
Asymptotics of the s-perimeter as s↘ 0

S. Dipierro, A. Figalli, G. Palatucci and E. Valdinoci

August 9, 2012

Abstract

We deal with the asymptotic behavior of the s-perimeter of a set E inside
a domain Ω as s ↘ 0. We prove necessary and sufficient conditions for the
existence of such limit, by also providing an explicit formulation in terms of
the Lebesgue measure of E and Ω. Moreover, we construct examples of sets
for which the limit does not exist.

1 Introduction

Given s ∈ (0, 1) and a bounded open set Ω ⊂ Rn with C1,γ-boundary, the s-
perimeter of a (measurable) set E ⊆ Rn in Ω is defined as

Pers(E; Ω) := L(E ∩ Ω, (CE) ∩ Ω)
+ L(E ∩ Ω, (CE) ∩ (C Ω)) + L(E ∩ (C Ω), (CE) ∩ Ω),

(1.1)

where CE = Rn\E denotes the complement of E, and L(A,B) denotes the following
nonlocal interaction term

L(A,B) :=
∫
A

∫
B

1
|x− y|n+s

dx dy ∀A,B ⊆ Rn. (1.2)

Here we are using the standard convention for which L(A,B) = 0 if either A = ∅
or B = ∅.

This notion of s-perimeter and the corresponding minimization problem were
introduced in [3] (see also the pioneering work [14, 15], where some functionals
related to the one in (1.1) have been analyzed in connection with fractal dimensions).

Recently, the s-perimeter has inspired a variety of literature in different direc-
tions, both in the pure mathematical settings (for instance, as regards the regu-
larity of surfaces with minimal s-perimeter, see [2, 7, 6, 13]) and in view of con-
crete applications (such as phase transition problems with long range interactions,
see [4, 11, 12]). In general, the nonlocal behavior of the functional is the source of
major difficulties, conceptual differences, and challenging technical complications.
We refer to [9] for an introductory review on this subject.

The limits as s↘ 0 and s↗ 1 are somehow the critical cases for the s-perimeter,
since the functional in (1.1) diverges as it is. Nevertheless, when appropriately
rescaled, these limits seem to give meaningful information on the problem. In
particular, it was shown in [5, 1] that (1−s)Pers approaches the classical perimeter
functional as s ↗ 1 (up to normalizing multiplicative constants), and this implies

1



that surfaces of minimal s-perimeter inherit the regularity properties of the classical
minimal surfaces for s sufficiently close to 1 (see [6]).

As far as we know, the asymptotic as s ↘ 0 of sPers was not studied yet (see
however [10] for some results in this direction), and this is the question that we
would like to address in this paper. That is, we are interested in the quantity

µ(E) := lim
s↘0

sPers(E; Ω) (1.3)

whenever the limit exists. Of course, if it exists then

µ(E) = µ(CE),

since
Pers(E; Ω) = Pers(CE; Ω).

We will show that, though µ is subadditive (see Proposition 2.1 below), in general
it is not a measure (see Proposition 2.3, and this is a major difference with respect
to the setting in [10]). On the other hand, µ is additive on bounded, separated sets,
and it agrees with the Lebesgue measure of E ∩ Ω (up to normalization) when E
is bounded (see Corollary 2.6). As we will show below, a precise characterization
of µ(E) will be given in terms of the behavior of the set E towards infinity, which
is encoded in the quantity

α(E) := lim
s↘0

s

∫
E∩(CB1)

1
|y|n+s

dy,

whenever it exists (see Theorem 2.5 and Corollary 2.6). In fact, the existence of the
limit defining α is in general equivalent to the one defining µ (see Theorem 2.7(ii)).

As a counterpart of these results, we will construct an explicit example of set E
for which both the limits µ(E) and α(E) do not exist (see Example 2.8): this says
that the assumptions we take cannot, in general, be removed.

Also, notice that, in order to make sense of the limit in (1.3), it is necessary to
assume that1

Pers0(E; Ω) <∞, for some s0 ∈ (0, 1). (1.4)

To stress that (1.4) cannot be dropped, we will construct a simple example in which
such a condition is violated (see Example 2.10).

The paper is organized as follows. In the following section, we collect the precise
statements of all the results we mentioned above. Section 3 is devoted to the proofs.

