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Abstract. We prove sharp regularity results for the convex envelope of a continuous function
inside a convex domain.

1. Introduction

Given an open set Ω ⊂ R
n and a continuous function v : Ω → R, we define its convex envelope

in Ω as

(1.1) Γv(x) := sup{ℓ(x) : ℓ ≤ v in Ω, ℓ affine}.

It is immediate to see that Γv : Ω → R is the largest convex function below v in Ω.
The issue of the regularity of the convex envelope (or inf-sup convolution) appears in sev-

eral problem from analysis and geometry. To mention some: the Alexandrov-Bakelman-Pucci
estimate for fully non-linear equations [9, 4], the Monge-Ampère equation [3, 7], the study of
geometric flows [12, 6], the Hamilton-Jacobi equation [2, 8], etc. Moreover, as observed in [13],
the convex envelope can also be seen as a solution of a nonlinear obstacle problem.

Since convex functions are locally Lipschitz, one wants to understand under which assump-
tions the convex envelope is of class C1 or better. Several results have been established in this
direction [5, 10, 11, 14], but they all deal either with the Dirichlet problem (i.e., Γv is the convex
envelope of v|∂Ω), or they make some suitable global assumptions on v in order to “avoid” the
influence of the boundary (see for instance Theorem 4.1 below). Our goal here is to investigate
the regularity of Γv in full generality.

Before stating our results, we recall the following definition:

Definition 1.1. Given α ∈ (0, 1], a continuous function v is said to be (1 + α)-semiconcave in
Ω if for every x0 ∈ Ω there exists a slope px0

∈ R
n such that

(1.2) v(x) ≤ v(x0) + px0
· (x− x0) + C|x− x0|

1+α for every x ∈ Ω ∩ B(x0, ̺0).

for some constants C and ̺0 independent of x0.

The following two theorems relate the regularity of Γv to the one of v and Ω.

Theorem 1.2. Let α, β ∈ (0, 1], Ω be a bounded convex domain of class C1,β, and v : Ω → R

be a globally Lipschitz function which is (1 + α)-semiconcave in Ω. Then Γv ∈ C
1,min {α,β}
loc (Ω).

Theorem 1.3. Let Ω be a bounded uniformly convex domain of class C3,1, and let v ∈ C3,1(Ω).
Then Γv ∈ C1,1(Ω).
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Figure 2.1. If Ω is a C∞ domain as above, then the function |x| is of class C∞

on ∂Ω. This situation illustrates that convexity of Ω is necessary for regularity.

As we will show in next section, all assumptions made in the above theorems are sharp.
The paper is structured as follows: in Section 2 we provide some examples showing that

our results are optimal. Then in Section 3 we recall some preliminaries about convex sets and
functions, and we prove some criteria to show that a function is C1,α. Sections 4 and 5 are
devoted to the proof of Theorem 1.2 and Theorem 1.3, respectively. Moreover, at the end of
Section 4 we also discuss some extension/variant of Theorem 1.2.

Acknowledgments: The authors thank Maria Colombo and Berardo Ruffini for a careful
reading of a preliminary version of this paper and for several useful comments. AF has been
partially supported by NSF Grant DMS-0969962. Both authors acknowledge the support of
the ERC ADG Grant GeMeThNES.

2. Counterexamples

We present here some counterexamples showing the sharpness of our assumptions in Theo-
rems 1.2 and 1.3. The construction of the counterexamples are mainly based on the following
observation: If v : Ω → R is harmonic in Ω, then (by the maximum principle)

(2.1) Γv = sup{ℓ : ℓ ≤ v in ∂Ω, ℓ affine}.

All counterexamples are done in R
2, and to simplify the notation, only for this section we will

use (x, y) to denote the coordinates of a point in R
2 (starting from next section, x and y will

be used to denote generic points in R
n).

The set Ω has to be convex. Let Ω be a C∞ domain as in Figure 2.1, with a flat part along
the y axis. Then the function |x| is of class C∞ when restricted to ∂Ω. (Indeed, if x = f(y)
locally parameterizes ∂Ω near the axis {x = 0}, then y 7→ |x| = |f(y)| ∈ C∞.) So, by elliptic
regularity, its harmonic extension v inside Ω belongs to C∞(Ω). However, because of (2.1), it
is easy to check that Γv(x, y) = |x|, so Γv is not even C1.
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The best regularity one can expect is C1,1. Take Ω = [−2, 2] ⊂ R and v = (x2 − 1)2.
Then Γv(x) = [(x2 − 1)+]

2 is C1,2 but not C2 inside Ω.

In Theorem 1.2 the function v needs to be (1+α)-semiconcave up to the boundary.

Take Ω = B(0, 1) and v(x, y) the harmonic extension of the boundary data v(cos θ, sin θ) =
| cos θ|. Then by elliptic regularity v is of class C∞ inside Ω, but Γv(x, y) = |x| is not C1.

