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Abstract

We give a general monotonicity formula for local minimizers of free discontinuity problems
which have a critical deviation from minimality, of order d — 1. This result allows to prove
partial regularity results (i.e. closure and density estimates for the jump set) for a large class of
free discontinuity problems involving general energies associated to the jump set, as for example
free boundary problems with Robin conditions. In particular, we give a short proof to the De
Giorgi-Carriero-Leaci result for the Mumford-Shah functional.

1 Introduction

We give a monotonicity formula which describes the behaviour of the energy associated to almost-
quasi local minimisers of general free discontinuity problems, near the points of the jump set. This
formula is a key tool to prove both the closedenss of the jump set and of uniform density estimates
of the associated Hausdorff measure. In this way we generalize the De Giorgi-Carriero-Leaci result
on the Mumford-Shah functional [5] (see also [2, 4]) to a large class of functionals possibly involving
geometric quantities of the jump set and the traces of the SBV functions on the jump set.

An important question is whether an SBV minimiser of a general free discontinuity problem is a
"classical” one, i.e. its jump set is closed and so the function is locally smooth (in the complement
of the jump set). A positive answer to this question was given by De Giorgi, Carriero and Leaci
in [5] (see also [4] and [2]) for the Mumford-Shah functional. Precisely, they analyse properties
of quasi minimisers of the Mumford-Shah functional, i.e. functions u € SBV,.(R%) satisfying for
some o >0,c, >0and A=1

Vo € R V¥p > 0,Vv € SBV,.(R?) such that {u # v} C B,(z) =

/ \Vaul?dz +HI (T, N B,y(x)) < / \Vo|?de + AR (T, N By(x)) + cap® 1T
By (z) By (z)
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The main purpose of this paper is to study the behaviour of almost-quasi minimisers, i.e. to
consider A > 1. As the value of A is allowed to be greater than 1, the deviation from minimality
becomes of the same order as the Hausdorfl measure, d — 1. The main consequence of this freedom
is that one can deal with functionals involving quite general energies associated to the jump set,
and still conclude that the solutions have a closed jump set with an associated Hausdorff measure
satisfying upper and lower uniform density bounds.

The first result of the paper is a monotonicity formula (Theorem 2.2) which holds for almost-
quast minimisers. Roughly speaking, a quantity of the form

[pdl_l ( /B Vul?dz + HIL (T, N Ep))} Acld, A) + c(d, @) p® (1)

is non decreasing in p, for small p. For p — 0, around a regular point of the jump set, the limit of
the quantity above is bounded from below by a positive constant depending only on the dimension
of the space and A. In this way, one can obtain key information for proving its closure, and latter
uniform density bounds. The constants appearing in the density bounds are obtained by refining
the monotonicity formula and are given by explicit estimates.

In the second part of the paper, we analyse a free boundary - free discontinuity problem with
Robin conditions. A similar question for Dirichlet boundary conditions is treated by Alt and
Caffarelli in [1]. In our example, the energy we minimize among all admissible functions u with
values prescribed on a given compact subset of RY, is of the form

/d \Vu|2d:n + B/ (|u+|2 + |u_|2)al”7'-ld_1 + {u > 0}
R Ju

A variational framework based on SBV spaces which allows to deal with this type of problems
was introduced in [3]. In order to prove that the solutions u of these free boundary problems are
almost-quasi minimisers, and so they fit in the framework of our paper, the crucial difficulty is to
establish uniform upper and lower positive bounds on their positivity set, i.e. to prove that they
satisfy

3 0 < oy < ag, such that a1 < u(x) < ag, a.e. = € {u > 0}.

If the jump set were closed and smooth, the lower bound would be a consequence of the Hopf
lemma in relationship with the PDE satisfied by u. Nevertheless, these two properties are a priori
unknown, being precisely the object of investigation.

2 The monotonicity formula

In the sequel d > 2, B,(x) stands for the open ball of R? centered in x and of radius p (if ambiguity
on the dimension occurs, the ball is denoted Bg(:v)). If x = 0, we simple denote it B,. By dg(x)
we denote the distance from the point z to set K in R?. For an open set Q C R%, by SBV(Q) we
denote the space of special functions with bounded variation and by J, the jump set of a function
u € SBV(Q) (see [2, Definition 3.67]). For every m € N, by H™ we denote the m-dimensional
Hausdorff measure. The usual Lebesgue measure is denoted by | - |.

Definition 2.1 Let A > 1, a > 0, ¢ > 0. We say that a function v € SBV () is a local (A, o, ¢,)
almost-quasi minimizer of a free discontinuity problem at the point x € ), if

V0 < p<daa(x),Vve SBV(Q) such that {u # v} C B,(z) =
2



/ \Vul*dz +H¥ (T, N B,(x)) < / \Vul2dz + AHT(J, N By(2)) + cap® 12
By ()

Bp(if)

We say that a functionu € SBV(Q) is a (A, «, ¢) almost-quasi minimizer of a free discontinuity
problem if it is a local almost quasi minimizer at every point of €.