2 List of the main results

We define E to be the family of sets E ⊆ Rn for which the limit defining µ(E)
in (1.3) exists. We prove the following result:

Proposition 2.1. µ is subadditive on E , i.e. µ(E ∪ F ) 6 µ(E) + µ(F ) for any E,
F ∈ E .

1It is easily seen that if (1.4) holds, then Pers(E; Ω) <∞ for any s ∈ (0, s0). Moreover, if ∂E
is smooth, then (1.4) is always satisfied.
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First, it is convenient to consider the normalized Lebesgue measure M , that is
the standard Lebesgue measure scaled by the factor H n−1(Sn−1), namely

M (E) := H n−1(Sn−1) |E|, (2.1)

where, as usual, we denote by Sn−1 the (n−1)-dimensional sphere.

Now, we recall the main result in [10]; that is,

Theorem 2.2. (see [10, Theorem 3]). Let s ∈ (0, 1). Then, for all u ∈ Hs(Rn),

lim
s↘0

s

2

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+s
dx dy = H n−1(Sn−1)

∫
Rn

|u|2 dx.

An easy consequence of the result above is that when E ∈ E and E ⊆ Ω
then µ(E) agrees with M (E) (in fact, we will generalize this statement in The-
orem 2.5 and Corollary 2.6). Based on this property valid for subsets of Ω, one
may be tempted to infer that µ is always related to the Lebesgue measure, up to
normalization, or at least to some more general type of measures. The next result
points out that this cannot be true:

Proposition 2.3. µ is not necessarily additive on separated sets in E , i.e. there
exist E,F ∈ E such that dist(E,F ) > c > 0, but µ(E ∪ F ) < µ(E) + µ(F ).

Also, µ is not necessarily monotone on E , i.e. it is not true that E ⊆ F implies
µ(E) 6 µ(F ).

In particular, we deduce from Proposition 2.3 that µ is not a measure. On the
other hand, in some circumstances the additivity property holds true:

Proposition 2.4. µ is additive on bounded, separated sets in E , i.e. if E, F ∈ E , E
and F are bounded, disjoint and dist(E,F ) > c > 0, then E∪F ∈ E and µ(E∪F ) =
µ(E) + µ(F ).

There is a natural condition under which µ(E) does exist, based on the weighted
volume of E towards infinity, as next result points out:

Theorem 2.5. Suppose that Pers0(E; Ω) < ∞ for some s0 ∈ (0, 1), and that the
following limit exists

α(E) := lim
s↘0

s

∫
E∩(CB1)

1
|y|n+s

dy. (2.2)

Then E ∈ E and

µ(E) =
(
1− α̃(E)

)
M (E ∩ Ω) + α̃(E) M (Ω \ E),

where

α̃(E) :=
α(E)

H n−1(Sn−1)
. (2.3)

As a consequence of Theorem 2.5, one obtains the existence and the exact ex-
pression of µ(E) for a bounded set E, as described by the following result:
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Corollary 2.6. Let E be a bounded set, and Pers0(E; Ω) <∞ for some s0 ∈ (0, 1).
Then E ∈ E and

µ(E) = M (E ∩ Ω).

In particular, if E ⊆ Ω and Pers0(E; Ω) < ∞ for some s0 ∈ (0, 1), then µ(E) =
M (E).

Condition (2.2) is also in general necessary for the existence of the limit in (1.3).
Indeed, next result shows that the existence of the limit in (2.2) is equivalent to
the existence of the limit in (1.3), except in the special case in which the set E
occupies exactly half of the measure of Ω (in this case the limit in (1.3) always
exists, independently on the existence of the limit in (2.2)).

Theorem 2.7. Suppose that Pers0(E; Ω) <∞, for some s0 ∈ (0, 1). Then:

(i) If |Ω \ E| = |E ∩ Ω|, then E ∈ E and µ(E) = M (E ∩ Ω).

(ii) If |Ω \ E| 6= |E ∩ Ω| and E ∈ E , then the limit in (2.2) exists and

α(E) =
µ(E)−M (E ∩ Ω)
|Ω \ E| − |E ∩ Ω|

.

In the statements above we assumed the existence of the limits in (1.3) and (2.2).
Such assumptions cannot be removed, since the limits in (1.3) and (2.2) may not
exist, as we now point out:

Example 2.8. There exists a set E with C∞-boundary for which the limits in (1.3)
and (2.2) do not exist.

