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Abstract. The quality assessment of manufacturing operations
performed to obtain given flat surfaces is always a problem of com-
paring the substitute model (approximating the features of the true
manufactured part) to the nominal specifications, at any stage of
the manufacturing cycle. A novel methodology, based on appli-
cations of classical tools of Calculus of Variations, is here pre-
sented with the aim of assessing the output quality of manufac-
tured flat surfaces based on the information available on trans-
formation imposed by technological processes. By assuming that
any manufacturing process operates under equilibrium states, the
proposed variational methodology allows to account for the traces
left by different stages of manufacturing processes. A simple two-
dimensional case is here discussed, to give the flavor of the method-
ology and its future potential developments.
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1. Introduction

The quality assessment of manufacturing operations performing geo-
metrical transformations is, to a great extent, a problem of comparing
tolerances specifications with workpiece geometries (macro-geometries
such as straight lines, planes, circumferences, cylinders, etc.), its feature
forms (e.g., flatness, straightness, roundness, run-out), and workpiece

Key words and phrases. quality assessment, flat surfaces, calculus of variation,
technological signature.
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micro-geometries (e.g., roughness, surface texture). This task, which
is a metrological problem (say, inspection planning, sampling strat-
egy, measuring devices, etc.), is strongly conditioned by the knowledge
of transformations experienced by the workpiece undergoing different
technological operations. Since the early studies of Eppinger [12], the
recognition of the importance of the signature left on workpieces by
manufacturing operations has been considered as a relevant question
to be faced, to improve the metrological quality-assessment. Represent-
ing a signature means to define a “simple representation of an object
or a process in the form of a mathematical function, a feature vector,
a geometric shape, or some other representations” ([13]). Since the
signature changes according to changes in process state, it allows to
uniquely capture the significant characteristics of an object, such as
the manufactured workpiece, at a certain state.

Following this stream, other authors ([18]; [7]; [8]; and [9]) have
further developed this point by introducing the concepts of “techno-

logical signature” or “technological imprint” or “technological finger-

print”. The idea is that all the available information related to the
manufacturing operations performed on the workpiece and their pro-
cess parameters should not be ignored, since they are extremely useful
to understand the quality of the output and to define adequate mea-
surement strategies and feedbacks for quality improvement actions.

Whenever a discrete number of measured points are available on the
workpiece, it is possible to derive a model of the substitute geometry
adherent to the real one; the wider use of coordinate measuring ma-
chines (CMMs) justifies the interest in more accurate mathematical
models of recent times. Evaluating quality output of a manufacturing
process with discrete measurement approaches then becomes a mat-
ter of estimating accurate parameters of the mathematical model from
the measured points, and then comparing the model with the desired
geometrical specifications. Unfortunately, several uncertainty factors
affect this estimation process, mainly “hard” factors and “soft” ones.
“Hard” uncertainty factors come from the nature of the measurement
data-sets derived, their completeness and meaningfulness with respect
to their use. Measuring strategies adopted, as well as the physical
devices utilized, contribute to this uncertainty: the knowledge of tech-
nological information on the workpiece should allow the minimization
of these “hard” uncertainty components, since it allows to select rel-
evant information for estimation. “Soft” factors of uncertainty, on
the other hand, come from the model adopted to represent the real
workpiece: the substitute geometry build knowing the technological
signature should guarantee the best representation of the measured
workpiece. Relevant data points can in fact be selected appropriately
for fitting algorithms [14], also with respect to the functional critical
conditions. The variational methodology here proposed characterizes
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deviations from a reference geometry and allows their minimization
despite the occurrence of errors or noises.

The proposed methodology, in fact, embeds the technological signa-
ture by virtues of its founding principle, the minimization of a func-
tional, thus assuring in principle the best explanation of the soft causes
of deviation of the substitute geometries. The method adopted is to
assume that manufacturing operations always satisfy the energy mini-
mization principle: the question then is how to write the correct func-
tional for each manufacturing operation. This formal explanation of
operation characteristics leads to two different implications: firstly
it is possible to recognize the depart from optimal condition of any
manufacturing process (due to several cases) [25]; secondly, the sug-
gested formalization methodology already provides a rationale to com-
pare the nature of geometrical deviations due to different technological
processes.

1.1. Assessing flatness of manufactured surfaces. Assessing qual-
ity of manufactured flat surfaces is usually referred to the “flatness”
surface feature, as defined in ASME Y14.5M-1994 Standard [3], “the
condition of a surface having all elements in one plane”. According to
this Standard a flatness tolerance specifies a tolerance zone defined by
two parallel planes within which the surface must lie.