In Theorem 1.2 the boundary regularity of the domain does matter. Take Ω =
{(x, y) : |x|p + |y|p ≤ 1} for some p ∈ (1, 2), and v(x, y) = 1 − y2. Then v coincides on the
boundary of Ω with u(x, y) = f(x) = 1 − (1 − |x|p)2/p. Hence, for ε > 0 small, the convex
function

uε(x, y) =











f(−ε) + f ′(−ε)(x+ ε) if x ≤ −ε

f(x) if |x| ≤ ε

f(ε) + f ′(ε)(x− ε) if x ≥ ε

is below v in Ω, and thus Γv ≥ uε. Since Γv(0, y) = 0 and f ≃ |x|p near 0, this implies that
the best regularity we can expect for Γv is C1,p−1. (An easy modification of this example gives
that in case ∂Ω is not of class C1, then the convex envelope may not be C1.)

In Theorem 1.2 v has to be globally Lipschitz. Take Ω = B(0, 1), and consider the

concave function v(x, y) =
√

1− |y|2. Then v is (1+α)-semiconcave for every α > 0. However,
since v is concave and v = |x| on ∂Ω, we get that Γv(x, y) = |x| 6∈ C1(Ω).

In Theorem 1.3 C3,1 regularity of v is necessary. Take Ω = B(0, 1) and v(x, y) the
harmonic extension of the C3,1−2ε boundary data v(cos θ, sin θ) = (1 + cos θ)2−ε. Then by
elliptic regularity v is of class C3,1−2ε up to the boundary, but Γv(x, y) = (1 + x)2−ε 6∈ C1,1(Ω).

In Theorem 1.3 uniformly convexity of Ω is necessary. Take Ω = {(x, y) : |x|4 + |y|4 ≤
1}, and v the harmonic extension of the C7,1−4ε boundary data v(x, y) = (1 + x)2−ε. Then by
elliptic regularity v is of class C7,1−4ε up to the boundary, but Γv(x, y) = (1 + x)2−ε 6∈ C1,1(Ω).

In Theorem 1.3 C3,1 regularity of ∂Ω is necessary. Let Ω be a convex with 0 ∈ ∂Ω.
We assume that ∂Ω \ {0} is of class C∞, that Ω ⊂ {y ≥ x2 + x4−2ε}, and that close to 0 the
boundary of Ω is represented by the graph of y = x2 + x4−2ε. Then, near the origin we can
write

∂Ω = {(x, y) : y ≥ 0 − x(y) ≤ x ≤ x(y)}

where x(y) is the inverse of x2 + x4−2ε for x ≥ 0. Consider now v(x, y) = y − x2. Then

v(±x(y), y) = y − x(y)2 = x(y)4−2ε =
[

x(y)2
]2−ε

=
[

y − x(y)4−2ε
]2−ε

= y2−ε(1 + o(1)).
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Hence, since v > 0 on Ω \ {0}, it is easy to see that

y2−ε

M
≤ v(x, y) ≤ My2−ε on ∂Ω

for some constant M sufficiently large. Moreover, since the function x 7→ v(x, y) is concave,
Γv ≥ y2−ε/M inside Ω. We claim that ∂yΓv(0, 0) = 0. In fact, if this were not the case, for
y > 0 small we would have

Γv(0, y) ≥ cy > My2−ε ≥ Γv(±x(y), y),

which is absurd since Γv is convex. It is thus clear that Γv cannot have second derivatives
bounded up to the origin, as otherwise we would get

y2−ε

M
≤ Γv(0, y) ≤ Cy2,

which is clearly false for y small.

3. Notation and preliminaries

From now on, Ω will denote a bounded open convex set. Given k ∈ N and α ∈ [0, 1], we say
that Ω has boundary of class Ck,α if there exists a radius ̺ such that for every point x ∈ ∂Ω,
up to a rotation of coordinates, it holds

Ω ∩B(x, ̺) = {(x′, t) ∈ R
n−1 × R : t ≥ ϕ(x′)} ∩ B(x, ̺)

for some convex function ϕ : Rn−1 → R of class Ck,α. Notice that every convex set has boundary
at least of class C0,1.

When Ω has boundary of class at least C1, we will denote by νx its outer normal at a point
x ∈ ∂Ω. Moreover, we say that a C1 convex set is uniformly convex if there exists R > 0 such
that

Ω ⊂ B(x0 − Rνx0
, R) ∀ x0 ∈ ∂Ω.

Given a set C we will denote by conv(C) its closed convex hull. In case C = {x1, . . . , xk} is a
finite set of points, we will simply write conv(x1, . . . , xk). The segment between two points x1
and x2 will be indicated by [x1, x2].

Given a continuous function v : Ω → R, we say that a “slope” sx0
∈ R

n is supporting v at
x0 ∈ Ω if

(3.1) v(x) ≥ v(x0) + sx0
· (x− x0) for every x ∈ Ω.

