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Functionals defined on partitions of sets of finite perimeter, I:
integral representation and Γ-convergence

1. Introduction.

During the last years a renewed interest has arisen towards problems in the Calculus of Variations related to
partitions of sets in regions of finite perimeter. Problems of this type have been studied in connection with
phase transition problems in Cahn-Hilliard fluids ([AL], [B], [M01], [MO2], [ST]) and also with the research
of equilibrium positions of mixtures of fluids and liquid crystals.
Given a bounded domain Ω ⊂ Rn, with Lipschitz continuous boundary, it is possible to define the functional
which assigns to every partition {E1, . . . , Em} of Ω in sets of finite perimeter the real number

(1.1) F
(
E1, . . . , Em

)
=

m∑
i,j=1 ,i6=j

∫
∂∗Ei∩∂∗Ej

f(x, i, j, νi) dHn−1(x)

where ∂∗Ei is the essential boundary of the set Ei, νi is the inner normal to Ei, and f = f(x, i, j, ν) is an
interface energy which may also depend on x and on the orientation of the surface.
The aim of this paper is to include this kind of functionals in the framework of the Calculus of Variations,
and particularly in the theory of Γ-convergence.
The problem we deal with is to clarify whether the limit of minimum problems with isovolumetrical con-
straints

(1.2) inf
{ m∑
i,j=1 ,i6=j

∫
∂∗Ei∩∂∗Ej

fh(x, i, j, νi) dHn−1(x) : |Ei| = αi, i = 1, . . . ,m
}

is still a problem of the same type. In other words, we want to prove some closure properties of the class of
functionals (1.1) with respect to variational convergence (Γ-convergence).
A standard technique, already exploited in variational problems in Sobolev spaces, is based on the localization
of functionals, setting

(1.3) Fh
(
(E1, . . . , Em);A

)
=

m∑
i,j=1 i 6=j

∫
A∩∂∗Ei∩∂∗Ej

fh(x, i, j, νi) dHn−1(x)

for every open set A ⊂ Ω and proving that the functionals Fh(·, A) Γ-converge to some functional F(·, A)
for every A. Then, one looks for necessary and sufficient conditions for a functional F(·, A) which ensure
the integral representation

(1.4) F
(
(E1, . . . , Em);A

)
=

m∑
i,j=1 i 6=j

∫
A∩∂∗Ei∩∂∗Ej

ψ(x, i, j, νi) dHn−1(x)

for a suitable integrand ψ. Eventually, one proves that the functional obtained as limit of the functionals
Fh fulfils such conditions. In such a case, the convergence of minimum problems (1.2) to the problem

(1.5) min
{ ∑
i,j∈I,i6=j

∫
∂∗Ei∩∂∗Ej

ψ(x, i, j, νi) dHn−1(x) : |Ei| = αi, i = 1, . . . ,m
}
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is a straightforward consequence of well known Γ-convergence theorems and equi-coercivity assumptions,
because it can be shown that the Γ-limits is not affected by the volume constraint (Theorem 3.3). Assured
in such a way the existence of an integrand which allows representation of the limit problem, the natural
question arises of its characterization in terms of the functions fh. In the case fh ≡ f for every h the Γ-limit
is also called relaxed functional, and it might be expected that the integrand ψ in (1.5) is the “greatest”
function φ such that φ ≤ f and the functional

m∑
i,j=1 i 6=j

∫
∂∗Ei∩∂∗Ej

φ(x, i, j, νi) dHn−1(x)

is lower semicontinuous with respect to convergence in measure.
Another interesting problem is posed by homogeneization, which deals with limits of periodic structures.
Mathematically, one considers a function f(x, i, j, ν) periodic in x and defines

fh(x, i, j, ν) = f(hx, i, j, ν).

In this paper we prove an integral representation theorem for functionals F(E1, . . . , Em;A) and we apply
this result to prove that, under suitable equi-coerciveness and equi-continuity assumptions on the functions
fh, the Γ-limit admits integral representation. Moreover, we show that these results can be applied to give
a representation to the limit of problems (1.2).
The study of semicontinuity conditions and of homogeneization problems will be carried on in a forthcoming
paper.

2. Notation and results about sets of finite perimeter.

Let Ω ⊂ Rn be an open set; we denote by A(Ω) the class of open subsets of Ω and by B(Ω) the class of
Borel subsets of Ω. For every set E ∈ B(Rn) we denote by |E| its Lebesgue n-dimensional measure and by
Hn−1(E) its Hausdorff (n− 1)-dimensional measure. We also denote by Sn−1 the unit sphere in Rn and we
set ωn−1 = Hn−1(Sn−1). For every Borel set E we denote by ∂∗E its essential boundary, i.e.,

(2.1) ∂∗E = {x ∈ Rn : lim sup
ρ→0+

|Bρ(x) \ E|
ρn

> 0 and lim sup
ρ→0+

|Bρ(x) ∩ E|
ρn

> 0}.

Let E ∈ B(Ω) such that |E| < +∞. We say that E is a set of finite perimeter in Ω if

sup
{∫
E

divg dx : g ∈ C1
0 (Ω; Rn), |g| ≤ 1

}
< +∞.

We denote by P(Ω) the class of sets E ⊂ Ω such that E has finite perimeter in Ω. It can be shown that
if E ∈ P(Ω) then there exists a unique vector Radon measure in B(Ω), denoted by D1E , which is the
distributional derivative of 1E , that is∫

Ω

〈g,D1E〉 = −
∫
E

divg dx ∀g ∈ C1
0 (Ω; Rn).

