a first order Poincaré inequality for F = N1,∞(X) or F = LIP∞(X), with
the functional f 7→ af satisfying the geometric Conditions (i), (ii), (iii) and (Vp) of
Definition 3.2, if and only if (X, d, µ) supports a p-Poincaré inequality.

Proof. First assume that (X, d, µ) supports a p-Poincaré inequality. Then, there are
constants λp, Cp > 0 such that when f : X → R ∪ {−∞,∞} is a measurable function
and g : X → [0,∞] is an upper gradient of f , and B is a ball in X,

(10)

∫
B
|f − fB| dµ ≤ Cprad(B)

(∫
λpB

gpdµ
)1/p

.

We know then that X is quasiconvex. By a bi-Lipschitz change in the metric on X, we
can assume without loss of generality that X is a geodesic space. Hence by the results
of [HaK], by increasing the value of Cp we can assume that λp = 1.

Note that given a function f on X, the set of all upper gradients of f that are in
the class Lp(X) is a convex subset of Lp(X). A delicate application of Mazur’s lemma
shows that there is a unique non-negative Borel measurable function, denoted gf , in the
closure (in Lp(X)) of this convex set such that whenever g ∈ Lp(X) is in the closure
of this convex set, we have gf ≤ g almost everywhere in X; see for example [Sh1]
or [Ha]. The function gf is said to be the minimal p-weak upper gradient of f . Note
that Equation (10) holds if we replace g on the right-hand side by gf .

Now, for each function f ∈ N1,∞(X), choose the minimal p-weak upper gradient gf
and define the functional af : B → [0,∞) as

af (B) = Cp rad(B)
(∫

B
gpfdµ

)1/p
.

With this choice of af , Conditions (i), (ii), (iii) and (Vp) hold. Notice that, denoting
Cp
p by the generic constant C,(

af (B)

rad(B)

)p
µ(B) = C

∫
B

gpfdµ.

To prove the converse, by [Ke3, Theorem 2] it is enough to verify inequality (2) of
Definition 2.3 for compactly supported Lipschitz functions with compactly supported
Lipschitz upper gradients. Recall by Theorem 3.6 that X is quasiconvex.

Let f be a compactly supported Lipschitz function and g a continuous upper gra-
dient of f . In particular, f ∈ LIP∞(X) ⊂ F . By hypothesis, there exists a functional
af : B → [0,∞) supporting first order Poincaré inequality. Let hf : X −→ [0,∞] be a
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function given by

(11) hf (x) = lim sup
r→0

sup
x∈B∈B
rad(B)<r

af (B)

rad(B)
= lim

r→0
sup
x∈B∈B
rad(B)<r

af (B)

rad(B)
.

It is easy to see that hf is a Borel measurable function.

Claim: For each x ∈ X,

(12) hf (x) ≤ Cg(x).

To prove this claim, we fix x ∈ X and ε > 0. Since g is continuous, there exists a
ball Bx 3 x such that g ≤ g(x) + ε on Bx. Now let B ∈ B such that x ∈ B and
2Cqλrad(B) < rx/2, where rx is the radius of Bx. Then 2CqλB ⊂ Bx. Here Cq is the
quasiconvexity constant of X from Theorem 3.6. For y, z ∈ λB one can construct a
quasiconvex path γyz ∈ CqλB connecting y and z such that `(γyz) ≤ Cqd(y, z). Thus,

|f(y)− f(x)| ≤
∫
γyz

g ds ≤ (g(x) + ε)`(γyz) ≤ Cq(g(x) + ε)d(y, z),

and so f is Cq(g(x) + ε)−Lipschitz continuous on the ball λB. By the McShane
extension theorem (see [He] for example), we can obtain an extension F of f defined
on all X which is Cq(g(x) + ε)−Lipschitz on X and so F has the constant function
k = Cq(g(x) + ε) as an upper gradient on X. By Condition (i) of af we have that
akF = kaF and by Condition (iii) (for either choice of F) we then have that

aF (B) ≤ Crad(B)Cq(g(x) + ε).