Example 2.9. There exists a set E with C∞-boundary for which the limit in (1.3)
exists and the limit in (2.2) does not exist.

Notice that Examples 2.8 and 2.9 are provided by smooth sets, and therefore
they have finite s-perimeter for any s ∈ (0, 1) (see, e.g., Lemma 11 in [5]).

On the other hand, as regards condition (1.4), we point out that it cannot be
dropped in general, since there are sets that do not satisfy it (and for them the limit
in (1.3) does not make sense):

Example 2.10. There exists a set E for which Pers(E; Ω) = +∞ for any s ∈ (0, 1).

3 Proofs

3.1 Proof of Proposition 2.1

We observe that
the s-perimeter is subadditive. (3.1)

To check this, let Ω1, Ω2 be open sets of Rn. We remark that

L((E ∪ F ) ∩ Ω1, (C (E ∪ F )) ∩ Ω2)

= L((E ∩ Ω1) ∪ (F ∩ Ω1), (CE) ∩ (CF ) ∩ Ω2)

6 L(E ∩ Ω1, (CE) ∩ (CF ) ∩ Ω2) + L(F ∩ Ω1, (CE) ∩ (CF ) ∩ Ω2)

6 L(E ∩ Ω1, (CE) ∩ Ω2) + L(F ∩ Ω1, (CF ) ∩ Ω2).
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By taking Ω1 := Ω and Ω2 := Rn we obtain

L((E ∪ F ) ∩ Ω,C (E ∪ F )) 6 L(E ∩ Ω,CE) + L(F ∩ Ω,CF ),

while, by taking Ω1 := C Ω and Ω2 := Ω, we conclude that

L((E∪F )∩(C Ω), (C (E∪F ))∩Ω) 6 L(E∩(C Ω), (CE)∩Ω)+L(F∩(C Ω), (CF )∩Ω).

By summing up, we get

Pers(E ∪ F ; Ω)
= L((E ∪ F ) ∩ Ω,C (E ∪ F )) + L((E ∪ F ) ∩ (C Ω), (C (E ∪ F )) ∩ Ω)

6 L(E ∩ Ω,CE) + L(F ∩ Ω,CF )
+L(E ∩ (C Ω), (CE) ∩ Ω) + L(F ∩ (C Ω), (CF ) ∩ Ω)

= Pers(E; Ω) + Pers(F ; Ω).

This establishes (3.1) and then Proposition 2.1 follows by taking the limit as s ↘
0. �

3.2 Proof of Proposition 2.3

First we show that µ is not additive.
Here and in the sequel, we denote by BR the open ball centered at 0 ∈ Rn of

radius R > 0. We observe that if x ∈ B1 and y ∈ CB2 then |x−y| 6 |x|+|y| 6 2|y|,
therefore

sL(B1,CB2) > c1s

∫
B1

dx

∫
CB2

dy
1

|y|n+s
> c2s

∫ +∞

2

dρ

ρ1+s
> c3,

for some positive constants c1, c2 and c3. Now we take E := CB2, F := Ω := B1.
Then

Pers(E; Ω) = L(B1,CB2),
Pers(F ; Ω) = L(B1,CB1) = L(B1,CB2) + L(B1, B2 \B1)

and Pers(E ∪ F ; Ω) = L(B1, B2 \B1).

Therefore

sPers(E; Ω) + sPers(F ; Ω) = 2sL(B1,CB2) + sL(B1, B2 \B1)
> 2c3 + sL(B1, B2 \B1)
= 2c3 + sPers(E ∪ F ; Ω).

By sending s ↘ 0, we conclude that µ(E) + µ(F ) > 2c3 + µ(E ∪ F ), so µ is not
additive.

