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Abstract

In this paper we study the nilpotent 2-step, corank 2 sub-Riemannian metrics that are
nilpotent approximations of general sub-Riemannian metrics. We exhibit optimal syntheses for
these problems. It turns out that in general the cut time is not equal to the first conjugate
time but has a simple explicit expression. As a byproduct of this study we get some smoothness
properties of the spherical Hausdorff measure in the case of a generic 6 dimensional, 2-step
corank 2 sub-Riemannian metric.

1 Introduction

1.1 Sub-Riemannian manifolds

In this paper, by a sub-Riemannian manifold we mean a triple (M,∆,g), where M is a connected
orientable smooth manifold of dimension n, ∆ is a smooth vector distribution of constant rank
m < n, satisfying the Hörmander condition and g is an Euclidean structure over ∆.

A sub-Riemannian manifold has the natural structure of a metric space, where the distance is
the so called Carnot-Caratheodory distance

d(q0, q1) = inf{
∫ T

0

√
gγ(t)(γ̇(t), γ̇(t)) dt | γ : [0, T ]→M is a Lipschitz curve,

γ(0) = q0, γ(T ) = q1, γ̇(t) ∈ ∆γ(t) a.e. in [0, T ]}.

As a consequence of the Hörmander condition d is actually a distance inducing the topology of the
manifold. This is the Rashevsky-Chow Theorem, see for instance [8] or [18].

Along this paper we assume that the structure is 2-step bracket generating i.e.

TqM = ∆q + [∆,∆]q, for every q ∈M,

and we quote a 2-step sub-Riemannian metric by its rank and its dimension, i.e. with the pair
(m,n). The quantity k = n−m is called the corank of the structure.

This research has been supported by the European Research Council, ERC StG 2009 “GeCoMethods”, contract
number 239748, by the ANR Project GCM, program “Blanche”, project number NT09-504490 and by the DIGITEO
project CONGEO.
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It is know from Mitchell [20] that the Hausdorff dimension of M , as a metric space, is h =
2n−m > n. In this paper we focus on the case (m,m+ 2).

A sub-Riemannian manifold is left-invariant if M = G, a Lie group, and both ∆ and g are
left-invariant over G.

Locally, the pair (∆,g) can be specified by the data of a set of m smooth vector fields spanning
∆, being an orthonormal frame for g, i.e.

∆q = span{X1(q), . . . , Xm(q)}, gq(Xi(q), Xj(q)) = δij . (1)

In this case, the set {X1, . . . , Xm} is called a local orthonormal frame for the sub-Riemannian
metric.

The sub-Riemannian metric can also be expressed locally in “control form” as follows. We
consider the control system,

q̇ =
m∑
i=1

uiXi(q) , ui ∈ R , (2)

and the problem of finding the shortest curve minimizing that joins two fixed points q0, q1 ∈M is
naturally formulated as the optimal control problem,

∫ T

0

√√√√ m∑
i=1

u2
i (t) dt→ min, q(0) = q0, q(T ) = q1. (3)

A geodesic for the sub-Riemannian metric is a curve, parametrized by constant velocity, such that
every short enough piece of it is a local minimizer of the length. For the sub-Riemannian metrics
given in control form all the geodesics can be computed with Pontryagin’s maximum principle [22].
In the 2-step bracket generating case, it is known that there is no strict abnormal minimizer, and
all geodesics are projections on M of the trajectories of the Hamiltonian system associated with
the following Hamiltonian over T ∗M

H(λ, q) =
1
2

m∑
i=1

〈λ,Xi(q)〉2, λ ∈ T ∗qM. (4)

and corresponding to the level set {H = c}, for c > 0.

1.2 Nilpotent approximation

Consider a sub-Riemannian manifold (M,∆,g) and fix a point q ∈ M . The Lie bracket induces a
skew symmetric tensor bilinear mapping

[·, ·]q : ∆q ×∆q → TqM/∆q. (5)

Then, for every Z∗ ∈ (TqM/∆q)∗, we have

Z∗([X,Y ] + ∆q) = 〈AZ∗(X), Y 〉g,

for some g-skew symmetric endomorphism AZ∗ of ∆q.

Remark 1 (Notation). We denote by Lq the k-dimensional space of skew symmetric endomorphisms
of ∆q obtained by taking the union of all the AZ∗ at q. This notation is used in the Appendix.
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The space Lq = ∆q ⊕ TqM/∆q is endowed with the structure of a 2-step nilpotent Lie-algebra
by setting

[(V1,W1), (V2,W2)] = (0, [V1, V2] + ∆q).

The associated simply connected nilpotent Lie group is denoted by Gq and the exponential mapping
Exp: Lq → Gq is one to one and onto. By translation, the metric gq over ∆q allows to define a
left-invariant sub-Riemannian metric over Gq.

Definition 2. The sub-Riemannian metric on Gq defined above is called the nilpotent approxima-
tion of (M,∆,g) at q.

Any k dimensional vector sub-space Vq of TqM , transversal to ∆q allows to identify Lq and Gq
to TqM ' ∆q ⊕ TqM/∆q.

Fix q0 ∈ M . We can chose coordinates x in ∆q0 such that the metric gq0 is the standard
Euclidean metric, and for any linear coordinate system y in Vq0 , there are skew symmetric matrices
L1, . . . , Lk ∈ so(m) such that the mapping (5) writes

[X,Y ] + ∆q0 =

 X ′L1Y
...

X ′LkY

 .

where X ′ denotes the transpose of the vector X. Then the nilpotent approximation written in
control form is 

ẋi = ui, i = 1, . . . ,m,
ẏ1 = 1

2x
′L1u,

...
ẏk = 1

2x
′Lku.

(6)

The construction of the nilpotent approximation given in Definition 2 makes sense for any
sub-Riemannian metric, but it coincides with the standard one (see [3, 9]) in the 2-step bracket
generating case only.

Proposition 3. The distribution is 2-step bracket generating if and only if the endomorphisms
of ∆q, Li, i = 1, . . . , k (respectively the matrices Li when coordinates y in Vq are chosen) are
independent.

In the 2-step bracket generating case these linear coordinates y in TqM/∆q may be chosen in
such a way that the endomorphisms Li, i = 1, . . . , k are orthonormal with respect to the Hilbert-
Schmidt norm 〈Li, Lj〉 = 1

mtrace(L′iLj). This choice defines a canonical Euclidean structure in
TqM/∆q and a corresponding volume in TqM/∆q. Then using the Euclidean structure over ∆q

we get a canonical Euclidean structure over ∆q ⊕ TqM/∆q. The choice of the vector subspace
Vq induces an Euclidean structure on TqM which depends on the choice of Vq, but the associated
volume on TqM is independent on this choice.

Definition 4. This volume form on M is called the Popp measure.

The Popp measure is a smooth volume form.
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1.3 Statement of the results

1.3.1 History

The main purpose of this paper is to build the optimal synthesis for (m,m + 2) nilpotent sub-
Riemannian metrics, i.e. the set of all trajectories starting from the identity of the group and
realizing the minimum of the distance, with a precise description of their cut time.