In case sx0
supports v at x0, we will write x0 ∈ Dom(∂v) and sx0

∈ ∂v(x0). Notice that the
function v(x)−v(x0)+sx0

· (x−x0) has a minimum at x0. We also recall that a convex function
can be characterized by Dom(∂v) = Ω.

Given a (1 + α)-semiconcave function (see Definition 1.1), we observe that, for any x0 ∈ Ω,
the set of slopes px0

which satisfy (1.2) is a convex subset of Rn. This allows us to choose
an “optimal slope” p̄x0

as the element of minimal norm inside such set. The reason for this
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choice is the following observation, whose elementary proof is left to the reader: if v is Lipschitz
continuous, then

(3.2) sup
x0∈Ω

|p̄x0
| ≤ Lip v.

It is easy to see that if x0 ∈ Ω∩Dom(∂v) and v is (1 +α) semiconcave, then v is differentiable
at x0 with

∇v(x0) = px0
= sx0

.

In case x0 ∈ ∂Ω and ∂Ω is at least of class C1, we have

(3.3) px0
= sx0

− λνx0

where νx0
is the outer normal at x0 and λ ≥ 0.

Finally, given a closed set K ⊂ R
n, we say that a function v : K → R is Ck,α(K) if there

exists a Ck,α extension of v in a neighborhood of K.

We now give two criteria to show C1,α regularity. The following lemmas are pretty standard
(see for instance [5, Section 1]), but for sake of completeness we provide the proofs.

Lemma 3.1. Let Ω be a convex open set, C and ¯̺ be positive constants, and α ∈ (0, 1]. Let
u : Ω → R be a globally Lipschitz convex function such that for every x ∈ Ω there exists a
supporting slope sx satisfying

(3.4) u(y)− u(x)− sx · (y − x) ≤ C|y − x|1+α for all y ∈ Ω ∩B(x, ¯̺).

Then u ∈ C1,α(Ω).

Proof. First of all notice that, by convexity and (3.4), u is differentiable at every point in Ω
with ∇u(x) = sx, and

(3.5) |u(y)− u(x)−∇u(x) · (y − x)| ≤ C|y − x|1+α for all y ∈ Ω ∩ B(x, ¯̺).

We now show that there exists a constant M > 0 such that

(3.6) |∇u(x)−∇u(y)| ≤M |x− y|α for all x , y ∈ Ω.

Since in the above estimate M is independent of x and y, this implies that u extends to a C1,α

function up to the boundary.
Because by assumption u is Lipschitz, it is enough to show (3.6) for |x−y| small. Now recall

that since Ω is convex, ∂Ω is Lipschitz. Hence there exist ̺0 ∈ (0, ¯̺/2) and η > 0 such that,
for any x ∈ Ω, for any vector e, and for any ̺ ≤ ̺0, there is a point z ∈ B(x, ̺0)∩Ω satisfying

|e · (z − x)| ≥ η|z − x||e| and |z − x| = ̺.

Up to subtracting a linear function, without loss of generality we can assume that ∇u(x) = 0.
We want to show that

(3.7) |∇u(y)| ≤M |y − x|α for all y ∈ B(x, ̺0)

for some constant M > 0 independent of x. Fix a point z ∈ B(y, ̺0) ∩ Ω such that

|∇u(y) · (z − y)| ≥ η|z − y||∇u(y)| and |z − y| = |y − x|.
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Thanks to (3.5) we have

η|z − y||∇u(y)| ≤ |∇u(y) · (z − y)|

≤ |u(z)− u(y)−∇u(y) · (z − y)|

+ |u(z)− u(x)|+ |u(y)− u(x)|

≤ C
(

|z − y|1+α + |z − x|1+α + |y − x|1+α
)

.

Since |z − y| = |y − x|, this gives (3.7) with M = (2 + 21+α)C. �

In case one wants to prove C1,1 regularity, the above Lemma can be refined as follows (see
[5, Section 1]).

Lemma 3.2. Let Ω be a convex open set, C > 0, and u : Ω → R be a globally Lipschitz convex
function such that for every x ∈ Ω there exist a supporting slope sx and a radius ̺(x) satisfying

(3.8) u(y)− u(x)− sx · (y − x) ≤ C|y − x|2 for all y ∈ Ω ∩ B(x, ̺(x)).

Then u ∈ C1,1(Ω).

Notice that in (3.8) the radius ̺(x) can depend on the point x, while in (3.4) the radius has
to be uniform. It is indeed easy to see that the uniform assumption in (3.4) is necessary.

Proof. Thanks to Lemma 3.1, it suffices to show that (3.8) implies that

(3.9) u(y)− u(x)−∇u(x) · (y − x) ≤ 2C|y − x|2 for all x, y ∈ Ω.

In fact suppose there exists a point ȳ where (3.9) fails, and along the segment [x, ȳ] let us
consider the following function:

f(t) = 2C|ȳ − x|2t2 − u
(

x+ t(ȳ − x)
)

+ u(x) + t∇u(x) · (ȳ − x).