For simplicity, in the sequel we drop the mention to the triplet (A, a,c,) and we simply refer to
almost-quasi minimisers.
Here is the main result of the paper.

Theorem 2.2 (The monotonicity formula) Let u € SBV (Q2) be a local almost-quasi minimizer
of a free discontinuity problem at 0. Then the mapping

1 — o C A2_d Ca o
pr—s E(p) = [pd_l(/B Vul2dz + H 1(Jume))} A (@12 2)

«

is non decreasing on (0, dapn(0)).

We give two lemmas relating SBV functions on spheres with the harmonic extensions of their
H'-approximations. The boundary of the ball B,(0) is denoted dB, and by SBV (0B,) we denote
the SBV space on the sphere. The tangential gradient is denoted V..

Lemma 2.3 For d > 2, there exists a constant cq such that for every function u € SBV(0B,)
which satisfies

e(u) == / \Voul?dz +H2(J, N OB,) < cghA? 4 pd=2 (3)
dB,

there exists w € H'(0B,) such that

/ |V w|?dz +
B,

Lemma 2.4 Under the hypotheses of Lemma 2.3, there exists W € Hl(Bp) such that Aw = 0 in
B, and

Myd—l({u #w}NoB,) <e(u). (4)

/B (Vi 2de + AR ({u # @} NOB,) < e(u). (5)

_r
d—1

The proof is done simultaneously for Theorem 2.2 and Lemmas 2.3, 2.4, in four steps, using a
cyclic inductive argument over the dimension of the space.

Step 1. Proof of Lemma 2.3 for d = 2. It is enough to take ¢y < 1. Indeed, since H?2(.J,) =
HY(J,) and by hypothesis H°(.J,) < 1, then .J, = (). So we can take directly w := u. O

Step 2. Proof of the implication: Lemma 2.3 in R =— Lemma 2.4 in R%, for every
d > 2. Let d > 2 and assume Lemma 2.3 is true. Let u € SBV (9B,) such that e(u) < cqA?~4pd~2
and w € H 1((f?Bp) be the function given by Lemma 2.3. We denote by @ the harmonic extension
of w in B,. Since

d—1
— | |V@|*dz < / |V w2 dHE 1, (6)
p B, 9B,

relation (5) follows directly. O



Step 3. Proof of the implication: Lemma 2.4 in R = Theorem 2.2 in R?, for every
d> 2.
Assume Lemma 2.4 is true. In order to prove the monotonicity formula, we introduce the
function
E:(0,dyn(0)) = R, E(p):= / \Vu|?dz + HEH (T, N B,).
P

Then & is a non decreasing function, and its distributional derivative can be written as

€ (p) = e(p)dp + p,

where e € L'(0,dsn(0)) is a nonnegative function and p is a postive singular measure. More
precisely,

Vo<a<b< daQ(O)’ N(avb) = ,Hdil((Bb \Ea) N Jy N {x : |Vu(x) : x’ = HxH})

As a consequence, from the Leibniz formula for BV functions, it is enough to estimate the absolutely
continuous part of the derivative of E.
At a.e. point p where F is derivable and at which

E(p) _ cah®?
> )
rd=1 = d—1

we have 9,E(p) = (d — 1)cap®! > 0.
For a.e. point r at which
E(p) < cah?™?

pd=1 " d—1"
we have ) ( s
pE'(p) — (d—1)E(p) + (d — 1)cap® ¢
e . 0
Assuming for contradiction that for some point p we have d,E(p) < 0, then from (8) we get
d—1 d—1)ca 4_14q
£p) < L) - U=V jae (9)
p p
and using (7) we get
gl(p) < Cdpd_2A2_d.

Since

e(u) = / \Voulde +H2 (T, N OB,) < & (p)
aB,

we can use Lemma 2.4 to get the existence of a function w such that

/B Vi ds + A ({u # 0} 10B,) < - —€'(p).

Using (9), we get
/ \Vi|2de + AR ({u # @} NOB,) < E(p) — cap® 7.

P

4



Consequently

/ |V |?de + AR ({u # @9} NOB,) + cap® 1T < E(p), (10)
P

and using the almost-quasi minimality of u we get that equality holds in (10) and thus in all

preceding inequalities. This contradicts the hypothesis 0,E(p) < 0. O

Step 4. Proof of the implication: Theorem 2.2 in R — Lemma 2.3 in R%!, for
every d > 2. It is enough to prove Lemma 2.3 only for p = 1, and to rescale. To simplify our
computations, we shall assume without restricting generality that ¢y < (d — 1)wg—1, where wy_1 is
the volume of the unit ball in R4, We consider the unit ball B; C R4 and the d-dimensional
unit sphere S¢ C R4 S4 = 9B;. Let u € SBV(S?) be fixed, such that

e(u) == [ |VyulPde +HITH(T,) < A4 (11)
Sd

The value of ¢ will be specified below.
We introduce an auxiliary problem

i VowPdH® + HE(Jy) + AdH? , 12
somin IV A )+ A (£ ) (12)

and prove that for a sufficiently small constant ¢ in (11), depending only on the dimension of the
space, a minimizer w of (12) will satisfy H9~1(.J,,) = 0. Note that here the hypothesis A > 1 can
be relaxed. Consequently, for this minimizer w we have w € H'(S¢) and