Optimal syntheses are in general very difficult to obtain. Usually the steps are the following:

- Apply first order necessary conditions for optimality (which in the case of sub-Riemannian
manifolds are given by the Pontryagin Maximum Principle) to reduce the set of candidate
optimal trajectories. This first step can be already very difficult since one should find solutions
of a Hamiltonian system, which is not integrable in general.

- Use higher order necessary conditions to reduce further the set of optimal trajectories. This
step usually leads to the computation of the conjugate locus, i.e. the set of points up to which
geodesics are locally optimal.

- Prove that no strict abnormal extremal is optimal (for instance by using conditions such as
the so called Goh condition [3, 8]). If one fails to go beyond this step, then one can hardly
get an optimal synthesis, since no general technique exists to treat abnormal minimizers.

- Among all solutions of the first order necessary conditions, find the optimal ones. One has to
prove that, for each point of a candidate optimal trajectory, there is no other trajectory among
the selected ones, reaching that point. The first point after which a first order trajectory loses
global optimality is called a cut point. The union of all cut points is the cut locus.

As a consequence of these difficulties, optimal syntheses in sub-Riemannian geometry have been
obtained in few cases.

The most studied cases are those of left invariant sub-Riemannian metrics (see for instance [2]
for a classification in the 3D case). The first optimal synthesis was obtained for the Heisenberg
group in [16, 17]. Then complete optimal syntheses were obtained for the 3D simple Lie groups
SU(2), SO(3), SL(2), with the metric induced by the Killing form in [11, 12]. An impressive work
has been done by Yuri Sachkov who obtained the optimal synthesis for the group of motions of the
plane SE(2) (see [21, 25]).

In dimension larger than 3, only nilpotent groups have been attacked. The complete optimal
synthesis was obtained in [4] in the contact nilpotent case. Some results were obtained by Y.
Sachkov for the Engel and Cartan groups [23, 24].

When a Lie group structure is not available there are also some results: the optimal synthesis
was obtained for a neighborhood of the starting point in the 3D contact case in [6, 7, 15] and in
the 4D quasi-contact case in [14]. The optimal synthesis was obtained in the important Martinet
nilpotent case, where abnormal minimizers can be optimal (see [5]). They also solved the problem
for certain perturbations of this case where strictly abnormal minimizers occur (see [10]).

To our knowledge, no other case has been solved.
It is interesting to notice that when the sub-Riemannian metric is invariant by certain continuous

transformation (e.g. rotations) then most of the cut points are automatically conjugate. This
happens for instance on the Heisenberg group, on SU(2) and in the contact nilpotent case.
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Remark 5 (Notation). In the case of our nilpotent approximations, covectors in T ∗qM can be iden-
tified with vectors in TqM via the Euclidean structure of TqM given by the choice of Vq. In our
coordinates (x, y), these covectors/vectors are typically denoted by (u0, r).

For nilpotent (m,m+ 1) sub-Riemannian metrics that are nilpotent approximations of general
sub-Riemannian metrics, the control systems can be written as{

ẋi = ui, i = 1, . . . ,m,
ẏ = 1

2x
′Lu, L skew symmetric,

(C1)

Denote by σ(L) the set of all moduli of eigenvalues of the matrix L. The following fact is proved
in [4]:

Theorem 6. ([4]) Arclength geodesics of system (C1), starting from the origin, are parametrized
by an initial covector λ0 = (u0, r) ∈ Sm−1 × R, and they are optimal until time

tcut(λ0) =
2π

|r|maxσ(L)
,

with the understanding tcut(λ0) = +∞ if r = 0. Moreover tcut(λ0) = tconj(λ0).

The proof of this result is based on the fact that geodesics can be expressed in terms of usual
trigonometric functions and, thanks to a certain monotonicity property, the cut locus can be ex-
plicitly computed and is exactly equal to the conjugate locus.

1.3.2 Optimal synthesis for the nilpotent (m,m+ 2) case

The main result of this paper is the optimal synthesis in the case of a nilpotent approximation in the
(m,m+2) case. In this case the control system can be written in coordinates q = (x1, . . . , xk, y1, y2)
as 

ẋi = ui, i = 1, . . . ,m,
ẏ1 = 1

2x
′L1u,

ẏ2 = 1
2x
′L2u, L1, L2 skew symmetric.

(C2)

Set r1 = |r| cos θ, r2 = |r| sin θ, and Lθ = cos(θ)L1 + sin(θ)L2.

Theorem 7. Arclength geodesics of system (C2), starting from the origin, are parametrized by an
initial covector λ0 = (u0, r) ∈ Sm−1 × R2, and they are optimal until time

tcut(λ0) =
2π

maxσ(r1L1 + r2L2)
=

2π
|r|maxσ(Lθ)

,

with the understanding tcut(λ0) = +∞ if r = 0. Moreover, in general, tcut(λ0) 6= tconj(λ0).

The last statement in the Theorem 7 says that in the corank 2 case the cut and the conjugate
time coincide only in some particular cases, which we explicitly describe in the (4, 6) case (see
Theorem 8).

The reason why the corank 2 case is more difficult than the corank 1 case is precisely the fact
that the cut locus is not equal to the conjugate locus. (The latter we are not able to compute
explicitly.)

Explicit expression of geodesics for this optimal synthesis are given in Section 2.

5



1.3.3 The nilpotent (4, 6) case

In the nilpotent (4, 6) case our first result is the following:

Theorem 8. The following properties are equivalent:

(P1) The first conjugate locus is equal to the cut locus.

(P2) The linear coordinates y in TqM/∆q can be chosen in such a way that the pair (L1, L2) of
4× 4 skew symmetric matrices belongs to the set (Q ∪ Q̂)2.

Here Q (resp. Q̂) denotes the set of pure quaternions (resp. pure skew quaternions), see
Appendix 4.1.

Our second result is a continuation of the paper [4] for corank 1, where the following result is
proved for general sub-Riemannian metrics.

Theorem 9 ([4]). In the (m,m+ 1) case the Radon-Nykodym derivative of the spherical Hausdorff
measure with respect to the Popp measure is a C3 function, but is not C5 in general.

Here we show the following result

Theorem 10. For a generic (4, 6) sub-Riemannian metric1, the Radon-Nykodym derivative of the
spherical Hausdorff measure with respect to the Popp measure is C1.

In the previous paper [4] it is shown that the Radon-Nikodym derivative of the spherical Haus-
dorff measure with respect to the Popp measure is inversely proportional (as a function of q) to the
volume of the unit sub-Riemannian ball of the nilpotent approximation at q. Then Theorem 10 is
a byproduct of the optimal synthesis given here.

Note that in the corank 1 case, the higher differentiability of the Radon-Nikodym derivative is
due to the fact that the conjugate locus is equal to the cut locus, which is not the case here.

Due to the complexity of the computations even in this low dimensional case, it is not easy to
determine the real degree of differentiability of Hausdorff measure. This is still an interesting open
question.

1.4 Organization of the paper

Section 2 is devoted to the construction of the optimal synthesis for (m,m + 2) nilpotent sub-
Riemannian metrics and, as a consequence, to the proof of Theorem 7. In Sections 2.1 and 2.2 we
compute the exponential map. In Section 2.3 we prove that geodesics are optimal up to tcut. Finally
in Section 2.4 we show that the cut time does not coincide, in general, with the first conjugate time.
In Section 3 we give the proofs of Theorems 8 and 10.