Dealing with flatness error assessment, two main fitting methods
are adopted to evaluate the substitute geometries: the Least Square
Method (LSM) and the Minimum Zone Method (MZM).

The LSM is based on finding the minimum sum of the squared er-
rors of the measured points from the nominal feature: the perpendicular

signed deviation of each point from the fitted surface is calculated and

the difference between the maximum deviation and the minimum devi-

ation represents the flatness error (see [6]). Although this method is
simple and characterized by a unique solution response and fast com-
puting time, it does not guarantee the minimum zone solution specified
in the standard ([6];[22]). Furthermore, the deviation values and geo-
metric tolerances, as determined by LSM, are generally larger than the
actual ones, leading to rejection of good parts [22].

The MZM is formulated as an optimization problem and the flat-
ness error is defined as the minimum distance between parallel planes
containing all the measured points. It can be implemented adopting
several techniques: the simplex search method ([21]), the Monte Carlo
search method, the spiral search method, the tabu search and hybrid
search methods ([4]), the convex hull procedure ([26]; [19]), methods
based on Tchebyshev approximations, genetic algorithms ([20]), fuzzy
logic, classical deterministic methods based on sensitivity information.
MZM tends to underestimate the form error and is very sensitive to
asperities which, if undetected, can lead to poor results ([22]; [4]).
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Figure 2.1. Outline of a generic output workpiece

The common application of the above mentioned approaches always
consider data sets without asking any further information, i.e., ignor-
ing the technological signature on workpieces: this fact brings to a
meaningless substitute geometry due to the wrong geometrical errors
appreciation in the data sets.

The methodology proposed here is intended to set an objective method-
ology to better recognize the signatures left on the workpiece by differ-
ent technological operations’ stage in order to minimize flatness evalu-
ation errors. The approach is quite new since it is based on (classical)
variational techniques (see [5] or [11]) to fit data and to model the
technological signature, i.e., the set of informations representing the
signature of manufacturing conditions experienced by a workpiece.

2. The variational model for assessing flatness of

surfaces

2.1. A general variational model. To model the flatness of a given
machined surface, the variational point of view assumed here starts
from the hypotheses that any removal manufacturing process, in ideal
conditions, experiences only equilibrium states. More precisely, we ask
that this process realizes a minimum of an energy-like functional, or at
least a critical point, among all other possible geometric configurations
with the same amount of material removed.

In establishing a variational framework for a given technological pro-
cess, the first crucial step consists in identifying the energy-like func-
tional, close enough to the physics of the manufacturing operation per-
formed. Whenever a flat surface has to be manufactured by material
removal, it is reasonable to assume that this energy-like functional de-
pends on the amount of material removed, as well as on the output
geometry.

Let B an open bounded subset of R
3 containing the unit cube [0, 1]3.

As initial shape we consider the set Ω = B ∩ ([0, 1]2 × R
+). The prob-

lem of assessing the flatness of the manufactured workpiece consists in
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finding a subset M ⊂ Ω such that ∂M is a (piece-wise) regular mani-
fold, [0, 1]2 × {0} ⊂M and |M | = const, minimizing the functional

F(M) =

∫

M

ϕ(x)dx+

∫

∂M

σ̃(p,N(p))dH2(p). (2.1)

The functional in equation (2.1) results from the addition of a volume
contribution and a surface one. The first represents the energy spent
in removing material, while the second one represents the energy spent
in flattening the manufactured (upper) surface.

The density function x 7→ ϕ(x) will be called specific forming energy

and p 7→ σ(p,N(p)) will be called specific shaping energy, where N de-
notes the outward unit normal to the surface ∂M . The specific forming
energy ϕ : M → R+ is assumed to be continuous and is related to the
density d of the material through the technological constant cTech by

ϕ(x) = cTechd(x). (2.2)

The technological constant cTech represents the amount of energy re-
quired to remove a unit amount of mass and depends on the particular
technology used.

A reasonable choice for the shaping energy is given by

σ̃(p,N(p)) = ψ(|N‖(p)|), (2.3)

where N‖(p) = (I − e3 ⊗ e3)N(p) is the horizontal component of N(p)
and ψ : [0, 1] → R+ is a continuous and increasing function, such that
ψ(0) = 0.