/ IV wPdH? + AdH Y (fu £ w)) < / IV ulde + HE ()
Sd Sd

so that we achieve the proof of Lemma 2.3 in R4*1,

Let us consider a minimizer w for the auxiliary problem (12) and assume for contradiction
that H9=1(J,) # 0, for some value of the constant c. We can further assume that the point
eqr1 = (0,0,..,0,1) is a regular point of the jump set J,, and consider the orthogonal projection

Im: 57N By (eas1) — R? x {0}.

Let us denote in the sequel the (d-dimensional) ball B¢(0) € R and introduce the functions
2

w,u € SBV(B$(0)) defined by
2

W(z) =woll H(z), a(z)=uoll ! (x).

Then w is a minimizer for the functional

1
[ IVl ! ) + A (£ W) + (@A),
Bl

2

where 0 < R(w, A,r) < Cy(1 4+ A)rd, for some constant Cy depending only on the dimension of
the space. Consequently, W is a (1, 1, ¢1) almost-quasi minimizer of a free discontinuity problem for
A=1,a=1and ¢; = (A+1)(d+ Cy), so that we can use the monotonicity formula of Theorem
2.2.



On the one hand, since 0 is a regular point of Ji(,) we have

. (&%) Cq
1 E > —— A R .
Pl (p) 2 g N1 =5

Meanwhile, from the monotonicity formula we get for every p € (0,1/2)

Cd

[pdl_l(/B yvmzdscw{d—lu@mﬁp))} A (d= DA+ 1)(d+ Cp Cd

d—1

(13)

Assume that for some p we have that

AL~ - Cd
pd—l d—1"

If p is fixed (its value will be given below), this assumption will be satisfied as soon as ¢ will be
chosen small enough.
Indeed, combining hypothesis (11) with (13) and the assumption above, we get that

c cd
————+(d-1)(A+1)(d+Cy)p >
(Ap)d_1+( )( + )( + d)p_d_17
or introducing suitable dimensional constants, for p < m we get
Cc (&%
——— + ClAp > ——.
(ApyT TG = 5 )
' el/d i
Let us fix p := —4—. It is enough to take c small enough, e.g.
chet/d ooy N ca W\
A (d—1)A" 2(d—1)2(d+Cq) 2’
to obtain a contradiction and finish the proof. a

3 Regularity properties for free discontinuity problems

Relaying on the monotonicity formula, in this section we prove the primary regularity property
for almost-quasi minimizers of free discontinuity problems: their jump set is closed and satisfies
density estimates from above and below (i.e. it is Ahlfors regular) and the function is smooth in
the complement of the this set.

3.1 Closure of the jump set

Theorem 3.1 Let u be an almost-quasi minimizer of a free discontinuity problem and denote J,,
the family its jump points. Then H¥ (T, \ J,) = 0.

Proof Since J, is rectifiable, it is contained in a countable union of C'' hypersurfaces, up to a set
of zero H% !-measure. We denote J the set of regular points of J, (i.e. which have density 1 in
some of these C! manifolds). Let us consider z,, € J" such that z,, — T € J,,. For every such point
T,, we have




so that relaying on the monotonicity formula and comparing E(p) to the behaviour of E near 0,
we get for p € (0, dpa(zn))

1 _ — c cqgA\21
— Vul?d 1 J, N By(zn d—1)2p% > wg_1 A 14
g ([ e By 0z T 9
There exists pg, Cy > 0 independent on n such that, provided p < pg A daq(xy),
/ \Vul2de + HI (T, N B,y(x,)) > Cop® L. (15)
Bp(l”n)
By continuity, inequality (15) holds also at the point
/ \Vulde +H¥ (], N B,(F)) > Cop® L. (16)
B, (%)

In general, for every function v € SBV(2), it is well known (see for instance [5, Theorem 3.6])
that for H?!-almost every point y € Q\ J, we have

lim pl—d[ / Vul2dz + 1L (J, N E,,(y))] ~0. (17)
0 Bo(y)

Consequently, there exists a set A such that H% '(A) = 0 and such that every point y satisfying
inequality (16) belongs to AU J,, and so the point Z. Consequently J,, C J, U A. Since H4 (], \
J7) =0, we get that H*1(J,UA\ J,) = 0. As the following argument shows, the set .J, \ .J,, is
empty, which concludes the proof since this implies .J,, C J,, and so H4 (T, \ J,) = 0.

