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Abstract We deal with the solutions to nonlinear elliptic equations of the
form

−div a(x,Du) + g(x, u) = f,

with f being just a summable function, under standard growth conditions
on g and a. We prove general local decay estimates for level sets of the gra-
dient of solutions in turn implying very general estimates in rearrangement
and non-rearrangement function spaces, up to Lorentz-Morrey spaces. The re-
sults obtained are in clear accordance with the classical Gagliardo-Nirenberg
interpolation theory.
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1 Introduction

This paper deals with regularity properties of the solutions to the following
class of Dirichlet problems{

−div a(x,Du) + g(x, u) = f(x) in Ω

u = 0 on ∂Ω,
(1)

in which Ω is a bounded open set in Rn, n ≥ 2, f belongs to L1(Ω), g is
a lower order term and a is a Leray-Lions type operator on W 1,p

0 (Ω), with
standard growth and monotonicity properties. The specific assumptions we
are considering are now listed as follows. The vector field a : Ω × Rn →
Rn is Carathéodory regular and satisfies standard monotonicity and p-growth
conditions, i. e.,ν(s2 + |z1|2 + |z2|2)

p−2
2 |z2 − z1|2 ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉

|a(x, z)| ≤ L(s2 + |z|2)
p−1

2

(2)

for every z1, z2, z ∈ Rn and x ∈ Ω; the structure constants satisfy 0 < ν ≤
1 ≤ L and s ≥ 0. In particular, we stress that the function x 7→ a(x, ·) is
measurable.

The lower order term g : Ω × R→ R will denote a Carathéodory function
such that

∃ m, α0 > 0 : for all t and a. e. x ∈ Ω g(x, t) sgn(t) ≥ α0|t|m, (3)

∀ τ > 0 the function Gτ (x) := sup
|t|≤τ

|g(x, t)| belongs to L1
loc(Ω). (4)

Finally, the right hand side datum f is in the most general case considered
to be a measure. A typical example involves the p-Laplacean operator with
coefficients: {

−div
(
c(x)|Du|p−2Du

)
+ |u|m−1u = f in Ω

u = 0 on ∂Ω,
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where 0 < ν ≤ c(x) ≤ L is a measurable function.

At this point we preliminary observe that the dependence of the vector
field a(·) with respect to x is just measurable, and this restricts our analysis
to the so-called subdual range (see for instance [38]). This means that f is not
in general considered to be in the dual W−1,p

′
(Ω) and the maximal regularity

expected for Du does not in general go beyond

Du ∈ Lp+δ(Ω) (5)

for some small δ ≡ δ(n, p, ν, L). This is in general a consequence of Gehring’s
Lemma when f is integrable enough. We refer to Sections 2 for more notation,
definitions and for the type of solutions considered in this paper.

In the last decades a wide literature has dealt with elliptic equations with
measure data. We just cite the pioneering paper [9], in which it has been firstly
used a priori estimates techniques and standard approximating methods, in
order to obtain the existence of solutions to (1). After [9], a plenty of interesting
regularity results have been obtained for solutions to (1) with and without
the lower order term g.1 In particular, the presence of the lower order terms
usually brings new features in this kind of problems. Basically, lower order
terms, with sign and standard growth properties, do have a regularizing effect
on the solutions to elliptic problems with measure data. This is proved via
the approach towards subdual problems as mentioned above, in [12] and [11],
in which it is shown the existence and some basic regularity properties of the
solutions to (1) starting from L1-data. By using a similar approach, the case
when f belongs to Lγ(Ω) has been treated in [16], namely,

for 1 < p < n, 1 < γ < np/(np− n+ p) and p− 1 < m < 1/(γ − 1) (6)

it holds

f ∈ Lγ(Ω) =⇒ Du ∈ L
mpγ
m+1 (Ω). (7)

Recently, the case when f belongs to the Marcinkiewicz space Mγ(Ω) has
been dealt, again by means of a priori estimates and approximating method.
In [8, Theorem 2.4], if p = 2, a = Du and the assumptions in (6) hold, then

f ∈Mγ(Ω) =⇒ Du ∈M
2mγ
m+1 (Ω). (8)

In the present paper, we will suggest a general approach to the regularity
of solutions to such problems, extending the one for measure data problems
introduced in [37,38]. We will in general obtain an estimate on the level sets
of the maximal operator M of the gradient of solutions in terms of the level
sets of the assigned datum f , up to a correction term which is negligible when

1 The literature is really too wide to attempt any reasonable comprehensive treatment
in a single paper. We refer the interested reader for instance to [13,17,18,43,47] and the
references therein.



4 Agnese Di Castro, Giampiero Palatucci

considering the gradient regularity. Roughly speaking, we will obtain estimates
of the type

∣∣{M(|Du|) ≥ Tλ
}∣∣ . 1

T p+δ
∣∣{M(|Du|) ≥ λ

}∣∣+
∣∣{[M(|f |)]1/σ ≥ λ

}∣∣, (9)

for every λ suitably large, and in which T >> 1 is a constant to be chosen,
σ ≡ σ(m, p) ≥ 1 determines the regularity of the gradient of u, δ ≡ δ(n, p, ν, L)
is the higher integrability exponent determined in (5); see (84) below. The pres-
ence of the factor T−(p+δ) makes the intermediate term in (9) negligible when-
ever (9) is used to determine an estimate that does not violate the maximal
regularity in (5). Estimate (9) is fairly general and implies local estimates in
virtually all the most familiar function spaces of rearrangement (Lebesgue, Or-
licz, Lorentz) and non-rearrangement ones (Morrey). In particular, the known
results (7) and (8) follow as a corollary. Moreover, as described in Section 1.1
below, estimate (9) is a sort of nonlinear analog of the classical Gagliardo-
Nirenberg Interpolation inequalities, in turn giving a sort of extension of these
estimates to more general spaces.

We remark that maximal operators techniques have been used since the
basic paper of T. Iwaniec [27]; see for instance [19,14,30,1,21,31,37,32,34],
and for related nonlinear estimates [45,28,46,29,33,15,20]; see also [2,39,40,
22] for maximal function free techniques.

We give an explicit example of an application of estimate (9) to a regu-
larity result in so-called Lorentz-Morrey spaces, in turn generalizing the main
result in [38] (here we also consider the subquadratic case, on the contrary of
[38]; see also [39]), where no lower order term is considered. Such extremely
general spaces, considered since the basic work of Adams and Lewis in the lin-
ear case [6], allow in turn to get general results in Lebesgue, weak-Lebesgue,
Morrey and Lorentz spaces. We refer the reader to Section 2.3 for the precise
definitions. We will prove the following

Theorem 1 Let q ∈ (0,∞]. Assume (2), (3), (4) and

f ∈ Lθ(γ, q)(Ω), (10)

with γ, θ such that

1 < γ ≤ θp

θp− θ + p
, 1 < p < θ ≤ n (11)

and

p− 1 < m <
1

γ − 1
(12)

Then the solution u ∈W 1,1
0 (Ω) to (1) satisfies

Du ∈ Lθ
( mpγ

m+ 1
,
mpq

m+ 1

)
locally in Ω. (13)
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Moreover, the local estimate

‖|Du|p−1‖Lθ( mpγ
(m+1)(p−1)

, mpq
(m+1)(p−1) )(BR/2)

≤ C R
θ(m+1)(p−1)

mpγ −n‖(|Du|+ s)p−1‖L1(BR) + C‖f‖
(m+1)(p−1)

mp

Lθ(γ,q)(BR)
(14)

holds for every ball BR ⊆ Ω, where C depends only on n, m, p, q and on the
structure constants of a.

We immediately refer to Section 5 for further extensions and results not cov-
ered by the previous theorem; results on measure data follow as well (see
Remark 1).

Clearly, one may see that, by choosing θ = n and q = γ in (10), Theorem 1
covers the classical Sobolev implication as in (7). Moreover, we notice that
we mean of course mpq/(m + 1) = ∞ whenever q = ∞; thus, by choosing
θ = n and q = ∞ in (10), we can also deduce the regularity results on the
Marcinkiewicz scale as in (8). We also point out that in both the cited cases
the assumptions on m, p, γ given in Theorem 1 coincide with the ones in [12],
[16] and [8]. We will come back on such assumptions in Section 2.2.

As in the classical cases ([12,16,8]), if we do not assume (3) but rather, we
consider only a sign condition on g, then no regularity improvement appears
and the regularity results are in accordance to those of the cases when no lower
terms appear.

Finally, it is worth noticing that the properties of the solutions to the
analogous of problem (1) without lower order term in a limiting space, that is
γ = 1, have been studied in [9] provided that p > 2−1/n. In the contrary, every
result we are proving in the present paper is valid in the full range 1 < p < n.

1.1 Interpolation effects

Another interesting consequence of our investigation is an arisen connection
between the regularity results in Theorem 1 and the Gagliardo-Nirenberg in-
terpolation theory. Indeed, the classical interpolation inequality yields

‖Du‖Lr(Ω) ≤ c1‖D2u‖`Lr0 (Ω)‖u‖
1−`
Lr1 (Ω) + c2‖u‖Lr1 (Ω), (15)

where ` ∈ [1/2, 1) is the interpolation parameter and the Sobolev exponent r
is given by

1

r
=

1

n
+ `

(
1

r0
− 2

n

)
+ (1− `) 1

r1
(16)

(see [23,42]). Now, fix p = 2 and consider the solution u to problem (1) starting
from f ∈ Lγ(Ω). We can read the nonlinear equation in a separate way, in
the sense that the first contribution will give |D2u| ∈ Lγ , while the second
contribution will give |u|m ∈ Lγ . At this point, by choosing r0 = γ and
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r1 = mγ in (15) and balancing the interpolation with ` = 1/2, we can compute
r by (16) and we obtain

r =
2mγ

m+ 1
,

that is exactly the exponent given by (13). Hence, the regularity result in
Theorem 1, and the level set estimate (9) can be also seen as the proof of a
nonlinear interpolation effect. In other words the method proposed here allows
to decouple the equation

−div a(x,Du) + g(x, u) = f(x) ∈ Lγ

in the separate inclusions

D2u ∈ Lγ and u ∈ Lmγ

and gives the same result of the available interpolation inequalities. We remark
that this effect is non-trivial since the equation is non-linear, and, especially,
non-differentiable since coefficients are measurable. As a further matter, in-
equality (9) allows to extend such an interpolation effect to the case of degen-
erate operators on one side, and on another side, to get similar interpolation-
type inequalities for solutions in Orlicz, Lorentz and other spaces. Moreover,
interpolation effects in weighted spaces also follow by considering different
assumptions on g(·); see Section 5.2.