A detailed analysis of the mathematical problem of the existence
of solutions and their regularity properties is out of the scope of the
present paper. It will be the subject of a future work. For a general
overview on existence and regularity in Calculus of Variations we refer
to [5] and [15]. Some problems related to particular forms of (2.1) are
investigated in [16, 17]. Moreover, the above variational approach needs
a precise specification of the initial shape Ω, of the forming and shaping
energies ϕ and σ, to be a really predictive mathematical theory. Note
that Ω is only accessible through an approximate description. In the
next section all these aspects will be discussed for a two-dimensional
flat model.

Example 2.1. Assume Ω = [0, 1] × [0, 1] and d(x) = 1, in such a case
the volume term in (2.1) reduces to a constant, say c. Then consider
the variational problem

∫

∂M

|N‖(p)|dH2(p) → min.

Now, if the amount of removable material is sufficiently large, a min-
imizer surface is achieved by taking the upper plane of the paral-
lelepiped.
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Example 2.2. If the worked piece M is assigned through a function
f : U → R, i.e.

M = Mf =
{
x ∈ R

3 | x3 ≤ f(x1, x2), x1, x2 ∈ U
}
,

then N = (∇f(x1, x2),−1)T ∈ R
3 and so N‖ = (fx1

, fx2
, 0)T . In such

a case, if d(x) = 1, the variational problem, discarding the volume and
the boundary’s reminder contributions, takes the form

Minf∈A

∫

Ω

ψ(|∇f |)
√

1 + |∇f |2 dx1dx2,

where A = {f ∈ C1(Ω) |Mf ⊂ Ω}.

2.2. A two-dimensional flatness model. The previous variational
setting is here investigated in the simple case of a two-dimensional
flatness model, with the aim of providing an analytic and numerical
evidence of the method proposed here by means of experimental tests.
As previously observed, the initial shape Ω is unknown. Therefore,
given a function f : [0, 1] → R, without loss of generality, the flat
manufactured surface is defined by

Ωf = {(x, y) ∈ R
2 | 0 ≤ y ≤ f(x), x ∈ [0, 1]}.

Assuming the material to be homogeneous, the fact that the amount
of material utilized in the production is unchanged is given by the
requirement:

∫ 1

0

f(x) dx = K (2.4)

for a fixed constant K. Let W : R×R → R+ be a continuous function
representing the specific forming energy, then the total forming energy
spent to obtain the configuration Ωf is given by

J1(f) =

∫

Ωf

W (x, y) dxdy. (2.5)

The term J1(f) is built as a function of the type of technological pro-
cess performed to shape material (e.g., turning, milling), not including
the specific operating conditions (e.g., machine, process parameters,
environmental conditions).

It is also required that the resource consumption to remove the mate-
rial depends on the geometric configuration assumed by the machined
surface at the end of the manufacturing operation, namely on the nor-
mal vector, and hence on the first derivative f ′(x) of the upper bound-
ary of Ωf . Moreover, for modeling the technological signature, we
introduce a history dependent shaping energy allowing to incorporate
in the energetic term the energy needed to reach the current configu-
ration, starting from a given one. More precisely, let σ : R × R → R+



VARIATIONAL TECHNIQUES, TECHNOLOGICAL MEMORY 7

be a C1 function denoting the specific shaping energy, then the total
shaping energy spent to obtain the configuration Ωf is given by

J2(f) =

∫ 1

0

∫ f ′(x)

0

σ(x, t) dtdx. (2.6)

Recalling the notations of Section 2.1, σ̃ ≡ 0 on the flat sides of the
boundary of Ωf , while on the upper boundary the specific shaping en-

ergy amounts to

σ̃(x,N(x)) =

∫ −N(x)‖
√

1+f ′(x)2

0

σ(x, t) dt,

where

N(x) =
1

√

1 + f ′(x)2
(−f ′(x), 1) ,

so that N(x)‖ = −f ′(x)√
1+f ′(x)2

.

Note that σ does not depend on the variable y, which means that the
shaping energy is independent from the thickness of the manufactured
workpiece. It may be interesting to consider such a σ depending also
on y, but, in this paper we will only consider the slightly simpler case.
The term J2(f) represents, to some extent, the technological signature
left by the manufacturing process on the workpiece, indeed the integral

term
∫ f ′(x)

0
σ(x, t) dt keeps track of all the energetic contributions up

to the final state represented by f ′(x).

Remark 2.3. Note that the shaping energies in (2.1) and (2.6) are
quite different mathematical objects. Indeed, while the first one de-
pends only on the intrinsic properties of the surface ∂M and therefore
it is called a geometric integral (see [1]), the second one, keeping the
memory of the energetic history of the shaping, delivers a term which
cannot be represented by a geometric integral. We believe that both
these points of view contribute to provide a rationale framework for
the problems related to flatness manufacturing operations.