Indeed, since .J,, is closed and H*~1(.J, \ J.,) = 0, we get that u € H'(Q\ J,,). Since u is a local
almost minimizer for the Dirichlet energy in the open set 2\ jz, we get that u € C’O’MTQ, so that
u has no jump points outside j; (see for instance [2, Remark 7.20]).

O

Remark 3.2 The proof of the result above shows in fact a slightly stronger result, precisely
Hdil(gu \ Sy) = 0 where S, stands for the family of singular points of uw. The set S, consists
on all the points where the approximate limit of u does not exist (see [2, Definition 3.63]), and may
be slightly larger than the set of jump points .J,. Nevertheless H4 (S, \ J,) = 0.

3.2 Ahlfors regularity

The Ahlfors regularity of the jump set can be proved as a consequence of the monotonicity theorem
2.2 and of the decay lemma [2, Lemma 7.14], as we show below. In the next paragraph we shall
give a more technical monotonicity type lemma, which not only gives in a direct way the Ahlfors
regularity, but also contains implicit estimates of the density constants.

We start with the following density result for the energy which is a consequence of almost-quasi-
minimality and of the monotonicity formula.

Corollary 3.3 There ezists constants ¢ = c(d,\), po = po(d, a, co, ) such that for every almost
quasi-minimizer u, for every x € J, and for every 0 < p < pg such that B,(xz) C Q we have

(/ \Vu]QdachHd‘l(JumEp)) > c. (18)



Remark 3.4 There exists pf, > 0,¢ > 0 such that for every z € J,, and for every p < pf, satisfying

B,(x) C Q, we have
_ _ 1 4

dpTH S HTH(Ju N By()) < Sp (19)

Indeed, the right hand side of the inequality is a direct consequence of the minimality of u. To

prove the inequality of the left hand side, one can relay on [2, Lemma 7.14], which roughly speaking

asserts that if He1(J, N B,) < ep?=1 for e small enough, then the decay of the energy is like p?

which is in contradiction with the monotonicity Theorem 2.2 which gives a density estimate of the

energy.
Assume for contradiction that there exist sequences z,, € Jy, p, — 0, C;, — 0 such that

Hd_l(Ju N By, (zn)) < Cnpg_l- (20)

Inequalities (41)-(19)-(20) imply that there exist &, — 0 such that
= sn/ \Vul?dz > HT (T, N By, (20))-
¢ Bon (@n)

Consequently, the deviation from minimality (see [2, Definition 7.2] for its definition) of u for
Ya(u, By(x)) == pr(x) \Vul?dz + AHI(J, N By(x)) in B, (,) satisfies

Dev (u, By, (20)) < [(A =17 +capt] " < 6uton(u, By, (2)),

for some 6,, — 0. For every 7 > 0, we can apply [2, Lemma 7.14] so that there exists C' > 0 such
that for n large enough

YA (u, Brp, (z5)) < CTd@Z’A (u, By, (zn))-

which contradicts the lower density estimate in (41), provided 7 is chosen small enough.

3.3 Density estimates

In the sequel, we give a refined monotonicity type formula which allows a direct proof of the
Ahlfors regularity and moreover gives explicit estimates for the density constants, depending on
the dimension of the space, A, a, c,.

We start with a technical result consisting in a refined inequality for harmonic extensions of
H'-functions.

Lemma 3.5 There exists a constant ag > 0 such that for every harmonic function w in B, such
that w|gp, € HY(0B1), we have

/ |V, w|?dz > (d — 1)/ \Vw|2dx + ozd/ IV, (w — ) |*dz, (21)
0B1 By

0B1

where w(y) = ][ wdz + ( Vwdz) - y.
B1 B1

Proof The proof is a consequence of the identity

1
/ |V w|?de = (d—l)/ \wa%zmr/ (1 — |z|*)|D*w|?dz,
0B, B, 2 /g
8



and of the following inequality

1

/ (1- |33|2)|D2w|2dx2ad/ V. (w — )|2d,
2 B1 0B1

which can be proved, for instance, by contradiction. Clearly, equality holds in the previous inequal-

ity if and only if w = w. a
In the sequel, we assume that u is an almost quasi minimizer of a free discontinuity problem,
satisfying the hypotheses of Theorem 2.2. We shall denote u,(x) = u(f/i) and, as before,
1)

E(p) = / Vul?dz + HO (T, N B,).
B

P

Lemma 3.6 There exist constants pg = po(d, o, cq, N)and d,e, 3 depending on d only, such that
Vo € Q, Y0 < p < po with By(x) C Q at least one of the following assertions holds:

a) HE2(J,, N SI1) > 5;

b) ”Hd_z(JupﬂSd_l) <dand&(p) < ’;i%llfsd,l |V7up|2d:n+BApd_lHd_2(JupﬂSd_l)—l—capd_H“,

and
1—¢ E(p) 1+¢

< <
d—1 ~ pi-l fsdfl \Viupl?de ~ d—1’
and da, € R, 3¢, € R? such that

HE (€ 5471 (@) — ap — &, 1 > SE,|}) < & and 2¢,? > ][S V.

c) E(p) < F=5077 [gar [Vrup|Pda + AP HI2( T, N ST

Proof Notice that by almost quasi minimality of u, condition a) implies condition ¢) for some
suitable constant 5. Without restricting the generality, we assume z = 0.