In the Appendix we recall basic facts about quaternions, we prove a technical Lemma, and
applying an Abraham’s transversality theorem, we prove that, generically, for the (4, 6) case, a
certain “bad set” is made of isolated points, which permits to conclude about the differentiability
of the Radon-Nikodym derivative (Theorem 10).

1which means for an open and dense subset of all (4, 6) sub-Riemannian metrics, endowed with the Whitney
topology.
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2 Exponential map and synthesis

2.1 Hamiltonian equations in the (m, n) case

The purpose of this section is to compute the exponential map, i.e. the set of all geodesics,
parametrized by length, starting form the origin of the control system (6), i.e. the system{

ẋi = ui, i = 1, . . . ,m,
ẏh = 1

2x
′Lhu, h = 1, . . . , k.

(7)

Let Lh = (bhij), for h = 1, . . . , k. Then the control system can be written in the form q̇ =∑m
i=1 uiXi(q) where q = (x, y) and

Xi = ∂xi +
1
2

∑
j,h

bhijxj∂yh , i = 1, . . . ,m.

Setting Yh = ∂yh , for h = 1, . . . , k, the commutation relations are

[Xi, Xj ] =
k∑

h=1

bhijYh, i, j = 1, . . . ,m, (8)

[Xi, Yj ] = [Yj , Yh] = 0, i = 1, . . . ,m, j, h = 1, . . . , k. (9)

Define the functions on T ∗M , that are linear on fibers,

ui(λ, q) = 〈λ,Xi(q)〉 , i = 1, . . . ,m, (10)
rh(λ, q) = 〈λ, Yh(q)〉 , h = 1, . . . , k. (11)

These functions can be treated as coordinates on the fibers of T ∗M to solve the Hamiltonian system
given by the Pontryagin Maximum Principle, see Section 1.1. This Hamiltonian system is associated
with the Hamiltonian

H(λ, q) =
1
2

m∑
i=1

〈λ,Xi(q)〉2 =
1
2

m∑
i=1

u2
i (λ, q), λ ∈ T ∗qM. (12)

Remark 11. The geodesics parametrized by length correspond to the level set {H = 1/2}. Notice
that, for systems of type q̇ =

∑m
i=1 uiXi(q), with fixed initial and final points, the problem of finding

length-parametrized curves minimizing the length, is equivalent to the problem of minimizing time
with the constraint {‖u‖ ≤ 1}.

For a function a ∈ C∞(T ∗M) we have that, along the sub-Riemannian flow

ȧ = {a,H} =
m∑
i=1

{a, ui}ui, (13)

where {a, b} denotes the Poisson bracket of two functions in T ∗M . The following Lemma gives a
way of computing the covector λ(t), solution of the Hamiltonian system associated with (12) in the
coordinates (u, r).
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Lemma 12. If u(t) and r(t) are solution of (13) corresponding to level set {H = 1/2}, then they
satisfy {

u̇(t) = (r1L1 + . . .+ rkLk)u(t), u(0) = u0, ‖u0‖ = 1,
ṙ(t) = 0.

Proof. Remind that, if ai(λ, q) = 〈λ, Zi(q)〉, for some vector fields Zi, i = 1, 2, then

{a1, a2} = 〈λ, [Z1, Z2]〉 .

Applying (13) for a = rh and using (9) we get

ṙh =
k∑

h=1

{rh, ui}ui = 0 ⇒ rh = const.

Similarly, using (8), one find

u̇i =
n∑
i=1

{ui, uj}uj =
n∑
i=1

bkijrkuj .

Remark 13. In the following geodesics are parametrized by the initial covector λ(0) = (p(0), r(0)) =
(u0, r), since r = const and ui = 〈λ,Xi〉 and at the starting point we have Xi(0) = ∂xi .

2.2 Exponential map in the corank 2 case

From now on we focus on the case (m,m+ 2), i.e. when the corank k is equal to 2. We can write
the equation of geodesics starting from the origin as follows

x(t) =
∫ t

0
es(r1L1+r2L2)u0ds, x(0) = 0,

y1(t) =
1
2

∫ t

0
x(s)′L1 u(s)ds, y1(0) = 0,

y2(t) =
1
2

∫ t

0
x(s)′L2 u(s)ds, y2(0) = 0.

(14)

Remark 14 (Notation). In the following we denote by Eu0,r1,r2
L1,L2

(t) the geodesic, parametrized by
the length, and starting from the origin, defined by equations (14), associated with L1, L2.

Definition 15. The matrices L1, L2 being fixed, the exponential map is the map E : R+×Λ→ Rn

defined by

E(t, u0, r1, r2) = Eu0,r1,r2
L1,L2

(t), Λ = {(u0, r1, r2), u0 ∈ Sm−1, ri ∈ R}

Remark 16. The optimal control problem
ẋi = ui, i = 1, . . . ,m,
ẏ1 = 1

2x
′L1u,

ẏ2 = 1
2x
′L2u,

(15)

is invariant with respect to the following change of coordinates
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(a) orthogonal changes of coordinates in the x space,

(b) linear changes of coordinates in the y space.

Indeed, let M be a nonsingular orthogonal matrix (M−1 = M ′) and define the new coordinates
x̃ = Mx. Then

˙̃x = Mẋ = Mu =: ũ,

and
ẏi = x′Liu = (Mx)′MLiM

′(Mu) = x̃′MLiM
′ũ.

Hence, in the new coordinates, Li is changed for L̃i := MLiM
′.

Also, it is easy to see that the change of coordinates

ỹ1 = α1y1 + α2y2, ỹ2 = β1y1 + β2y2, (16)

corresponds to the change

L̃1 = α1L1 + α2L2, L̃2 = β1L1 + β2L2.

In other words we can change L1 and L2 up to congruence and linear combinations.

Using these arguments one immediately gets

Lemma 17. Let (r1, r2) =: (r cos θ, r sin θ) and Lθ := cos θL1 + sin θL2, L̃θ := − sin θL1 + cos θL2.
Consider the rotation matrix Rθ =

(
cos θ sin θ
− sin θ cos θ

)
and the orthogonal matrix M such that MLθM

′ is
block diagonal.

Denote Ω =
(
M 0
0 Rθ

)
and ũ0 = Mu0. We have the equality

ΩEu0,r1,r2
L1,L2

(t) = Eeu0,r,0

Lθ,eLθ(t). (17)

Thanks to Lemma 17, one can always restrict to geodesics of the type

x(t) =
∫ t

0
esrLθu0ds,

y1(t) =
1
2

∫ t

0
x(s)′Lθ u(s)ds,

y2(t) =
1
2

∫ t

0
x(s)′L̃θ u(s)ds,

(18)

where Lθ is in the block-diagonal form

Lθ =


0 a1

−a1 0
. . .

0 a`
−a` 0

 , or



0 a1

−a1 0
. . .

0 a`
−a` 0

0


,

depending on the fact that m is even (m = 2`) or odd (m = 2` + 1), and where the geodesic is
associated with the covector (r1, r2) = (r, 0).
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Remark 18. When we deal with a fixed sub-Riemannian metric we can assume also that the coor-
dinates in the x space are chosen in such a way that a1 ≥ ai, for every i. In this case

2π
rmax(σ(Lθ))

=
2π
a1r

.