If E is an open set with smooth boundary, the Gauss-Greeen theorem implies that D1E = νE · Hn−1|∂E ,
where νE is the inner normal to E. This representation of the distributional derivative was generalized by
E. De Giorgi, Federer ([DG1], [DG2], [FE2]) who proved that in Hn−1-almost every x ∈ ∂∗E the limit

νE(x) = lim
ρ→0+

D1E(Bρ(x)
|D1E |(Bρ(x))



L.Ambrosio & A.Braides: Functionals defined on partitions ... 3

exists and belongs to Sn−1; in addition,

D1E = νE · Hn−1|∂∗E
and, in particular, for every set E ∈ P(Ω) it is Hn−1(∂∗E) < +∞. Also the opposite implication is true
([FE1], 4.5.11). Moreover, if we set

Et = {x ∈ Ω : lim
ρ→0+

|E ∩Bρ(x)|
|Bρ(x)|

= t}

for every t ∈ [0, 1], then

(2.2) Hn−1(∂∗E \ E1/2) = 0

Let T be a finite set, endowed with the discrete topology. We denote by BV (Ω, T ) the class of Borel functions
u : Ω→ T such that {u = i} is a set of finite perimeter in Ω for every i ∈ T . For every function u ∈ BV (Ω, T )
we set also

(2.3) Su =
⋃
i∈T

∂∗{u = i} =
⋃
i,j∈T

∂∗{u = i} ∩ ∂∗{u = j}.

By definition, each point in Ω \ Su is a set of density 1 for a unique set {u = i}, and we denote by ũ(x) = i
this essential value. By (2.2) it follows (see for instance [V1], [V2]) that in Hn−1 almost every x ∈ Su there
exists a triplet (u+, u−, νu) ∈ T × T × Sn−1 such that
(2.4)

lim
ρ→0+

|{y ∈ Bρ(x) : 〈y − x, νu〉 > 0, u(y) 6= u+}|
ρn

= lim
ρ→0+

|{y ∈ Bρ(x) : 〈y − x, νu〉 < 0, u(y) 6= u−}|
ρn

= 0.

The triplet (u+, u−, νu) is uniquely determined up to a change of sign of νu and of an interchange of u+, u−.
Henceforth, we set

(2.5) (i, j, ν) ∼ (i′, j′, ν′)

if i = i′, j = j′, ν = ν′ or i = j′, j = i′, ν = −ν′. Then the functional in (1.1) can be written as∫
Su

f̃(x, u+, u−, νu) dHn−1(x)

where
f̃(x, i, j, ν) = f(x, i, j, ν) + f(x, j, i,−ν).

In the following we shall always work with this representation of the functional (1.1). By (2.2) it follows also

(2.6) Hn−1(∂∗{u = i} ∩ ∂∗{u = j} ∩ ∂∗{u = k}) = 0

whenever card({i, j, k}) = 3. To join minimizing sequences, we shall need a decomposability property of
BV (Ω, T ) ([V1], [V2]): for every pair of functions u, v ∈ BV (Ω, T ) and for every set E ∈ P(Ω), the function

w(x) =

u(x) if x ∈ E

v(x) if x ∈ Ω \ E
belongs to BV (Ω, T ) and

(2.7) Sw ⊂ (Su ∩ Ω \ E0) ∪ (Sv ∩ Ω \ E1) ∪ {x ∈ ∂∗E \ (Su ∪ Sv) : ũ(x) 6= ṽ(x)}.
We shall need also a particular case of Fleming-Rishel formula ([FE1], 4.5.9): for every function φ ∈W 1,1(Ω)
the set

{t ∈ R : {φ > t} /∈ P(Ω)}
is negligible in R and

(2.8)
∫
Ω

h|∇φ| dx =
∫ +∞

−∞

∫
∂∗{φ>t}

h dHn−1 dt

for every bounded Borel function h : Ω→ R.
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3.Statement of the main results.

In the following, we denote by Λ a fixed positive constant. We say that a set function α : A(Ω) → [0,+∞[
is a measure if it is the trace on A(Ω) of a Radon measure in B(Ω). A set function α is a measure if and
only if the following conditions are satisfied (see for instance [DL]):

(3.1) A ⊂ B ⇒ α(A) ≤ α(B);

(3.2) A ∩B = ∅ ⇒ α(A ∪B) ≥ α(A) + α(B);

(3.3) α(A ∪B) ≤ α(A) + α(B);

(3.4) α(A) = sup
B⊂⊂A

α(B).

Since the extension to B(Ω) if exists is unique, we adopt the same notation for set functions on A(Ω) and
for their extensions.
The following theorem shows that under suitable assumptions a functional F : BV (Ω, T )×A(Ω)→ [0,+∞[
can be represented by means of a continuous function in the following way

(3.5) F(u,A) =
∫

A∩Su

f(x, u+, u−, νu) dHn−1(x) ∀u ∈ BV (Ω, T ), ∀A ∈ A(Ω)

Theorem 3.1: Let F : BV (Ω, T )×A(Ω)→ [0,+∞[ be a functional satisfying the following conditions:

(i) 0 ≤ F(u,A) ≤ ΛHn−1(A ∩ Su) ∀u ∈ BV (Ω, T ), ∀A ∈ A(Ω);

(ii) F(u, ·) is a measure for every u ∈ BV (Ω, T );

(iii) F(u,A) = F(v,A) whenever u = v almost everywhere in A;

(iv) uh → u almost everywhere in A ⇒ F(u,A) ≤ lim inf
h→+∞

F(uh, A)

for every open set A ∈ A(Ω);

(v) for every open set A ⊂⊂ Ω there exists a continuous function ωA : [0,+∞[→ [0,+∞[ such that ωA(0) = 0
and

|F(u,B)−F(v,B + z)| ≤ ωA(|z|)Hn−1(B ∩ Su)

whenever B ∈ A(A), z ∈ Rn, |z| < dist(A, ∂Ω)/2 and v(x+ z) = u(x) in B.