Since f(t) > 0 for t > 0 small, f(1) < 0, and f(0) = 0, there exists a maximum point t̄ ∈ (0, 1).
Thus for any h > 0 small we have

0 ≥ f(t̄+ h) + f(t̄− h)− 2f(t̄)

= 2C|ȳ − x|2
(

(t̄+ h)2 + (t̄− h)2 − 2t̄2
)

−
{

u
(

x+ (t̄+ h)(ȳ − x)
)

+ u
(

x+ (t̄− h)(ȳ − x)
)

− 2u
(

x+ t̄(ȳ − x)
)

}

.

Since for h small the term in curly brackets is bounded by 2C|x− y|2h2 (by (3.8)), we obtain

h2 ≥ (t̄ + h)2 + (t̄− h)2 − 2t̄2 = 2h2,

a contradiction. �

We close this section with the following well known lemma. To make the presentation self-
contained we provide its simple proof.

Lemma 3.3. Let v ∈ C(Ω), and fix x ∈ Ω \ {v = Γv}. Then there exist at most n + 1 points
x1, . . . , xn+1 in Ω ∩ {v = Γv} such that

x ∈ conv(x1, . . . , xn+1).

Moreover every supporting slope to Γv at x is a supporting slope for v at xi.
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Proof. Let sx be a supporting slope to Γv at x and define

C = {y ∈ Ω : v(y) = Γv(x) + sx(y − x)}.

We claim that x ∈ conv(C). Suppose it is not true, then there exists an affine function ℓ which
strongly separates C and x: more precisely ℓ(x) > 0 and ℓ(y) < 0 for every y in C. It is now
easy to see that, for some small δ > 0, the function

ℓ̃(y) = Γv(x) + sx(y − x) + δℓ(y)

is below v in Ω but ℓ̃(x) > Γv(x), against the definition of Γv. The existence of at most
(n+1)−points follows from Caratheodory Theorem [15, Theorem 17.1]. Finally it is immediate
to check that sx is supporting v at xi. �

4. Proof of Theorem 1.2

Proof. Fix δ0 > 0. We want to show that Γv is of class C
1,min{α,β} inside {x ∈ Ω : dist(x0, ∂Ω) ≥

δ0}.
Pick x0 ∈ Ω with dist(x0, ∂Ω) ≥ δ0, and let sx0

be a supporting slope to Γv at x0. Up to
subtracting an affine function we can assume that

(4.1) |sx0
| = Γv(x0) = 0.

Then by Lemma 3.1 it suffices to prove that there exist positive constants M and ̺1, depending
only on δ0, such that

Γv(x0 + h) ≤M |h|1+min {α,β} for all |h| ≤ ̺1.

In the case x0 ∈ {v = Γv} we have 0 = sx0
= ∇v(x0), so by the (1 + α)-semiconcavity

Γv(x0 + h) ≤ v(x0) + C|h|1+α = C|h|1+α

for |h| ≤ ̺0 and we are done.
Suppose now x0 ∈ Ω \ {v = Γv}. By Lemma 3.3 there exist n + 1 points xi ∈ {v = Γv} ∩ Ω

such that

x0 =
n+1
∑

j=1

λjxj , λj ≥ 0,
n+1
∑

j=1

λj = 1,

and 0 is a supporting slope at xi. Take now δ1 ∈ (0, δ0/4) small (to be fixed later), and let us
divide the set of indexes in two parts: {1, . . . , n+ 1} = Jg ∪ Jb with

(4.2) Jg = {j : λj ≥ δ1}, Jb = {1, . . . , n+ 1} \ Jg.

Notice that, since
∑

j λj = 1, the set Jg of “good” indexes is non-empty provided we choose

δ1 ≤ 1/(n+ 1). We now distinguish two cases.

• Case 1: There exists j̄ ∈ Jg such that dist(xj̄, ∂Ω) ≥ δ0/4. Up to reordering, we can assume
j̄ = 1. In this case, thanks to (4.1) we have that

Γv(x1 + h) ≤ v(x1 + h) ≤ C|h|1+α ∀ |h| ≤ ¯̺ := min{̺0, δ0/4}.
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x0 Σ~
x0

xj    Jb

Ω

Figure 4.1. The projection of x0 onto the simplex Σ generated by {xj}j∈Jg .

Thus, using the convexity of Γv, for |h| ≤ δ1 ¯̺ we get

Γv(x0 + h) = Γv

(

λ1
(

x1 +
h

λ1

)

+
n+1
∑

j=2

λjxj

)

≤ λ1Γv

(

x1 +
h

λ1

)

≤
C

λα1
|h|1+α ≤

C

δα1
|h|1+α,

where we have used that λ1 ≥ δ1, and that Γv(xi) = 0 for i = 1, . . . , n+ 1.

