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Abstract

We show that on smooth manifolds there exists a direct link between the Bochner in-
equality and the (reduced) curvature-dimension condition: they can be seen, respectively,
as the Eulerian and the Lagrangian point of view on Ricci curvature bounds.

Aim of this short note is to provide a new and simple proof of the following theorem:

Theorem 1 Let M be a smooth Riemannian manifold which satisfies the CD∗(K,N) condi-
tion, K ∈ R, N ∈ (1,∞]. Then for every ϕ ∈ C∞(M) it holds

∆
|∇ϕ|2

2
≥ (∆ϕ)2

N
+∇∆ϕ · ∇ϕ+K|∇ϕ|2. (1)

This statement is obviously well known, as both the CD∗(K,N) condition and the Bochner
inequality are known to be equivalent to ‘the Ricci curvature of M is bounded from below by
K and its dimension above by N ’. The key point here is the methodology of the proof (no
Jacobi fields calculus is involved), its interpretation and the fact that the link between the
CD∗(K,N) condition and the Bochner inequality is direct and does not require to call into
play the notion of Ricci curvature nor that of dimension.

We recall that the CD∗(K,N) condition, introduced by Bacher-Sturm in [2] as a sort of lo-
cal variant of the CD(K,N) condition (the definition of CD(K,N) spaces was independently
given by Lott-Villani in [4] and by Sturm in [6]), in this setting reads as:

∂ttUN (µt)|t=0
≥ K

N

∫
ρ
1− 1

N
0 |∇ϕ|2 dvol, (2)

where vol is the volume measure on M , t 7→ µt = ρtvol is a constant speed geodesic on
(P2(M),W2) made of measures concentrated on some bounded subset of M , UN (µt) :=∫
uN (ρt) dvol, uN (z) := −z1−

1
N (resp. u∞(z) := z log z) and ϕ is any locally Lipschitz

Kantorovich potential from µ0 to µ1.

proof Clearly, it is sufficient to prove (1) for ϕ ∈ C∞c (M). Fix such ϕ, let ρ be any smooth
probability density with compact support and recall (see for instance Lemma 1.34 in [1]),

that for ε > 0 sufficiently small the function ψ := εϕ is d2

2 -concave, d being the Riemannian
distance on M , and exp(−t∇ψ) : M → M has smooth inverse for any t ∈ [0, 1]. Fix such ε,
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let µ0 := ρvol, and µt := (exp(−∇ψ))]µ0 = ρtvol, t ∈ [0, 1]. Recall (see for instance Chapter
2 of [1]) that the evolution of ρt is driven by

∂tρt +∇ · (ρt∇ψt) = 0, (3)

where [0, 1] 3 t 7→ ψt is the only smooth solution of

∂tψt +
|∇ψt|2

2
= 0, (4)

with ψ0 := ψ. Using (3), (4) one easily gets, by explicit computation, that

∂ttUN (µt) =

∫
p2,N (ρt)(∆ψt)

2 − pN (ρt)∇(∆ψt) · ∇ψt − pN (ρt)∂t∆ψt dvol,

where pN ,p2,N : [0,∞)→ [0,∞) are given by pN (z) := zu′N (z)−uN (z), p2,N (z) := zp′N (z)−
pN (z). Hence if (2) holds we must have, for N <∞, that∫

ρ1−
1
N

(
−(∆ψ)2

N2
− ∇(∆ψ) · ∇ψ

N
−
∂t∆ψt|t=0

N

)
dvol ≥ K

N

∫
ρ1−

1
N |∇ψ|2 dvol. (5)

Now recall that ρ is non negative and chosen independently on ψ, thus, taking into account
the linearity of ∆ and (4), we get the the conclusion. Similarly for N =∞. �

The proof of the converse implication looks technically more involved, as in general Kan-
torovich potentials are not smooth, nor they can be approximated by smooth ones. It is out
of the scope of this paper to investigate in this direction.