Observe that for each z ∈ X we have LipF (z) ≤ Cq(g(x) + ε), and so the above
argument works also for the case that F = LIP∞(X).

Since f = F on λB, by the locality property (ii) we have that af (B) = aF (B), and
so

af (B) ≤ Crad(B)Cq(g(x) + ε).

Thus we deduce that for B ∈ B such that x ∈ B and rad(B) sufficiently small,
hf (x) ≤ CCq(g(x) + ε). Letting ε→ 0 we conclude the proof of the claim.

Let δ > 0. Fix B ∈ B. Then for each ε > 0 and each x ∈ B, there exists Bε
x ∈ B

with Bε
x ⊂ B and rad(Bε

x) < ε such that

af (B
ε
x) ≤ (δ + hf (x))rad(Bε

x).

We now fix ε0, and consider a cover {Bε
x}x∈B;ε<ε0 of B. By the Vitali covering

theorem there exists a countable pairwise disjoint collection of such balls {Bε0
i }i∈N

such that
µ(B \

⋃
i

Bε0
i ) = 0.
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Recall that we assume µ to be doubling, so this theorem holds; see [He]. Let xε0i ∈ B
ε0
i

be such that

(13) af (B
ε0
i ) ≤ (δ + hf (x

ε0
i ))rad(Bε0

i ).

By Condition (Vp) there exists a constant C > 0 such that(
af (B)

rad(B)

)p
µ(B) ≤C

∑
i∈N

(
af (B

ε0
i )

rad(Bε0
i )

)p
µ(Bε0

i )

≤C
∑
i∈N

(δ + hf (x
ε0
i ))pµ(Bε0

i ) by (13)

≤C2p
∑
i∈N

(δp + hf (x
ε0
i )p)µ(Bε0

i )

≤C2p
∑
i∈N

δpµ(Bε0
i ) + C2p

∑
i∈N

hf (x
ε0
i )pµ(Bε0

i )

≤C2pδpµ(B) + C2p
∑
i∈N

g(xε0i )pµ(Bε0
i ). by (12)

Since rad(Bε0
x ) < ε0, the mesh of the collection {Bε0

i }i∈N is at most ε0. Moreover, g is
continuous and so

∫
B
gpdµ is computable as Riemannian sums:

lim
ε0→0

∑
i∈N

g(xε0i )pµ(Bε0
i ) =

∫
B

gpdµ.

If we let ε0 → 0, (
af (B)

rad(B)

)p
µ(B) ≤ C2pδpµ(B) + C2p

∫
B

gpdµ.

Now letting δ → 0 we get (
af (B)

rad(B)

)p
µ(B) ≤ C

∫
B

gpdµ,

that is,

af (B) ≤ C1/prad(B)
(∫

B
gpdµ

)1/p
.

Applying the first order Poincaré inequality we get∫
B
|f − fB|dµ ≤ af (B) ≤ C1/prad(B)

(∫
B
gpdµ

)1/p
.
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By the self-improvement result in [KZ], together with the proof of Theorem 4.1 we
see that the following corollary holds true.

Corollary 4.2. Given a functional af satisfying Conditions (i), (ii), (iii), and (Vp) of
Definition 3.2 for some p > 1, there is some 1 ≤ q < p and a functional ãf such that
ãf satisfies (i), (ii), (iii) and (Vq).

Remark 4.3. Observe that in the proof of Theorem 4.1, we have obtained that

af (B) ≤ C rad(B)
(∫

B
gpdµ

)1/p
whenever g is a continuous upper gradient of f . However, we do not know whether the
two quantities above are comparable, nor whether the same inequality holds true when
the upper gradient is not continuous (in particular, minimal p-weak upper gradient of
f). Furthermore, we do not know in this generality whether af is comparable to the
integral on the right hand side of the above inequality for some weak upper gradient g
of f .

In light of the above remark, it is worth trying to understand what af (B) is under
some additional conditions on af . The proof of Theorem 4.1 shows also that

(14) af (B) ≤ C rad(B)

(∫
B
hpf dµ

)
,

provided that
∫
B
hpf dµ can be expressed as a limit of Riemann sums, where hf is given

by the formula (11). Not all nonnegative functions in Lp(B) have this property. To
get around this issue, we consider hr for each r > 0 as follows:

hr(x) = sup
x∈B∈B
rad(B)<r

af (B)

rad(B)
.