Therefore the total energy spent to realize the configuration Ωf is
given by

J(f) = J1(f) + J2(f). (2.7)

In both the energy terms (2.5) and (2.6), for any given technology,
the expression of f and f ′ can be easily determined by deriving appro-
priate information on the machined workpiece (namely set of points
of the Ωf). Once this information are known, it is possible to derive
W and σ by imposing the necessary conditions, expressing the state
of equilibrium of the process, and using the basic tools of the Cal-
culus of Variations. The proposed methodology consists of deriving
a condition to recognize the equilibrium state of any manufacturing
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operation as below. The matter is then to study the behavior of the
energy-type functional (2.7) under the constraint (2.4). This means to
characterize those functions f : [0, 1] → R, in some functions space,
which realize the minimum or, at least critical points of J under the
constraint (2.4). To this aim, consider a function η : [0, 1] → R such

that η(0) = η(1) = 0 and
∫ 1

0
η(x)dx = 0. For ε > 0 we consider the

perturbations fε(x) = f(x) + εη(x). By definition, the first variation
of the functional J is given by

δJ(f, η) := lim
ε→0+

J(fε) − J(f)

ε
.

Observe that

J(fε) − J(f)

ε
=

=
1

ε

(
∫ 1

0

(
∫ fε(x)

0

W (x, y)dy −
∫ f(x)

0

W (x, y)dy +

+

∫ 1

0

∫ f ′
ε(x)

0

σ(x, t)dt−
∫ f ′(x)

0

σ(x, t)dt

)

dx

)

=

=

∫ 1

0

(

1

ε

∫ fε(x)

f(x)

W (x, y)dy +
1

ε

∫ f ′
ε(x)

f ′(x)

σ(x, t)dt

)

dx.

Let ε→ 0+, the Fundamental Theorem of Calculus allows to deduce
that

δJ(f, η) =

∫ 1

0

(W (x, f(x))η(x) + σ(x, f ′(x))η′(x)) dx.

Integrating by parts we obtain

δJ(f, η) =

∫ 1

0

(

W (x, f(x)) − d

dx
σ(x, f ′(x))

)

η(x)dx.

As a consequence, since the perturbations η are area preserving, if the
following Euler equation is satisfied

W (x, f(x)) − d

dx
σ(x, f ′(x)) = constant, (2.8)

then δJ(f, η) = 0, that is, f is a critical point for J . Vice versa, as it
is standard in Calculus of Variations (see [5] or [11]), if δJ(f, η) = 0
for every η, condition (2.8) holds. The condition (2.8) could be taken
as a characterization of the technological process performed, once the
energy density functions are given either by physical inspection or by
experimental derivation. In general, the equation (2.8) can be explic-
itly solved just for special forms of W and σ and thus leads just to local
solutions, while (2.8) is a global condition. It is worth to remark that
if the functions W and σ depend only on the local thickness f of the
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workpiece, then the perfectly-flat surface f(x) = h satisfies the condi-
tion (2.8). Therefore, the condition of a perfectly-flat surface can be
regarded as a critical point for an energy functional. In this sense, this
variational approach extends the condition usually considered in liter-
ature. We also remark that the presence of the shaping term σ makes
the problem more involved since it introduces the derivative of f which
is not directly accessible by measurements. Condition (2.8) can be used
as a check of the manufacturing output, i.e., whenever the substitute
geometry f(x) of a manufactured workpiece does not satisfy (2.8), i.e.,
the equilibrium state is lost, one can suspect a modification occurred in
the manufacturing process (say, e.g., decay of machine tools, modified
energy levels, and so on). The above variational paradigm makes sense
only if equilibrium states actually exist. By applying the direct meth-

ods of the Calculus of Variations, it is not difficult to find conditions
ensuring the existence of minimum configurations. Basically, the point
is to have a compactness condition on the space of admissible functions
f and lower semi-continuity (l.s.c.) of the functional J . In such a case,
given any minimizing sequence, i.e., a sequence fn such that

lim
n→+∞

J(fn) = inf J(f) = m,

by compactness we find (by passing to a subsequence) an admissible
function f such that fn → f as n→ +∞. Then, by l.s.c. we have

J(f) ≤ lim inf
n→+∞

J(fn) = m.