2.3 Computation of the cut time

In this section we prove Theorem 7, i.e. we compute the last time at which a geodesic parametrized
by length is optimal.

We first consider the case r = 0. In this case equations (14) can be easily integrated and gives
the straight lines {

x(t) = u0t,

yi(t) = 0.

This trajectory is optimal for any time (i.e. tcut = +∞) since the sub-Riemannian length of a
geodesic coincides with the Euclidean length of its projection on the horizontal subspace (x1, . . . , xm),
as follows from formula (3).

In what follows we use the notation A = rLθ, Ã = rL̃θ and we focus on the case when A is
even dimensional (i.e. m = 2`) and invertible. The case A non invertible (in particular A odd
dimensional) needs an obvious modification of the proof.

With this notation the system (18) is rewritten as
x(t) = A−1(etA − I)u0,

y1(t) =
1
2

∫ t

0
x(s)′Au(s)ds,

y2(t) =
1
2

∫ t

0
x(s)′Ã u(s)ds,

(19)

2.3.1 Maxwell points

Consider γ(t) = Eu0,r,0(t), the geodesic associated with the problem (19) and with initial covector
(u0, r, 0), r > 0. Let us first show that there exists another geodesic reaching the point γ(T ∗) in time
T ∗ = 2π/(a1r). Using Arnol’d’s terminology, points reached in the same time by more than one
geodesic are called Maxwell points. At the end of this section we prove that γ cannot be optimal
after T ∗.

Set u0 = (u1, u2, u3, . . . , um) and consider the following variation of the horizontal covector

uω0 = (cosω u1 + sinω u2,− sinω u1 + cosω u2, u3, . . . , um), ω ∈ [0, 2π].

Denote γω(t) = (xω, yω1 , y
ω
2 ) := Eu

ω
0 ,r,0(t) the geodesic associated with this variation.

Claim: There exists ω 6= 0 such that γ(T ∗) = γω(T ∗).

10



Proof of the Claim. Denote by MA(t) := A−1(etA − I) and notice that

MA(t) = A−1(etA − I) =



sin a1rt
a1r

1−cos a1rt
a1r−1+cos a1rt

a1r
sin a1rt
a1r

. . .
sin a`rt
a`r

1−cos a`rt
a`r−1+cos a`rt

a`r
sin a`rt
a`r

 .

In other words we can write

MA(t) =

D1(t)
. . .

D`(t)

 ,

where

Di(t) =

(
sin airt
air

1−cos airt
air−1+cos airt

air
sin airt
air

)
= 2

sin(airt/2)
air

(
cos(airt/2) sin(airt/2)
− sin(airt/2) cos(airt/2)

)
. (20)

We prove our claim by steps.
(i). From (20) it is easy to see that

xω(T ∗)− x(T ∗) = A−1(eT
∗A − I)(uω0 − u0) = MA(T ∗)(uω0 − u0) = 0, ∀ω ∈ [0, 2π],

since eT
∗A − I (and so MA(T ∗)) has its first 2× 2 block equal to zero.

(ii). Now we show that yω1 (T ∗) = y1(T ∗) for all ω ∈ [0, 2π]. Indeed from (19), we get

y1(t) = −1
2
u′0

∫ t

0
(e−sA − I)esAds u0

=
1
2
u′0

∫ t

0
(esA − I)ds u0

=
1
2
〈MA(t)u0, u0〉+

1
2
t‖u0‖2,

and

yω1 (T ∗)− y1(T ∗) =
1
2

(〈MA(T ∗)uω0 , u
ω
0 〉 − 〈MA(T ∗)u0, u0〉) +

T ∗

2
(‖uω0 ‖2 − ‖u0‖2).

First notice that
‖uω0 ‖2 = ‖u0‖2, ∀ω ∈ [0, 2π].

Moreover, setting uω0 = u0 + vω we get (we omit T ∗ in the argument of MA)

〈MAu
ω
0 , u

ω
0 〉 − 〈MAu0, u0〉 = 〈MAv

ω, vω〉+
〈
(MA +M ′A)vω, u0

〉
= 0

since the first 2× 2 block of MA that is zero at T ∗ and vω has nonzero component only in the first
two entries.
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Remark 19. Note that (i) and (ii) are just the manifestation of the fact that, forgetting about the
second vertical component y2, we are facing the corank 1 case, for which T ∗ is a cut time and there
is a rotational symmetry that implies that it is also a conjugate time.
(iii). Now one can proceed in a similar way and compute

y2(t) =
1
2

∫ t

0
x(s)′Ã u(s)ds

=
1
2
u′0

∫ t

0
(A−1(esA − I))′Ã esAds u0

= −1
2
u′0

∫ t

0
(e−sA − I)A−1Ã esAds u0

= 〈C(t)u0, u0〉 ,

where we set

C(t) =
1
2

∫ t

0
(e−sA − I)A−1Ã esAds. (21)

Since all matrices appearing in (21) but Ã are 2× 2 block diagonal, the first 2× 2 diagonal block of

K(s) := (e−sA − I)A−1Ã esA,

is the product of the respective blocks. A direct computation shows that it is

α0

a1

(
1− cos(a1rs) − sin(a1rs)

sin(a1rs) 1− cos(a1rs)

)
,

where
(

0 α0

−α0 0

)
denotes the first 2× 2 block of Ã. Integrating from 0 to T ∗ one obtains for the

first block of C(T ∗)
πα0

a2r2

(
1 0
0 1

)
. (22)

As before, we set uω0 = u0 + vω and we get (omiting T ∗ in the argument of C)

yω2 (T ∗)− y2(T ∗) = 〈Cvω, vω〉+
〈
(C + C ′)vω, u0

〉
. (23)

Using (22) and

‖vω‖2 = ((cosω − 1)u1 + sinω u2)2 + (− sinω u1 + (cosω − 1)u2)2

= 4(u2
1 + u2

2) sin2(ω/2),

one gets that (23) is linear with respect to the variables

cosω − 1 = −2 sin2(ω/2), sinω = 2 cos(ω/2) sin(ω/2).

In other words, if we prescribe that the expression (23) is zero, we get

C0 sin(ω/2)(C1 cos(ω/2) + C2 sin(ω/2)) = 0, (24)

for some suitable constants C0, C1, C2 that do not depend on ω. The Claim is proved since equation
(24) has always a nontrivial solution ω̃ ∈ [0, 2π].
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Let us now show that γ(t) cannot be optimal after T ∗. From the previous computation we have
γ̇(T ∗) 6= γ̇eω(T ∗). By contradiction if γ is optimal after time T ∗ then the concatenation of γeω|[0,T ∗]
and γ|[T ∗,T ∗+ε] (for some ε > 0) is optimal as well, which is impossible since all optimal trajectories
are projections of the Hamiltonian system associated with (12) and they are smooth.

2.3.2 Optimality of geodesics

In this section we prove that γ(t) = Eu0,r,0(t), r > 0, is optimal up to its first Maxwell time
T ∗ = 2π/(a1r).
To this extent, consider the following auxiliary optimal control problem:

P. Let T < T ∗ and set (x̄, ȳ1, ȳ2) = γ(T ). Find a length-parametrized trajectory of the system
ẋi = ui, i = 1, . . . ,m,
ẏ1 = 1

2x
′L1u,

ẏ2 = 1
2x
′L2u,

(25)

starting from the origin, and reaching the hyperplane {x = x̄} in time T , maximizing the y1

coordinate.