It is clear that hr ≥ hf and that hr is upper semicontinuous, and hence can be ap-
proximated in Lp(X) by a monotonic decreasing sequence of continuous functions hr,j.
Thus we can replace hf in (14) by hr,j; then letting j →∞ we see that we can replace
hf with hr in (14). Now, an application of the monotone convergence theorem tells us
that we are allowed to have hf in (14).

Assume now that in addition to the hypothesis of Theorem 4.1 we have the following
reverse of Condition (Vp):

r(Vp) There exists 1 ≤ p <∞ such that whenever f ∈ N1,∞(X) and B ∈ B, if {Bi}i∈N
is a family with
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(a) Bi ∈ B for i ∈ N with Bi ⊂ B,

(b) Bi ∩Bj = ∅ for each i 6= j, and

(c) µ(B \
⋃
i∈NBi) = 0,

then there exists a constant C > 0 such that(
af (B)

rad(B)

)p
µ(B) ≥ C

∑
i∈N

(
af (Bi)

rad(Bi)

)p
µ(Bi).

Now, following the proof of Theorem 4.1, let us define the function

h−f (x) = lim
r→0

inf
x∈B∈B
rad(B)<r

af (B)

rad(B)
.

This function is µ-measurable but is not so easy to compare directly with af , so instead
we consider for each ε > 0,

h−f,ε(x) = inf
x∈B∈B
rad(B)<ε

af (B)

rad(B)
.

Then for ε > 0 and x ∈ B, whenever y ∈ Bε
x ∈ B with rad(Bε

x) < ε, we have

h−f,ε(y) ≤ af (Bx)

rad(Bx)
.

Let us consider a cover {Bε
x}x∈B,ε<ε0 of B by balls Bε

x, x ∈ B, such that rad(Bε
x) < ε

and Bε
x ⊂ B. By the Vitali covering theorem, there exists a countable pairwise disjoint

collection of such balls {Bε
i }i∈N such that µ(B \

⋃
iB

ε
i ) = 0. Now,(

af (B)

rad(B)

)p
µ(B) ≥C

∑
i∈N

(
af (B

ε
i )

rad(Bε
i )

)p
µ(Bε

i )

=C
∑
i∈N

∫
Bεi

(
af (B

ε
i )

rad(Bε
i )

)p
dµ

≥C
∑
i∈N

∫
Bεi

(h−f,ε)
pdµ.(15)

Using the fact that h−f,ε monotonically increases to h−f , we get that

af (B) ≥ C1/prad(B)
(∫

B
(h−f )pdµ

)1/p
.
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In general we do not know that hf ≈ h−f . However, if af is given via a Radon measure
νf as in [HKT], that is,

(16) af (B) = rad(B)

(
νf (B)

µ(B)

)1/p

,

then by the Radon-Nikodym theorem we have hf = h−f µ-almost everywhere in X
and by inequality (14) we also know that νf � µ. Moreover, in this case, from [HKT,
Theorem 1.1(2)], we have νf (B) ≥ C−1

∫
B
gpf dµ for the minimal p-weak upper gradient

(in CqλB) gf of f . From the above discussion, we see that if in addition to the
hypotheses of Theorem 4.1 and Condition r(Vp), if af is associated with a Radon
measure νf as in [HKT], then

af (B) ≈ rad(B)

(∫
B
hpf dµ

)1/p

,

with C hf a p-weak upper gradient of f . Given that by the proof of Theorem 4.1, for
continuous upper gradients g of f we also have νf (B) ≤ C

∫
B
gp dµ, it would be natural

to ask whether the function hf = h−f , obtained above, is comparable to a p-weak upper
gradient of f . From the results of [HKT] we know that hf ≥ C−1gf when gf is the
minimal p-weak upper gradient of f , and so C hf is a p-weak upper gradient of f ,
but it may not be equivalent to the minimal p-weak upper gradient. So far we do not
know the complete answer to this question. However, given that Condition r(Vp) is
automatically satisfied if af is given in the form of (16), we have the following result.