• Case 2: d(xj , ∂Ω) ≤ δ0/4 for all j ∈ Jg. Let us define

x̃0 =
1

∑

j∈Jg
λj

∑

j∈Jg

λjxj

the “projection” of x0 onto the simplex Σ generated by the {xj}j∈Jg (see Figure 4.1).
Clearly x̃0 belongs to Ω. Moreover, since for any y ∈ Ω

x̃0 − x0 =
1

∑

j∈Jg
λj

∑

j∈Jg

λjxj −
∑

j∈Jg

λjxj −
∑

j∈Jb

λjxj

=
1

∑

j∈Jg
λj

∑

j∈Jg

λj(xj − y)−
∑

j∈Jg

λj(xj − y)−
∑

j∈Jb

λj(xj − y)

=

(

1
∑

j∈Jg
λj

− 1

)

∑

j∈Jg

λj(xj − y)−
∑

j∈Jb

λj(xj − y),

we have

|x0 − x̃0| ≤

∑

j∈Jb
λj

∑

j∈Jg
λj

∑

j∈Jg

λjdiam(Ω) +
∑

j∈Jb

λjdiam(Ω)

= 2diam(Ω)
∑

j∈Jb

λj ≤ 2(n+ 1)diam(Ω)δ1 ≤
δ0
4
,

provided δ1 is small enough. Recalling that dist(x0, ∂Ω) ≥ δ0, this implies in particular
dist(x̃0, ∂Ω) ≥ 3δ0/4.
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x0 ~

x0+ h ~

 

y

x 
_ x1 

r

s

Figure 4.2. To estimate the value of Γv at x̃0 + h, we use the value of v at y
together with the convexity of Γv.

The strategy is now the following: we first show that

(4.3) Γv(x̃0 + h) ≤M |h|1+min {α,β} ∀ |h| ≤ ̺1,

for some constants M and ¯̺1 depending only on δ0, and then we “propagate” this estimate to
x0.

To prove (4.3), we need to distinguish between two further cases.

• Case 2-a: There exists j̄ ∈ Jg such that xj̄ ∈ Ω. Up to reordering, we can assume j̄ = 1.
Hence x1 ∈ Ω, which implies in particular that∇v(x1) = 0. Consider x̄, the point of intersection
of the boundary of Σ with the line through x̃0 and x1 (see Figure 4.2). More precisely, defining

µj =
λj

∑

j∈Jg
λj

∀ j ∈ Jg,

we have

x̄ =
1

1− µ1

∑

j∈Jg\{1}

µjxj

so that x̃0 = (1− µ1)x̄+ µ1x1. Notice that

(4.4) µ1 =
λ1

∑

j∈Jg
λj

≥
δ1

1− (n + 1)δ1
,

and Γv(x̄) = 0.
Now choose |h| ≤ ¯̺, where ¯̺ is small enough (to be fixed later). If h is parallel to the segment

[x̄, x1] we trivially have

Γv(x̃0 + h) = 0 provided ¯̺< min{|x̄− x̃0|, |x1 − x̃0|}.

Notice that min{|x̄ − x̃0|, |x1 − x̃0|} is bounded from below by a constant depending only on
δ0, since so are |x1 − x̃0| and µ1.

In case h is orthogonal to the segment [x̄, x1], let us draw the half-line r from x̄ through
x̃0 + h. Let us also consider the line s through x1 parallel to h. Two things can happen: r
meets s inside Ω or not.
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x0
~ x

1
 x 

_

z 

σ

δ0/2

Ω6

x0+h ~

Figure 4.3. Since the angle σ is uniformly bounded away from 0, |z−x1| ≤ K ′|h|
for some constant K ′ > 0 depending only on δ0 and diam(Ω), and we conclude
as in the previous case.

In the first case call y the point of intersection (see Figure 4.2). By similarity and (4.4)

(4.5) |x1 − y| ≤ K|h|, where K =
|x̄− x1|

|x̄− x̃0|
=

1

µ1
≤

2

δ1
,

and

x̃0 + h = µ1y + (1− µ1)x̄.

Hence

Γv(x̃0 + h) = Γv

(

µ1y + (1− µ1)x̄
)

≤ µ1Γv(x1 + (y − x1)) ≤ v(x1 + (y − x1)) ≤M |h|1+α,

where we have used that Γv(x̄) = 0.
In the second case let z be the intersection between r and ∂Ω (see Figure 4.3). The angle

σ between [x1, z] and [x̄, x1] is bounded from above by π/2 and from below by an universal
constant. In fact, by convexity of Ω, the convex envelope of {x1} ∪B(x̃0, δ0/2) is contained in
Ω, thus

σ ≥ arctan
( δ0
2diam(Ω)

)

.

Hence |x1 − z| ≤ K ′|h| for some universal constant K ′ > 0. Since x̃0 + h = γy + (1 − γ)x̄ for
some γ ∈ (0, 1), exactly as above we get

Γv(x̃0 + h) ≤M |h|1+α.