1.2 Ideas from the proof

Now, let us focus on the proof of Theorem 1. It is worth noticing that, in
order to obtain the regularity results in (13) and (14), we need to change
the classical approach to the problem. Namely, we will extend the techniques
recently introduced by Mingione in [38], which deals with the solutions to
problem (1) without any lower order terms. The author presents a non-linear
potential theory version of the fundamental papers by Adams [3] and Adams
and Lewis [6], providing optimal regularity results on the Morrey and the
Lorentz-Morrey scale, too. Among other results, in [38, Theorem 11] it is
shown that, for any 0 < q ≤ ∞, 2 ≤ p < θ ≤ n, 1 < γ ≤ θp/(θp− θ + p), the
solutions u to the analogous of (1) without the lower order term g satisfy

f ∈ Lθ(γ, q)(Ω) =⇒ Du ∈ Lθloc
(
θγ(p− 1)

θ − γ
,
θq(p− 1)

θ − γ

)
(Ω). (17)

As stated, the strength of the proofs in [38] relies on elegant estimates on
the level sets of sharp fractional maximal operators. In the proof of Theo-
rem 1, we can extend such original arguments, but we need to operate various
modifications due to the presence of the lower order term g. Moreover, while
the gradient integrability stated in (17) and the related results in [38] are
proved only in the case p ≥ 2, here we will obtain regularity results and the
corresponding local estimates also in the subquadratic case 1 < p < 2. For
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the latter extension, we will combine the mentioned ingredients together with
some arguments in [40], which proposes a purely PDE approach to deal with
Lorentz-Morrey estimates for solutions to elliptic problems without lower or-
der terms for any 2 − 1/n < p < n (see, in particular, Theorem 4.3 there).

Finally, we will show that Theorem 1 can be extended in a natural way in
order to deal with the borderline case γ = 1. In this case, to obtain (13)-(14)
one has to impose some further L logL integrability on the datum f , that is
working in the scale of the Morrey-Orlicz spaces (see Theorem 7). Moreover, in
Theorem 8 we will provide the needed modifications to the proof of Theorem 1
in order to handle the solutions to the analogous of problem (1) with a class
of different lower order terms g.

The paper is organized as follows. In Section 2, we give full details on the
structure of the problem and we briefly recall the definitions and some basic
properties of the spaces we deal with, also providing some classical estimates
for the solutions to nonlinear elliptic problems of type (1). In Section 3, we state
and prove basic regularity estimates and other preliminary results. Section 4
is devoted to the proof of Theorem 1. Finally, in Section 5 we analyze further
extensions and results not covered by Theorem 1.

2 Setting of the problem

In this section we analyze the structure of the problem, by recalling solvability
and scaling properties. Also, we briefly recall the definitions and some basic
properties of the spaces and the operators we deal with, as well as a few
classical results.

2.1 Solvability of the problem

We recall the natural definition of the solutions and we discuss the classical
solvability of nonlinear elliptic problems (1). Here and throughout the remain-
ing of the paper, for the sake of simplicity we take g(t) = |t|m−1t, so we will
consider the following problem:{

−div a(x,Du) + |u|m−1u = f in Ω

u = 0 on ∂Ω,
(18)

in which a verifies (2), 0 < ν ≤ 1 ≤ L, s ≥ 0, 1 < p < n, f ∈ L1(Ω) and
0 < m < ∞. Note that the general case with g satisfying (3)-(4) will follow
plainly with no significant modification.

A measurable function u is a distributional solution to (18) if it satisfies

u ∈W 1,1
0 (Ω), a(x,Du) ∈ L1(Ω), |u|m−1u ∈ L1(Ω)
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and ∫
Ω

a(x,Du)Dφdx+

∫
Ω

|u|m−1uφ dx =

∫
Ω

fφdx, ∀φ ∈ C∞0 (Ω).

Now, for any k ∈ N and fk ∈ W−1,p/(p−1)(Ω) such that fk → f in L1(Ω),
we consider {

−div a(x,Duk) + Tk(|uk|m−1uk) = fk in Ω

uk = 0 on ∂Ω,
(19)

where the truncation function Tk is such that

Tk(t) = min
{
k,max

{
− k, t

}}
. (20)

It is known (see [35, Théorème 1]) that, for any 1 < p < n, there exists the
(unique) weak solution uk to (19) which belongs to W 1,p

0 (Ω) and such that∫
Ω

a(x,Duk)Dψ dx+

∫
Ω

Tk(|uk|m−1uk)ψ dx =

∫
Ω

fkψ dx, ∀ ψ ∈W 1,p
0 (Ω).

Also, [10, Theorem 2], yields∫
{|uk|>t}

|uk|m dx ≤
∫
{|uk|>t}

|fk|dx, ∀ k ∈ N and ∀ t ∈ R+,

where, as usual, we denoted by {|uk| > t} the t-level set of |uk| in Ω, that
is {x ∈ Ω : |uk(x)| > t}. Moreover, since the sequence {uk} is relatively
compact in W 1,q

0 (Ω) for all q ∈ [1, (n(p− 1))/(n− 1)), we can assume (up to
subsequences, still denoted by {uk}) the following statements as k goes to ∞

uk → u in W 1,q
0 (Ω), 1 ≤ q < n(p− 1)

n− 1
, and in a. e. in Ω

a(·, Duk)→ a(·, Du) in Lr(Ω), 1 ≤ r < n

n− 1
.

We point out that the last assertion is a consequence of the second assumption
in (2).

Now, the a. e. convergence of {uk} implies that |uk|m−1uk converges a. e.
to |u|m−1u, too. In addition |uk|m−1uk is equi-integrable, since the sequence
{fk} is equi-integrable on Ω, |{|uk| > t}| converges to zero as t goes to ∞
uniformly respect to k and (4) holds. Then, by Vitali’s Theorem, we deduce
that |uk|m−1uk → |u|m−1u in L1

loc(Ω) and so we can pass to the limit in (19)
to obtain a distributional solution u to (18).2 Moreover, the function u satisfies

u ∈W 1,q
0 (Ω) ∩ Lm(Ω) ∀ 1 ≤ q < n(p− 1)

n− 1

2 Note that in order to pass to the limit in (19) we only need a weaker assumption
on g with respect to (3); that is, g(x, t)sgn(t) ≥ 0. This will guarantee the existence of the
solutions to (1) also in the generalized case studied in the forthcoming Section 5.2.
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a(·, Du) ∈ Lr(Ω) ∀ 1 ≤ r < n

n− 1
.

We note that since n(p− 1)/(n− 1) > 1 ⇔ p > 2 − 1/n, we have to assume
2− 1/n < p < n.

In the case 1 < p ≤ 2 − 1/n, we will again be able to pass to the limit
in (19), but we have to use the extra structure assumption on the lower order
term g, i. e. (3). By arguing as in [12, Theorem 6], if m > 1/(p− 1), we have∫

Ω

|uk|m dx ≤
∫
Ω

|f |dx and

∫
Ω

|Duk|q dx ≤ C, ∀ 1 ≤ q < mp

m+ 1
. (21)

Thus, we can assume uk → u a. e. in W 1,q
0 (Ω) for any 1 ≤ q < mp/(m + 1),

since uk = 0 on ∂Ω, and so |uk|m−1uk → |u|m−1u a. e. in Ω. As before,
|uk|m−1uk → |u|m−1u in L1

loc(Ω) and, consequently, Fatou’s Lemma gives
|u|m−1u ∈ L1(Ω).

By standard computations, thanks to the Lq-bound of |Duk| for some
1 ≤ q < mp/(m + 1), we can also prove the a. e. convergence of Duk to Du.
Thus, Duk → Du in Lq(Ω), for 1 ≤ q < mp/(m + 1) and, since p − 1 < 1,
a(x,Duk)→ a(x,Du) in L1(Ω). This will give the existence of a distributional
solution also in the case 1 < p ≤ 2−1/n. Clearly, if, for any k ∈ N, fk ∈ L∞(Ω),
then also uk ∈ L∞(Ω), for any k ∈ N. Also, note that if we take a different
approximating sequence fk → f in L1(Ω), then we obtain the same limiting
solution.

From now on, the sequence {uk} ⊂W 1,p
0 (Ω)∩L∞(Ω) will be the one fixed

in (19), by choosing fk ∈ L∞(Ω) as follows

fk(x) = Tk(f(x)), k ∈ N. (22)

where Tk is given by (20).

2.2 More on the structure of the problem

We complement the assumptions on the exponents m, p and γ that appear
in Theorem 1, specifying the range of such structural parameters. First, we
emphasize that the bound p < n is not a limitation, otherwise one can use the
theory of operators acting between Sobolev spaces in duality.

The natural inequalities γ ≤ np/(np− n+ p) = (pn/(n− p))′ and m <
1/(γ − 1) are due to the fact that we are treating with the case of infinity
energy solutions. Also, we have θp/(θp− θ + p) ≤ θ/p ⇔ 1 < p ≤ θ, and so
(11) implies pγ ≤ θ. Moreover,

p− 1 <
1

γ − 1
since 1 < γ <

np

np− n+ p
<

p

p− 1

and so (12) is not empty. Finally, the lower bound on m is necessary in order
to guarantee that a(x,Du) belongs to L1

loc(Ω).
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We conclude this section by recalling that in [10] it is proved that Du

belongs to L
nγ(p−1)
n−γ (Ω). Hence, since

mpγ

m+ 1
>
nγ(p− 1)

n− γ
⇔ m >

n(p− 1)

n− pγ
, (23)

the results obtained in [12,16] provide the so-called “improved regularity” with
respect to [10]. In analogy, by choosing again θ = n, q ∈ (1,∞], if we take m in
Theorem 1 as in (23), we will obtain the improved regularity with respect to
the results in [38, Theorem 11] also in the scale of Lorentz spaces

(
see (17)

)
.

Note that the interval
(
n(p−1)
(n−pγ) ,

1
(γ−1)

)
is not empty, since we are assuming

that γ ≤ np/(np− n+ p) because of (11).

2.3 Lorentz-Morrey spaces

In this section we recall the definitions and few basic proprieties of some rele-
vant spaces we deal with.