Now we show that µ is not monotone either. For this we take E such that
µ(E) > 0 (for instance, one can take E a small ball inside Ω; see Corollary 2.6),
and F := Rn: with this choice, E ⊂ F and Pers(F ; Ω) = 0, so µ(E) > 0 = µ(F ). �
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3.3 Auxiliary observations

Here we collect some observations, to be exploited in the subsequent proofs.
Observation 1. First of all, we observe that

if A and B are bounded, disjoints sets with dist(A,B) > c > 0, then
lim
s↘0

sL(A,B) = 0. (3.2)

To check this, suppose that A and B lie in BR. Then∫
A

∫
B

1
|x− y|n+s

dx dy 6
∫
BR

∫
BR

1
cn+s

dx dy =
(H n−1(Sn−1))2R2n

n2cn+s

and this establishes (3.2).
Observation 2. Now we would like to remark that the quantity

lim
s↘0

s

∫
E∩(CBR)

1
|y|n+s

dy

is independent of R, if the limit exists. More precisely, we show that for any R >
r > 0

lim
s↘0

s

(∫
E∩(CBR)

1
|y|n+s

dy −
∫
E∩(CBr)

1
|y|n+s

dy

)
= 0. (3.3)

To prove this, we notice that

s

∫
E∩(BR\Br)

1
|y|n+s

dy 6 s
∫
BR\Br

1
|y|n+s

dy = sH n−1(Sn−1)
∫ R

r

1
ρ1+s

dρ

= H n−1(Sn−1)
(

1
rs
− 1
Rs

)
(3.4)

and so, by taking limit in s,

lim
s↘0

s

∫
E∩(BR\Br)

1
|y|n+s

dy = 0,

which establishes (3.3).
Observation 3. As a consequence of (3.3), it follows that if the limit in (2.2) exists
then

α(E) = lim
s↘0

s

∫
E∩(CBR)

1
|y|n+s

dy ∀R > 0. (3.5)

Observation 4. For any s ∈ (0, 1), we define

αs(E) := s

∫
E∩(CB1)

1
|y|n+s

dy (3.6)

and we prove that, for any bounded set F ⊂ Rn, and any set E ⊆ Rn,

lim
R→+∞

lim sup
s↘0

∣∣∣∣∣αs(E) |F | − s
∫
F

∫
E∩(CBR)

1
|x− y|n+s

dx dy

∣∣∣∣∣ = 0. (3.7)
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To prove this, we take r > 0 such that F ⊂ Br and R > 1 + 2r (later on R will be
taken as large as we wish). We observe that, for any z ∈ Br and y ∈ CBR,

|z − y| > |y| − |z| =
(

1− r

R

)
|y|+ r

R
|y| − |z| > |y|

2
.

Therefore, if, for any fixed y ∈ CBR we consider the map

h(z) :=
1

|z − y|n+s
, z ∈ Br,

we have that

|∇h(z)| = n+ s

|z − y|n+s+1
6

2n+s+1(n+ s)
|y|n+s+1

,

for any z ∈ Br, which implies∣∣∣∣ 1
|x− y|n+s

− 1
|y|n+s

∣∣∣∣ = |h(x)− h(0)| 6 2n+s+1(n+ s)|x|
|y|n+s+1

∀x ∈ Br, y ∈ CBR.

Therefore ∣∣∣∣∣
∫
F

(∫
E∩(CBR)

1
|y|n+s

dy

)
dx−

∫
F

∫
E∩(CBR)

1
|x− y|n+s

dx dy

∣∣∣∣∣
6
∫
F

(∫
E∩(CBR)

∣∣∣∣ 1
|y|n+s

− 1
|x− y|n+s

∣∣∣∣ dy
)
dx

6
∫
F

(∫
E∩(CBR)

2n+s+1(n+ s)|x|
|y|n+s+1

dy

)
dx

6 2n+s+1(n+ s)|F |r
∫

CBR

1
|y|n+s+1

dy 6 C

for some C > 0 independent of s. As a consequence∣∣∣∣∣αs(E) |F | − s
∫
F

∫
E∩(CBR)

1
|x− y|n+s

dx dy

∣∣∣∣∣
6 |F |

∣∣∣∣∣αs(E)− s
∫
E∩(CBR)

1
|y|n+s

dy

∣∣∣∣∣+ Cs.