Remark 20. Notice that ȳ1 > 0 since r > 0 implies that the trajectory is not contained in the
hyperplane {y1 = 0}.

Lemma 21. The following assertions hold: (i) There exists a solution γ∗ of the problem P. (ii)
γ∗ is a length minimizer. (iii) γ∗(t) = Eeu0,er,0(t) for some (ũ0, r̃).

Proof. Let us prove (i). In problem P, since we deal with length-parametrized trajectories, we can
assume that the set of controls in (25) is U = {‖u‖ ≤ 1}. The existence of a solution of P can be
obtained with standard arguments using the compactness and convexity of the set of admissible
velocities (see [8, 13]).

To prove (ii) assume by contradiction, that there exists a trajectory of (25) reaching the point
(x̄, y∗1, y

∗
2) = γ∗(T ) in time T0 < T . By small time controllability there exists a trajectory of system

(25) reaching in time T the point (x̄, ŷ1, ŷ2), with ŷ1 > y∗1 contradicting the fact that γ∗ maximize
the y1 coordinate. The fact that γ∗ is also a length minimizer follows from Remark 11.

To prove (iii) observe that γ∗ satisfies the Pontryagin Maximum Principle (see again [8]) for the
problem of minimizing −y1 = −

∫ T
0 ẏ1dt = −

∫ T
0 x′L1u dt, i.e. with the Hamiltonian

Hu =
m∑
i=1

〈λ, uiXi〉+ νx′L1u (26)

= pu+ r1x
′L1u+ r2x

′L2u+ νx′L1u.

where λ = (p, r1, r2) are the dual variables to (x, y1, y2) in T ∗M . In formula (26) ν is a nonnegative
constant. The Hamiltonian equations give

ṙ1 = −∂Hu
∂y1

= 0,

ṙ2 = −∂Hu
∂y2

= 0,

ṗ′ = −∂Hu
∂x = −(r1L1 + r2L2 + νL1)u.

13



Since the final point is constrained on the set {x = x̄}, the transversality conditions give r1 =
0, r2 = 0. Hence we have

Hu = (p+ νx′L1)u,
ṗ′ = −νL1u. (27)

Notice that actually ν > 0, otherwise the trajectory is a straight line contained in the plane
{y1 = y2 = 0}, see Remark 20. The maximality condition and the condition that the final time is
fixed in such a way that trajectories are parameterized by length give

Hu(t)(x(t), y1(t), y2(t), p(t), r1, r2) = max
v
Hv(x(t), y1(t), y2(t), p(t), r1, r2) = 1,

u(t) =
p′(t)− νL1x(t)
‖p′(t)− νL1x(t)‖

= p′(t)− νL1x(t). (28)

Notice that a geodesic for the problem (25) associated with the covector (u0, r1, r2) corresponds to
a control

u(t) = p′ − r1L1x− r2L2x, (29)

where
ṗ′ = (−r1L1 − r2L2)(p′ − r1L1x− r2L2x). (30)

Comparing equations (27) - (28) with (29) - (30) it follows that γ∗ is a geodesic for the problem
(25) corresponding to an initial covector (ũ0, ν, 0), for some ũ0, with ‖ũ0‖ = 1. Then (iii) is proved
for r̃ = ν.

We have the following

Claim. γ∗ = γ, i.e. ũ0 = u0 and r̃ = r.

Proof of the Claim. It is enough to prove that the parameters u0, r such that a geodesic γ(t) =
(x(t), y1(t), y2(t)) = Eu0,r,0 satisfies x(T ) = x̄ with T < T ∗ are unique.

From the computations in Sections 2.3 we know that

x(t) = MA(t)u0, where A = rL1, and MA(t) = A−1(etA − I).

In particular, using the non singularity of A, the equality at t = T gives

u0 = M−1
A (T )x̄. (31)

Computing the norm of vectors in equality (31), it follows

1 = ‖u0‖2 =
∑̀
i=1

ρi(x̄)2

T 2

airT/2
sin(airT/2)

, where ρi(x) = (x2
2i−1 + x2

2i)
1/2. (32)

Notice that the right hand side of (32) is the sum of monotonic functions with respect to the
variable rT , on the segment [0, 2π/a1] (T < T ∗ implies rT ≤ 2π/a1).

Moreover since the curve is length-parametrized we have ‖x(T )‖ ≤ T . As a consequence there
exists a unique solution rT of equation (32) in the segment [0, 2π/a1]. In particular r is uniquely
determined and u0 is uniquely recovered from equation (31).

Since γ = γ∗ and γ∗ is length-minimizer for every T < T ∗, it follows that tcut = T ∗.
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2.4 First conjugate time

In this section we prove that in the corank 2 case, the cut time is not equal to the first conjugate
time, in general. This is deeply different from the corank 1 case, where the cut locus always
coincides with the first conjugate locus.

It is enough to show that the cut time is not conjugate in the (4, 6) case. Define the Jacobian
of the exponential map

JE(t, u0, r1, r2) := det
(
∂E
∂t
,
∂E
∂u0

,
∂E
∂r1

,
∂E
∂r2

)
. (33)

Remark 22. Recall that the first conjugate time tconj for the geodesic corresponding to the covector
(u0, r1, r2) is the first time t > 0 for which we have

JE(t, u0, r1, r2) = 0. (34)

We have to prove that equation (34) is not satisfied when t = tcut.
To compute JE we use the following trick. Let L = pdx+ r1dy1 + r2dy2 be the Liouville form.

Lemma 23. We have L

(
∂E
∂t

)
= 1, L

(
∂E
∂u0

)
= L

(
∂E
∂ri

)
= 0.

Proof. The first equality follows from the fact that the Hamiltonian is homogeneous of degree 2.
Indeed set λ = (p, r1, r2) and q = (x, y1, y2), we have L = λdq and

L

(
∂E
∂t

)
=
〈
λ,
∂q

∂t

〉
=
〈
λ,
∂H

∂λ

〉
= 2H = 1,

since length-parametrized trajectory belong to the set {H = 1/2}. The second and the third
identities follow from the fact that the Liouville form is preserved by the Hamiltonian flow, hence
the values of L( ∂E∂u0

) and L( ∂E∂ri ) are constant with respect to t. In particular at t = 0 they are
annihilated by the Liouville form.