Then, there exists a unique continuous function f : Ω × T × T × Sn−1 → [0,Λ] such that f(x, i, j, ν) =
f(x, j, i,−ν),

(3.6) p→ f(x, i, j,
p

|p|
)|p| is convex in Rn for every x ∈ Ω, i, j ∈ T ;

and F(u,A) is representable as in (3.5).
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Now we see how Theorem 3.1 can be applied to show that the Γ- limit of a sequence of integral functionals
is still an integral functional.
Let us recall some basic definitions and results about Γ- convergence (we refer to [DF1], [DF2], [DM] for a
wide bibliography on the subject). Let (X, d) be a separable metric space, and let (Fh) be a sequence of real
extended valued functions defined in X. We set

(3.7) Γ(d−)− lim sup
h→+∞

Fh(u) = inf
{

lim sup
h→+∞

Fh(uh) : (uh) ⊂ X, uh → u
}
,

(3.8) Γ(d−)− lim inf
h→+∞

Fh(u) = inf
{

lim inf
h→+∞

Fh(uh) : (uh) ⊂ X, uh → u
}
,

for every u ∈ X. The functions in (3.7), (3.8) are both lower semicontinuous. We say that the sequence (Fh)
Γ-converges to F∞ if

Γ(d−)− lim inf
h→+∞

Fh(u) = F∞(u) = Γ(d−)− lim sup
h→+∞

Fh(u) ∀u ∈ X.

The Γ-limit if exists is unique; moreover, by every sequence (Fh) it is possible to extract a subsequence (Fhk)
which Γ -converges.
The property which motivates the introduction of Γ-convergence in Calculus of Variations is the following:
assume that (Fh) Γ- converges to F∞ and

inf
X
Fh = inf

K
Fh ∀h ∈ N

for a suitable compact set K ⊂ X. Then

(3.9) lim
h→+∞

inf
X
Fh = min{F∞(x) : x ∈ X}

and every sequence (xh) ⊂ K such that

lim
h→+∞

Fh(xh) = lim
h→+∞

inf
X
Fh

admits a subsequence converging to a minimizer of F∞.
In the following, we are interested to study Γ-convergence of functionals defined on BV (Ω, T ), endowed with
the distance

dΩ(u, v) =
∞∑
k=1

2−k
(
1 ∧ |{x ∈ Ωk : u(x) 6= v(x)}|

)
where Ωk = {x ∈ Ω : dist(x, ∂Ω) > 2−k} . This distance induces (local) convergence in measure. We
recall that every sequence converging almost everywhere locally converges in measure, and sequences con-
verging locally in measure admit subsequences converging almost everywhere. Since we deal with localized
functionals, we set also

(3.10) Γ(d−A)− lim sup
h→+∞

Fh(u,A) = inf
{

lim sup
h→+∞

Fh(uh, A) : (uh) ⊂ X, dA(uh, u)→ 0
}
,

(3.11) Γ(d−A)− lim inf
h→+∞

Fh(u,A) = inf
{

lim inf
h→+∞

Fh(uh, A) : (uh) ⊂ X, dA(uh, u)→ 0
}
,

for every u ∈ BV (Ω, T ), A ∈ A(Ω), where

dA(u, v) =
∞∑
k=1

2−k
(
1 ∧ |{x ∈ Ak : u(x) 6= v(x)}|

)
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and Ak = {x ∈ A : dist(x, ∂A) > 2−k}.

Theorem 3.2: Let Fh : BV (Ω, T ) × A(Ω) → [0,+∞[ be a sequence of functionals satisfying conditions
(i), (ii), (iii) of Theorem 3.1. Then, there exists an increasing sequence of integers (hk) and a functional
F : BV (Ω, T )×A(Ω)→ [0,Λ] satisfying the same conditions such that

F(·, A) = Γ(d−A)− lim
k→+∞

Fhk(·, A) ∀A ∈ A(Ω).

If, in addition, condition (v) of Theorem 3.1 is uniformly satisfied by Fh and if

(3.12) λHn−1(A ∩ Su) ≤ Fh(u,A) ≤ ΛHn−1(A ∩ Su) ∀u ∈ BV (Ω, T ), ∀A ∈ A(Ω)

for some constant λ > 0, then F satisfies all the hypotheses of Theorem 3.1, and admits integral represen-
tation.

Assume that Ω is a bounded set with Lipschitz continuous boundary; in this case, the sets

{u ∈ BV (Ω, T ) : Hn−1(Su) ≤ C}

are compact with respect to convergence in measure ([GI]). Assume also that T is endowed with a distance,
let ϕ : Ω→ T be a Borel function and let

Fh(u,A) =
∫

A∩Su

fh(x, u+, u−, νu) dHn−1(x) +
∫
A

d(u, ϕ) dx.

Since Γ-convergence is stable under continuous perturbations, by Theorem 3.1, Theorem 3.2 and ( 3.9) we
get a subsequence fhk such that the problems

inf
{ ∫
A∩Su

fhk(x, u+, u−, νu) dHn−1(x) +
∫
A

d(u, ϕ) dx : u ∈ BV (Ω, T )
}

converge for every open set A ⊂ Ω to the problem

min
{ ∫
A∩Su

f(x, u+, u−, νu) dHn−1(x) +
∫
A

d(u, ϕ) dx : u ∈ BV (Ω, T )
}

for some continuous function f which depends only on (fhk), provided

(3.14) 0 < λ ≤ fh(x, i, j, ν) ≤ Λ ∀x ∈ Ω, i, j ∈ T, ν ∈ Sn−1,

and the functions fhk(·, i, j, ν) are equicontinuous.

Since volume constraints can not be localized, we have considered in Theorem 3.1 and Theorem 3.2 only
functionals defined on the whole BV (Ω, T ). However, in many problems such constraints are present. This
is the motivation of the following theorem , which shows that the Γ-limit “commutes” with the volume
constraint.

Theorem 3.3: Let T = {z1, . . . , zm}, let V1, . . . , Vm be m strictly positive real numbers such that

V1 + . . .+ Vm = |Ω|,
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and let (Fh) be a sequence of functionals defined in BV (Ω, T )×A(Ω) which satisfy the conditions (i), (ii),
(iii) of Theorem 3.1. Assume that

F∞(·, A) = Γ(d−A) lim
h→+∞

Fh(·, A)

for every open set A ⊂ Ω, and let us define for h ∈ N ∪ {∞}

F̃h(u) =

{Fh(u,Ω) if |{u = zi}| = Vi, i = 1, . . . ,m;

+∞ otherwise.