This and (3.3) (applied here with r := 1) imply (3.7).
Observation 5. If the limit in (2.2) exists, then (3.7) boils down to

lim
R→+∞

lim sup
s↘0

∣∣∣∣∣α(E) |F | − s
∫
F

∫
E∩(CBR)

1
|x− y|n+s

dx dy

∣∣∣∣∣ = 0. (3.8)

Observation 6. Now we point out that, if F ⊆ Ω ⊂ BR for some R > 0, and F
has finite s0-perimeter in Ω for some s0 ∈ (0, 1), then

lim
s↘0

s

∫
F

∫
BR\F

1
|x− y|n+s

dx dy = 0. (3.9)
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Indeed, for any s ∈ (0, s0),∫
F

∫
BR\F

1
|x− y|n+s

dx dy

6
∫
F

∫
(BR\F )∩{|x−y|61}

1
|x− y|n+s0

dx dy +
∫
F

∫
(BR\F )∩{|x−y|>1}

1 dx dy

6 Pers0(F ; Ω) + |BR|2,

which implies (3.9). In particular, thanks to [1, Proposition 16], the argument above
also shows that if F b Ω ⊂ BR and χF ∈ BV (Ω), then F has finite s-perimeter
in Ω for any s ∈ (0, 1).
Observation 7. Let E1 := E ∩ Ω and E2 := E \ Ω. Then

Pers(E; Ω) = Pers(E1 ∪ E2; Ω)
= L(E1,Ω \ E1) + L(E1, (C Ω) \ E2) + L(E2,Ω \ E1)
= L(E1,CE1)− L(E1, E2) + L(E2,Ω \ E1)
= Pers(E1; Ω)− L(E1, E2) + L(E2,Ω \ E1).

(3.10)

With these observations in hand, we are ready to continue the proofs of the
main results.

3.4 Proof of Proposition 2.4

We prove Proposition 2.4 by suitably modifying the proof of Proposition 2.1. Given
two open sets Ω1 and Ω2, and two disjoint sets E and F , we have that

L((E ∪ F ) ∩ Ω1, (C (E ∪ F )) ∩ Ω2)

= L((E ∩ Ω1) ∪ (F ∩ Ω1), (CE) ∩ (CF ) ∩ Ω2)

= L(E ∩ Ω1, (CE) ∩ (CF ) ∩ Ω2) + L(F ∩ Ω1, (CE) ∩ (CF ) ∩ Ω2).

By taking Ω1 := Ω and Ω2 := Rn we obtain

L((E ∪ F ) ∩ Ω,C (E ∪ F )) = L(E ∩ Ω, (CE) ∩ (CF )) + L(F ∩ Ω, (CE) ∩ (CF ))

while, by taking Ω1 := C Ω and Ω2 := Ω, we conclude that

L((E ∪ F ) ∩ (C Ω), (C (E ∪ F )) ∩ Ω)
= L(E ∩ (C Ω), (CE) ∩ (CF ) ∩ Ω) + L(F ∩ (C Ω), (CE) ∩ (CF ) ∩ Ω).

As a consequence,

Pers(E ∪ F ; Ω)
= L((E ∪ F ) ∩ Ω,C (E ∪ F )) + L((E ∪ F ) ∩ (C Ω), (C (E ∪ F )) ∩ Ω)

= L(E ∩ Ω, (CE) ∩ (CF )) + L(F ∩ Ω, (CE) ∩ (CF ))
+L(E ∩ (C Ω), (CE) ∩ (CF ) ∩ Ω) + L(F ∩ (C Ω), (CE) ∩ (CF ) ∩ Ω)

= Pers(E; Ω) + Pers(F ; Ω)
−L(E ∩ Ω, (CE) ∩ F )− L(F ∩ Ω, E ∩ (CF ))
−L(E ∩ (C Ω), (CE) ∩ F ∩ Ω)− L(F ∩ (C Ω), E ∩ (CF ) ∩ Ω).
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We remark that the last interactions involve only bounded, separated sets, since so
are E and F , therefore, by (3.2),

lim
s↘0

sPers(E ∪ F ; Ω) = lim
s↘0

(
sPers(E; Ω) + sPers(F ; Ω)

)
,

which completes the proof of Proposition 2.4. �

3.5 Proof of Theorem 2.5

We suppose that Ω ⊂ Br, for some r > 0, and we take R > 1 + 2r. Let E1 := E ∩Ω
and E2 := E \ Ω. Notice that, for any F ⊆ Ω, which has finite s0-perimeter in Ω
for some s0 ∈ (0, 1),