Fix q ∈ (0,∞). A measurable function f : Ω → R belongs to the Lorentz
space L(γ, q)(Ω), with γ ∈ [1,∞), if and only if

‖f‖qL(γ,q) := q

∫ ∞
0

(
λγ
∣∣{x ∈ Ω : |f(x)| > λ}

∣∣) qγ dλ

λ
<∞. (24)

In the case q =∞, the Lorentz space L(γ,∞)(Ω), with γ ∈ [1,∞), is the so-
called Marcinkiewicz space and it is usually denoted byMγ(Ω). A measurable
function f : Ω → R belongs to Mγ(Ω) if and only if

‖f‖γMγ(Ω) ≡ ‖f‖
γ
L(γ,∞)(Ω) := sup

λ>0
λγ
∣∣{x ∈ Ω : |f(x)| > λ}

∣∣ <∞. (25)

These spaces were introduced by Lorentz in [36] as a generalization of
the classic Lebesgue spaces Lγ(Ω). Indeed, for any γ ∈ [1,∞), by Fubini’s
Theorem, one can see that L(γ, γ)(Ω) = Lγ(Ω). Moreover, for any 0 < r <
γ < q ≤ ∞, the following continuous embeddings hold: Lq ≡ L(q, q) →
L(γ, r) → Lγ ≡ L(γ, γ) → L(γ, q) → L(r, r) ≡ Lr.

It is worth pointing out that, despite the notation, the functionals ‖·‖L(γ,q)
defined in (24) and (25), are not norms, because they do not satisfy the triangle
inequality for the whole range of γ and q (see the forthcoming formula (26)).
However, one can introduce equivalent functionals which do have this property
(see, for instance, [25, Theorem 4.18-4.19]).3 Although not being a norm, the

3 We prefer to keep the definitions in (24) and (25), since it will be more convenient in
order to obtain Lorentz estimates by directly manipulating level sets of functions, as we will
do in the following (see Sections 3 and 4).
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functionals ‖ · ‖L(γ,q) are still additive, in the sense stated in the following

formula. Fix k ∈ N and assume that Ω ⊆
⋃k
j=1Ωj , then

‖f‖L(γ,q)(Ω) ≤



k
1
q−1

k∑
j=1

‖f‖L(γ,q)(Ωj) if 0 < q < 1,

k∑
j=1

‖f‖L(γ,q)(Ωj) if 1 ≤ q ≤ γ or q =∞,

k
q−γ
γq

k∑
j=1

‖f‖L(γ,q)(Ωj) if q > γ.

(26)

As well known, Lorentz spaces enjoy Hölder type inequalities. We just state
a standard inequality for the Marcinkiewicz spacesMγ(Ω) in the form we will
need it in the following of the paper.

Lemma 1 Let Ω ⊆ Rn be a measurable set and let f ∈ Mγ(Ω) with γ > 1.
Then, for any q ∈ [1, γ), f ∈ Lq(Ω) and

‖f‖Lq(Ω) ≤
(

γ

γ − q

) 1
q

|Ω|
1
q−

1
γ ‖f‖Mγ(Ω).

Now, we are ready to introduce the so-called Lorentz-Morrey spaces Lθ(γ, q),
by coupling the definitions in (24) and (25) with a density condition. Precisely,
a measurable function f belongs to Lθ(γ, q)(Ω), for γ ∈ [1,∞), q ∈ (0,∞)
and θ ∈ [0, n], if and only if

‖f‖Lθ(γ,q)(Ω) := sup
BR⊆Ω

R
θ−n
γ ‖f‖L(γ,q)(BR) <∞.

Accordingly, in the case q =∞, a measurable function f belongs to Lθ(γ,∞)(Ω) ≡
Mγ,θ(Ω) if and only if

‖f‖Mγ,θ(Ω) ≡ ‖f‖Lθ(γ,∞)(Ω) := sup
BR⊆Ω

R
θ−n
γ ‖f‖Mγ(BR) <∞. (27)

Clearly, when θ = n, the space Ln(γ, q)(Ω) coincides with the space L(γ, q)(Ω).
Moreover, it is worth noticing that, by means of Fatou’s Lemma, one can
prove that the functionals ‖ · ‖L(γ,q)(Ω) as well as ‖ · ‖Lθ(γ,q)(Ω) are lower
semicontinuous with respect to the a. e. convergence. For details and results
about the theory of Lorentz and Lorentz-Morrey spaces, we refer the interested
reader to [44,3,4].

We conclude this section by recalling the definition of Morrey spaces Lγ,θ,
introduced by Morrey in [41]; we refer also to book [24]. A measurable function
f : Ω → R belongs to the Morrey space Lγ,θ(Ω), with γ ∈ [1,∞) and θ ∈ [0, n],
if and only if

‖f‖γ
Lγ,θ(Ω)

:= sup
BR⊆Ω

R θ−
∫
BR

|f |γ dx < ∞.

Clearly, Lγ,n(Ω) ≡ Lγ(Ω), Lγ,0(Ω) ≡ L∞(Ω) and, also, Lθ(γ, γ)(Ω) ≡ Lγ,θ(Ω).
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2.4 Maximal operators

Let Q0 be a cube in Rn and denote by Q any cube contained in Q0 with its
sides parallel to those of Q0. For any measurable function f , the (restricted )
fractional maximal operator M∗β,Q0

, with β ∈ [0, n], is defined by

M∗β,Q0
(f)(x) := sup

Q⊆Q0, x∈Q
|Q|

β
n−
∫
Q

|f(y)|dy.

An equivalent definition can be provided by using balls B ⊆ Rn instead of
cubes.

The boundedness of maximal operators in Marcinkiewicz spaces is classical
and

|{x ∈ B : M∗0,B(f)(x) ≥ λ}| ≤ C̄

λt

∫
B

|f |t dx (28)

holds for every λ > 0 and t ≥ 1, and it is valid for any f ∈ Lt(B); the constant
C̄ depends only on n and t. More in general it holds the boundedness of max-
imal operators in Lorentz spaces. It is given by the following theorem, whose
proof is an application of Marcinkiewicz Theorem (see [7, IV.4.13, IV.4.18])
together with standard sublinear interpolation.

Theorem 2 Let B ⊆ Rn be a ball, β ∈ [0, n] and γ > 1, such that βγ < n.
Then for every function f ∈ L(γ, q)(B), with q ∈ (0,∞], it holds

‖M∗β,B(f)‖L( nγ
n−βγ ,q)(B) ≤ C‖f‖L(γ,q)(B),

with C depending only on β, γ, n and q.

Combining the previous theorem with Lemma 1 and an Hedberg type in-
equality ([3, Page 768]), we can control the maximal operators in Lorentz
spaces when working on magnified domain.

Theorem 3 ([38, Theorem 9]). Let B ⊂ Rn be a ball and denote by δB its
scaling with δ > 1. Let β, θ ∈ [0, n] and γ > 1 be such that βγ < θ. Then, for
every measurable function f in δB, for any q ∈ (0,∞], it holds

‖M∗β,B(f)‖L( θγ
θ−βγ ,

θq
θ−βγ )(B) ≤ C‖f‖

βγ
θ

Lθ(γ,q)(δB)
‖f‖

θ−βγ
θ

L(γ,q)(B),

where C is a constant depending only on β, γ, δ, θ, n and q.
Moreover, if |δB| ≤ 100n, it holds

‖M∗β,B(f)‖L( θγ
θ−βγ ,

θq
θ−βγ )(B) ≤ Cγ‖f‖Lθ(γ,q)(δB),

where Cγ →∞ as γ → 1.

For a comprehensive treatment of maximal operators and related results,
we refer to [3,7,5].
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2.5 Scaling

Let u(≡ uk) ∈ W 1,p
0 (Ω) ∩ L∞(Ω) be the weak solution to the regularized

problems (19). Taking BR ≡ B(x0, R) ⊆ Ω, we consider the function v ∈
W 1,p(BR), defined as the weak solution to the related homogeneous problem{

−div a(x,Dv) + |v|m−1v = 0 in BR

v = u on ∂BR.
(29)

The aim of this section is to establish a useful scaling procedure that will
allow to pass from problems (19) and (29) to the analogous ones in the unit
ball B1 ≡ B(0, 1) with a normalized datum.

Fix α and η as follows

α :=
p

m− p+ 1
and η := αm =

mp

m− p+ 1
. (30)

For any R > 0 and any y ∈ B1, consider the following rescaled functions


ū(y) :=

Rαu(x0 +Ry)

A
, v̄(y) :=

Rαv(x0 +Ry)

A
,

ā(y, z) :=
Rαm−1a(x0 +Ry,R−(α+1)Az)

Am
, f̄(y) :=

Rηf(x0 +Ry)

Am
,

(31)

where the constant A is given by

A :=

(
Rηγ−

∫
BR

|f |γ dx

) 1
mγ

. (32)

In view of the previous choices, it is easy to see that we have ū = v̄ on ∂B1

and the following equations weakly hold in B1

−div ā(y,Dū) + |ū|m−1ū = f̄ and − div ā(y,Dv̄) + |v̄|m−1v̄ = 0,

where f̄ is such that ‖f̄‖Lγ(B1) = 1 and the vector field ā(y, z) satisfies (2)
with s, ν and L replaced by s/A, νA−m−1+p and LA−m−1+p, respectively.

Finally, as an immediate consequence of the definitions given in (24) and
(25), we have the following lemma.

Lemma 2 Let u ∈ Lθ(γ, q)(BR), with 1 ≤ γ < ∞ and 0 < q ≤ ∞, and let ū
be the rescaled function defined by (31). Then ū ∈ Lθ(γ, q)(B1) and

‖ū‖Lθ(γ,q)(B1) =
Rα−

θ
γ

A
‖u‖Lθ(γ,q)(BR).
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2.6 A few preliminary results

In order to obtain the fundamental level set estimate (9) in the precise form
given by the forthcoming (84), we will work locally on basic estimates of the
solution u to (1) in comparison to the solution v to the corresponding ho-
mogeneous problem (29) (see Section 3 below). To do this, we also make use
of some classical results from the theory of De Giorgi-Nash-Moser of Hölder
continuity, as well as from the theory of Gehring’s higher integrability. These
are collected in the following two theorems; see, for instance, [26, Chapter 7]
and [37, Lemma 3.3] for the proofs, by observing that the presence of the lower
order terms does not affect the proof, because of the sign hypothesis (3).