We have then
F̃∞(u) = Γ(d−Ω) lim

h→+∞
F̃h(u) ∀u ∈ BV (Ω, T ).

Let (fh) as in (3.14) and (Fh) as in (3.13); Theorem 3.2, Theorem 3.3 and (3.9) give a subsequence (fhk)
such that the problems

inf
{ ∫
A∩Su

fhk(x, u+, u−, νu) : |u = zi| = Vi, i = 1, . . . ,m
}

converge for every open set A ⊂ Ω to the problem

min
{ ∫
A∩Su

f(x, u+, u−, νu) : |u = zi| = Vi, i = 1, . . . ,m
}

for a suitable continuous integrand f , provided the functions fh(·, i, j, ν) are equicontinuous.

4. Preliminary lemmas.

Our first lemma shows that also the extension of local functionals to BV (Ω, T ) × B(Ω) satisfies locality
properties. For a similar result in Sobolev spaces, compare with [BD3].
Lemma 4.1: Let F : BV (Ω, T )×A(Ω)→ [0,+∞[ be a functional such that

(i) 0 ≤ F(u,A) ≤ ΛHn−1(A ∩ Su) ∀u ∈ BV (Ω, T ), ∀A ∈ A(Ω);

(ii) F(u,A) = F(v,A) whenever u = v almost everywhere in A;

(iii) F(u, ·) is a measure for every u ∈ BV (Ω, T );

(iv) uh → u almost everywhere in A ⇒ F(u,A) ≤ lim inf
h→+∞

F(uh, A)

for every open set A ∈ A(Ω). Then we have

(4.1) F(u,B) = 0 ∀B ∈ B(Ω) with Hn−1(B) = 0.

Moreover, F(u,B) = F(v,B) whenever B ∈ B(Ω), Hn−1((Su∆Sv) ∩B) = 0 and

(4.2) (u+, u−, νu) ∼ (v+, v−, νv) Hn−1-a.e. in Su ∩ Sv.
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Proof. Formula (4.1) is a straightforward consequence of (2.4). The proof of (4.2) is based essentially on
decomposability property (2.7) and on (2.2). We refer to [AMT], Proposition 4.4, Step 1, where the same
locality property is proved in a more general context. q.e.d.

Now we prove that our functionals are uniquely determined by their values on sets on smooth boundary.
Lemma 4.2: Let T = {0, 1}, and set F (E,A) = F (χE , A). Let F , G be functionals satisfying conditions
(i), (ii), (iii), (iv) of Lemma 4.1. Then F = G if and only if

F(E,A) = G(E,A)

for all pairs (E,A) such that A ∩ ∂∗E is a C1 hypersurface.

Proof. Let E ∈ P(Ω), A ∈ A(Ω); to prove equality F(E,A) = G(E,A) it is not restrictive to assume that
A ⊂⊂ Ω. By the De Giorgi rectifiability theorem ([DG2], [GI]), it is possible to find functions fh ∈ C1

0 (Ω),
compact sets Kh ⊂ ∂∗E such that νE(x) exists for every x ∈ Kh, and

Kh ⊂ {fh = 0}, ∇fh(x) = νE(x) ∀x ∈ Kh.

Moreover, Kh ⊂ Kk if h ≤ k and
lim

h→+∞
Hn−1(A ∩ ∂∗E \Kh) = 0.

By our assumptions, the equality

F({fh > 0}, B) = G({fh > 0}, B)

holds for every open set B ⊂ A ∩ {∇fh 6= 0}; since F , G are measures, we obtain

F({fh > 0}, A ∩Kh) = G({fh > 0}, A ∩Kh).

By Lemma 4.1 we get

F(E,A ∩Kh) = F({fh > 0}, A ∩Kh) = G({fh > 0}, A ∩Kh) = G(E,A ∩Kh).

By letting h→ +∞ we get the stated equality. q.e.d.

We recall an integral representation result for functionals defined on W 1,1(Ω) which can be desumed by
[DB3].
Theorem 4.3: Let F : W 1,1(Ω)×A(Ω)→ [0,+∞[ be a functional satisfying the following conditions:

(i) 0 ≤ λ
∫
A

|∇u| dx ≤ F(u,A) ≤ Λ
∫
A

|∇u| dx ∀u ∈W 1,1(Ω), ∀A ∈ A(Ω);

(ii) F(u, ·) is a measure for every u ∈W 1,1(Ω);

(iii) F(u,A) = F(v,A) whenever u = v almost everywhere in A;

(iv) uh → u almost everywhere in A ⇒ F(u,A) ≤ lim inf
h→+∞

F(uh, A)

for every open set A ∈ A(Ω);
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(v) F(u+ t, A) = F(u,A) ∀t ∈ R, F(tu,A) = tF(u,A) ∀t ∈ R+

for every u ∈W 1,1(Ω), A ∈ A(Ω);
(vi) for every open set A ⊂⊂ Ω there exists a continuous function ωA : [0,+∞[→ [0,+∞[ such that ωA(0) = 0
and

|F(u,B)−F(v,B + z)| ≤ ωA(|z|)
∫
B

|∇u| dx

whenever B ∈ A(A), z ∈ Rn, |z| < dist(A, ∂Ω)/2 and v(x+ z) = u(x) in B.

Then, there exists a unique continuous function f(x, p) : Ω × Rn → [0,+∞[, convex and positively 1-
homogeneous in p, such that

F(u,A) =
∫
A

f(x,∇u(x)) dx ∀u ∈W 1,1(Ω), A ∈ A(Ω)

and
0 ≤ λ|p| ≤ f(x, p) ≤ Λ|p| ∀x ∈ Ω, p ∈ Rn.