E2 ∩BR ⊆ BR \ Ω ⊆ BR \ F

and so (3.9) gives that

lim
s↘0

s

∫
F

∫
E2∩BR

1
|x− y|n+s

dx dy = 0, (3.11)

provided that F has finite s0-perimeter in Ω. Using this and (3.8), we conclude
that, for any F ⊆ Ω of finite s0-perimeter in Ω,

lim
s↘0

s

∫
F

∫
E2

1
|x− y|n+s

dx dy

= lim
R→+∞

lim
s↘0

s

∫
F

∫
E2

1
|x− y|n+s

dx dy

= lim
R→+∞

lim
s↘0

s

∫
F

∫
E2∩(CBR)

1
|x− y|n+s

dx dy

= α(E) |F |.

In particular2, by taking F := E1 and F := Ω \ E1, and recalling (2.1) and (2.3),

lim
s↘0

s

∫
E1

∫
E2

1
|x− y|n+s

dx dy = α(E) |E1| = α̃(E) M (E1)

and lim
s↘0

s

∫
Ω\E1

∫
E2

1
|x− y|n+s

dx dy = α(E) |Ω \ E1| = α̃(E) M (Ω \ E1).
(3.12)

We now claim
lim
s↘0

sPers(E1; Ω) = M (E1). (3.13)

2We stress that both E1 and Ω \ E1 have finite s0-perimeter in Ω if so has E, thanks to our
smoothness assumption on ∂Ω. We check this claim for E1, the other being analogous. First of
all, fixed BR ⊃ Br ⊃ Ω, we have that

L
`
E1, (E \ Ω) ∩ (C BR)

´
6 L(Br, C BR) < +∞.

Also L
`
Ω ∩BR, (C Ω) ∩BR

´
< +∞ (see, e.g., Lemma 11 in [5]), therefore

Pers0 (E1; Ω) = L(E1, C E1) = L(E1, C E) + L(E1, E \ Ω)

6 Pers0 (E; Ω) + L
`
E1, (E \ Ω) ∩BR

´
+ L

`
E1, (E \ Ω) ∩ (C BR)

´
6 Pers0 (E; Ω) + L

`
Ω, (C Ω) ∩BR

´
+ L

`
E1, (E \ Ω) ∩ (C BR)

´
,

that is finite.
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Indeed, since E1 ⊆ Ω, this is a plain consequence of Theorem 2.2 (see also Re-
mark 4.3 in [8] for another elementary proof) by simply choosing u = χE1 there:

lim
s↘0

sPers(E1; Ω) = lim
s↘0

sL(E1,CE1)

= lim
s↘0

s

2

∫
Rn

∫
Rn

|χE1(x)− χE1(y)|2

|x− y|n+s
dx dy

= H n−1(Sn−1) ‖χE1‖2L2(Rn) = H n−1(Sn−1) |E1|,

as desired. Thus, using (3.10), (3.12), and (3.13), we obtain

lim
s↘0

sPers(E; Ω) = M (E1)− α̃(E)M (E1) + α̃(E)M (Ω \ E1),

which is the desired result. �

3.6 Proof of Corollary 2.6

We fix R large enough so that E ⊂ BR, hence E ∩ (CBR) = ∅. By the expression
of α(E) in (3.5), we have that the limit in (2.2) exists and α(E) = 0. Then the
result follows by Theorem 2.5. �

3.7 Proof of Theorem 2.7

We suppose that Ω ⊂ Br, for some r > 0, and we take R > 1 + 2r. Let E1 := E ∩Ω
and E2 := E \ Ω. By (3.10),

sPers(E; Ω)− sPers(E1; Ω)

= sL(E2,Ω \ E1)− sL(E1, E2)

= s

∫
Ω\E1

∫
E2∩BR

1
|x− y|n+s

dx dy + s

∫
Ω\E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy

− s
∫
E1

∫
E2∩BR

1
|x− y|n+s

dx dy − s
∫
E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy.

By rearranging the terms, we obtain

I(s,R) := s

∫
Ω\E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy − s
∫
E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy

= sPers(E; Ω)− sPers(E1; Ω)− s
∫

Ω\E1

∫
E2∩BR

1
|x− y|n+s

dx dy

+ s

∫
E1

∫
E2∩BR

1
|x− y|n+s

dx dy.