Step 1. From the minimality of u, we get for every admissible p < 1 and for a suitable constant
K,

E(p) < Mp™dwy + cap® T < KypT (22)
For some constant ¢ > d — 1, if
/ |Vru,|?de > EK7, (23)
gd—1
then )
e B\
C Sd—1
Introducing e, given by
1 1-e¢
¢ d-1

assertion c) holds.
Step 2. We assume the contrary of (23), i.e. [gqu 1 |Vyup|*dz < éK;i. For some constants ci, ¢z,
we introduce the following auxiliary problem on S¢~1:

C1

. 2 d—1 d—1 d—2 d—1
wGSBI.nvl(ris*dfl) A Jois |Vyw|“de + coH ({w #up b NS +HT (T NS, (24)
9



Following Lemma 2.3, there exists a constant ¢ such that if

C1 _ _ c
A o IV rupde + HO2 (T, NS < (a2 (25)

then problem (24) has a solution w such that w € H*(S%1)), so H?2(J, N S4~1) = 0.
We introduce

1 c

2(Z9)

and fix ¢; such that

c . 1 c
—cKi < ———— 26
A S R 20
Consequently, either assertion a) holds with

(S, 0847 > 5,

or condition (25) is satisfied.
Step 3. Assume in the sequel that H4~%(J,, N.S9™) < § and condition (25) is satisfied. We know
that

S VwPde + M {w # up) 0 ST < cl/ IV, 2+ HE2 (T, 0 SO,
A Sd—l A Sdfl P

Using Lemma 3.5 and multiplying by % we get:

(d— 1)/ Vw|2dz + ad/ IV, (w —)2de + 22901 (fw # uy} 1 59
Bl Sd—l

— (27)
c1

A
< / \Vrup2de + —HY2(J,, N STH). (28)
Sgd—1 C1

We introduce some ¢ > 0 (which will be fixed later) and assume that ¢) does not hold for this e.
Then

1—¢ 4, _ _ _
E(p) > d—lpd I/Sd1 |V7up|2dx+ﬂApd 1yyd 2(Jupﬂ5'd b,

(29)
We fix 3 = m. Then, by simple computation and using (27)

_ _ AN o444 _
(d—1)E(p) +2p™! /S V> /S (Vg 2, 8t

> p*! [(d - 1)/B

We chose cg = 2¢1(d — 1) and use the almost quasi minimality of u. Consequently,

\Vw|*dz + ad/
d

1

'V, (w — ) [2dz + @Hd—l({w #uy} N sd—l)].

C1

(d—1)E(p) +ep®! /d |V u,2de
gd—1

> (d=1)&(p)+aap™ / Vo (w=0) Pdz+(d—1)p" AR ({w # up NS = (d—=1)cap™,
gd—1

10



thus
gptt / |V, 2de + (d — 1)cap® e (30)
Sd—1
> agp?? / Vo (w — @) [*dx + (d — 1)p? ' AR ({w # u,} 0§47 (31)
Sd*l

We notice in the same time (we successively apply the quasi-minimality, inequality (6) and the
auxiliary problem)

£0) < o [ [Vulde + A HO (£ 0y} 08 ot
B1

<2 [/d IV w)2dz + A(d — YH ({w # u,} 0 sd—l)} ¥ captite
S —1

A
[/ |V u,2de + —Hd_2(Jup N Sd_l)} + coptite,
gd—1 C1

Finally
d—1

Elp) < p {/ IV u,|2de + AHd_Q(Ju N Sd_l)} + cqpt e (32)
d—1 gd—1 C1 °

Assume that pg < 1 is such that

ecAdwg > (d — 1)cap -
Then, from (30)

2ecAdwy > ad/ V(w0 — @) |de + AHT ({w # u,} N S4H).
Sd—1

For € small enough, using the Poincaré inequality on S9! we get
HI ({z € ST fuy(x) — @] > 3]&,}) < 6.