This prove an estimate from above on Γv(x̃0 + h) whenever |h| ≤ ¯̺ is either orthogonal or
parallel to [x̄, x1]. Finally, for any |h| ≤ ¯̺/2 write it as h = hp + ho = 2hp+2ho

2
, with hp

perpendicular to [x1, x2] and h
o parallel to [x̄, x1]. Then, by convexity of Γv we obtain

Γv(x̃0 + h) ≤
1

2

(

Γv(x̃0 + 2hp) + Γv(x̃0 + 2hp)
)

≤ 2M
(

|hp|1+α + |ho|1+α
)

≤ 4M |h|1+α.
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Figure 4.4. When x1 ∈ ∂Ω, it is crucial to exploit also the regularity of ∂Ω.

• Case 2-b: xj ∈ ∂Ω for all j ∈ Jg. Pick any of these points, say (up to reordering) x1, and
construct the point x̄ as in Case 2-a. We want again to estimate Γv(x̃0+h) for h orthogonal to
[x̄, x1] and small enough. As before we draw the half-line between from x̄ through x̃0 + h. This
half-line will intersect the boundary of Ω in a point z, and the tangent plane Tx1

∂Ω in a point
w (see Figure 4.4). Arguing as above we deduce that the angle between Tx1

∂Ω and the segment
through [x̄, x1] is at least σ0, where σ0 > 0 depends only on δ0 and diam(Ω) (see Figure 4.3),
so |z− x1|, |w− x1| ≤ K|h| for some universal constant K. In this case we cannot however say
that ∇v(x1) = 0 (as we did in Case 2-a), and thus the above calculations give only

Γv(x̃0 + h) ≤ p̄x1
· (z − x1) +M |h|1+α.

However, since v is Lipschitz and sx1
= 0 (recall (4.1)) we have

p̄x1
= −λνx1

,

where νx1
is the outer normal to Ω at x1, and 0 ≤ λ ≤ Lip v (see (3.2) and (3.3)). We will thus

prove (4.3) if we can show that

|νx1
· (z − x1)| ≤ C|h|1+β.

This follows from the C1,β regularity of ∂Ω. In fact, denoting with π(z) the orthogonal projec-
tion of z on Tx1

∂Ω, we have

|νx1
· (z − x1)| ≤ C|π(z)− x1|

1+β ≤ C|w − x1|
1+β ≤ CK1+β|h|1+β.

This finally concludes the proof of (4.3).

We want now to prove (4.3) with x̃0 replaced by x0. To this aim, let us define

x̂0 =
1

∑

j∈Jb
λj

∑

j∈Jb

λjxj

so that

x0 = (1− µ)x̂0 + µx̃0, where µ =
∑

j∈Jg

λj ≥ δ1.

Then, by convexity of Γv and the fact that Γv(x̂0) = 0, we infer that

Γv(x0 + h) ≤ µΓv

(

x̃0 +
h

µ

)

≤
M

δ1
|h|1+min{α,β} ∀ |h| ≤ δ1 ¯̺1,

concluding the proof. �
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The above theorem can be extended to general moduli of continuity. More precisely, its very
same proof shows that if v is ω1-semiconcave (i.e. (1.2) holds with C|x−x0|ω1(|x−x0|) in place of
C|x−x0|

1+α) and ∂Ω is C1 with a modulus of continuity ω2, then for any Ω′ ⊂⊂ Ω there exists
M = M(Ω′,Ω) > 0 such that ∇u has modulus of continuity t 7→ M max

{

ω1(Mt), ω2(Mt)
}

inside Ω′.
Furthermore, it is clear from the proof above (and from the counterexamples in Section 2)

that the main difficulty when proving the regularity of Γv arises when the points {xj}j∈Jg (see
(4.2)) are close to the boundary (that is, Case 2 in the proof of Theorem 1.2). However, if
for some special reason one is able to exclude that case, then the assumptions of Theorem 1.2
can be weakened, and in particular one does not need to assume any regularity on ∂Ω. For
example, one can prove the following classical result:

Theorem 4.1. Let Ω be a convex bounded domain, and v : Ω → R be a continuous, locally
(1 + α)-semiconcave function. Assume that v = 0 on ∂Ω, and that infΩ v < 0. Then Γv ∈
C1,α

loc (Ω)

Proof. Let us Km define the increasing family of compact convex sets

Km = conv
(

{x ∈ Ω : v(x) ≤ −1/m}
)

, m ∈ N.

We observe that Km is compactly supported inside Ω, and that ∪m∈NKm = Ω.
Fix m ∈ N, and assume that x0 ∈ Km \ {Γv = v}. Using the same notation as in the proof

of Theorem 1.2, we claim the following:
There exists δ1 > 0 small, depending on n, m, and infΩ v only, such that xj ∈ K2m for at

least one j ∈ Jg (see (4.2)).
Once this claim is proved, the C1,α regularity of Γv inside Km is obtained as in Case 1 in the

proof of Theorem 1.2.
To prove the claim, we first observe that, by convexity of Γv, we have

(4.6) Γv ≤ −
1

m
inside Km,

which implies in particular

(4.7) v ≤ −
1

m
inside Km ∩ {Γv = v}.