If we compute the exponential map in a neighborhood of a geodesic with (r1, r2) = (r, 0), with
r 6= 0, using the identity r1dy1 = L− pdx− r2dx2 and Lemma 23 we get

JE = dx ∧ dy1 ∧ dy2

(
∂E
∂t
,
∂E
∂u0

,
∂E
∂r1

,
∂E
∂r2

)
=

1
r1
dx ∧ dy2

(
∂Ẽ
∂u0

,
∂Ẽ
∂r1

,
∂Ẽ
∂r2

)
, (35)

where Ẽ(t, u0, r1, r2) = (x(t, u0, r1, r2), y2(t, u0, r1, r2)) denote the exponential map where y1 is re-
moved. More precisely, (35) is the function of (t, u0, r1, r2) given by

JE =
1
r1

det


∂x

∂u0
v1

∂x

∂u0
v2

∂x

∂u0
v3

∂x

∂r1

∂x

∂r2

∂y2

∂u0
v1

∂y2

∂u0
v2

∂y2

∂u0
v3

∂y2

∂r1

∂y2

∂r2

 ,
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where v1, v2, v3 are 3 independent tangent vectors to the 3-sphere {u0 ∈ R4, ‖u0‖ = 1}. We select

v1 =


−u2

u1

0
0

 , v2 =


0
0
−u4

u3

 , v3 =


−u4

0
0
u1

 . (36)

From the computation of Section 2.3 one easily gets

∂x

∂u0
= MA(t) = A−1(etA − I),

∂x

∂r1
= −A−1A(A−1(etA − I) + t etA)u0

= −(MA(t) + t etA)u0,

∂x

∂r2
= −A−1Ã(A−1(etA − I) + t etA)u0

= −A−1Ã(MA(t) + t etA)u0.

Moreover (see again Section 2.3)

y2(t) = 〈C(t)u0, u0〉 , (37)

where

C(t) = −1
2

∫ t

0
(e−sA − I)A−1Ã esAds. (38)

The function y2(t) from (37), being a quadratic form with respect to u0, gives

∂y2

∂u0
vi =

〈
(C(t) + C ′(t))u0, vi

〉
.

Now we compute these derivatives at t = tcut = 2π
ar where a > b are the moduli of the eigenvalues

of A.
It is easily seen that

B := MA(tcut) =


0 0 0 0
0 0 0 0

0 0 sin(2πb/a)
br

2 sin2(πb/a)
br

0 0 −2 sin2(πb/a)
br

sin(2πb/a)
br

 ,

from which it follows that

(
Bv1 Bv2 Bv3

)
=



0 0 0
0 0 0

0 u3
2 sin2(πb/a)

br − u4 sin(2πb/a)
br u1

2 sin2(πb/a)
br

0 u4
2 sin2(πb/a)

br + u3
sin(2πb/a)

br u1
sin(2πb/a)

br

 =
(

0 0
0 M

)
,
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where the last identity defines the matrix M .
The Jacobian determinant of the exponential map computed at t = tcut is then expressed as

follows

JE(tcut) = det


∂x

∂u0
v1

∂x

∂u0
v2

∂x

∂u0
v3

∂x

∂r1

∂x

∂r2

∂y2

∂u0
v1

∂y2

∂u0
v2

∂y2

∂u0
v3

∂y2

∂r1

∂y2

∂r2



= det



...
...

...
...

...

Bv1 Bv2 Bv3
∂x

∂r1

∂x

∂r2
...

...
...

...
...

∂y2

∂u0
v1

∂y2

∂u0
v2

∂y2

∂u0
v3

∂y2

∂r1

∂y2

∂r2



= det



0 0 0 ∂x1
∂r1

∂x1
∂r2

0 0 0 ∂x2
∂r1

∂x2
∂r2

0 M11 M12
∂x3
∂r1

∂x3
∂r2

0 M21 M22
∂x4
∂r1

∂x4
∂r2

〈Cu0, v1〉 〈Cu0, v2〉 〈Cu0, v3〉 ∂y2
∂r1

∂y2
∂r2


, (39)

where we use the notation

M =
(
M11 M12

M21 M22

)
.

From (39) it follows
JE(tcut) = 〈Cu0, v1〉 · detM · detN, (40)

where N is the matrix

N =

(
∂x1
∂r1

∂x1
∂r2

∂x2
∂r1

∂x2
∂r2

)
.

It is easy to see from the explicit expression of the geodesics that, in the general case when
a 6= b, the three factors in (40) do not vanish identically in u0, since the matrix Ã is arbitrary. The
proof of Theorem 7 is then completed.

Remark 24. Notice that M is the zero matrix when a = b. Hence, in the (4, 6) case, tcut = tconj for
those θ such that Lθ has double eigenvalue. Moreover in this case the rank of the Jacobian matrix
drops by 2, since the first three columns are proportional.
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3 The nilpotent (4, 6) case

In this section we restrict to the (4,6) case. By the previous discussion the geodesics of the sub-
Riemannian metric can be written as follows

x(t) = A−1(etA − I)u0

y1(t) =
1
2

∫ t

0
x(s)′Au(s)ds, A = rLθ, Ã = rL̃θ,

y2(t) =
1
2

∫ t

0
x(s)′Ã u(s)ds

(41)

and we can assume the matrix Lθ to be diagonal

Lθ =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 , a ≥ b, (42)

while L̃θ is an arbitrary skew-symmetric matrix

L̃θ =


0 α0 α1 α2

−α0 0 α3 α4

−α1 −α3 0 α5

−α2 −α4 −α5 0

 .

3.1 Proof of Theorem 8

Recall that the cut time tcut coincide with tconj if and only if tcut is a time that satisfies the equation

JE(t, u, θ)
∣∣
t=tcut

= 0. (43)

(P2)⇒ (P1). We consider separately the two cases:

(a) L1, L2 both belong to the same subspace, either Q or Q̂. Then it is not restrictive to assume
that L1, L2 ∈ Q. In this case all linear combination of L1, L2 belong to Q, i.e. Lθ =
cos(θ)L1 + sin(θ)L2 ∈ Q for every θ. In particular Lθ has a double eigenvalue for every
θ ∈ [0, 2π]. From the computation of Section 2 it is easily seen that a = b implies M = 0,
hence from (40) it follows that tcut = tconj .

(b) L1 ∈ Q and L2 ∈ Q̂ (L1 and L2 plays the same role). By (55) we have [L1, L2] = 0. Let us
prove then that this property implies (P1).

Indeed every two commuting skew-symmetric matrices can be block diagonalized simulta-
neously in the same basis. Hence we can assume that, choosing an appropriate coordinate
system y1, y2, that both L1, L2 are diagonal. As a consequence Lθ and L̃θ are also diagonal.
Moreover from (38) it is easily seen that, if both Lθ and L̃θ are diagonal, C is 2 × 2 block
diagonal, with the first block equal to cI, for some constant c (see also (22)).

In particular it follows that 〈Cu0, v1〉 = 0 and again (40) implies tcut = tconj .
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(P1)⇒ (P2). By assumption the identity

JE(t, u0, θ)
∣∣
t=tcut(θ)

= 〈C(θ)u0, v1〉 · detM(u0, θ) · detN(u0, θ) = 0, (44)

holds for every u0 (the horizontal part of the initial covector) and every θ. Since the exponential
map is linear with respect to u0 in the x-variable, and quadratic with respect to u0 in the yi-
variables, it follows that (44) is an analytic expression of (u0, θ) (it is polynomial with respect to
u0 and trigonometric in θ). In particular one of the three factors in (44) must vanish identically.

Assume that detM(u0, θ) ≡ 0. Then from the explicit expression it is computed that

detM(u0, θ) =
4u1u3

b(θ)2r2
sin2

(
π
b(θ)
a(θ)

)
,

and since a(θ) ≥ b(θ) by assumption, detM ≡ 0 implies a(θ) = b(θ), for all θ.
From this it easily follows that Lθ has double eigenvalue for all θ, i.e. if we write

Lθ = q(θ) + q̂(θ),

it follows that one of ‖q(θ)‖ and ‖q̂(θ)‖ is identically zero (it is not a restriction to assume ‖q̂(θ)‖ ≡
0). Hence Lθ ∈ Q for all θ, that implies in particular that L1, L2 ∈ Q.