(3.14)

By using (3.9) with F := Ω \E1 and F := E1 (which have finite s0-perimeter in Ω,
recall the footnote on page 9), we have that the last two terms in (3.14) converge
to zero as s↘ 0, thus

lim
s↘0

I(s,R) = lim
s↘0

(
sPers(E; Ω)− sPers(E1; Ω)

)
. (3.15)
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We now recall the notation in (3.6) and we write

αs(E) |Ω \ E1| = s

∫
Ω\E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy

+αs(E) |Ω \ E1| − s
∫

Ω\E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy,

and

αs(E) |E1| = s

∫
E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy

+αs(E) |E1| − s
∫
E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy.

By subtracting term by term, we obtain that

αs(E)
(
|Ω \ E1| − |E1|

)
= I(s,R) +

(
αs(E) |Ω \ E1| − s

∫
Ω\E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy

)

−

(
αs(E) |E1| − s

∫
E1

∫
E2∩(CBR)

1
|x− y|n+s

dx dy

)
.

As a consequence, by using (3.7) (applied here both with F := Ω\E1 and F := E1),

lim
R→+∞

lim
s↘0

[
αs(E)

(
|Ω \ E1| − |E1|

)
− I(s,R)

]
= 0. (3.16)

Now, if |Ω \ E| = |E ∩ Ω| then |Ω \ E1| − |E1| = 0, and from (3.15), (3.16), and
Corollary 2.6 we get

0 = lim
R→+∞

lim
s↘0

I(s,R) = lim
s↘0

sPers(E; Ω)−M (E ∩ Ω),

which proves that E ∈ E and µ(E) = M (E ∩ Ω). This establishes Theorem 2.7(i).
On the other hand, if |Ω \ E| 6= |E ∩ Ω|, then by (3.15), (3.16), and Corollary

2.6 we obtain the existence of the limit(
|Ω \ E1| − |E1|

)
lim
s↘0

αs(E)

= lim
R→+∞

lim
s↘0

αs(E)
(
|Ω \ E1| − |E1|

)
= lim
R→+∞

lim
s↘0

{[
αs(E)

(
|Ω \ E1| − |E1|

)
− I(s,R)

]
+ I(s,R)

}
= µ(E)− µ(E1) = µ(E)−M (E ∩ Ω),

which completes the proof of Theorem 2.7(ii). �
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3.8 Construction of Example 2.8

We start with some preliminary computations. Let ak := 10k
2
, for any k ∈ N, and

let
Ij :=

⋃
k∈N

[
a4k+j , a4k+j+1

)
, for j = 0, 1, 2, 3.

Notice that [1,+∞) may be written as the disjoint union of the Ij ’s. Let ϕ ∈
C∞

(
[0,+∞), [0, 1]

)
be such that ϕ = 0 in [0, 1] ∪ I0, ϕ = 1 in I2, and then ϕ

smoothly interpolates between 0 and 1 in I1 ∪ I3.
We claim that there exist two sequences ν0,k → +∞ and ν1,k → +∞ such that

lim
k→+∞

∫ +∞

0

ϕ(ν0,kx)e−x dx = 0 and lim
k→+∞

∫ +∞

0

ϕ(ν1,kx)e−x dx = 1. (3.17)

To check (3.17), we take ν0,k := a4k+1/k and ν1,k := a4k+3/k. We observe that, by
construction, ϕ = 0 in

[
a4k, a4k+1

)
and ϕ = 1 in

[
a4k+2, a4k+3

)
, so ϕ(ν0,kx) = 0 for

any x ∈ [kb0,k, k) and ϕ(ν1,kx) = 1 in [kb1,k, k), where

b0,k :=
a4k

a4k+1
= 10−(8k+1) and b1,k :=

a4k+2

a4k+3
= 10−(8k+5).

We deduce that∫ +∞

0

ϕ(ν0,kx)e−x dx 6
∫ kb0,k

0

e−x dx+
∫ +∞

k

e−x dx = 1− e−kb0,k + e−k

and
∫ +∞

0

ϕ(ν1,kx)e−x dx >
∫ k

kb1,k

e−x dx = e−kb1,k − e−k.

This implies (3.17) by noticing that

lim
k→+∞

kb0,k = 0 = lim
k→+∞

kb1,k.