To prove that the Γ-limit of a sequence of functionals is a measure, we need to join minimizing sequences on
different open sets; this is done in the following lemma.
Lemma 4.4: Let K, B, A ∈ A(Ω) such that K ⊂⊂ B ⊂⊂ A. Then, there exists a constant c depending only
on K, B, A such that, for every pair of functions u, v ∈ BV (Ω, T ) and for every functional F : BV (Ω, T )×
A(Ω) → [0,+∞[ satisfying the hypotheses (i), (ii), (iii) of Lemma 4.1 it is possible to find w ∈ BV (Ω, T )
with the following properties

F(w,A) ≤ F(u,B) + F(v,A \K) + cΛ|{x ∈ B \K : u(x) 6= v(x)}|;

w = u in A \B, w = v in K, w(x) ∈ {u(x), v(x)} almost everywhere in A.

Proof. To simplify our notations, we set d(i, j) = 1 if i = j ∈ T and i 6= j, d(i, i) = 0. Let ϕ ∈ C1(Ω) such
that 0 ≤ ϕ ≤ 1, ϕ = 0 in K and ϕ = 1 in Ω \ B. We claim that c = ‖∇ϕ‖∞ satisfies the conditions of the
lemma. In fact, let u, v ∈ BV (Ω, T ), and let wt ∈ BV (Ω, T ) be the functions defined by

wt(x) =

u(x) if ϕ(x) < t;

v(x) if ϕ(x) ≥ t,

for every t ∈]0, 1[. By Fleming-Rishel formula (2.8), it is possible to find t ∈]0, 1[ such that

{x ∈ A : ϕ(x) < t} ∈ P(Ω), Hn−1(Su ∩ {x ∈ A : ϕ(x) = t}) = Hn−1(Sv ∩ {x ∈ A : ϕ(x) = t}) = 0,

and ∫
B∩∂∗{ϕ<t}\K

d(ũ, ṽ) dHn−1 ≤
∫

B\K

d(u, v)|∇ϕ| dx ≤ c|{x ∈ B \K : u(x) 6= v(x)}|.

By (2.7) we get

F(wt, A) ≤ F(wt, {ϕ < t}) + F(wt, {ϕ > t}) + F(wt, {ϕ = t}) ≤ F(u, {ϕ < t}) + F(v, {ϕ > t})+
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+Λ|Dwt|({ϕ = t}) ≤ F(u,B) + F(v,A \K) + Λ
∫

B∩∂∗{ϕ<t}\K

d(ũ, ṽ) dHn−1 ≤

≤ F(u,B) + F(v,A \K) + cΛ|{x ∈ B \K : u(x) 6= v(x)}|

and the statement is proved. q.e.d.

5. Proof of the theorems.

In the case T = {0, 1} ⊂ R, the set BV (Ω, T ) can be identified in a natural way with the class P(Ω), via
the bijection

E ∈ P(Ω) ←→ 1E ∈ BV (Ω, T ).

In this case, Theorem 3.1 can be stated in the equivalent form:
Theorem 5.1: Let F : P(Ω)×A(Ω)→ [0,+∞[ be a functional such that

(i) 0 ≤ F(E,A) ≤ ΛHn−1(∂∗E ∩A) ∀E ∈ P(Ω), ∀A ∈ A(Ω);

(ii) lim
h→+∞

|(Eh∆E) ∩A| = 0 ⇒ F(E,A) ≤ lim inf
h→+∞

F(Eh, A)

for every sequence {Eh} ⊂ P(Ω), E ∈ P(Ω);

(iii) F(E, ·) is a measure for every E ∈ P(Ω);

(iv) F(E,A) = F(F,A) whenever |(E∆F ) ∩A| = 0;

(v) for every open set A ⊂⊂ Ω there exists a continuous function ωA : [0,+∞[→ [0,+∞[ such that ω(0) = 0
and

|F(E,B)−F(F,B + z)| ≤ ωA(|z|)Hn−1(∂∗E ∩B)

whenever B ∈ A(A), z ∈ Rn, |z| < dist(A, ∂Ω)/2 and 1F−z = 1E in B.

Then, there exists a unique continuous function f : Ω× Sn−1 → [0,Λ] such that

(5.1) p→ f(x,
p

|p|
)|p| is convex in Rn for every x ∈ Ω;

and

(5.2) F(E,A) =
∫

∂∗E∩A

f(x, νE) dHn−1 ∀E ∈ P(Ω), ∀A ∈ A(Ω).

Theorem 3.1 is an easy consequence of Theorem 5.1 and Lemma 4.1:
Proof of Theorem 3.1. Let (i, j) ∈ T × T , and let

Fij(E,A) = F(i1E + j1Ω\E , A).

The functional Fij satisfies all the hypotheses of Theorem 5.1, hence there exists a unique continuous function
fij : Ω× Sn−1 → [0,Λ] such that

Fij(E,A) =
∫

∂∗E∩A

fij(x, νE) dHn−1 ∀E ∈ P(Ω), ∀A ∈ A(Ω).
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We remark that since fij is unique, necessarily fij(x, ν) = fji(x,−ν). Let f(x, i, j, ν) = fij(x, ν), and let

uij(x) =

 i if u(x) = i;

j if u(x) 6= i.

Let νEi be the inner normal to Ei. By the definition of (u+, u−, νu) and by (2.2) we get

(i, j, νEi) = (u+
ij , u

−
ij , νEi) ∼ (u+, u−, νu) Hn−1-a.e. in ∂∗{u = i} ∩ ∂∗{u = j}.

By Lemma 4.1 we get, recalling (2.6),

2F(u,A) =
∑

i,j∈T, i 6=j

F(u,A ∩ ∂∗{u = i} ∩ ∂∗{u = j}) =
∑

i,j∈T, i 6=j

F(uij , A ∩ ∂∗{u = i} ∩ ∂∗{u = j}) =

=
∑

i,j∈T, i 6=j

∫
A∩∂∗{u=i}∩∂∗{u=j}

f(x, u+, u−, νu) dHn−1(x) = 2
∫

A∩Su

f(x, u+, u−, νu) dHn−1(x)

and the theorem is proved. q.e.d.