Theorem 4 Let v ∈ W 1,p(Ω), with p ∈ (1, n], be the weak solution of the
equation

−div a(x,Dv) + |v|m−1v = 0 in the open subset Ω ⊂ Rn,

under the assumptions

|a(x, z)| ≤ c(s2 + |z|2)
p−1

2 , c−1|z|p − csp ≤ 〈a(x, z), z〉 (33)

for every x ∈ Ω and z ∈ Rn, where c = c(L/ν) > 0, ν, L are the numbers
given in (2) and a : Ω ×Rn → Rn is a Carathéodory vector field.

Then there exists $ = $(n, p, L/ν) ∈ (0, 1/2], such that for every q ∈ (0, p]
there exists a constant C = C(n, p, q, L/ν) such that∫

Bρ

(|Dv|q + sq) dx ≤ C
( ρ
R

)n−(1−$)q
∫
BR

(|Dv|q + sq) dx, (34)

whenever BR ⊆ Ω and 0 < ρ ≤ R.

Theorem 5 Let the hypotheses of Theorem 4 hold. Then there exists χ =
χ(n, p, L/ν) > 1 such that Dv ∈ Lpχloc(Ω) and for any q ∈ (0, p] there exists a
constant C = C(n, p, q, L/ν) such that(

−
∫
BR/2

(|Dv|+ s)pχ dx

) 1
pχ

≤ C
(
−
∫
BR

(|Dv|q + sq) dx

) 1
q

,

whenever BR ⊆ Ω.

Furthermore, we will need a Calderón-Zygmund-Krylov-Safonov covering
result, as stated in Proposition 1 below. For the proof, see, e. g., [14, Lemma
1.2].

Fix a cube Q0 in Rn and denote with D(Q0) the class of all dyadic cubes
obtained from Q0, that is the class of those cubes, with sides parallel to those
of Q0, having been obtained by a positive, finite number of dyadic subdivisions
of the cube Q0. We denote by Q̃ ∈ D(Q0) the predecessor of Q if Q has been
obtained by exactly one dyadic subdivision from the original cube Q̃. We have
the following
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Proposition 1 Let Q0 ⊂ Rn be a cube. Assume that X ⊂ Y ⊂ Q0 are
measurable sets satisfying the following properties

(i) there exists δ > 0 such that |X| < δ|Q0|;
(ii) if Q ∈ D(Q0) then |X ∩ Q| > δ|Q| implies that Q̃ ⊂ Y where Q̃ denotes

the predecessor of Q.

Then it follows that |X| < δ|Y |.

3 Some regularity estimates and other preliminary results

In this section we show some comparison estimates between uk, the solution
to problem (19) with fk as in (22), and v, the solution to the homogeneous
problem (29). Note that in the remaining of the paper we will write u instead
of uk. We will show how to recover regularity and estimates for the original
solutions only in the conclusion of the proof of Theorem 1 (see Step 4 at
page 31).

First, for any nonnegative s ∈ R, we introduce the auxiliary function V
defined by

V (z) = Vs(z) := (s2 + |z|2)
p−2

4 z, z ∈ Rn. (35)

The function V is a locally bi-Lipschitz bijection of Rn which verifies the
following properties for any s ≥ 0. For any z1, z2 ∈ Rn,

C−1(s2+|z1|2+|z2|2)
p−2

2 ≤ |V (z2)− V (z1)|2

|z2 − z1|2
≤ C(s2+|z1|2+|z2|2)

p−2
2 , (36)

where C ≡ C(n, p) > 0 is independent of s.
Also, for any z ∈ Rn,

Vs/A(z/A) = A−p/2Vs(z) ∀A > 0, (37)

(see [26, Chapter 9] for more details). The main feature of the function in (35)
relies in the fact that it can be used to reformulate the monotonicity properties
of z 7→ a(·, z). Namely, as a consequence of (2) and (36), we get

C−1ν|V (z2)− V (z1)|2 ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉, ∀z1, z2 ∈ Rn. (38)

Moreover, in the case p ≥ 2, the first assumption in (2) also implies

C−1ν|z2 − z1|p ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉, ∀z1, z2 ∈ Rn. (39)

Now, we state an algebraic lemma, that we will need in the following of this
section. It is a classical result going back to Campanato, whose proof can be
obtained by simply modifying [26, Lemma 7.3]; see also [38, Lemma 1] and [40,
Lemma 9.3].
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Lemma 3 Let Ψ : [0, R̄]→ [0,∞) be a non-decreasing function such that

Ψ(ρ) ≤ c0
(( ρ

R

)δ0
+ ε

)
Ψ(R) + BR δ1 , for every ρ < R ≤ R̄, with B ≥ 0,

where 0 < δ1 < δ0, and c0 is a given constant. Then there exists ε0 ≡
ε0(c0, δ0, δ1) such that if ε ≤ ε0 it holds

Ψ(ρ) ≤ c1
( ρ
R

)δ1
Ψ(R) + c1Bρδ1 , for every ρ ≤ R ≤ R̄,

where c1 is a constant depending only on c0, δ0 and δ1.

In the following lemma, by means of suitable test functions, we will show
that the Lγ norm of |u− v|m can be controlled by that of f .

Lemma 4 Let u ∈ W 1,p
0 (Ω) be the weak solution to problem (19) and v ∈

W 1,p(BR) that to problem (29), with BR ⊆ Ω, then∫
BR

|u− v|mγ dx ≤ C
∫
BR

|f |γ dx, (40)

for any m > 0 and any γ ≥ 1.

Proof First, suppose that γ = 1. Consider a sequence of smooth increasing
functions {Φh(t)} that converges to the function Φ(t) ≡ sgn(t) and choose
φ = Φh(u− v) ∈W 1,p

0 (BR) as test function in∫
BR

〈a(x,Du)−a(x,Dv), Dφ〉dx+

∫
BR

(
|u|m−1u−|v|m−1v

)
φdx =

∫
BR

f φ dx.

(41)
Using the first assumption in (2) and dropping the nonnegative term, we obtain∫

BR

(
|u|m−1u− |v|m−1v

)
Φh(u− v) dx ≤

∫
BR

|f ||Φh(u− v)|dx.

Letting h go to infinity in the inequality above, Fatou’s Lemma yields∫
BR

(
|u|m−1u− |v|m−1v

)
sgn(u− v) dx ≤

∫
BR

|f |dx. (42)

Now, we state the following algebraic inequality

(
|u|m−1u− |v|m−1v

)
sgn(u− v) ≥ C


|u− v|m if m ≥ 1,

|u− v|
(|u|+ |v|)1−m

if 0 < m < 1.
(43)

Clearly, if m ≥ 1, it suffices to combine the inequality above with (42) to
obtain ∫

BR

|u− v|m dx ≤ C
∫
BR

|f |dx,
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that is (40) in the case γ = 1.
When 0 < m < 1, we use the Hölder inequality (with exponents 1/m and

1/(1−m)) as follows∫
BR

|u− v|m dx =

∫
BR

|u− v|m

(|u|+ |v|)m(1−m)

(
|u|+ |v|

)m(1−m)
dx

≤

(∫
BR

|u− v|(
|u|+ |v|

)1−m dx

)m(∫
BR

(
|u|+ |v|

)m
dx

)1−m

.(44)

Thus, putting together (42), (43) and (44), we obtain∫
BR

|u− v|m dx ≤ C

(∫
BR

|f |dx
)m(∫

BR

(
|u|+ |v|

)m
dx

)1−m

≤ C

(∫
BR

|f |dx
)m(∫

BR

(
|u|m + |u− v|m

)
dx

)1−m

.(45)

Now, we can use the Young inequality (with exponents 1/m and 1/(1 − m)
and ε > 0) in the right-hand side of (45) to get∫
BR

|u− v|m dx ≤ C

(
C(ε)

∫
BR

|f |dx+ ε

∫
BR

|u|m dx+ ε

∫
BR

|u− v|m dx

)
.

(46)
At this point, it suffices to choose a suitably small ε in order to absorb the
last term in the right-hand side of the inequality above; it follows∫

BR

|u− v|m dx ≤ C

(∫
BR

|f |dx+

∫
BR

|u|m dx

)
, (47)

up to relabeling the constant C.
Since u is the solution to (19), by standard computation (see, for instance,

[9] and also [16, Lemma 2]), we have∫
BR

|u|mγ dx ≤ C

∫
BR

|f |γ dx, ∀ γ ≥ 1, (48)

and thus estimate (40) with γ = 1 plainly follows by (47).

For the general case γ > 1, first we need to choose φ = |u−v|m(γ−1)−1(u−v)
as test function in (41). Note that this is admissible since m(γ − 1) > 0, by
the assumptions on m and γ. Again, in the case m > 1, we can drop the
nonnegative term and we can use the first inequality in (43). We have∫

BR

|u− v|mγ dx ≤
∫
BR

|f | |u− v|m(γ−1) dx. (49)

Hence, estimate (40) plainly follows from (49) using the Hölder inequality on
the right-hand side with exponents γ > 1 and γ/(γ − 1) and canceling the
common terms.
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When 0 < m < 1, we use the second inequality in (43) to obtain∫
BR

|u− v|mγ dx

≤
(∫

BR

|f | |u− v|m(γ−1) dx

) mγ
m(γ−1)+1

(∫
BR

(
|u|+ |v|

)mγ
dx

) 1−m
m(γ−1)+1

.

Then, by using the Hölder inequality on the right-hand side with exponents
γ > 1 and γ/(γ − 1), we get∫
BR

|u− v|mγ dx ≤ C

(∫
BR

|f |γ dx

) 1
γ

mγ
m(γ−1)+1

(∫
BR

|u− v|mγ dx

) γ−1
γ

mγ
m(γ−1)+1

×
(∫

BR

(
|u|mγ + |u− v|mγ

)
dx

) 1−m
m(γ−1)+1

,

which gives∫
BR

|u− v|mγ dx ≤ C

(∫
BR

|f |γ dx

)m(∫
BR

(
|u|mγ + |u− v|mγ

)
dx

)1−m

.

Finally, by arguing as in (46)-(48), we will obtain estimate (40). �

Now, we define

σ(t) :=
mp t

(m+ 1)(p− 1)
, ∀ t ≥ 0. (50)

Lemma 5 Let 1 < p < n, 1 < γ ≤ np/(np−n+ p), u ∈W 1,p
0 (Ω) be the weak

solution to (19) and v ∈W 1,p(BR) be the weak solution to (29), with

0 < m <
1

γ − 1
.