Hence f is a minimizer for the functional J . To this aim we set

L(x, u, v) =

∫ u

0

W (x, s)ds+

∫ v

0

σ(x, t)ds,

then the functional J can be written in the standard form

J(f) =

∫ 1

0

L(x, f(x), f ′(x))dx. (2.9)

Typically, to get existence results we have to impose conditions on
the Lagrangian density L(x, u, v) and/or on the space of admissible
functions f . A first classical existence result (see for instance [5] or
[11]) states that if L(x, u, v) is continuous and satisfies the following
conditions:

• (Growth condition) There exists constants a > 0, b, c ∈ R and
exponents p > q ≥ 1 such that

L(x, u, v) ≥ a|v|p + b|u|q + c; (2.10)

• (Convexity condition) Fixed (x, u), the function

L(x, u, v) is convex with respect to v; (2.11)
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Figure 2.2. Geometry excluded by ‖f ′‖∞ ≤ C1

avoids discontinuities in the boundary z(x)

then, the functional J(f) admits a minimizer among the functions such

that
∫ 1

0
f(x)dx = K and f ∈ W 1,p([0, 1]), i.e., the Sobolev space of

weakly differentiable functions such that both |f |p and |f ′|p are inte-
grable. Moreover, every solution of (2.8) is in fact a minimizer of J .
Finally, if L(x, u, ·) is strictly convex, we have a unique minimizer of J .

Observe that the previous assumptions are conditions on the inte-
grand function L(x, u, v) imposing some restrictions on the functions
W and σ. This means to make assumptions on the behavior of the
manufacturing process: for instance, to produce perfectly flat surfaces
the process needs to have an homogeneous energy density (i.e., inde-
pendent on the x−variable), otherwise the necessary condition (2.8)
cannot be satisfied.

The forming and shaping densities W and σ of the model are usually
unknown: it could then be preferable to make some more assumptions
on the space of admissible functions. To get compactness, indepen-
dently on W and σ, some more conditions on the admissible functions
are necessary. More precisely, one may consider the following set of
functions

X =
{
f ∈ C1([0, 1]) : ‖f‖∞ ≤ C0, ‖f ′‖∞ ≤ C1,Lip(f ′) ≤ C2

}
,

(2.12)
where

Lip(f ′) = sup
x 6=y

∣
∣
∣
∣

f ′(x) − f ′(y)

x− y

∣
∣
∣
∣
.

The first constraint ‖f‖∞ ≤ C0 corresponds to handle with equi-
bounded work-pieces. On the other hand, the constraints on the deriva-
tives correspond to restricting the possible geometries produced by the
work process. For instance these exclude geometries like those of Figure
(2.2) and Figure (2.3).

The restriction of J to the space X introduces restrictions on the
geometry of the surfaces produced, but no restrictions on the densities
W and σ are involved. Actually, by considering continuous density
functions W and σ, the functional J admits minimizers in the space
X. Indeed, let {fn} be any minimizing sequence, since the functions
{f ′

n} are equi-bounded and equi-continuous, by Ascoli-Arzelà Theorem,
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Figure 2.3. Geometry excluded by Lip(f ′) ≤ C2

there exists v ∈ C([0, 1]) such that (up to a subsequence) f ′
n → v

uniformly. Observe that fn is equi-bounded and then we may assume
that fn(0) converges to a value u(0). Since

fn(x) = fn(0) +

∫ x

0

f ′
n(t)dt,

by the uniform convergence of the functions involved, passing to the
limit under the integral sign we have

u(x) := lim
n→+∞

fn(x) = u(0) +

∫ x

0

v(t)dt,

that is u′ = v. It is also straightforward to check that actually fn → u

uniformly. Indeed, it is enough to observe that

|fn(x)−u(x)| ≤ |fn(0)−u(0)|+
∫ x

0

|f ′
n(t)−v(t)|dt ≤ |fn(0)−u(0)|+‖f ′

n−v‖∞.

Moreover, since

|f ′
n(x) − f ′

n(y)| ≤ C2|x− y|,
it results (just by pointwise convergence)

|v(x) − v(y)| ≤ C2|x− y|.
Then, setting f(x) = u(x) we obtain a function f ∈ X such that (up to
a subsequence) fn → f and f ′

n → f ′ uniformly. Since the Lagrangian
L(x, f(x), f ′(x)) is a continuous function, passing to the limit under
the integral sign we get

J(f) =

∫ 1

0

L(x, f, f ′)dx = lim
n→+∞

∫ 1

0

L(x, fn, f
′
n)dx.

Therefore f is a minimum of J in the space X.
Although in such a case there are almost no restrictions on W and

σ, and it is possible to find regular minimizers of the functional J ,
in general terms in this case (2.8) it is a sufficient condition for equi-
librium states but not a necessary condition. Indeed, in such a case
the variations fε = f + εη could not satisfy the constraints on the
derivatives.
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2.3. Selection of σ and W : the application to flat surfaces.