It is not restrictive now to assume that a(θ̄) 6= b(θ̄) for some θ̄ ∈ [0, 2π]. We show that the
identities

(a) detN(u0, θ̄) = 0,

(b)
〈
C(θ̄)u0, v1

〉
= 0,

both imply that there exists a choice of the coordinates such that L1 ∈ Q, L2 ∈ Q̂. We give
details only for case (b), the other one is similar. Considering (b) as an equation in the variables
α1, α2, α3, α4 (the non diagonal entries of the matrix L̃θ) it is easy to see that the identity (b) can
be written as an equation

F (αi, ui) = 0,

where F is a quadratic form in the ui whose coefficients depend linearly on αi. Since these equation
should be satisfied for all u0 = (u1, . . . , u4), choosing values

u0 ∈ {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1)},

one gets the set of 4 linear equations:
(aα4 + bα1) cos η + (aα3 − bα2) sin η = 0,
(aα3 − bα2) cos η − (aα4 + bα1) sin η = 0,
(aα2 − bα3) cos η + (aα1 + bα4) sin η = 0,
(aα1 + bα4) cos η − (aα2 − bα3) sin η = 0,

(45)

where we set η = πb/a, and for simplicity of the notation we denote a = a(θ0), b = b(θ0).
It is easy to show, using the fact that a 6= b, that this system has the unique solution

α1 = . . . = α4 = 0,
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which means that L1 and L2 are both diagonal. Due to this fact they can be written, as pure
quaternions (see Appendix 4.1), as a linear combination of i, î

L1 = αi+ α̂ î, L2 = βi+ β̂ î. (46)

Performing the change of variables (
ỹ1

ỹ2

)
=
(
α α̂

β β̂

)−1(
y1

y2

)
,

we find a system of coordinates such that L1 = i, and L2 = î, i.e. that satisfies (P2).

3.2 Proof of Theorem 10

In the paper [4] it is proved that, if the sub-Riemannian manifold is regular2 with Hausdorff
dimension h, the Radon-Nikodym derivative of the spherical Hausdorff measure Sh with respect
to the Popp’s measure µ, denoted fSµ, is given by the volume of the unit ball in the nilpotent
approximation, namely

fSµ(q) =
2h

µ̂q(B̂q)
, q ∈M, (47)

where µ̂q is the Popp’s measure defined on the nilpotent approximation Gq of the structure at the
point q. Note that µ̂q is the left-invariant measure on Gq that coincides with the Popp’s measure
of the original sub-Riemannian metric at the point q.

Remark 25. Notice that in our (m,m + 2) case the structure is automatically regular since, by
assumption, the distribution has constant rank and with one bracket we get all the tangent space.

Remark 26. In [4] it is proved that fSµ is a continuous function, which is bounded and bounded
away from zero, in restriction to compact sets.

Remark 27. For the analysis of the regularity of (47) it is convenient to parametrize the nilpotent
unit ball via the exponential map, as a function defined on the whole fiber in the cotangent space.
In other words we do not restrict to the set {‖u0‖ = 1} and define for every λ0 = (u0, r) ∈ R6

E(λ0) = π(e ~H(λ0)),

where H is the Hamiltonian defined in (12) and et
~H denotes the flow in T ∗M of the Hamiltonian

vector field associated with H. Using the homogeneity property H(cλ) = c2H(λ), ∀ c > 0, we have
that

e
~H(sλ) = es

~H(λ), ∀ s > 0.

In other words we can recover the geodesic on the manifold with initial covector λ0 as the image
of the ray {tλ0, t ∈ [0, 1]} ⊂ T ∗q0M that joins the origin to λ0.

E(tλ0) = π(e ~H(tλ0)) = π(et ~H(λ0)) = γ(t).

2A sub-Riemannian manifold (M, ∆,g) is said to be regular if, defining the distributions ∆1 := ∆, ∆i+1 :=
∆i + [∆i, ∆], the dimension of ∆i

q does not depend on the point for all i ≥ 1.
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Due to the previous analysis and thanks to Remark 27, we can express the volume of the unit
ball of the nilpotent approximation at a point p as follows

V (p) =
∫ 2π

0

∫ A(θ,p)

0

∫
B
JE(u, θ, r, p)dudrdθ, (48)

where JE is the Jacobian of the exponential map starting from p, expressed in the new variables,
B = {u0 = (u1, . . . , u4), ‖u0‖ ≤ 1} is the 4-dimensional unit ball and

A(θ, p) =
2π

maxσ(Lθ(p))
.

The problem of the regularity of the function (47) is then reduced to the regularity of the function

p 7→ V (p),

where p is a (6-dimensional) parameter. Since the family of sub-Riemannian metrics is smooth with
respect to p, the exponential map smoothly depends on the parameter p. As a consequence the
integrand in (48), being the Jacobian of the exponential map, is a smooth function of its variables.

In addition, the function p 7→ A(θ, p) is Lipschitz, being the inverse of the “maximum moduli
of eigenvalues” function, which is Lipschitz (see [19]). In particular A(θ, p) admits bounded first
derivative almost everywhere with respect to (θ, p).

Definition 28. Define the following sets

- Σ is the set of p such that ∃ θ for which Lθ(p) has a double eigenvalue,

- Σ0 is the set of p such that ∃ a finite number of θ for which Lθ(p) has a double eigenvalue,

- Σ∞ is the set of p such that ∀ θ, Lθ(p) has a double eigenvalue.

Thanks to Lemma 32, for a generic sub-Riemannian metric, the set of points p ∈ Σ∞ is a
union of isolated points. Moreover, due to the expression (54) of the eigenvalues in terms of the
quaternions given in the Appendix 4.1, the fact that Lθ has a double eigenvalue for all θ is written
as ‖q(θ)‖ = 0 for all θ (or the same for q̂). This condition is equivalent to the equation ‖q(θ)‖2 = 0,
that is analytic in θ. In particular this equation, if it is not identically satisfied, has a finite number
of solution in [0, 2π].

Remark 29. Notice that the expression (54) for the eigenvalues, provides a crucial obstruction for
the generalization of the result to m > 4.

From this it follows that, for a generic sub-Riemannian metric, the set of critical points Σ is
the disjoint union Σ = Σ0 ∪ Σ∞. Moreover the set of points where p 7→ A(·, p) is not smooth is
contained in Σ.

Let us write the volume function, depending on the parameter p, as follows

V (p) =
∫ 2π

θ=0

∫ A(θ,p)

r=0
f(θ, r, p)drdθ, (49)

where we denote by

f(θ, r, p) =
∫
B
JE(u, θ, r, p)du.
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Recall that f is smooth as a function of all its variables, while A(θ, p) is Lipschitz with respect to
the parameters (θ, p). In particular it has bounded derivatives.

We want to prove that V is C1 at any point p0. To this extent, let us write

V (p) =
∫ 2π

0

∫ A(θ,p0)

0
f(θ, r, p)drdθ +

∫ 2π

0

∫ A(θ,p)

A(θ,p0)
f(θ, r, p)drdθ.