Remark 1 (Weighted manifolds) The very same proof works also if the volume measure
is replaced by a different one m: this change affects, in an obvious way, both the definition of
the functional UN and the one of the Laplacian. �

Remark 2 (The Finsler case) Equations (3), (4) remain valid in a Finsler manifold en-
dowed with smooth - outside 0 - and strictly convex norms on the tangent spaces. Then the
very same computations can be done (we are deliberately neglecting to discuss the delicate
regularity issues coming from the lack of smoothness in 0 of the squared norms) and they
lead to

−∂t∆ψt|t=0
≥ (∆ψ)2

N
+D(∆ψ)(∇ψ) +K|∇ψ|2, (6)

where (ψt) evolves from ψ0 = ψ according to (4). In a Finsler manifold the Laplacian in
general is not a linear operator, so we can’t swap ∆ and the time derivation at the left hand
side to deduce that the Bochner inequality can be written as in (1). Notice that (6) is a
different formulation of the Bochner inequality in a Finlser setting w.r.t. that obtained in [5].

�

The correct way to write the CD∗(K,N) condition (i.e. the one which makes sense also in a
non smooth setting) is

UN ((et)]π) ≤ −
∫
σ
(1−t)
K,N

(
d(γ0, γ1)

)
ρ−

1
N (γ0) + σ

(t)
K,N

(
d(γ0, γ1)

)
η−

1
N (γ1) dπ(γ), (7)
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for every t ∈ [0, 1], under the same assumptions on (µt) as in (2), where π is any
plan concentrated on the geodesics of M such that (et)]π = µt for any t ∈ [0, 1] and∫∫ 1

0 |γ̇t|
2 dtdπ(γ) = W 2

2 (µ0, µ1), et : C([0, 1],M) → M being the evaluation maps defined

by et(γ) := γt. Here the distortion coefficients σ
(t)
K,N are given by

σ
(t)
K,N (θ) :=



+∞, if Kθ2 ≥ Nπ2,
sin(tθ
√
K/N)

sin(θ
√
K/N)

if 0 < Kθ2 < Nπ2,

t if Kθ2 = 0,
sinh(tθ

√
K/N)

sinh(θ
√
K/N)

if Kθ2 < 0.

(actually, (7) is required to hold with N replaced by an arbitrary N ′ ≥ N , but on non
branching spaces this makes no difference).

Now observe that inequality (7) is an inequality concerning the distribution of masses at
different times along a (Wasserstein) geodesic. As such, we can think at it as a Lagrangian
point of view on Ricci bounds. Opposed to this, there should be a Eulerian point of view
which gives the same information read at the level of velocity vector fields. This is exactly the
point of view adopted in the proof of Bochner inequality just provided: as we learned from
Otto’s interpretation of the Wasserstein space as infinite dimensional Riemannian manifold,
for any ϕ ∈ C∞c (M) and any µ ∈ P2(M), the vector field ∇ϕ can be seen as the initial
velocity of a Wasserstein geodesic starting from µ (this is made rigorous by (3) and (4)).
From this perspective, Bochner inequality should be regarded as an inequality on gradients
of functions, rather than on functions themselves. All this also works in a Finsler setting.

As pointed out to me by Sturm, it is not surprising that to deduce Bocher inequality the
CD∗(K,N) condition is sufficient, as opposed to the stronger CD(K,N). This is due to the
fact that (1) is local in nature, exactly as CD∗(K,N) (while the locality of the CD(K,N)
condition in the non smooth setting is an open problem).

We conclude observing that taking just one derivative of UN along a geodesic and us-
ing the CD(K,N) condition, one proves, instead of Bocher inequality, the sharp Laplacian
comparison estimates for the distance function. This computation is perfectly justifiable on
a general metric measure space, as shown in [3]. The hope would then be to find a way to
justify the computations done here to state and prove the Bochner inequality in a non smooth
setting, but as of today it is not clear - at least to me - how to overcome in full generality the
severe technical issues that occur.
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