Let now sx0
be a supporting slope at x0. We first claim that there exists at least one j ∈

{1, . . . , n+ 1} such that xj ∈ K2m. In fact, if this were not the case, since sx0
is supporting at

xi and
∑

j λj = 1, by (4.6) we get

−
1

m
≥ Γv(x0) =

n+1
∑

j=1

λj
(

Γv(xj) + sx0
· (x0 − xj)

)

=

n+1
∑

j=1

λjv(xj) ≥ −
1

2m
,
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a contradiction. Let now suppose (again by contradiction) that for all j’s such that xj ∈ K2m,
the corresponding λj satisfies λj ≤ δ1. Then, by (4.7) and the same calculation as above,

−
1

m
≥

n+1
∑

j=1

λjv(xj) =
∑

xj∈K2m

λjv(xj) +
∑

xj 6∈K2m

λjv(xj)

≥ −(n + 1)δ1 sup
Ω

(−v)−
1

2m
,

which is impossible for δ1 sufficiently small. This proves the claim and concludes the proof. �

5. Proof of Theorem 1.3

Proof. Thanks to Lemma 3.2 (notice that in this case the convex envelope is globally Lipschitz
in Ω) and arguing as in Case 1 of the proof of Theorem 1.2, it is enough to show that for every
x0 in Ω \ {v = Γv} there exists a radius ̺(x0) such that

(5.1) Γv(x) ≤ Γv(x0) + sx0
(x− x0) + C|x− x0|

2 ∀ x ∈ B(x0, ̺(x0)) ∩ Ω

for some universal constant C independent of x0. Without loss of generality we can assume

(5.2) Γv(x0) = |sx0
| = 0.

Then, using Lemma 3.3 we write x0 as a convex combination of k points in {v = Γv}, with
k ≤ n+ 1.

We first show that we can reduce ourself to the case k = 2. Indeed, suppose that (5.1)
holds with a constant Ck for every point x0 which is convex combination of at most k points
in {v = Γv}. We want to show it holds for all points which are convex combination of k + 1
points with constant Ck+1 = (k + 1)Ck. To do this, assume that

x0 ∈ conv(x1, . . . , xk+1)

and write it as
x0 = (1− λ)x1 + λx̃0

where λ ≥ 1/(k + 1) and
x̃0 ∈ conv(x1, . . . , xk).

(Notice that, up to a relabeling, this is always possible). Since k ≥ 2, by uniform convexity of Ω
both x0 and x̃0 are interior points. Hence there exists a radius ̺(x0) such that λ̺(x0) ≤ ̺(x̃0),
and both balls B(x0, ̺(x0)) and B(x̃0, ̺(x̃0)) are contained in Ω. Recalling (5.2) we see that 0
supports Γv both at x1 and x̃0. Thus Γv(x1) = Γv(x̃0) = 0 and we get

Γv(x0 + (x− x0)) ≤ λΓv

(

x̃0 +
(x− x0)

λ

)

≤ (k + 1)Ck|x− x0|
2 for x ∈ B(x0, r(x0)).

This proves the validity of (5.1) when x0 is the convex combination of at most k + 1 points.
We are thus left to show (5.1) when x0 is the convex combination of only two contact points:

x0 = (1− λ)x1 + λx2.

By symmetry we can assume that λ ≥ 1/2. In case x2 is an interior point we can argue as
above (with x2 in place of x̃0) to obtain (5.1), so we can assume that x2 ∈ ∂Ω. Up to a change



14 G. DE PHILIPPIS AND A. FIGALLI

r

y~ x2

x1
en

x0

x

δ

Ω6

θ

graph (ψ)

y = (y , ψ(y ))

Figure 5.1. To estimate the value of Γv at x, we need to show that the function
v restricted to the graph of ψ has second derivatives bounded by Cθ2 at the point
x2.

of coordinates we assume that the inner normal to ∂Ω at x2 is given by en (see Figure 5.1).
Let θ denote the angle between the segment [x1, x2] and the tangent plane to ∂Ω at x2. By the
uniform convexity of Ω we have that

(5.3) |x1 − x2| ≤ 2Rθ,

where R > 0 is such that Ω ⊂ B(Ren, R). Indeed if we draw the half-line from x2 to x1, this
meets the boundary of B(Ren, R) in a point x3 which satisfies |x3 − x2| = 2R sin(θ), thus

|x1 − x2| ≤ |x3 − x2| ≤ 2Rθ.

We now distinguish two cases, depending whether θ is small or not.

• Case 1: θ ≤ θ0, with θ0 universally small. Up to a rotation of coordinate we can also
assume that the segment [x1, x2] lies in the plane generated by e1, en (denoted by Πe1,en).

Let us consider a ball of radius ̺(x0) ≪ θ around x0, and consider x ∈ B(x0, ̺(x0)) such
that x− x0 is orthogonal to [x1, x2].