Proof of Theorem 5.1. The idea is to use integral representation theorem 4.3, setting

(5.3) F̃(u,A) =
∫ +∞

−∞
F({u < t}, A) dt u ∈W 1,1(Ω), A ∈ A(Ω).

We shall assume for simplicity that Ω is a bounded open set. By the local character of the functionals, this
assumption is not restrictive. Moreover, we shall assume that

λHn−1(A ∩ ∂∗E) ≤ F(u,A)

for some constant λ > 0. The proof in the general case is easily achieved considering the functionals

F(u,A) + δHn−1(A ∩ ∂∗E)

and letting δ ↓ 0. Recalling (2.8), it is easy to check that the functional defined by (5.3) satisfies all the
hypotheses of Theorem 4.3, therefore there exists a continuous function f(x, p) : Ω×Rn → [0,+∞[ which is
positively 1-homogeneous and convex in p, satisfying the conditions

F̃(u,A) =
∫
A

f(x,∇u(x)) dx ∀u ∈W 1,1(Ω), A ∈ A(Ω)

and

(5.4) λ|p| ≤ f(x, p) ≤ Λ|p| ∀x ∈ Ω, p ∈ Rn.

We claim that f is the required integrand in (5.2). The functional∫
A

f(x, νE) dHn−1(x)

satisfies, by Reshetnyak lower semicontinuity theorem ([RE]), the condition (iv) of Lemma 4.1. Hence, by
Lemma 4.2, to prove our statement it will be sufficient to show (5.2) for all pairs (E,A) such that A ∩ ∂∗E
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is is a C1 hypersurface. Let Γ = A ∩ ∂∗E, and let B ⊂⊂ A be an open ball such that B ∩ Γ is the graph of
a C1 function. To fix the ideas, we assume that Hn−1(Γ ∩ ∂B) = 0 and

B ∩ Γ = {x ∈ B : (x1, . . . , xn−1) ∈ U, xn = ϕ(x1, . . . , xn−1)},

B ∩ E = {x ∈ B : (x1, . . . , xn−1) ∈ U, xn < ϕ(x1, . . . , xn−1)}

for some bounded open set U ⊂ Rn−1, for some function ϕ ∈ C1
0 (Rn−1). The functions

u(x) = ϕ(x1, . . . , xn−1)− xn, us(x) =
(
s ∧ u(x)

)
∨ −s, s > 0

belong to W 1,1(Ω) and it can be easily verified that

(5.5) lim
s→0+

1
s

∫
B

f(x,∇us(x)) dx =
∫

B∩Γ

f(x, νE(x)) dHn−1(x) =
∫

B∩∂∗E

f(x, νE(x)) dHn−1(x).

Moreover, the continuity hypothesis (v) and the assumption Hn−1(Γ ∩ ∂B) = 0 yield

(5.6) lim
s→0+

F({u > s}, B) = lim
s→0+

F({u > 0}, B + sen) = F({u > 0}, B) = F(E,B).

Since ∫
B

f(x,∇us(x)) dx = F̃(us, B) =
∫ s

0

F({u > t}, B) dt

the equality

F(E,B) =
∫
B

f(x, νE(x)) dHn−1(x)

follows by (5.5), (5.6). Taking as B sufficiently small open balls, we get

lim inf
ρ→0+

F(E,Bρ(x))
Hn−1(Bρ(x) ∩ ∂∗E)

= lim inf
ρ→0+

∫
Bρ(x)

f(x, νE(x)) dHn−1(x)

Hn−1(Bρ(x) ∩ ∂∗E)
∀x ∈ A

and since F(E, ·) is a measure, (5.2) follows. q.e.d.

Now we prove that the Γ-limit of a sequence of functionals Fh(u,A) with the same control from above is a
measure if all the functionals Fh are measures.
Lemma 5.2: Let Fh : BV (Ω, T ) ×A(Ω) → [0,+∞[ be a sequence of functionals satisfying conditions (i),
(ii), (iii) of Theorem 3.1, and let us define, for u ∈ BV (Ω, T ) and A ∈ A(Ω),

F+(u,A) = Γ(d−A) lim sup
h→+∞

Fh(u,A), F−(u,A) = Γ(d−A) lim inf
h→+∞

Fh(u,A).

as in (3.10), (3.11). We have then

(i) F+(u,A) ≤ F+(u,B), F−(u,A) ≤ F−(u,B) whenever A ⊂ B;

(ii) F−(u,A) + F−(u,B) ≤ F−(u,A ∪B) whenever A ∩B = ∅;

(iii) 0 ≤ F−(u,A) ≤ F+(u,A) ≤ ΛHn−1(A ∩ Su);
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(iv) F+(u,A) = sup
B⊂⊂A

F+(u,B) F−(u,A) = sup
B⊂⊂A

F−(u,B);

(v) F+(u,A ∪B) ≤ F+(u,A) + F+(u,B), F−(u,A ∪B) ≤ F−(u,A) + F+(u,B).

Proof. (i), (ii) are trivial, since all Fh are increasing functionals, and (iii) follows by the upper bound on
Fh, taking the sequence uh = u.
(iv) We first prove that if K ⊂⊂ B ⊂⊂ A, we have

(5.7) F+(u,A) ≤ F+(u,B) + F+(u,A \K), F−(u,A) ≤ F−(u,B) + F+(u,A \K).

Infact, let (uh), (vh) ⊂ BV (Ω, T ) be sequences of functions locally converging in measure to u in B and
A \K respectively, such that

F+(u,B) = lim sup
h→+∞

Fh(uh, B), F+(u,A \K) = lim sup
h→+∞

Fh(uh, A \K).

