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Abstract

We give a general monotonicity formula for local minimizers of free discontinuity problems
which have a critical deviation from minimality, of order d − 1. This result allows to prove
partial regularity results (i.e. closure and density estimates for the jump set) for a large class of
free discontinuity problems involving general energies associated to the jump set, as for example
free boundary problems with Robin conditions. In particular, we give a short proof to the De
Giorgi-Carriero-Leaci result for the Mumford-Shah functional.

1 Introduction

We give a monotonicity formula which describes the behaviour of the energy associated to almost-
quasi local minimisers of general free discontinuity problems, near the points of the jump set. This
formula is a key tool to prove both the closedenss of the jump set and of uniform density estimates
of the associated Hausdorff measure. In this way we generalize the De Giorgi-Carriero-Leaci result
on the Mumford-Shah functional [5] (see also [2, 4]) to a large class of functionals possibly involving
geometric quantities of the jump set and the traces of the SBV functions on the jump set.

An important question is whether an SBV minimiser of a general free discontinuity problem is a
”classical” one, i.e. its jump set is closed and so the function is locally smooth (in the complement
of the jump set). A positive answer to this question was given by De Giorgi, Carriero and Leaci
in [5] (see also [4] and [2]) for the Mumford-Shah functional. Precisely, they analyse properties
of quasi minimisers of the Mumford-Shah functional, i.e. functions u ∈ SBVloc(Rd) satisfying for
some α > 0, cα ≥ 0 and Λ = 1

∀x ∈ Rd,∀ρ > 0,∀v ∈ SBVloc(Rd) such that {u 6= v} ⊆ Bρ(x) =⇒
ˆ
Bρ(x)

|∇u|2dx+Hd−1(Ju ∩Bρ(x)) ≤
ˆ
Bρ(x)

|∇v|2dx+ ΛHd−1(Jv ∩Bρ(x)) + cαρ
d−1+α.
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†The work of S.L. was supported by the programme ”Free Boundary Problems, Theory and Applications”, MSRI
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The main purpose of this paper is to study the behaviour of almost-quasi minimisers, i.e. to
consider Λ ≥ 1. As the value of Λ is allowed to be greater than 1, the deviation from minimality
becomes of the same order as the Hausdorff measure, d− 1. The main consequence of this freedom
is that one can deal with functionals involving quite general energies associated to the jump set,
and still conclude that the solutions have a closed jump set with an associated Hausdorff measure
satisfying upper and lower uniform density bounds.

The first result of the paper is a monotonicity formula (Theorem 2.2) which holds for almost-
quasi minimisers. Roughly speaking, a quantity of the form[ 1

ρd−1

( ˆ
Bρ

|∇u|2dx+Hd−1(Ju ∩Bρ)
)]
∧ c(d,Λ) + c(d, α)ρα (1)

is non decreasing in ρ, for small ρ. For ρ→ 0, around a regular point of the jump set, the limit of
the quantity above is bounded from below by a positive constant depending only on the dimension
of the space and Λ. In this way, one can obtain key information for proving its closure, and latter
uniform density bounds. The constants appearing in the density bounds are obtained by refining
the monotonicity formula and are given by explicit estimates.

In the second part of the paper, we analyse a free boundary - free discontinuity problem with
Robin conditions. A similar question for Dirichlet boundary conditions is treated by Alt and
Caffarelli in [1]. In our example, the energy we minimize among all admissible functions u with
values prescribed on a given compact subset of Rd, is of the form

ˆ
Rd
|∇u|2dx+ β

ˆ
Ju

(|u+|2 + |u−|2)dHd−1 + |{u > 0}|.

A variational framework based on SBV spaces which allows to deal with this type of problems
was introduced in [3]. In order to prove that the solutions u of these free boundary problems are
almost-quasi minimisers, and so they fit in the framework of our paper, the crucial difficulty is to
establish uniform upper and lower positive bounds on their positivity set, i.e. to prove that they
satisfy

∃ 0 < α1 < α2, such that α1 ≤ u(x) ≤ α2, a.e. x ∈ {u > 0}.

If the jump set were closed and smooth, the lower bound would be a consequence of the Hopf
lemma in relationship with the PDE satisfied by u. Nevertheless, these two properties are a priori
unknown, being precisely the object of investigation.

2 The monotonicity formula

In the sequel d ≥ 2, Bρ(x) stands for the open ball of Rd centered in x and of radius ρ (if ambiguity
on the dimension occurs, the ball is denoted Bd

ρ(x)). If x = 0, we simple denote it Bρ. By dK(x)

we denote the distance from the point x to set K in Rd. For an open set Ω ⊆ Rd, by SBV (Ω) we
denote the space of special functions with bounded variation and by Ju the jump set of a function
u ∈ SBV (Ω) (see [2, Definition 3.67]). For every m ∈ N, by Hm we denote the m-dimensional
Hausdorff measure. The usual Lebesgue measure is denoted by | · |.

Definition 2.1 Let Λ ≥ 1, α > 0, cα ≥ 0. We say that a function u ∈ SBV (Ω) is a local (Λ, α, cα)
almost-quasi minimizer of a free discontinuity problem at the point x ∈ Ω, if

∀ 0 < ρ < d∂Ω(x),∀v ∈ SBV (Ω) such that {u 6= v} ⊆ Bρ(x) =⇒
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ˆ
Bρ(x)

|∇u|2dx+Hd−1(Ju ∩Bρ(x)) ≤
ˆ
Bρ(x)

|∇v|2dx+ ΛHd−1(Jv ∩Bρ(x)) + cαρ
d−1+α.

We say that a function u ∈ SBV (Ω) is a (Λ, α, cα) almost-quasi minimizer of a free discontinuity
problem if it is a local almost quasi minimizer at every point of Ω.