In case x− x0 is orthogonal to Πe1,en, let us draw the half-line from x1 through x, and let y
be its point of intersection with ∂Ω. Then by similarity we get |y− x2| ≤ 2|x− x0| (recall that
λ ≥ 1/2), so by the very same arguments as in Case 2-b of Theorem 1.2 we get

Γv(x) ≤M |x− x0|
2.

On the other hand, if x− x0 belongs to the plane Πe1,en, then we need to do a more refined
argument outlined in Figure 5.1. First of all, we choose θ0 so small that, if we call δ the distance
between x2 and the projection of x1 on the tangent plane to ∂Ω at x2, then

∂Ω ∩ B(x2, 2δ) = {(x′, ϕ(x′)) : |x′ − x′2| ≤ 2δ},

where, by assumption, ϕ ∈ C3,1. We now consider the function

ψ(x′) = ϕ(x′) +
c tan(θ)

δ
|x′ − x′2|

2,
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where c ≤ 1 is chosen such that x1 belongs to the graph (obviously x2 belongs to it), and
define the function ṽ(x′) = v(x′, ψ(x′)). Since v has a minimum at x1 = (x′1, ψ(x

′
1)) and

x2 = (x′2, ψ(x
′
2)), ṽ has a minimum at x′1 and x′2. This means that ∂1ṽ = 0 and ∂11ṽ ≥ 0 at

these points. Then, by Rolle’s Theorem, there exists a point x′3 ∈ [x′2, x
′
1] where ∂11ṽ(x

′
3) = 0,

and since ∂11ṽ is non-negative at the extremes of the segment, it must have an interior minimum.
This implies that there exists a point in [x′2, x

′
1] where ∂111ṽ vanishes. Thus, integrating twice

along the segment we obtain

sup
[x′

2
,x′

1
]

|∂11ṽ| ≤ δ2 sup
[x′

2
,x′

1
]

|∂1111ṽ|.

We now want to estimate the supremum of the fourth derivatives: a tedious but straightforward
calculation gives

|∂1111ṽ| ≤ C
(

1 + |∂1ψ|
4 + |∂1ψ|

2|∂11ψ|+ |∂11ψ|
2 + |∂1ψ||∂111ψ|+ |∂1111ψ|

)

,

for some universal constant C. Notice that, due the particular form of ψ, the above expression
is bounded by C ′(1 + (θ/δ)2), where C ′ is also universal. Combining all together we infer that

sup
[x′

2
,x′

1
]

|∂11ṽ| ≤ C ′(δ2 + θ2),

which implies in particular

|∂11ṽ(x
′
2)| ≤ C ′(δ2 + θ2) ≤ C ′′θ2,

where in the last inequality we used that δ ≤ 2Rθ (see (5.3)).
Consider now the point y obtained by intersecting the half-line r from x1 through x with

the graph of ψ, and let y′ denote its projection onto the tangent plane at x2 (see Figure 5.1).
Clearly x is a convex combination of x1 and y, thus (since Γv(x1) = 0 and ∂1ṽ(x

′
2) = 0)

Γv(x) ≤ Γv(y) ≤ v(y′, ψ(y′)) = ṽ(y′)

≤
1

2
∂11ṽ(x

′
2)|y

′ − x′2|
2 + C|y′ − x′2|

3

≤ K(θ2|y′ − x′2|
2 + |y′ − x′2|

3),

for some universal constant K > 0. We now observe that, if we call ỹ the intersection of r with
the tangent plane at x2, then by choosing ̺(x0) sufficiently small we get

|y′ − x′2| ≤ 2|ỹ − x2| ≤
4|x− x0|

sin(θ/2)
≤

10|x− x0|

θ
,

where in the last inequality we used that θ is small. Hence,

Γv(x) ≤ K ′|x− x0|
2 +K ′ |x− x′0|

3

θ3
∀ x ∈ B(x0, ̺(x0)),

and the desired estimate follows by choosing ̺(x0) ≤ θ3.
This proves that

Γv(x) ≤M |x− x0|
2

whenever x − x0 ∈ B(0, ̺(x0)) is orthogonal to [x1, x2], and either it belongs to Πe1,en or it is
orthogonal to it. A simple argument based on the convexity of Γv (as the one used at the end
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of Step 2-a in Theorem 1.2) completes the proof.

• Case 2: θ ≥ θ0. This case is much simpler: indeed, if x ∈ B(x0, ̺(x0)) and we define
y to be the intersection of the half-line from x1 through x with ∂Ω, then by choosing ̺(x0)
sufficiently small we get

|y − x2| ≤
10|x− x0|

θ0
.

Hence, by convexity of Γv and the fact that Γv(x1) = 0, we obtain

Γv(x) ≤ Γv(y) ≤ C|y − x2|
2 ≤

100C|x− x0|
2

θ20
∀ x ∈ B(x0, ̺(x0)),

which concludes the proof. �
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