Then there exists a constant C ≡ C(m,n, p, L/ν, γ) for which, for any 0 < q ≤
σ(γ)(p− 1),

−
∫
BR

[
|V (Du)− V (Dv)|

2q
p + |Du−Dv|q

]
dx

≤ C
(
−
∫
BR

|f |γdx

) q
σ(γ)(p−1)

(51)

+C χ{p<2}

(
−
∫
BR

|f |γdx

) q
σ(γ)(p−1)

p
2
(
−
∫
BR

(|Du|+ s)q
)1− p2

,

where V and σ are defined by (35) and (50), respectively, and we denote
by χ{p<2} the usual characteristic function of the set {p < 2}, that is χ{p<2} =
1 if p < 2 and χ{p<2} = 0 if p ≥ 2.
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Proof First, we assume that R = 1 and take

q = σ(γ)(p− 1) ≡ mγp

m+ 1
. (52)

The key of the proof relies in the following estimate.

‖f‖Lγ(B1) ≤ 1

⇓ (53)∫
B1

[
|V (Du)− V (Dv)|

2q
p + |Du−Dv|q

]
dx

≤ C

ν
q
p

+ χ{p<2}
C

ν
q
2

(∫
B1

(|Du|+ s)q dx

)1− p2
,

where C ≡ C(n, p, γ) and ν is the ellipticity constant given by (2).

In order to show the result above, we will need a basic estimate on the
gradient of the functions u and v (see the forthcoming formula (55)), that we
will obtain by modifying the classical arguments introduced by Boccardo and
Gallouët in [10,11] (see also [16]).4

To do this, for any t ∈ R and any k ∈ N, consider the standard truncation
operators

Tk(t) := min
{
k,max{−k, t}

}
and Φk(t) := T1(t− Tk(t)). (54)

and the level sets

Ck :=
{
x ∈ B1 : k ≤ |u(x)− v(x)|

}
,

Dk :=
{
x ∈ B1 : k < |u(x)− v(x)| ≤ k + 1

}
.

Since u and v are the solutions to (19) and (29), respectively, by subtracting
the corresponding weak formulations, we get∫
B1

〈a(x,Du)− a(x,Dv), Dφ〉dx+

∫
B1

[
|u|m−1u− |v|m−1v

]
φdx =

∫
B1

fφdx.

By testing with φ = Φk(u−v), dropping the nonnegative term and taking (38)
into account, we obtain∫

Dk

|V (Du)− V (Dv)|2 dx ≤ C

ν

∫
Ck

|f |dx, (55)

where C > 0 depends only on n and p.

4 We note that in [10,11,16], as well in [38], one can get rid of the ellipticity constant
ν in the estimates. In contrast, since the problem we are dealing with does not satisfy a
homogeneous scaling property, due to the presence of the lower order term g, we have to
take care of such a constant in (53) throughout the proof of Lemma 5 and 6.
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Now, we set

G = G(u, v) := |V (Du)− V (Dv)|2/p + |Du−Dv|,

Let us focus firstly on the case p ≥ 2. By arguing as in (55) and using (39),
we get ∫

Dk

Gp dx ≤ C

ν

∫
Ck

|f |dx.

Furthermore, for any q < p
(
since m < 1/(γ − 1)

)
, we can use the Hölder

inequality with exponents p/q > 1 and p/(p − q) in the inequality above,
together with the definitions of sets Dk and Ck and with the properties of the
series with positive terms; we get

∫
B1

Gq dx ≤

 ∞∑
j=0

∫
Dj

Gp

(1 + |u− v|)t
dx


q
p(∫

B1

(1 + |u− v|)
tq
p−q dx

)1− qp

≤ C

ν
q
p

 ∞∑
k=0

∫
Dk

|f |dx
k∑
j=0

1

(1 + j)t


q
p(∫

B1

(1 + |u− v|)
tq
p−q dx

)1− qp
,(56)

where we denoted by
t := 1−m(γ − 1). (57)

Notice that γ > 1 yields t < 1; thus, using the definition of Dk in (56), we get

∞∑
k=0

∫
Dk

|f |dx
k∑
j=0

1

(1 + j)t
≤ C

∞∑
k=0

∫
Dk

|f |
(
1 + |u− v|1−t

)
dx

≤ C

∫
B1

|f |
(
1 + |u− v|1−t

)
dx.

By using again the Hölder inequality, together with the fact that ‖f‖Lγ(B1) ≤
1 (recall (53)), we get

∞∑
k=0

∫
Dk

|f |dx
k∑
j=0

1

(1 + j)t
≤ C‖f‖Lγ(B1) + C‖f‖Lγ(B1)‖|u− v|

1−t‖
L

γ
γ−1 (B1)

≤ C + C

(∫
B1

|u− v|
(1−t)γ
γ−1 dx

)1− 1
γ

. (58)

Now we notice that the definitions of q in (52) and t in (57) yield

tq

p− q
=

(1− t)γ
γ − 1

= mγ.

Hence, putting together (56) and (58) with estimate (40) in Lemma 4, we
arrive at∫

B1

Gq dx ≤ C

ν
q
p

+
C

ν
q
p

(∫
B1

|u− v|mγ dx

)1− qp+
q(γ−1)
pγ

≤ C

ν
q
p

,
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that is the desired inequality in (53).

In the case 1 < p < 2, we do the same calculations as in (56) to (58); we
arrive at ∫

B1

|V (Du)− V (Dv)|
2q
p ≤ C

ν
q
p

, (59)

in which q is defined by (52). When |Du| 6= |Dv|, we write

|Du−Dv| =
(
(|Du|2 + |Dv|2 + s2)

p−2
2 |Du−Dv|2

) 1
2
(
|Du|2 + |Dv|2 + s2

) 2−p
4

and so by (36) it follows

|Du−Dv| ≤ C|V (Du)− V (Dv)|
(
|Du|2 + |Dv|2 + s2

) 2−p
4

≤ C|V (Du)− V (Dv)|
(
|Du−Dv|

2−p
2 + (|Du|+ s)

2−p
2

)
.

Therefore, using the Young inequality we can choose a suitable ε > 0 to obtain

|Du−Dv|q ≤ C|V (Du)− V (Dv)|
2q
p +

1

2
|Du−Dv|q

+C|V (Du)− V (Dv)|q
(
|Du|+ s

) (2−p)q
2

and then

|Du−Dv|q ≤ C|V (Du)− V (Dv)|
2q
p + C|V (Du)− V (Dv)|q

(
|Du|+ s

) (2−p)q
2 .

By using the estimate above together with the Hölder inequality
(
with expo-

nents 2/p > 1 and 2/(2− p)
)
, we get∫

B1

|Du−Dv|q dx

≤ C
∫
B1

|V (Du)− V (Dv)|
2q
p dx (60)

+C

(∫
B1

|V (Du)− V (Dv)|
2q
p dx

)p
2
(∫

B1

(|Du|+ s)q dx

)1− p2
.

At this time, it suffices to combine (59) with (60) to get∫
B1

|Du−Dv|q dx ≤ C

ν
q
p

+
C

ν
q
2

(∫
B1

(|Du|+ s)q dx

)1− p2

and we arrive at (53). We note that (53) also follows for any other q ≤ σ(γ)(p−
1), as one can see by the Hölder and Young inequalities.

The last step of this proof consists into recovering the general case for
arbitrary R > 0 and f ∈ Lγ(Ω), in order to obtain estimate (51). To do this,
we use the scaling argument introduced in Section 2.5 and we write∫

B1

[
|Vs/A(Dū)− Vs/A(Dv̄)|

2q
p + |Dū−Dv̄|q

]
dx ≤ C

ν
q
p

,
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with ν replaced by νA−m−1+p,A as in (32). Re-scaling back the last inequality,
that is passing from ū, v̄ to u, v

(
recall (31)

)
, we finally obtain

−
∫
BR

[
|V (Du)− V (Dv)|

2q
p + |Du−Dv|q

]
dx

≤ C Rη
q(m+1)
mp −(α+1)q

(
−
∫
BR

|f |γ dx

) (m+1)q
mpγ

+Cχ{p<2}R
η(m+1)q

2m − (α+1)pq
2

(
−
∫
BR

|f |γ dx

) (m+1)q
2mγ

×
(
−
∫
BR

(|Du|+ s)q dx

)1− p2
,

in which we also used (37). Note that

η
(m+ 1)q

mp
− (α+ 1)q = 0 and

η(m+ 1)q

2m
− (α+ 1)pq

2
= 0

with α and η as in (30). This completes the proof. �

Lemma 6 Let 1 < p < n, u ∈ W 1,p
0 (Ω) be the weak solution to (19) and

v ∈W 1,p(BR) be the weak solution to (29), p− 1 < m <∞. Then

−
∫
BR

[
R1−p|u− v|p−1 + |Du−Dv|p−1

]
dx

≤ C
(
−
∫
BR

|f |dx
) 1
σ(1)

(61)

+C χ{p<2}

(
−
∫
BR

|f |dx
) p

2σ(1)
(
−
∫
BR

(|Du|+ s)p−1 dx

)1− p2
.

Moreover, for any θ ∈ [0, n],∫
BR

|Du−Dv|p−1 dx

≤ C Rn−
θ

σ(1) ‖f‖
1

σ(1)

L1,θ(BR)
(62)

+Cχ{p<2}R
p
2 (n− θ

σ(1) )‖f‖
p

2σ(1)

L1,θ(BR)

(∫
BR

(|Du|+ s)p−1 dx

)1− p2
.

The constant C > 0 depends only on m, n, p, L/ν and γ; σ is given by (50).

Proof In the case p ≥ 2, we can deduce the estimate in (61) following the
strategy used to obtain (51) in the previous lemma, but we need to choose
different exponents to be able to consider also the case γ = 1. For this, we
take t = m(p− q)/q and thus, for any ‖f‖L1(B1) ≤ 1, we obtain∫

B1

Gq dx ≤ C

ν
q
p

(∫
B1

(1 + |u− v|)m dx

)1− qp
,
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where C ≡ C(n, p) > 0 and we also used the fact that
∑∞
j=0 1/(1 + j)t is

finite, since, for q = p− 1 and m > p− 1, we have t > 1. Also, (40) holds for
γ = 1 and then (53) follows.