From (29)

l—e¢ d—l/ 2
> — .
E(p) > 71" . \Vru,|“dx

Since H?~2(J,, N S%71) < § for a suitable &’ we get

1 /
E(p) < e Pdl/ |Vru,[*da.
d—1 gd—1

Assume that
/ |V w|dz < (1 — 5')/ \Vru,|*dz.
gd—1 gd—1
Then
2 l—¢ 2
/ |[Vw|“dz < / |V ru,|“de.
Bl d - ]. Sd—l

Using quasi-minimality and the auxiliary problem, from (30) one reduces this case to c).
Assume now that

/ |V w|dz > (1 — 5)/ |V7u,|*dx
gd—1 Gd—1
11



and

/ |V, (w — o) |*dz > 5/ IV, w|?dz.
Sd—1 Sd—1

Relying on (21) we arrive again in situation c).
If

/ |V w|?de > (1 — 5)/ |Vru,|*dx
Sd—1 Sd—1
and

/ IV (w — ) [2dx < 5/ |V, w|de,
Gd—1 gd—1

then by direct computation

(1- 5)/ |V, w|?de < / |V, w|d,
Sdfl Sdfl
so that

(- [ Voo [ VaPde = 15
Sd—1 Sd—1
[l
Lemma 3.7 (Decay Lemma) There exists constants ¢ = cq,e = €4,0 = dq and po = po(d, a, cqo, N)

such that for every jump point x and min{pg, dqc(x)} > pa > p1 > 0, one of the following situations
holds:

—d Inpy ,oq/d—2(,0 qd—1
Py E(p2) S 1 P2 e HY (7S N Jy)
—= > —exp| —cA do ), 33
i 2 o (N &) ) (3
where d = ‘11;_;, or
> HTN ST ) > (34)

p1<p<p2

Proof As noticed, case a) in Lemma 3.6 can be seen as a particular case of c), possibly considering
a slightly greater 8. As a consequence, only issues b) and ¢) shall be considered in the sequel after
a possible modification of f.

We shall work for simplicity in logarithmic co-ordinates by setting ¢ = Inp. We get after
rescaling and denoting xp, x. the characteristic functions associated to cases b) and c) in the
previous lemma

o d 1 P 2 P d—2 d—1
> — _ [ A— . .

O, In&(e?) > (d—1)xp(o) + 1 6dxc(o') + £(e) /de1 |Vu - n|*dr BAS(eU)H (Jy N pST)
(35)

If xp(00) = 1, let agp = a,, € R and & = & = £,, € R be given by point b). We introduce the set
My = {z e8! |up, —apg — - &) < 6|¢|}-
One can choose the set My to be symmetric with respect to every axes hyperplane, so that

Vi # 4, / zi;dH =0,
My
12



and HI71(S91\ Mp) < 5. We have

|sd—1\52150|2>/ |up0—ao—x-£0|2d$:/ ]upo—a0|2dzv+/ !x-§02dx—2/ (11, —a0) (-60) e
M, M,

Mo Mo

Using the symmetry property of My, we get that
/ |- &o|*dx = Caléol*.
Mo
Provided ¢ is small enough, we get

|t ) )do = ClléoP (36)
0
Let us introduce
2
de1 <fMO lup — ao |z - §O|dl’>

<fMo | - &]‘2)2

From (36) and the density of the energy, if condition b) holds, we have for a suitable constant ¢ > 0

f(p) = E(p) if xp(p) = 1. (37)

If the second assertion of the Lemma does not hold, so that we can chose My, possibly decreasing
its measure, such that

flp)=0p

My N U {Ju, NS4} =10,
Py HI=L(Jy,NS9I=1)7£0

then for a suitable constant ¢

Oo[In f(e7) vV (In(E(e?) — )] xp = 9o In f(e7)xs,

and
prO |Vu - n|?dx
fe?)
This inequality relies on the derivative of the boundary integral in the expression of f with respect
to the parameter p.
In view of (38), inequality (35) becomes
d—1 f(e)

Oy InE(e%) > (d—l)Xb(U)—i-l_ingC(U)_"C//g(ea)

|00 In f(e7) — (d = 2)]* < p

(38)

EX lnf(e")—(d—2)]2—BA5(ZU)Hd*2(Juﬁde’1).

Let ¢1 be a sufficiently small constant and v > 0 a constant that will be fixed later. Then

9, In (5(60)[((%2:;)” v 011) peil) = 0, ),

o)\
if (?E:"g) ¢ [X,c1], so that we are not in situation b). Being in c) we get

d—1 P
9y > - -
O, In&(e?) > Ty BA&’(@U)

13
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Otherwise,

O In (€ <ev>[<(§§23>” Y 011> Aer]) = 0y () ) = 0, In( f(e7)7) >
1+)(d-1)+ 10,,+Cj|aa In f(e7) = (d = 2)]* = (1 +7)BA 5(§U)Hd—2<Ju NpSTY) =78, 1 f(e7).
Since
147~

105 I (e7) — (d — 2)[2 — (8, In f(e%) — (d — 2)) > —jﬂ?,

for a constant ¢4 small enough and independent on v, we get

8, In (5(60)[((5(60))7 viya cl])

ey

f(e?) c1
> (14 )(d—1) = 3(d =2+ L — (1 + )AL HI2(], 1 pSTL) — 70, In f(e%).
cq E(e)
For ~ small enough, we get for some d > d
o ()7, 1 7 P ad- d—
0y In (8(6 )[(<f(e")) v a) /\cﬂ) >d—-1-(1 +7)6Ag(eg)7{ 2(J, N pSeTh.