Proposition 4.4. Under the hypotheses of Theorem 4.1, if the functional f 7→ af is
given by a Radon measure νf as in (16), then

af (B) ≈ rad(B)

(∫
B
hpf dµ

)1/p

,

where hf is given by the formula (11) and hf is comparable to some weak upper gradient
of f .

The following theorem demonstrates that Condition (Vp) of Definition 3.2 is nec-
essary in order to obtain p-Poincaré inequality for some finite p ≥ 1, for without
this condition we merely have ∞-Poincaré inequality, which in turn does not imply a
p-Poincaré inequality for any finite p ≥ 1; see [DSW]. Furthermore, without Condi-
tions (Vp) and (iii) of Definition 3.2, the functional given by (5)

af (B) :=

(∫
B

∫
B
|f(y)− f(x)|p dµ(y) dµ(x)

)1/p
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would satisfy the rest of Definition 3.2 (and would even satisfy Condition (iii) if X is
∞-thick quasiconvex), but does not represent first-order calculus. Therefore it would
seem that both Conditions (Vp) and (iii) of Definition 3.2 are needed in order to obtain
a functional associated with first-order calculus of the Newton-Sobolev spaces, which
then in addition yields an improvement of the ∞-Poincaré inequality.

Theorem 4.5. Let (X, d, µ) be a complete metric space with µ a doubling measure.
Then X supports a ∞-Poincaré inequality if and only if X supports a first order
Poincaré inequality with F = N1,∞(X) and f 7→ af satisfies Condition (iii) of Defini-
tion 3.2.

We do not have a priori Lipschitz continuity (or any kind of continuity at all) of
functions in N1,∞(X), and so the proof of the above theorem is a bit more involved.
Furthermore, even if the function f happens to be Lipschitz continuous, its upper
gradient need not be minorized by Lip(f). Even knowing that X is quasiconvex does
not give us direct control of the function f constructed in the proof below.

Proof. Suppose that (X, d, µ) supports an ∞-Poincaré inequality. Then there are con-
stants λ,C > 0 such that when f : X → R ∪ {−∞,∞} is a measurable function and
g : X → [0,∞] is an upper gradient of f ,∫

B
|f − fB| dµ ≤ C rad(B)‖g‖L∞(λB)

for each ball B ⊂ X. Now, for each function f ∈ N1,∞(X), define the functional
af : B → [0,∞) by

af (B) = C inf
g

rad(B)‖g‖L∞(λB),

where the infimum is over all non-negative Borel functions g that are upper gradients
of f in X. With this choice of af , the Conditions (i), (ii) and (iii) of Definition 3.2
hold with the choice of F = N1,∞(X).

On the other hand, let us assume that X supports a first order Poincaré inequality
with an associated functional for which Condition (iii) of Definition 3.2 holds. One
has to prove that X supports a ∞-Poincaré inequality for functions in N1,∞(X); this
is equivalent, by [DJS, Theorem 4.7], to proving that X is ∞-thick-quasiconvex as in
Definition 2.4.

Let x, y ∈ X such that x 6= y, 0 < ε < d(x, y)/4, and let E ⊂ B(x, ε), F ⊂ B(y, ε)
be measurable sets such that µ(E)µ(F ) > 0. Fix n ∈ N and let Γn be the collection of
all rectifiable paths connecting E to F such that `(γ) ≤ n d(x, y). Observe that by the
choice of ε, if p, q are the end points of γ, then d(p, q)/4 ≤ d(x, y) ≤ 4 d(p, q).
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Suppose that Mod∞(Γn) = 0. By [DJ, Lemma 5.7] there exists a non-negative
Borel measurable function g ∈ L∞(X) such that ‖g‖L∞(X) = 0 and for all γ ∈ Γn, the
path integral

∫
γ
g ds =∞. In this case we define

f(z) = inf
γ connecting z to E

∫
γ

(1 + g) ds.