By joint lemma 4.3, we can find a sequence (wh) ⊂ BV (Ω, T ) locally converging to u in measure in A, such
that

Fh(wh, A) ≤ Fh(uh, B) + Fh(vh, A \K) + cΛ|{x ∈ B \K : uh(x) 6= vh(x)}| ∀h ∈ N.

where c > 0 is a constant depending only on A, B, C. We have then

F+(u,A) ≤ lim sup
h→+∞

Fh(wh, A) ≤ lim sup
h→+∞

Fh(uh, B) + lim sup
h→+∞

Fh(vh, A \K)+

+cΛ lim sup
h→+∞

|{x ∈ A \K : uh(x) 6= vh(x)}| ≤ F+(u,A) + F−(v,B)

that proves the first of (5.7). The second one can be proved similarly. As a consequence of (iii), (5.7), we
have

F+(u,A) ≤ F+(u,B) + ΛHn−1(A \K), F−(u,A) ≤ F−(u,B) +Hn−1(A \K).

As we can take Hn−1(A \K) arbitrarily small and F+(u, ·), F−(u, ·) are increasing set functions, inequality
≤ in (iv) is proved. Since the opposite inequality is trivial, we obtain (iv).
(v) The inequalities are trivial if A and B are disjoint. Let

At = {x ∈ A ∪B : tdist(x,A \B) < (1− t)dist(x,B \A)}

and
Bt = {x ∈ A ∪B : tdist(x,A \B) > (1− t)dist(x,B \A)}

for every t ∈]0, 1[. Since the sets St = (A ∪ B) \ (At ∪ Bt) are disjoint, we can find t ∈]0, 1[ such that
Hn−1(St ∩ Su) = 0. Let ε > 0 and let M ⊂⊂M ′ ⊂⊂ At, N ⊂⊂ N ′ ⊂⊂ Bt such that Hn−1(Su ∩ [(A ∪B) \
(M ∪N)]) < ε. By (iii), (iv) we get

F+(u,A ∪B) ≤ F+(u,M ′ ∪N ′) + F+(u, (A ∪B) \ (M ∪N)) ≤

≤ F+(u,M ′) + F+(u,N ′) + Λε ≤ F+(u,A) + F+(u,B) + Λε.

Since ε is arbitrary, the inequality is proved for F+. The proof for F− is similar. q.e.d.

Proof of Theorem 3.2. Let B be a countable base for A(Ω) , stable under finite union. By the compactness
of Γ-convergence we can find, by a diagonalization procedure, an increasing sequence of integers (hk) such
that (we adopt the notations of previous lemma)

F+(u,A) = F−(u,A)
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whenever u ∈ BV (Ω, T ) and A ∈ B. By (iv) of the lemma,

F+(u,A) = sup
B⊂⊂A

F+(u,B) = sup
B⊂⊂A,B∈B

F+(u,B) = sup
B⊂⊂A,B∈B

F−(u,B) = sup
B⊂⊂A

F−(u,B) = F−(u,A)

so that the Γ-limit exists for every u ∈ BV (Ω, T ), A ∈ A(Ω). Lemma 5.2 yields that F+ = F− satisfies
conditions (i), (ii), (iii) of Theorem 3.1.
Let us assume now that condition (v) of Theorem 3.1 is uniformly satisfied by Fh and

λHn−1(A ∩ Su) ≤ Fh(u,A) ≤ ΛHn−1(A ∩ Su) ∀u ∈ BV (Ω, T ), ∀A ∈ A(Ω)

for some constant λ > 0. Let A ⊂⊂ Ω, ωA as in (v), z ∈ Rn such that |z| < dist(A, ∂Ω)/2, and let
u ∈ BV (Ω, T ), B ∈ A(A). Let (uh) ⊂ BV (Ω, T ) be a sequence locally converging in measure in B to u,
such that

lim sup
h→+∞

Fh(uh, B) ≤ F+(u,B) + ε

and let v ∈ BV (Ω, T ) such that v(x + z) = u(x) in B. It is easy to find a sequence (vh) ⊂ BV (Ω, T ) such
that vh(x+ z) = uh(x) in B, hence

F−(v,B + z) ≤ lim sup
h→+∞

Fh(vh, B + z) ≤ lim inf
h→+∞

Fh(uh, B) + ΛωA(|z|) lim sup
h→+∞

Hn−1(B ∩ Su) ≤

≤ F−(u,B) + ε+ Λ
F+(u,B) + ε

λ
ωA(|z|).

By letting ε ↓ 0 and replacing z by −z, we find that F satisfies condition (v) of Theorem 3.1 with ω′A =
Λ2/λωA, therefore, it admits integral representation. q.e.d.

Proof of Theorem 3.3. Let us define

BV0 = {u ∈ BV (Ω, T ) : |{u = zi}| = Vi for i = 1, . . . ,m}.

If u ∈ BV (Ω, T ) and (uh) is a sequence in BV (Ω, T ) converging to u in almost everywhere, we have

lim
h→+∞

|{uh = zi}| = |{u = zi}|,

so that if u /∈ BV0 we have F̃h(uh)→ +∞ and, by (1.9), F̃(u) = +∞. We need now to prove the inequality

F̃∞(u) ≥ Γ(d−Ω)− lim sup
h→+∞

F̃h(u) ∀u ∈ BV (Ω, T ).

Let us suppose u ∈ BV0; we have to find a sequence (uh) in BV0 converging to u in measure, such that

F∞(u,Ω) = lim
h→+∞

Fh(uh,Ω).

We define Ehi = {uh = zi} for h ∈ N, i = 1, . . . ,m. We shall find the sequence (uh) first under the additional
assumption that there exist m(m− 1)/2 points xij ∈ Ω such that

(5.8) B(xij , 2η) ⊂ Ehi ∀i, j ∈ 1, . . . ,m, i 6= j, ∀h ∈ N,

for a suitable constant η > 0. Let (vh) ⊂ BV (Ω, T ) be a sequence converging to u in measure such that

F∞(u,Ω) = lim
h→+∞

Fh(vh,Ω).
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We first modify the sequence (vh), setting

wh(x) =

 zi if x ∈ B(xij , ηijh);

vh(x) otherwise.

where ηijh ∈ [η, 2η] are chosen in such a way that (apply (2.8) with φ(x) = |x− xij |)

Hn−1

(
∂B(xij , ηijh) ∩ (Svh ∪ Sv)

)
= 0

and

(5.9) ηHn−1({x ∈ ∂B(xij , ηijh) : ṽh(x) 6= ũ(x)}) ≤ |{x ∈ B(xij , 2η) \B(xij , η) : vh(x) 6= u(x)}|

The sequence wh still converges to u almost everywhere, and by (5.9), (2.7) we get

Fh(wh,Ω) ≤ Fh(vh,Ω) + 1/η
m∑

i,j=1, i 6=j

|{x ∈ B(xij , 2η) \B(xij , η) : vh(x) 6= u(x)}|

so that

(5.10) F∞(u,Ω) = lim
h→+∞

Fh(wh,Ω).