Summing between p; < ps, we conclude the proof. O

Corollary 3.8 There existsd =dg > d—1, ¢ = c(d,N) and py = po(d, o, co, A) such that Vz € J,,
V0 < p < po, Brp(x) € Q and for every 7 > 1 we have either

HIH(Brp() \ By(2)) N Ju) = E(p), (39)

or

cE(7p) = T(p). (40)

Proof For some 7 > 1, we consider 0 < p; < pg such that py = 7p;. Assume that assertion (34)
in Lemma 3.7 holds. Then

HIYS,NTy)  HITY(By, \ By,) N J)
d—1/gqd—1 _ p u P ) u
< Y HTNST N, = Y T < S .
pP1<p<p2 p1<p<p2 P1
From the density estimate of the energy (41), relation (39) holds.
Assume that (39) does not hold. Consequently, assertion (33) in Lemma 3.7 holds so we get

~—

P2_d~5(,02
prElm

Z Clv

~—

where C] depends on d and A. Thus (40) holds. O

We conclude with the following corollary, as a consequence of the Corollaries 3.3 and 3.8.

Corollary 3.9 There exist constants ¢ = c¢(d, ), po = po(d,a,cq, A) such that for every almost
quasi-manimizer u, for every x € J, and for every 0 < p < pg such that B,(z) C Q we have

1
—pTN = HTN LN BY) > epth (41)
14



4 A free boundary problem with Robin conditions

Let D be a smooth, bounded open subset of R?, d > 2 such that B; € D. Let 0 < o1 < ava, 0 < 3
and g € H'(Bj) such that a.e. 2 € B a1 < g(x) < as. We consider the following free boundary
problem, the unknown being a (sufficiently smooth) open set  and a function u € H*(Q):

min min / \Vu|?dx + B/ w?dH + |[{u > 0}]. (42)
B1CQCD ueHY(Q),u=g on B1 J 90

Formally, if 5 = +o00, this is a free boundary problem of Bernoulli type (see for instance the seminal
paper of Alt-Caffarelli [1]). If S is finite, (42) becomes a free discontinuity problem, with Robin
boundary conditions on the unknown jump set.

Indeed, if Q2 is fixed and smooth enough, the boundary trace term in the formulation above
is well defined and the minimizer u € H'(2) solves in Q \ B the following elliptic equation with
Robin conditions on the free boundary 0€:

Au=0 in Q\ By,
Ju t Bu=0 ondN\dB; (43)
u=gq on 0B;.

In order to deal with problem (42), we write the relaxed formin the SBV framework (see [3])

_min / |Vu|?dz + ﬂ/ [(wh)? + (u)?])dH + |{u > 0}]. (44)
w€SBV 2 (D), u=g on By VD u

Above, S BVz (D) stands for all nonnegative measurable functions u such that u?> € SBV (D). The
existence of a solution of the relaxed problem (44) is a direct consequence of [3, Theorem 3.3],
once we have remarked that the minimization process has to be carried in the class of functions
satisfying a.e. u(z) < ag. In order to apply the regularity result for almost-quasi minimizers, the
key point is to prove that any solution u is minorated a.e. on its positivity region by a positive
constant.

Notice, that if the set {u > 0} were a priori smooth, the fact that u has a strictly positive
lower bound on {u > 0} is a consequence of the Hopf’s lemma and of the pointwise equality
g—Z(x) + pu(z) = 0 on 0N, given by the Robin boundary condition.

Theorem 4.1 For every solution u of the free discontinuity problem (44), there exists o > 0 such
that
u(z) > a, a.e x € {u>0}

In particular v € SBV (D) and H¥1(J,) < +o0.

Proof We introduce the following notations:
o f(s):=HT 0 {u>s}\ Ju)
o Qe,9) :={6 <u<e}, Qe)=Q(,0)

o E(e,0) = /Q( 5 \Vu|?dz, E(¢) = E(e,0)
g,

o v(g,8) = HTH 0" Q(e,6) N )
15



For 0 < § < € < aq, we get estimates for f(s), (e, ), E(e,d), (g, d) relying on the co-area formula,
the isoperimetric inequality and the optimality of u. All the estimates hold for almost every ¢ and 4.
For the simplicity of the exposition, up to the end of the proof we omit the words almost everywhere
and work only with € and § in the complement of a zero measure set.

We notice first that u - 1o, 5y € SBV(D). By the co-area formula we have

/ |Vuldx = / HITHO {u > s} \ Ju)ds,
Q(e,6) 5

and by the Cauchy inequality
€
/ F(s)ds = / \Vuldz < [Q(e, 8)|2 E(e, 5)2. (45)
5 Q(e,5)

Denoting by v, the isoperimetric constant in R, from the isoperimetric inequality we get

e, 8)| T < qa(f(e) + £(8) + HH O Qe, 8) N ),

10(,8)| T < a(f(e) + £(6) + (5, 5)). (46)

For almost every € > § > 0, the optimality condition written for u and the test function u - 1y,>,
gives

B(e) +0%(e,8) + [Q(e)| < *f(e). (47)

The main idea of the proof relies on a sort of reverse asymptotic method and can be summarized
as follows: prove that if for some interval I; C (0, ) the sum [ 1, f(s)ds is small enough, then
there exists a smaller non trivial interval Iy C I; such that [ 1, [(s)ds = 0. The optimality of u will
directly give that u(xz) > sup I a.e. {u > 0}.