In this section we address the question of finding explicit forms of W
and σ, useful to work coherently for any given technological process
having as an output flat surfaces. An example of a numerical procedure
is provided, to show how it works in testing whether a technological
process satisfies the equilibrium condition (2.8) or not. The aim of this
section is to explain how the variational methodology could be applied
to assess the technological signature of a workpiece, and thus to assess
the quality of any manufacturing process. Let (xi, fi), i = 0, 1, . . . , n
be the 2D coordinates of (n+1) measured points on the manufactured
workpiece. Since the condition (2.8) has to be satisfied on the whole
interval [0, 1], it could be preferable to handle it with a global expression
of the upper boundary f(x). Moreover, condition (2.8) involves the
derivatives of f(x). A first step of the methodology proposed is to
infer a global expression of f(x) from the sampled points (xi, fi). A
reasonable choice could be to work with approximating polynomials.
For instance, it is possible to construct the polynomial fn(x) ∈ R[x] of
degree n such that fn(xi) = fi:

fn(x) = anx
n + an−1x

n−1 + · · · + a1x
1 + a0 =

n∑

j=0

ajx
j .

To avoid numerical complications (see for instance [24]), provided we
are free to choose the x-coordinates, a better choice would be to work
with Bernstein polynomials given by

fn(x) = Bn(x) :=

n∑

k=0

(
n

k

)

fkx
k(1 − x)n−k, (2.13)

where fk corresponds to the y-coordinate evaluated at the point k
n
.

Bernstein polynomials converge to the profile f(x): the approximation
could be thus improved by increasing the number of points measured
and hence the degree of the polynomial.

A second step is to infer the expression of the cost densities W and
σ. These functions are certainly linked with the physics of the manu-
facturing process, but, in general, the physics underlying the process
is very complex and a reasonable description of the essential features
is not easy to derive. Accordingly, we here propose to infer W and σ

from the process output, thus avoiding the description of the physics of
the process themselves. In other words, we assume that, whatever the
characteristics of the technological process actually are, the workpiece
is produced under equilibrium states, namely satisfying condition (2.8).
In order to simplify computations, we choose a particular polynomial
expression for W (x, s) and σ(x, t). We set

W (x, s) = (s− h)xn−3,
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where h is the thickness of the workpiece to be manufactured. The
factor xn−3 is assumed just for technical reasons which simplify com-
putations. Observe that we are assuming that W is in some sense a
known function. Let σ(x, t) be

σ(x, t) = p(x) +Dt2, (2.14)

where p and D are respectively a polynomial of degree (2n− 3) and a
constant which will be determined through the measured points on the
workpiece. Observe that with these choices, the Lagrangian

L(x, u, v) =
1

2
(u− h)2xn−3 + p(x)v +

D

3
v3 (2.15)

does not satisfy the conditions (2.10) and (2.11). Observe that con-
ditions (2.10) and (2.11) require the knowledge of the global behavior
of the density functions W and σ. On the other hand, by searching
minimizers of J on the space X defined by (2.12), the functions W and
σ are completely undetermined. However, as observed, in this case the
equation (2.8) is not a necessary equilibrium condition. In this case one
would carefully estimates the minimum value m = minX J and study-
ing the equilibrium of a configuration f ∈ X by estimating |J(f)−m|.
Here, to illustrate an example application, we have chosen an inter-
mediate state in which the functions W and σ are just partially deter-
mined. In such a way, we are able to directly equilibrium configurations
(Euler equation solutions) without passing through any minimization
process. Therefore, in particular we will choose the parameters of the
Lagrangian (2.15) in order to reach solutions of equation (2.8), namely,
to handle with equilibrium configurations. As stated in the previous
section, a sufficient condition for equilibrium states is given by (2.8).
This can be rewritten as

W (x, f(x)) − ∂σ

∂x
(x, f ′(x)) − ∂σ

∂f
(x, f ′(x))f ′′(x) = constant.

Approximating the map x 7→ f(x) with the polynomial fn(x), we ob-
tain:

(fn(x) − h)xn−3 − p′(x) − 2Df ′
n(x)f ′′

n(x) = constant. (2.16)

The analysis of the involved polynomials degree gives

(fn(x) − h)xn−3

︸ ︷︷ ︸

deg=2n−3

− p′(x)
︸︷︷︸

deg=2n−4

− 2Df ′
n(x)f ′′

n(x)
︸ ︷︷ ︸

deg=2n−3

= constant
︸ ︷︷ ︸

deg=0

. (2.17)

The coefficient of the highest power of x is given by

an − 2Dn2(n− 1)a2
n. (2.18)

Since it has to be zero, for the Identity Principle of Polynomials, this
allows to determine the value of D.