By construction, we have

(5.11) B(xij , η) ⊂
⋂
h∈N

{uh = i} ∩ {u = i} ∀i, j ∈ {1, . . . ,m}, i 6= j.

Let us define

ηhi = |Ehi | − Vi, ηh =
m∑
i=1

|ηhi |,

and
Ph = {j : ηhj > 0}, Nh = {i : ηhi ≤ 0},

so that
ηh → 0 and

ηh
2

=
∑
j∈Ph

ηhj = −
∑
i∈Nh

ηhi .

If ηh = 0 let us define uh = wh; if not, let

rhij =
(
−

2nηhi η
h
j

ωn−1ηh

) 1
n

Bhij = B(xij , rhij)

for i ∈ Ph, j ∈ Nh, and

uh(x) =

 zj if x ∈ Bhij , i ∈ Ph, j ∈ Nh;

wh(x) otherwise.

Since for h large enough all rhij are less than η, we have

|{uh = i}| = |Ehi | −
∑
j∈Nh

|Bhij | = |Ehi | −
∑
j∈Nh

−2ηhi η
h
j

ηh
= |Ehi | − ηh = Vi.
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Similarly, if i ∈ Nh we have for h large enough

|{uh = i}| = |Ehi |+
∑
j∈Ph

|Bhij | = |Ehi |+
∑
j∈Ph

−2ηhi η
h
j

ηh
= |Ehi | − ηhi = Vi,

so that uh ∈ BV0; moreover uh → u almost everywhere and

|Fh(uh,Ω)−Fh(wh,Ω)| ≤
∑

i∈Ph, j∈Nh

ΛHn−1(∂Bhij) ≤

≤ Λ
∑

i∈Ph, j∈Nh

ωn−1

(
2nηhi η

h
j

ωn−1ηh

)n−1
n

≤ Λω

1
n
n−1m

2
(nηh

2
)n−1

n

and (5.10) yileds that (uh) is the required sequence.
Now we show that assumption (5.8) is not restrictive. Let x ∈ Su be a point of density 1/2 for two level sets
of u ; in particular, there exists δ > 0 such that

|Bρ(x) ∩ {u = i}| < |Bρ(x)| ∀ρ < δ, ∀i ∈ {1, . . . ,m}.

Let C1, . . . , Cm be a partition of Bρ(x) in m mutually disjoint sets of finite perimeter with nonempty interior
such that

|Ci| = |{u = i} \Bρ(x)| > 0

and
Hn−1(∂∗Ci) ≤ 2ωn−1ρ

n−1

for every index i (one can take for instance concentric spherical regions ). The function uρ whose level sets
are

{u = i} \Bρ(x) ∪ Ci

belongs, by construction to BV0 and satisfies condition (5.8), so that

Γ(d−Ω) lim sup
ρ→0+

F̃h(uρ) ≤ F̃∞(uρ)

for every ρ < δ. On the other hand,

lim sup
ρ→0+

F̃∞(uρ) ≤ lim sup
ρ→0+

F∞(uρ,Ω \Bρ(x)) + lim sup
ρ→0+

F∞(uρ, Bρ(x)) ≤

≤ F∞(u,Ω) + lim sup
ρ→0+

Λ(2m+ 1)ωn−1ρ
n−1 = F̃∞(u).

Since the Γ-limits are lower semicontinuous, we get

Γ(d−Ω) lim sup
ρ→0+

F̃h(u) ≤ Γ(d−Ω) lim sup
ρ→0+

F̃h(uρ) ≤ lim sup
ρ→0+

F̃∞(uρ) ≤ F̃∞(u)

and our statement is proved also in the general case. q.e.d.
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admit a representation with a Carathéodory integrand. J. Math. Pures Appl., 64, 337- 361, 1985.

[DG1] E. De Giorgi: Su una teoria generale della misura (r-1)-dimensionale in uno spazio a r dimensioni.
Ann. Mat. Pura Appl. 36, 191-213, 1954.

[DG2] E. De Giorgi: Nuovi teoremi relativi alle misure (r-1)-dimensionali in uno spazio a r dimensioni.
Ricerche Mat. 4, 95-113, 1955.

[DG3] E. De Giorgi: Generalized limits in Calculus of Variations. Topics in Functional Analysis 1980-81,
Quaderno Scuola Normale Superiore, 117-148, 1981.

[DCP] E. De Giorgi & F. Colombini & L.C. Piccinini: Frontiere orientate di misura minima e questioni
collegate. Quaderno della Classe di Scienze della Scuola Normale Superiore di Pisa, 1972.

[DF1] E. De Giorgi & T. Franzoni: Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia,
8 58, 842-850, 1975.

[DF2] E. De Giorgi & T. Franzoni: Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia,
3, 63-101, 1979.

[DL] E. De Giorgi & G. Letta: Une notion générale de convergence faible pour des fonctions croissantes
d’ensemble. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 4, 61-99, 1977.

[DMO] G. Dal Maso & L. Modica: A general theory of variational functionals. Topics in Functional
Analysis 1980-81, Quaderno della Classe di Scienze della Scuola Normale Superiore di Pisa, 1981.

[FE1] H. Federer: Geometric Measure Theory. Springer Verlag, Berlin , 1969.
[FE2] H. Federer: A note on Gauss-Green theorem. Proc. Amer. Mat. Soc., 9, 447-451, 1958.

[GI] E. Giusti: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston, 1984.
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