If 1 < p < 2, we can argue as in Lemma 5 and we obtain (53). Finally,
the scaling argument in (30) and (31) together with Poincaré inequality (that
holds since v = u on ∂BR) yield (61).

Furthermore, since ‖f‖L1(BR) ≤ Rn−θ‖f‖L1,θ(BR) for any θ ∈ [0, n], we can
easily deduce (62) from (61). �

By combining (62) with the Hölder inequality together with the fact that
the Marcinkiewicz space Mγ is continuously embedded in L(γ, q), we obtain
the following result.

Lemma 7 Let the assumptions of Lemma 6 hold and suppose that f ∈ Lθ(γ, q)(BR)
for some γ > 1, q ∈ (0,∞] and θ ∈ [0, n]. Then,∫

BR

[R1−p|u− v|p−1 + |Du−Dv|p−1] dx

≤ C Rn−
θ

σ(γ) ‖f‖
1

σ(1)

Lθ(γ,q)(BR)
(63)

+Cχ{p<2}R
p
2 (n− θ

σ(γ) )‖f‖
p

2σ(1)

Lθ(γ,q)(BR)

(∫
BR

(|Du|+ s)p−1 dx

)1− p2
,

where the constant C depends only on m, n, p, L/ν, γ and σ is given by (50).

In Lemma 8 below, we prove one of the main tools that we will use in the
proof of Theorem 1. Although the proof of this result is a little bit technical
and it follows strongly the first step of the proof of [38, Theorem 11], we give
full details, since here we also deal with the case 1 < p < 2.

Let Q0 be a fixed cube such that n2Q0 ⊂⊂ Ω and |Q0| ≤ 1. According to
the definitions given in Section 2.4, we shall consider M∗ ≡ M∗0,n2Q0

. Thus,
keeping in mind the properties of dyadic cubes given at the end of Section 2.6,
we have the following lemma.

Lemma 8 Let u ∈ W 1,p
0 (Ω) be the solution to (19), with p − 1 < m < ∞.

Then for every T > 1 there exists a number ε ≡ ε(m,n, p, L/ν, T ) ∈ (0, 1),
such that if λ > 1 and Q ⊂ Q0 is a dyadic sub-cube of Q0 such that∣∣Q ∩ {x ∈ Q0 : M∗((|Du|2 + s2)

p−1
2 )(x) > ATλ

and [M∗(f)]
1

σ(1) (x) ≤ ε λ
}∣∣ > T−

pχ
p−1 |Q| (64)

then its predecessor Q̃ satisfies

Q̃ ⊆ {x ∈ Q0 : M∗((|Du|2 + s2)
p−1

2 )(x) > λ}. (65)

Here χ ≡ χ(n, p, L/ν) > 1 is the higher integrability exponent as in Theorem
5, while A ≡ A(m,n, p, L/ν) > 1 is an absolute constant.
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Proof We argue by contradiction. Since we assume that (65) fails, there exists
x̃ ∈ Q̃ such that

M∗((|Du|2 + s2)
p−1

2 )(x̃) ≤ λ (66)

and, thus, by recalling that Q̃ ⊂ 3Q because Q̃ is the predecessor of Q, we
have

−
∫
3Q

(|Du|2 + s2)
p−1

2 dx ≤ λ. (67)

In view of (64), there exists x̄ ∈ Q such that

M∗(f)(x̄) ≤ (ε λ)σ(1). (68)

Let B ⊂ n2Q0 be the unique ball having 3Q as inner cube and v ∈ W 1,p(B)
be the solution to the following problem{

−div a(x,Dv) + |v|m−1v = 0 in B

v = u on ∂B.
(69)

Considering the outer cube to B which satisfies Qout(B) ⊂ n2Q0, then (68)
yields

−
∫
B

|f |dx ≤ |Qout(B)|
|B|

−
∫
Qout(B)

|f |dx ≤ C(n)(ε λ)σ(1), (70)

since x̄ belongs to Q ⊂ Qout(B). Using (61) with BR = B, (67) and (70),
noticing that x̃ ∈ B ⊂ n2Q0, we get

−
∫
3Q

|Du−Dv|p−1 dx

≤ C(n)−
∫
B

|Du−Dv|p−1 dx

≤ C
(
−
∫
B

|f |dx
) 1
σ(1)

+ Cχ{p<2}

(
−
∫
B

|f |dx
) p

2σ(1)
(
−
∫
B

(|Du|+ s)p−1 dx

)1− p2
≤ Cελ+ Cχ{p<2}ε

p
2 λ, (71)

for a positive constant C depending only on m, n, p and ν.
Since v solves the homogeneous Dirichlet problem (69), the Gehring’s

higher integrability theory holds - as noticed in Section 2.6 - and thus we
can use Theorem 5 with q = p− 1 to get(

−
∫
2Q

(|Dv|2 + s2)
pχ
2 dx

) 1
pχ

≤ C
(
−
∫
3Q

(|Dv|2 + s2)
p−1

2

) 1
p−1

,

with χ ≡ χ(n, p, L/ν) > 1 as in Theorem 5. Therefore, combining (67) with (71)
together with the fact that ε ≤ 1, we get

−
∫
3Q

(|Dv|2+s2)
p−1

2 dx ≤ C−
∫
3Q

(|Du|2+s2)
pχ
2 dx+C−

∫
3Q

|Du−Dv|p−1 dx ≤ C λ
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that implies

−
∫
2Q

(|Dv|2 + s2)
pχ
2 dx ≤ C λ

pχ
p−1 . (72)

Let M∗∗ = M∗0,2Q be the maximal operator restricted to 2Q. Using the
boundedness of maximal operators in Marcinkiewicz spaces given in (28), both
in the case t = pχ/(p− 1) ≥ 1 and t = 1, we get for every A and T > 1,

|{x ∈ Q : M∗∗((|Du|2 + s2)
p−1

2 )(x) > ATλ}|

≤ |{x ∈ Q : M∗∗((|Dv|2 + s2)
p−1

2 )(x) > ATλ/4p}|
+ |{x ∈ Q : M∗∗(|Du−Dv|p−1)(x) > ATλ/4p}|

≤ C

(ATλ)
pχ
p−1

∫
2Q

(|Dv|2 + s2)
pχ
2 dx (73)

+
C

ATλ

∫
2Q

|Du−Dv|p−1 dx.

Also, by (72) we have

C

(ATλ)
pχ
p−1

∫
2Q

(|Dv|2 + s2)
pχ
2 dx ≤ C2

(AT )
pχ
p−1

|Q|.

Taking
A := 10n

(
C2(n, p,m,L/ν) + 1

)
, (74)

we finally obtain

C

(ATλ)
pχ
p−1

∫
2Q

(|Dv|2 + s2)
pχ
2 dx ≤ 1

4T
pχ
p−1

|Q|. (75)

Now we use (71) to estimate the second term in the right-hand side of (73).
We have

C

ATλ

∫
2Q

|Du−Dv|p−1 dx ≤ C3

AT
ε|Q|, for p ≥ 2

and
C

ATλ

∫
2Q

|Du−Dv|p−1 dx ≤ C3

AT
ε
p
2 |Q|, for 1 < p < 2.

We fix the value of ε so that

ε :=
1(

C3(m,n, p, L/ν) + 1
)
T

pχ
p−1−1

< 1, if p ≥ 2, (76)

and

ε :=

(
1(

C3(m,n, p, L/ν) + 1
)
T

pχ
p−1−1

)2
p

< 1, if 1 < p < 2. (77)

As a consequence, we obtain

C

ATλ

∫
2Q

|Du−Dv|p−1 dx ≤ |Q|
4T

pχ
p−1

.
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Thus, by merging the inequality above with (73) and (75), we obtain∣∣{x ∈ Q : M∗∗((|Du|2 + s2)
p−1

2 )(x) > ATλ
}∣∣ < T−

pχ
p−1 |Q|. (78)

By following the same argument in [38, Theorem 11, Step 1], we can use
again (66) passing to arbitrary cubes and we get

M∗((|Du|2 + s2)
p−1

2 )(x) ≤ max
{
M∗∗(|Du|2 + s2)

p−1
2 )(x), 9nλ

}
, ∀x ∈ Q.

(79)
Finally, (78), (79) and the choice of A in (74) yield∣∣{x ∈ Q : M∗((|Du|2 + s2)

p−1
2 )(x) > ATλ

}∣∣ < T−
pχ
p−1 |Q|,

which is a contradiction to (64). The proof is complete. �

The following lemma provides another important tool for the proof of our
main result. We think that this lemma could have its own interest, since it
shows an intermediate Morrey space regularity of |Du|p−1.

Lemma 9 Let u ∈ W 1,p
0 (Ω) be the solution to (19), with p − 1 < m < ∞.

Assume that f ∈ Lθ(γ, q)(Ω) with 1 < pγ ≤ θ ≤ n and q ∈ (0,∞], then the
following inequality holds

‖(|Du|+ s)p−1‖
L

1, θ
σ(γ) (Bt)

≤ C (d− t)
θ

σ(γ)
−n‖(|Du|+ s)p−1‖L1(Bd)

+C ‖f‖
1

σ(1)

Lθ(γ,q)(Bd)
, (80)

for every couple of concentric balls Bt ⊂ Bd ⊆ Ω; where C ≡ C(m,n, p, q, L/ν, γ)
is a positive constant.