The polynomial p(x) can be determined up to a constant by
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p′(x) = (fn(x) − h)xn−3 − 2Df ′
n(x)f

′′
n(x) − constant. (2.19)

Since the minimization, or in general equilibrium configurations, of J
are not affected by the addition of a constant term to W , we may
assume this arbitrary constant to be equal to zero. Accordingly, by
the first data set we can determine the cost functions W and σ by
using (2.18) and (2.19). Once W and σ are obtained, condition (2.16)
could be assumed as a reference for the given manufacturing process.
Precisely, for other data sets corresponding to workpieces processed
by the same manufacturing process, we expect that condition (2.16)
holds as well, since the process is in an equilibrium state. On the other
hand, if for some reason the process leaves this equilibrium state, the
condition (2.16) has to fail. Vice versa, whenever the condition (2.16)
is not satisfied by a workpiece one can suspect a modification occurring
in the technological process.

In order to assess the sensitivity of the proposed variational method-
ology, a simulation of the cutting process was performed through a
VBA Macro created in Microsoft ExcelTM. The input to be processed
by the simulation were a data set of 50 equally-spaced measurement
points on the x-dimension of the workpiece, in the range x ∈ [0, 1]
with a step of 0.01mm. Setting the level of three different factors,
namely tool wear, tool holder vibrations, and spindle axes loose, the
simulation provided the y-coordinate of the manufactured part corre-
sponding to each x-coordinate. Setting specific level to each factor,
only to extreme levels were selected for each one of them: “low” cor-
responds to an ideal condition, while “high” corresponds to the worst
operational case. These two levels correspond to different equilibrium
states of the manufacturing process. A three factors two-levels fac-
torial experiment, with five replications for each trial, was performed
having the z-dimension measure as a response; Table 1 summarizes the
experimental layout selected for the purpose.

A numerical code was implemented in MatlabTM version 7 to com-
pute the algorithm of Figure 3.1, reported and described in the Appen-
dix, built on the basis of the proposed variational approach for data
points provided by the simulation model.

Concerning the method to check the presence of arbitrary constant
trends in the left side of (2.16)(see step 7 in the description of the algo-
rithm of Figure 3.1), the non-parametric Spearman’s rank-correlation
coefficient, denoted by ρ, has been chosen. We refer to [10] for a prelim-
inary discussion on the subject. The ρ coefficient satisfies the inequality
−1 ≤ ρ ≤ 1 and gives a measure of how well an arbitrary monotonic
function describes the relationship between two variables. Here we con-
fine ourself to observe that values of |ρ| close to 1 denotes a monotonic
trend, otherwise we assume that no trend is detectable. Therefore, a
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Factors Combination

Trials n A B C

1 high high high
2 high high low
3 high low high
4 high low low
5 low high high
6 low high low
7 low low high
8 low low low
9 NA NA NA

Table 1. Experimental layout: A= tool wear, B= tool-
holder vibrations, and C= spindle axes loose. (Note that
NA means the factor did not affect the cutting process)

low value of |ρ| denotes a geometry compatible with a flat surface. As
an alternative, a threshold value can be appropriately selected accord-
ing to the specific manufacturing process considered. Here we evaluate
the ρ coefficient by the simplified formula

ρ = 1 − 6
∑n

i=1 d
2
i

n(n2 − 1)
(2.20)

where di = xi − yi is the difference between the ranks of the corre-
sponding values of the data under considerations, while n is the total
number of couples (xi, yi) of the data set. The values of z-dimension
of the machined surface are plotted for each of the five replications of
the same run in which all the factors are at their lowest levels (Figure
2.4) and at their highest levels (Figure 2.5). In the same figures the
approximations of the datasets by means of Bernstein’s polynomials
are also provided.

Note that, according to the previously reported steps, the first repli-
cation - with the factors at their lowest levels- represents the master

workpiece and the polynomial p′m(x) and the constant D computed for
the master workpiece are fixed and used for the other computations.
In Figure 2.6 and 2.7 the values of the polynomials obtained by the left
side of (2.16) are plotted for the trials LLL and HHH, respectively.