Now we construct our example by using the above function ϕ and (3.17). We
take Ω := B1/2 and E :=

{
x = (ρ cos γ, ρ sin γ) , ρ > 1, γ ∈ [0, θ (ρ)]

}
⊂ R2, where

θ (ρ) := ϕ (log ρ).
First of all, since Ω = B1/2 and E ⊂ Rn \B1, it is easy to see that

Pers(E; Ω) =
∫

Ω

∫
E

1
|x− y|n+s

dx dy 6 |Ω|
∫
Rn\B1

2n+s

|z|n+s
dz <∞

for any s ∈ (0, 1). Then, recalling (3.6) we have

αs(E) = s

∫ +∞

1

∫ θ(ρ)

0

ρn−1

ρn+s
dθ dρ = s

∫ +∞

1

θ (ρ)
1

ρ1+s
dρ.

Therefore, by the change of variable log ρ = r, we have

αs(E) = s

∫ +∞

0

ϕ (r) e−rs dr,

and, by the further change rs = x, we have

αs(E) =
∫ +∞

0

ϕ
(x
s

)
e−x dx.
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If we set ν = 1/s, the limit in (2.2) becomes the following:

α(E) = lim
ν→∞

∫ +∞

0

ϕ (νx) e−x dx,

and, by (3.17), we get that such a limit does not exist. This shows that the limit
in (2.2) does not exist. Since |Ω \ E| = |B1/2| > 0 = |E ∩ Ω|, by Theorem 2.7(ii),
the limit in (1.3) does not exist either. �

3.9 Construction of Example 2.9

It is sufficient to modify Example 2.8 inside Ω = B1/2 in such a way that |Ω \E| =
|E ∩ Ω|. Notice that, since the set E has smooth boundary, then it has finite s-
perimeter for any s ∈ (0, 1) (see Lemma 11 in [5]). Then (2.2) is not affected by
this modification and so the limit in (2.2) does not exist in this case too. On the
other hand, the limit in (1.3) exists, thanks to Theorem 2.7(i). �

3.10 Construction of Example 2.10

We take a decreasing sequence βk such that βk > 0 for any k > 1,

M :=
+∞∑
k=1

βk < +∞

but
+∞∑
k=1

β1−s
2k = +∞ ∀ s ∈ (0, 1). (3.18)

For instance, one can take β1 :=
1

log2 2
and βk :=

1
k log2 k

for any k > 2.

Now, we define

Ω := (0,M) ⊂ R,

σm :=
m∑
k=1

βk,

Im := (σm, σm+1),

and E :=
+∞⋃
j=1

I2j .

Notice that E ⊂ Ω and

Pers(E; Ω) = L(E,CE)

>
+∞∑
j=1

L(I2j , I2j+1) =
+∞∑
j=1

∫ σ2j+1

σ2j

∫ σ2j+2

σ2j+1

1
|x− y|1+s

dx dy.(3.19)

An integral computation shows that if a < b < c then∫ b

a

∫ c

b

1
|x− y|1+s

dx dy =
1

s(1− s)

[
(c− b)1−s + (b− a)1−s − (c− a)1−s

]
.
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By plugging this into (3.19), we obtain

s(1− s)Pers(E; Ω)

>
+∞∑
j=1

[
(σ2j+2 − σ2j+1)1−s + (σ2j+1 − σ2j)1−s − (σ2j+2 − σ2j)1−s

]

=
+∞∑
j=1

β1−s
2j+2 + β1−s

2j+1 − (β2j+2 + β2j+1)1−s.

(3.20)

Now we observe that the map [0, 1) 3 t 7→ (1 + t)1−s is concave, therefore

(1 + t)1−s 6 1 + (1− s)t 6 1 + (1− s)t1−s

for any t ∈ [0, 1), that is

1 + t1−s − (1 + t)1−s > st1−s.

By taking t := β2j+2/β2j+1 and then multiplying by β1−s
2j+1, we obtain

β1−s
2j+1 + β1−s

2j+2 − (β2j+1 + β2j+2)1−s > sβ1−s
2j+2.

By plugging this into (3.20) and using (3.18), we conclude that

Pers(E; Ω) >
1

1− s

+∞∑
j=1

β1−s
2j+2 = +∞ ∀ s ∈ (0, 1),

as desired. �
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