Proof Let us take xc ∈ Bt and a ball BR centered in xc, and such that
R ≤ dist(xc, ∂Bd), so that BR ⊆ Bd and let v be the solution to (69). Fol-
lowing [38, Lemma 11], since (2) implies (33), we can use the De Giorgi-Nash-
Moser theory, that is estimate (34) with q = p− 1, and we get∫

Bρ

(|Dv|+ s)p−1 dx ≤ C
( ρ
R

)n−(1−$)(p−1) ∫
BR

(|Du|+ s)p−1 dx

+C

∫
BR

|Du−Dv|p−1 dx, ∀ ρ ∈ (0, R),

where C ≡ C(n, p, L/ν) and $ ≡ $(n, p, L/ν) ∈ (0, 1/2]. Combining the
estimate above with (63) in Lemma 7, we get∫

Bρ

(|Du|+ s)p−1 dx

≤ C
( ρ
R

)n−(1−$)(p−1) ∫
BR

(|Du|+ s)p−1 dx (81)

+C Rn−
θ

σ(γ) ‖f‖
1

σ(1)

Lθ(γ,q)(BR)

+Cχ{p<2}R
p
2 (n− θ

σ(γ) )‖f‖
p

2σ(1)

Lθ(γ,q)(BR)

(∫
BR

(|Du|+ s)p−1 dx

)1− p2
.
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In the case 1 < p < 2, we can use the Young inequality
(
with exponents

2/p > 1, 2/(2−p) and ε > 0
)

in the second term in the right-hand side of (81)
and we get∫

Bρ

(|Du|+ s)p−1 dx

≤ C
( ρ
R

)n−(1−$)(p−1) ∫
BR

(|Du|+ s)p−1 dx+ C Rn−
θ

σ(γ) ‖f‖
1

σ(1)

Lθ(γ,q)(BR)

+C(ε)χ{p<2}R
n− θ

σ(γ) ‖f‖
1

σ(1)

Lθ(γ,q)(BR)
+ ε

∫
BR

(|Du|+ s)p−1 dx

= C

(( ρ
R

)n−(1−$)(p−1)
+ ε

)∫
BR

(|Du|+ s)p−1 dx

+C(ε)Rn−
θ

σ(γ) ‖f‖
1

σ(1)

Lθ(γ,q)(BR)
.

Thus, for any p > 1, we can apply the algebraic Lemma 3 by choosing

Ψ(ρ) =

∫
Bρ

(|Du|+ s)p−1 dx, B = C‖f‖
1

σ(1)

Lθ(γ,q)(BR)
, R̄ = dist(xc, ∂Bd)

and

δ0 := n− (1−$)(p− 1) > n− θ

σ(γ)
=: δ1 (since pγ < θ).

It follows∫
Bρ

(|Du|+ s)p−1 dx ≤ C
( ρ
R̄

)δ1∫
BR̄

(|Du|+ s)p−1 dx+ CBρδ1 .

Since R̄ > d− t, for any Bρ ⊆ Bd centered in Bt, we have that (80) follows by∫
Bρ

(|Du|+ s)p−1 dx

≤ C

(
(d− t)

θ
σ(γ)
−n
∫
Bd

(|Du|+ s)p−1 dx+ ‖f‖
1

σ(1)

Lθ(γ,q)(Bd)

)
ρn−

θ
σ(γ) .

�

4 Proof of the main result

For the reader’s convenience, we restate Theorem 1 from the Introduction. We
also recall that, for any t > 0, the exponent σ(t) is defined by

σ(t) :=
mp t

(m+ 1)(p− 1)
, ∀ 1 < p < n and ∀ 0 < m <∞. (82)
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Theorem 6 Let q ∈ (0,∞]. Assume (2) and

f ∈ Lθ(γ, q)(Ω)

with γ, θ such that

1 < γ ≤ θp

θp− θ + p
, 1 < p < θ ≤ n.

Then the solution u ∈W 1,1
0 (Ω) to (18), with

p− 1 < m <
1

γ − 1
,

satisfies
|Du|p−1 ∈ Lθ

(
σ(γ), σ(q)

)
locally in Ω.

Moreover, the local estimate

‖|Du|p−1‖Lθ(σ(γ),σ(q))(BR/2)

≤ C R
θ

σ(γ)
−n‖(|Du|+ s)p−1‖L1(BR) + C‖f‖

1
σ(1)

Lθ(γ,q)(BR)

holds for every ball BR ⊆ Ω, where C depends only on m, n, p, q, L/ν and γ.

Before starting, we want to observe that most of the differences between the
problem we are dealing with and the analogous without lower order terms
analyzed in [38] has arisen in the previous section. At this stage, the general
strategy in the proof below will follow that of [38, Theorem 11]. We prefer
to give some details for the reader’s convenience, emphasizing the different
exponents we have to handle.

Proof Keeping in mind the same terminology introduced in Lemma 8 and the
definitions of dyadic cubes given in Section 2.6, we divide the proof in few
steps.

Step 1 - Application of Calderón-Zygmund-Krylov-Safonov covering theorem.
We want to apply Proposition 1 with δ = T−

pχ
p−1 ,

X :=
{
x ∈ Q0 : M∗((|Du|2 + s2)

p−1
2 )(x) > (AT )k+1λ0

and [M∗(f)]
1

σ(1) (x) ≤ ε(AT )kλ0

}
,

Y :=
{
x ∈ Q0 : M∗((|Du|2 + s2)

p−1
2 )(x) > (AT )kλ0

}
and

λ0 := 2 C̄ n2n T
pχ
p−1−
∫
n2Q0

(|Du|2 + s2)
p−1

2 dx, (83)

where k ∈ N, C̄ is as in (28), T and A are as in Lemma 8.
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First, Lemma 8 guarantees the validity of hypothesis (ii) in Proposition 1.
Moreover, using the boundedness of the maximal operators in Marcinkiewicz
spaces and some considerations as in Lemma 8, it easily follows that, for any
k ∈ N,∣∣∣{x ∈ Q0 : M∗((|Du|2 + s2)

p−1
2 )(x) > (AT )kλ0

}∣∣∣
≤
∣∣∣{x ∈ Q0 : M∗((|Du|2 + s2)

p−1
2 )(x) ≥ λ0

}∣∣∣ < T−
pχ
p−1 |Q0|

and so hypothesis (i) in Proposition 1 holds, too. Hence, we arrive at∣∣{x ∈ Q0 : M∗((|Du|2 + s2)
p−1

2 )(x) > (AT )k+1λ0
}∣∣

≤ T−
pχ
p−1

∣∣{x ∈ Q0 : M∗((|Du|2 + s2)
p−1

2 )(x) > (AT )kλ0
}∣∣ (84)

+
∣∣{x ∈ Q0 : [M∗(f)]

1
σ(1) (x) > ε(AT )kλ0

}∣∣, ∀ k ≥ 0,

that can be rewritten as follows

(AT )(k+1)σ(γ)λ
σ(γ)
0 µ1((AT )k+1λ0)

≤ (AT )kσ(γ)Aσ(γ)Tσ(γ)−
pχ
p−1λ

σ(γ)
0 µ1((AT )kλ0) (85)

+ (AT )kσ(γ)
(
AT

ε

)σ(γ)
(λ0ε)

σ(γ)µ2(ε(AT )kλ0).

where, for any K ≥ 0, we denoted µ1(K) :=
∣∣{x ∈ Q0 : M∗((|Du|2 +

s2)
p−1

2 )(x) > K
}∣∣ and µ2(K) :=

∣∣{x ∈ Q0 : [M∗(f)]
1

σ(1) (x) > K
}∣∣. Now

observe that, since χ > 1 and m < 1/(γ − 1),

d :=
pχ

(p− 1)
− σ(γ) =

p

p− 1

(
χ− γm

m+ 1

)
> 0.

Therefore, with A given by (74), we can choose T as follows

T := (4Aσ(γ))
1
d

and, taking into account (76), (77), the definitions of A and T , inequality (85)
gives that there exists a constant C ≡ C(m,n, p, L/ν) such that, for every
k ≥ 0,

(AT )(k+1)σ(γ)λ
σ(γ)
0 µ1((AT )k+1λ0)

≤ 1

4
(AT )kσ(γ)λ

σ(γ)
0 µ1((AT )kλ0) (86)

+C(AT )kσ(γ)(ελ0)σ(γ)µ2((AT )kελ0).

Step 2 - Level sets estimates. In order to establish some Lorentz spaces esti-
mates on level sets, we can proceed as in Step 3 of [38, Theorem 11]. Taking
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0 < t <∞ and operating some manipulations, we arrive at∫ ∞
0

[λσ(γ)µ1(λ)]
t

σ(γ)
dλ

λ
≤
(

1

t
+ 2C̃t(AT )t log(AT )

)
λt0|Q0|

t
σ(γ)

+ C̃t(AT )2t
∫ ∞
0

[λσ(γ)µ2(λ)]
t

σ(γ)
dλ

λ
,

where the constant C̃ > 1 is increasing in the variables m,n, p, L/ν and de-
creasing in t, such that C̃ →∞ as t→ 0, while it remains bounded when t is
bounded away from zero.

Thus, the following inequality

|Du(x)|p−1 ≤M∗((|Du|2 + s2)
p−1

2 )(x), a. e. x ∈ Ω,

yields

‖|Du|p−1‖L(σ(γ),t)(Q0) ≤ Cλ0|Q0|
1

σ(γ) + C‖M∗(f)‖
1

σ(1)

L(σ(γ)
σ(1)

, t
σ(1) )(Q0)

, (87)

where the constant C ≡ C(m,n, p, L/ν, t) is bounded with respect to t as long
as t is bounded away from zero. By choosing t = σ(q) in (87), with q ∈ (0,∞),
we obtain

‖|Du|p−1‖L(σ(γ),σ(q))(Q0) ≤ Cλ0|Q0|
1

σ(γ) + C‖M∗(f)‖
1

σ(1)

L(γ,q)(Q0)
. (88)

Now we can use Theorem 3 with β = 0, t = γ, eventually passing to the outer
ball B, and taking δ = 2. We get

‖M∗(f)‖
1

σ(1)

L(γ,q)(Q0)
≤ C‖f‖

1
σ(1)

Lθ(γ,q)(n2Q0)
. (89)

Finally, by means of (88), (89) and the definition of λ0 in (83), we otain

‖|Du|p−1‖L(σ(γ),σ(q))(Q0) ≤ C

(
−
∫
n2Q0

(|Du|2 + s2)
p−1

2 dx

)
|Q0|

1
σ(γ)

+C‖f‖
1

σ(1)

Lθ(γ,q)(n2Q0)
. (90)

Similarly, we can deal with the case q =∞ and we arrive at

‖|Du|p−1‖Mσ(γ)(Q0) ≤ C

(
−
∫
n2Q0

(|Du|2 + s2)
p−2

2 dx

)
|Q0|

1
σ(γ)

+C‖f‖
1

σ(1)

Mγ,θ(n2Q0)
.