In Figure 2.8 a comparison of the values obtained by the left side of
(2.16) for trials LLL and HHH calculated in the xi coordinate of a work-
piece is provided. It is possible to notice a clear distinction between
the lines representing values of different trials. Lines representing the
same trial have a similar trend. Moreover, by changing the parameters
of the manufacturing process, the corresponding trend, whose values
are given by the left side of (2.16), departs even more from the constant
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Figure 2.4. The profile of part after the manufacturing
process for the trial of the experimental layout in which
all the factors are at their lowest levels
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Figure 2.5. The profile of part after the manufacturing
process for the trial of the experimental layout in which
all the factors are at their highest levels

trend. These trends are shown in detail in Figure 2.9 where only the
right part of the previous figure is provided. It is possible to observe
that all these plots (Figures 2.6-2.9) show a fast growth of the graphs
whenever x is close to x = 1. This phenomenon is due to the high
degree of the approximating polynomial, since the condition (2.16) in-
volves the second derivatives. To reduce this phenomenon it would be
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Figure 2.8. Comparison of the values of the polynomi-
als obtained by the left side of (2.16) for trials LLL and
HHH

useful to work with low-degree polynomial or by different interpolating
functions.

Therefore, as a qualitative conclusion, it is possible to state that the
methodology proposed seems able to detect changes in the technolog-
ical process even when no trends are detectable in the micro/macro
geometry of the workpieces, as shown in Figure (2.5).

3. Concluding remarks

Several approaches have been proposed so far to assess the quality
features of manufactured surfaces. Despite simple in principle, this
task is affected by a strong uncertainties: this fact justifies the amount
of different approaches developed so far, in particular for flat surfaces.
Amongst the most promising ones, those taking into account informa-
tion on past manufacturing process seems to be the most promising.
Recognizing the technological signature, i.e., the trace left by previous
manufacturing operations on the workpiece, can in fact give significant
advantages to this aim. To make explicit all the causal relationships
existing among different technological process-stage, experienced by a
workpiece, is an ideal condition in assessing the quality of the outputs
of technological processes. In this paper we address a new method to
assess the technological signature, by providing a formal representation
of the state transitions experienced by a manufactured workpiece using
the Calculus of Variation. The variational methodology introduced in
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Figure 2.9. Comparison of the values of the polynomi-
als obtained by the left side of (2.16) for trials LLL and
HHH

this paper is intended to improve quality estimation of flat surfaces
by capturing the essence of manufacturing processes. Despite the pa-
per concentrates on flat surfaces mostly, the concepts introduced are
general enough to be easily extended to other assessment problems of
different geometrical features.

Future steps of this approach will be the extension to data sampled
from a real case, to test complexity of adoption as well as the extension
to a three-dimensional case.

The exploratory numerical procedure provided for flat geometries,
although rudimentary, is complex enough to give a taste of the poten-
tialities of the approach. The outcomes from the analysis performed on
the specific case seems promising in the Author’s opinion. The position
here maintained is that as far as the functional J is able to embed the
evolution of the system, it is then possible to understand the sequence
of different transformations occurred on the manufactured part and
their particular features. This means to reproduce the “technological
memory” of the workpiece.

It is the author’s belief that the variational methodology proposed
deserves to be investigated more deeply both from the theoretical and
the applicative point of view in the near future for quality assessment
problems. Further efforts can be devoted in a near future also extend
the model to different geometries.
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Appendix

The flowchart can be described as follow:

• Step 1 : Consider i(i ≥ 5) manufactured workpieces within the
same process conditions (namely, for the simulation model it is
possible to consider the five replications of the same combina-
tion of factors’ levels; the first of this workpiece will be regarded
as a reference workpiece for other manufactured workpieces.

• Step 2 : Insert the y-coordinate of n+1 measured points on the
manufactured workpiece master and construct the polynomial
fm

n (x) where the superscript m = 1 means master.
• Step 3 : Insert the thickness h of the workpiece and compute

the polynomial Wm(x, f) of degree 2n − 3 and the constant
D = 1

2n2(n−1)an
for the master workpiece.

• Step 4 : Compute the polynomial p′m(x) for the master work-
piece as in (2.16) using the constant D.

• Step 5 : Insert the z-coordinate of n+1 measured points on the
manufactured workpiece 2 and construct the polynomial f 2

n(x).
• Step 6 : Insert the thickness h of the workpiece and compute

the left side of (2.16) by using the polynomial p′m(x) and the
value D of the master workpiece.

• Step 7 : Check if the values computed in the previous step are
disposed according to an arbitrary constant trend.

• Step 8 : Repeat steps from step 5 to 7 for all i workpieces.
• Step 9 : Repeat steps from step 5 to 7 for workpieces coming

from a different technological processes.
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