More precisely, let n > 0. We construct two sequences (&5,), and (d,,)y such that

ﬂﬁi =(1—o)gi—1,6 = (1 + 4)di-1,

g0 =1,00 = 5

where «; > 0 is chosen such that &; — €40, 0; — o0, With doe < 5. We shall prove that for n small
enough, there exists a suitable choice of «; such that

€00
/ f(s)ds = 0. (48)
doo
For simplicity, we denote
€
a; = / f(s)ds and b; = |Q(gi, 0;)]-
0;

We start with the following estimates: for n > & > § > g, from (47) we get

0%(e,8) < 2f(e) so (e, 8) < 4f(e).

From (46) we get

d—

[9(e,0)] T < 7a(5(e) + £(8)) < 5ralF(2) + [(9)).

16



Summing between [g;,£;_1] and taking into account the range of €;,d; we get
d—1 Ci-1
96, 8)| T ais <5l [ s+ fG)aie],
&

and further summing on [§;_1, d;]

|Q(5i,5i)|d7a €i0; < 5%1 alé / s)ds —1—04161/ f(s ds} < Sygeai(ai—1 — a;).
Consequently L
b7 < 20y, (49)
On the other hand, from (45) and (47) we get
/ f(s)ds < |9(e,8)|2e ()2 < [Qe, 6)[24|e, 8)| 7 ef(e)?
< |9e, 6|2 [59a(f(e) + F(0))] Zef(e)? < |Qe, 8)[22e(579a) (F(e) + F(5))-

Finally, we have .

/5 F(s)ds < (57a) 310, ) 31(f(<) + £(5))- (50)

We sum again (50) between [g;,¢;,-1] and [0;—1, ;] with respect to ¢ and ¢, respectively, and using
the monotonicity of a;, b; and the range of ¢ and §

o7 1 L
Cai < (5720 n(ain — ai),

SO

1 L
4(5v4)2b2¢
073 S M(ai_l — ai). (51)
Q;

1
Assume that the choice o; = 4(57d)%b2ﬁ 1 is valid, in the sense that e, > doc. Then we get that

a; < a;—1—a; — a; < — (52)
which leads to the conclusion (48).

It remains to prove that the choice of «; is valid, i.e. €5 > 0oo. This will be ensured by a
suitable choice of 7. In an equivalent way, this can be re-written as

G 1 20
J:ll(l — ) > 5 J:ll(l +a;)or2 > J:ll (1+ . O‘i).

If ; < %, it is enough to have
o0
2> exp( 2(30%))
i=1

since
o

o
e:rp( Z(Saz > H + 3a;) > H 12_%&
i=1 = ¢

17




We need that

[e.9]

o0
In2 L In2
Zai < e or, equivalently, by the definition of «;: bejl < nil
3 =
i=1 i=1 12(574)2
From (49) and (52) we get
d-1 0 1 1
bz’ < 207{1 9i—1 11 >
M4(574)? b2,
SO
q
be
b < (5ya)b
n2'- p2d
i—1

But b; < b;_1 and if 5 is small enough, b; < 1, so that we have

ao

1
bi < (57d)2 7721',1 .

Consequently, we get

Soors ol S () () - a()

e AL

where Cj is a constant depending only on the dimension of the space.
It remains to prove that we can find some 1 such that

From (47) we get
E(e) +12(e)| < 2f(e).

Summing from e to 2¢ and using the monotonicity of E and €2, we get

1 2e 2e
E()+1Q2(e)] < s/ s2f(s)ds < 4e f(s)ds < 4e[E(2e) + [Q(2¢)]].

£

The last inequality above comes from (45) on [e,2¢] and the arithmetic/geometric inequality. So
we get
E(e) + |Q(e)| < 4e[E(2e) + [(2¢)]].

In the same way

/g " Fls)ds < [EGe) + 1)),

ﬁs f(s)ds

———— <4[B@e) + |2(2)]).

hence

We choose 7 such that
1 /In2\d
< — (==
[ + 1060 < 2 (%)
18



so that

and the proof is complete. a

Theorem 4.2 Every solution u of the free discontinuity problem (44) satisfies H* ' (Jy, \ Ju) =0
and the density property (41).

Proof After a suitable rescaling in space, u turns out to be an almost-quasi minimizer, as a
consequence of its optimality and of the inequality proved in Theorem 4.1. The conclusion then
follows is a direct consequence of Theorem 3.1 and Corollary 3.9. a
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