Step 3 - Morrey spaces regularity. We want to use the intermediate Morrey
spaces regularity of |Du|p−1 proved in Lemma 9. Let Bρ ⊆ Ω be a ball; we
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write (90) for ū and f̄ defined in B1 as in (31) with A = 1, by choosing R ≡ ρ,
and we pass to inner and outer balls. We have

‖|Dū|p−1‖L(σ(γ),σ(q))(B1/n4 )

≤ C‖(|Dū|+ s)p−1‖
L

1, θ
σ(γ) (B9/10)

+ C‖f̄‖
1

σ(1)

Lθ(γ,q)(B1)
, (91)

where we used that the definitions of m, θ and γ yield θ/σ(γ) < n.

Now, we scale back to Bρ. Lemma 2 with A = 1 yields

ρ(α+1)(p−1)− n
σ(γ) ‖|Du|p−1‖L(σ(γ),σ(q))(Bρ/n4 ) ≤ CΘ(Bρ)ρ

(α+1)(p−1)− θ
σ(γ) ,

(92)
with α as in (30) and

Θ(Bρ) := ‖(|Du|+ s)p−1‖
L

1, θ
σ(γ) (B9ρ/10)

+ ‖f‖
1

σ(1)

Lθ(γ,q)(Bρ)

for every ball Bρ ⊆ Ω.
In view of the definition of the Lorentz-Morrey norm and by means of a

covering argument (see Step 5 in [38, Theorem 11] and in particular Page 612
there), from (92) we can deduce

‖|Du|p−1‖Lθ(σ(γ),σ(q))(BR/2) ≤ C Θ(B3R/4),

together with Lemma 9 (with d = R and t = 27R/40), yields

‖|Du|p−1‖Lθ(σ(γ),σ(q))(BR/2)

≤ C R
θ

σ(γ)
−n‖(|Du|+ s)p−1‖L1(BR) + C‖f‖

1
σ(1)

Lθ(γ,q)(BR)
, (93)

where C ≡ C(n, p,m,L/ν, γ, q) > 0.

Step 4 - Conclusion of the proof. We recall that estimate (93) holds for u ≡ uk
solution to (19) with f ≡ fk = Tk(f), where Tk is the truncation operator
defined by (54); i. e.,

‖|Duk|p−1‖Lθ(σ(γ),σ(q))(BR/2)

≤ C R
θ

σ(γ)
−n‖(|Duk|+ s)p−1‖L1(BR) + C‖f‖

1
σ(1)

Lθ(γ,q)(BR)
, (94)

where the constant C does not depend on k. Note that in (94) we have used
the fact that

‖fk‖Lθ(γ,q)(BR) ≤ ‖f‖Lθ(γ,q)(BR),

since by the definition of fk it holds that |fk| ≤ |f |. Hence, in order to pass to
the limit on k → ∞ in (94), it suffices to use the lower semicontinuity of the
Lorentz-Morrey norms together with the approximating arguments stated in
Section 2.2

(
recall, in particular, (21)

)
. �
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Remark 1 It is worth noticing that it is possible to extend the result of The-
orem 6 in the case of f being a measure µ verifying the following density
condition

|µ|(BR) ≤ CRn−θ, p ≤ θ ≤ n,

for a nonnegative constant C. In view of the property above, one can repeat
the proof of Theorem 6 modulo minor changes (see, also, [40, Theorem 4.3]).

5 Further extensions

In the following we analyze some possible extensions of Theorem 1. First, we
deal with the solutions to (1) when the datum belongs to the Morrey-Orlicz
spaces. Next, we will show that the regularity results in Theorem 1 can be
obtained also when the lower order terms g verify some relaxed assumptions
with respect to those considered until now.

5.1 Orlicz regularity

We want to study the case in which the given function f in (1) belongs to
an Orlicz space or to a Morrey-Orlicz space. For this, we firstly recall the
definition of these spaces.

A measurable function f : Ω → R belongs to the Orlicz space L logL(Ω)
if and only if

‖f‖L logL(Ω) :=−
∫
Ω

|f | log

(
e+

f

−
∫
Ω
|f(y)|dy

)
dx < ∞.

Fix θ ∈ [0, n], a measurable function f : Ω → R belongs to the Morrey-
Orlicz space L logLθ(Ω) if and only if

‖f‖L logLθ(Ω) := sup
BR⊆Ω

Rθ‖f‖L logL(BR)

= sup
BR⊆Ω

Rθ−n
∫
BR

|f | log

(
e+

f

−
∫
BR
|f(y)|dy

)
dx <∞.

We note that, as in the Morrey-Lorentz case, the functional ‖ · ‖L logL(Ω) is
lower semicontinuous with respect to the a. e. convergence.

We are ready to state and prove the following regularity result.

Theorem 7 Assume (2) and

f ∈ L logLθ(Ω), θ ∈ (p, n].

Then the solution u ∈W 1,1
0 (Ω) to (18), with

p− 1 < m <∞,
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satisfies
|Du|p−1 ∈ Lσ(1),θ locally in Ω.

Moreover, the local estimate

‖|Du|p−1‖Lσ(1),θ(BR/2)
≤ C R

θ
σ(1)
−n‖(|Du|+ s)p−1‖L1(BR) + C‖f‖

1
σ(1)

L logLθ(BR)

(95)
holds for every ball BR ⊆ Ω, where C depends only on m, n, p and L/ν; σ is
given by (82).

Proof We can repeat the proof of Theorem 6 up to (87) with γ = 1. Hence,
taking t = σ(1) we arrive at∫

Q0

|Du|(p−1)σ(1) dx ≤ Cλσ(1)0 |Q0|+ C

∫
Q0

|M∗(f)|dx.

So by the boundedness of the maximal operators in L logL, ‖M∗(f)‖L1(Q0) ≤
C‖f‖L logL(Q0), and recalling the definition of λ0 in (83), we get(

−
∫
Q0

|Du|(p−1)σ(1) dx

) 1
σ(1)

≤ C|Q0|
1

σ(1)

(
−
∫
n2Q0

(|Du|2 + s2)
p−1

2 dx

)
+C|Q0|

1
σ(1) ‖f‖

1
σ(1)

L logL(Q0)
.

Passing to the outer and inner balls in a standard way, and rescaling everything
to B1, we obtain the analog of (91), i. e.,

‖|Du|(p−1)‖Lσ(1)(B1/n4 ) ≤ C‖(|Du|+ s)p−1‖
L

1, θ
σ(1) (B9/10)

+ C‖f‖
1

σ(1)

L logLθ(B1)
,

where u and f are as in (31) with A = 1. Scaling back, we get

ρ
n−θ
σ(1) ‖|Du|p−1‖Lσ(1)(Bρ/n4 ) ≤ CΘ(Bρ)

with
Θ(Bρ) = ‖(|Du|+ s)p−1‖

L
1, θ
σ(1) (B9ρ/10)

+ ‖f‖L logLθ(Bρ).

Arguing as in Theorem 6 by a standard covering argument we arrive at

‖|Du|p−1‖Lσ(1),θ(BR/2)
≤ CΘ(B3R/4), ∀ BR ⊆ Ω.

To estimate Θ(B3R/4) we use the following inequality

‖(|Du|+ s)p−1‖
L

1, θ
σ(1) (Bt)

≤ C(d− t)
θ

σ(1)
−n‖(|Du|+ s)p−1‖L1(Bd)

+C‖f‖
1

σ(1)

L1,θ(Bd)
, ∀ Bt ⊂ Bd ⊆ Ω,

with d = R, t = 27R/40, that we can prove in the same way as in Lemma 9, us-
ing (62) instead of (61). Finally, by the fact that ‖f‖L1,θ(BR) ≤ C‖f‖L logLθ(BR),
we obtain the estimate in (95). �
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5.2 Weighted lower order terms

In this section we deal with an extension of problem (1) involving a class
of lower order terms g satisfying weaker assumptions with respect to those
considered until now, that is{

−div a(x,Du) + h(x)|u|m−1u = f(x) in Ω

u = 0 on ∂Ω,
(96)

where h is such that 0 < h(x) < 1 and

1/h ∈ Lκ(Ω) for some κ ≥ 1. (97)

Clearly, such g(·, t) = h(·)|t|m−1t satisfies (3), but not necessarily (4).

In the following, we will show how to recover a regularity result, as in
Theorem 6, even in spite of such different lower order term g. Indeed, we can
again recover additional information about the summability of the solutions
coming from the structure of the equation, but, in this case, we will have to
reduce the interval in which m can vary, depending on the integrability of h
given by (97).

First, we have to modify the proof of Lemma 4 by using φ = hγ−1|u −
v|m(γ−1)−1(u − v) as test function in (41). In view of the fact that the addi-
tional function h is positive, we can again use the algebraic inequality (43),
by carefully distinguishing the correspondent range on validity in dependance
of m. It follows ∫

BR

hγ |u− v|mγ dx ≤ C

∫
BR

|f |γ dx,

for any m > 0, γ ≥ 1 and BR ⊆ Ω. This estimate will permit to obtain an
additional summability of u− v. As a matter of fact, by the Hölder inequality
we plainly deduce∫

BR

|u− v|
κmγ
κ+γ dx ≤ C

(∫
BR

|f |γ dx

) κ
κ+γ

. (98)

As expected, notice that

κmγ

κ+ γ
< mγ ∀κ > 0 and

κmγ

κ+ γ
→ mγ as κ→∞.

In view of (98), inequality (51) in Lemma 5 holds for any 0 < q ≤ κmpγ/(κ(m+
1)+γ). Similarly, we can deduce the validity of (61) and (62) in Lemma 6 and
(63) in Lemma 7 for any

p− 1 <
(κ+ 1)(p− 1)

κ
< m <∞.

At this time, we can repeat the entire proof of Theorem 6 with slight modifi-
cations and we arrive at
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Theorem 8 Let q ∈ (0,∞]. Assume (2) and f ∈ Lθ(γ, q)(Ω) with γ, θ such
that

1 < γ ≤ θp

θp− θ + p
, 1 < p < θ ≤ n.

Then the solution u ∈W 1,1
0 (Ω) to (96), with

(κ+ 1)(p− 1)

κ
< m <

1

γ − 1
,

where κ is given by (97), satisfies |Du|p−1 ∈ Lθ
(
σ(γ), σ(q)

)
locally in Ω. More-

over, the local estimate

‖|Du|p−1‖Lθ(σ(γ),σ(q))(BR/2)

≤ C R
θ

σ(γ)
−n‖(|Du|+ s)p−1‖L1(BR) + C‖f‖

1
σ(1)

Lθ(γ,q)(BR)

holds for every ball BR ⊆ Ω, where C depends only on m, n, p, q, L/ν and γ.
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