The function

p 7→
∫ 2π

0

∫ A(θ,p0)

0
f(θ, r, p)drdθ,

is always smooth since it is the integral of a smooth function (with respect to p) on a fixed domain.
Denote now

W (p) :=
∫ 2π

θ=0

∫ A(θ,p)

A(θ,p0)
f(θ, r, p)drdθ. (50)

We are left to prove that W is C1 around p0. Notice that, by definition, W (p0) = 0.
Assume that p0 /∈ Σ. Then, since both functions A and f in (50) are smooth, W is C1 at p0

and the derivative at a point p (in a neighborhood of p0), is computed as follows

∂W

∂pi
(p) =

∫ 2π

0

∫ A(θ,p)

A(θ,p0)

∂f

∂pi
(θ, r, p)drdθ +

∫ 2π

0

∂A

∂pi
(θ, p)f(θ,A(θ, p), p)drdθ. (51)

Assume now that p0 ∈ Σ0. The first term in (51) is continuous. Moreover, since at p0 there are
only a finite number of θ such that Lθ has double eigenvalue we have

∂A

∂pi
(θ, p) −→

p→p0

∂A

∂pi
(θ, p0), a.e. θ ∈ [0, 2π]. (52)

Since ∂A
∂pi

is bounded and f is smooth, by Lebesgue’s dominated convergence we have that the
second term is also continuous.

Finally, consider the case when p0 ∈ Σ∞. Since p0 is an isolated point, the partial derivatives
are defined and continuous in Np0 \ {p0}, where Np0 is a neighborhood of p0. We claim that

∂W

∂pi
(p) −→ 0, when p→ p0 ∈ Σ∞. (53)

Indeed, by definition of Σ∞, the cut time A(θ, p0) coincides with the conjugate time, i.e. it satisfies
the identity

JE(u, θ, A(θ, p0), p0) = 0, ∀ θ ∈ [0, 2π].

From this it follows that f(θ,A(θ, p), p)→ 0 for all θ, that easily implies (53). From the fact that
W is continuous in Np0 , C1 in Np0 \ {p0} and has partial derivatives tending to zero for p→ p0, it
follows that W is C1 in Np0 .

4 Appendix

4.1 Quaternions

The Lie algebra so(4) of 4× 4 skew-symmetric matrices is the direct sum

so(4) = Q⊕ Q̂,
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where Q is the space of pure quaternions and Q̂ is the set of pure skew quaternions.
The space Q (resp. Q̂) is generated by the three matrices i, j, k (respectively î, ĵ, k̂)

i =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , j =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , k =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

and

î =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , ĵ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , k̂ =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

If we endow so(4) with the Hilbert-Schmitd scalar product

〈L1, L2〉 =
1
4

trace(L′1L2),

then i, j, k, î, ĵ, k̂ is an orthonormal basis.
The eigenvalues ω1, ω2 of A = q + q̂ satisfy:

− (ω1,2)2 = (‖q‖ ± ‖q̂‖)2. (54)

As a consequence an element A ∈ so(4) has a double eigenvalue if and only if A ∈ Q ∪ Q̂.
Also pure quaternions and pure skew quaternions commute:

[q, q̂] = 0, q ∈ Q, q̂ ∈ Q̂. (55)

4.2 Transversality lemma

Let S be the set of (m,n) smooth sub-Riemannian metrics over M , equipped with the Whitney
topology. Due to the C∞ structure, we have the existence of smooth bump functions and the
results in this section are essentially local. Then we can assume that S is the set of m-tuples
F = (X1, . . . Xm) of smooth independent vector fields on some open subset M of Rn, satisfying

TqM = ∆q + [∆,∆]q, for every q ∈M.

The vector fields X1, . . . , Xm form an orthonormal basis for the sub-Riemannian metric g they
specify.

Let B be the bundle over M whose fiber at q ∈M is the variety of k-dimensional vector space
of g-skew symmetric endomorphisms of ∆q.

Let us consider the mapping
ρ : S ×M → B

(F, q) → LFq
where LFq has been defined in Remark 1. It is clear that ρ is C∞.
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Let us fix a point F0 ∈ S, a point q0 ∈M and coordinates (x, y) in M such that q0 = (0, 0) and
the nilpotent approximation of F0 reads in control form

ẋi = ui, i = 1, . . . ,m,
ẏ1 = 1

2x
′L1u,

...
ẏk = 1

2x
′Lku,

(56)

In the coordinates y, the space LF0
q is the vector subspace spanned by the matrices L1, . . . Lk. We

have a natural gradation in formal power series of (x, y) induced by setting that the xi have weight
1 and the yi have weight 2. This induces a formal gradation on formal vector fields on Mq0 in which
∂
∂xi

have weight −1 and ∂
∂yi

have weight −2. The vector fields of the nilpotent approximation (56)
have weight −1.

In control form the sub-Riemannian metric F0 itself reads
ẋ
ẏ1
...
ẏk

 =


u

1
2x
′L1u
...

1
2x
′Lku

+H (57)

where H is a term of order > −1 as a formal u-dependent vector field. Then we take a smooth
bump function b(x, y) which is compactly supported in M and which is 1 in a neighborhood of
q0 = (0, 0). We consider the affine space A of variations of F0 of the form

ẋ
ẏ1
...
ẏk

 =


u

1
2x
′L1u
...

1
2x
′Lku

+


0

1
2x
′δL1u
...

1
2x
′δLku

 b(x, y) +H. (58)

This defines new sub-Riemannian metrics F0 + δF . Since S is open in the set of all rank m smooth
sub-Riemannian metrics over M , then, for a small perturbation δF , we have F0 + δF ∈ S.

To show that ρq0 , defined by ρq0(F ) := ρ(q0, F ), is a submersion at q0 on the fiber Bq0 , it is
enough to observe that

ρ̂q0 : A → so(4)k

δF 7→ (L1 + δL1, . . . , Lk + δLk)

is an affine submersion. Then we have proven the following Lemma.

Lemma 30. The map ρ is a submersion.

Now let us restrict to the (4,6) case.

Definition 31. We say that a point q0 ∈M is critical for a sub-Riemannian metric F if all elements
of the subspace LFq0 (from Remark 1) have a double eigenvalue.

By formula 54, this means that, whatever the coordinates y, the matrices L1(q0), L2(q0) both
belong either to Q or to Q̂.
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The dimension d1 of the fiber of the bundle B is the dimension of the Grassmannian G(2, 6) of
2-subspaces of R6, i.e. d1 = 8.

The dimension of the set of pairs L1, L2 that both belong to Q (respectively Q̂), is the dimension
d2 of the Grassmannian G(2, 3), i.e d2 = 2.

Let us define now the partially algebraic “wrong set” W ⊂ B as follows: the fiber Wq0 is the
set of 2-subspaces of the g-skew symmetric endomorphisms of ∆q0 , whose elements have a double
eigenvalue. The codimension of W in B is d1 − d2 = 6.

The next Lemma follows from Lemma 30 and a non-compact version of Abraham’s parametric
transversality Theorems ([1]).

Lemma 32 ((4, 6) case). The set of sub-Riemannian metrics that have only isolated critical points
is open and dense in S.
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