Observe that ‖1 + g‖L∞(X) = 1 and f = 0 on E. If z ∈ F and γ is a rectifiable path
connecting z to E, then either γ ∈ Γn in which case

∫
γ
(1 + g) ds ≥

∫
γ
g ds =∞, or else

γ 6∈ Γn, in which case `(γ) > nd(x, y) and so
∫
γ
(1+g) ds ≥

∫
γ

1 ds > nd(x, y). It follows

that when z ∈ F we have f(z) ≥ n d(x, y). Thus the function f̃ = min{f, 2n d(x, y)}
has the properties that

1. f̃ = 0 on E,

2. f̃ ≥ nd(x, y) on F ,

3. f̃ ∈ N1,∞(X),

4. 1 + g is an upper gradient of f̃ on X with ‖1 + g‖L∞(X) = 1.

Let y0 ∈ F and x0 ∈ E be Lebesgue points of f̃ . Such points exists by the Lebesgue
differentiation theorem because µ(E)µ(F ) > 0. By using the chain of balls defined by
Bi = B(x0, 2

1−id(x, y)) if i ≥ 0 and Bi = B(y0, 2
1+id(x, y)) if i ≤ −1, and using the

first order Poincaré inequality with Condition (iii), we get

n
d(x, y)

2
≤ n d(x0, y0) ≤ f̃(y0) = |f̃(x0)− f̃(y0)| ≤

∑
i∈Z

|f̃Bi − f̃Bi+1
|

≤ C
∑
i∈Z

∫
Bi

|f̃ − f̃Bi | dµ

≤ C
∑
i∈Z

af̃ (Bi)

≤ C
∑
i∈Z

C rad(Bi)

≤ C
∑
i∈Z

2−|i|d(x, y) = Cd(x, y).

Thus we must have n ≤ C, with C depending solely on the doubling constant and the
constant of the Poincaré inequality. Hence if n > C then the path family Γn must have
positive ∞-Modulus, completing the proof of the theorem.
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Given 1 ≤ p <∞, it is a result of Keith [Ke3] that to verify p-Poincaré inequality
for all functions in N1,p(X), it suffices to verify the inequality for Lipschitz functions
and their upper gradients Lip f , or equivalently, to verify the inequality for Lipschitz
functions and their continuous upper gradients. The key tool in the proof of this fact is
the Vitali-Caratheodory theorem which tells us that we can approximate non-negative
functions in Lp(X) from above with lower semicontinuous functions. Unfortunately,
for p = ∞, such a theorem does not hold true, and so we do not know that verify-
ing ∞-Poincaré inequality for Lipschitz functions and its upper gradient Lip f in turn
implies that ∞-Poincaré inequality holds for all f ∈ N1,∞(X). On the other hand,
the Sierpinski carpet supports an ∞-Poincaré inequality for locally Lipschitz contin-
uous functions with continuous upper gradients but does not support an ∞-Poincaré
inequality for functions in N1,∞(X) (see [DJS, Corollary 4.15]). Hence we do not know
whether the above Theorem 4.5 holds if we replace F = N1,∞(X) with F = LIP∞(X).
Indeed, as noted in [DJS] and [DSW], working with ∞-Poincaré inequality, while giv-
ing surprisingly elegant connections with the geometry of X, is difficult because of the
lack of a Vitali-Caratheodory theorem and the non-local nature of the L∞-norm.

We finally point out that between the zero-th order Poincaré type inequality of [FPW]
and the first order Poincaré inequality considered in [HKT] and this note, there is a
wide class of “fractional order” Poincaré inequalities associated with Besov spaces;
such Besov-Poincaré type inequalities are considered in [GKZ]. It would be interesting
to know what conditions on the BMO-Poincaré type inequalities of [FPW] would be
related to such a fractional order calculus of Besov spaces.
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inequality in metric measure spaces, Michigan Math. Journal. 61 (2012) 63–
85.

26



[DSW] E. Durand-Cartagena, N. Shanmugalingam, and A. Williams: p-Poincaré in-
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(2000), ix+95 pp.

[HKT] T. Heikkinen, P. Koskela, H. Tuominen: Sobolev-type spaces from generalized
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