For simplicity, in the sequel we drop the mention to the triplet (Λ, α, cα) and we simply refer to
almost-quasi minimisers.

Here is the main result of the paper.

Theorem 2.2 (The monotonicity formula) Let u ∈ SBV (Ω) be a local almost-quasi minimizer
of a free discontinuity problem at 0. Then the mapping

ρ 7−→ E(ρ) :=
[ 1

ρd−1

(ˆ
Bρ

|∇u|2dx+Hd−1(Ju ∩Bρ)
)]
∧ cdΛ

2−d

d− 1
+ (d− 1)

cα
α
ρα (2)

is non decreasing on (0, d∂Ω(0)).

We give two lemmas relating SBV functions on spheres with the harmonic extensions of their
H1-approximations. The boundary of the ball Bρ(0) is denoted ∂Bρ and by SBV (∂Bρ) we denote
the SBV space on the sphere. The tangential gradient is denoted ∇τ .

Lemma 2.3 For d ≥ 2, there exists a constant cd such that for every function u ∈ SBV (∂Bρ)
which satisfies

ε(u) :=

ˆ
∂Bρ

|∇τu|2dx+Hd−2(Ju ∩ ∂Bρ) ≤ cdΛ2−dρd−2 (3)

there exists w ∈ H1(∂Bρ) such that

ˆ
∂Bρ

|∇τw|2dx+
Λ(d− 1)

ρ
Hd−1({u 6= w} ∩ ∂Bρ) ≤ ε(u). (4)

Lemma 2.4 Under the hypotheses of Lemma 2.3, there exists w̃ ∈ H1(Bρ) such that ∆w̃ = 0 in
Bρ and ˆ

Bρ

|∇w̃|2dx+ ΛHd−1({u 6= w̃} ∩ ∂Bρ) ≤
ρ

d− 1
ε(u). (5)

The proof is done simultaneously for Theorem 2.2 and Lemmas 2.3, 2.4, in four steps, using a
cyclic inductive argument over the dimension of the space.

Step 1. Proof of Lemma 2.3 for d = 2. It is enough to take c2 < 1. Indeed, since Hd−2(Ju) ≡
H0(Ju) and by hypothesis H0(Ju) < 1, then Ju = ∅. So we can take directly w := u. 2

Step 2. Proof of the implication: Lemma 2.3 in Rd =⇒ Lemma 2.4 in Rd, for every
d ≥ 2. Let d ≥ 2 and assume Lemma 2.3 is true. Let u ∈ SBV (∂Bρ) such that ε(u) ≤ cdΛ2−dρd−2

and w ∈ H1(∂Bρ) be the function given by Lemma 2.3. We denote by w̃ the harmonic extension
of w in Bρ. Since

d− 1

ρ

ˆ
Bρ

|∇w̃|2dx ≤
ˆ
∂Bρ

|∇τw|2dHd−1, (6)

relation (5) follows directly. 2
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Step 3. Proof of the implication: Lemma 2.4 in Rd =⇒ Theorem 2.2 in Rd, for every
d ≥ 2.

Assume Lemma 2.4 is true. In order to prove the monotonicity formula, we introduce the
function

E : (0, d∂Ω(0))→ R, E(ρ) :=

ˆ
Bρ

|∇u|2dx+Hd−1(Ju ∩Bρ).

Then E is a non decreasing function, and its distributional derivative can be written as

∂ρE(ρ) = e(ρ)dρ+ µ,

where e ∈ L1(0, d∂Ω(0)) is a nonnegative function and µ is a postive singular measure. More
precisely,

∀0 < a < b < d∂Ω(0), µ(a, b) = Hd−1((Bb \Ba) ∩ Ju ∩ {x : |νu(x) · x| = ‖x‖}).

As a consequence, from the Leibniz formula for BV functions, it is enough to estimate the absolutely
continuous part of the derivative of E.

At a.e. point ρ where E is derivable and at which

E(ρ)

rd−1
≥ cdΛ

2−d

d− 1
,

we have ∂ρE(ρ) = (d− 1)cαρ
α−1 ≥ 0.

For a.e. point r at which
E(ρ)

ρd−1
<
cdΛ

2−d

d− 1
, (7)

we have

∂ρE(ρ) =
ρE ′(ρ)− (d− 1)E(ρ) + (d− 1)cαρ

d−1+α

ρd
. (8)

Assuming for contradiction that for some point ρ we have ∂ρE(ρ) < 0, then from (8) we get

E ′(ρ) <
d− 1

ρ
E(ρ)− (d− 1)cα

ρ
ρd−1+α (9)

and using (7) we get
E ′(ρ) < cdρ

d−2Λ2−d.

Since

ε(u) =

ˆ
∂Bρ

|∇τu|2dx+Hd−2(Ju ∩ ∂Bρ) ≤ E ′(ρ)

we can use Lemma 2.4 to get the existence of a function w̃ such that

ˆ
Bρ

|∇w̃|2dx+ ΛHd−1({u 6= w̃} ∩ ∂Bρ) ≤
r

d− 1
E ′(ρ).

Using (9), we get

ˆ
Bρ

|∇w̃|2dx+ ΛHd−1({u 6= w̃} ∩ ∂Bρ) ≤ E(ρ)− cαρd−1+α.
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Consequently ˆ
Bρ

|∇w̃|2dx+ ΛHd−1({u 6= w̃} ∩ ∂Bρ) + cαρ
d−1+α ≤ E(ρ), (10)

and using the almost-quasi minimality of u we get that equality holds in (10) and thus in all
preceding inequalities. This contradicts the hypothesis ∂ρE(ρ) < 0. 2

Step 4. Proof of the implication: Theorem 2.2 in Rd =⇒ Lemma 2.3 in Rd+1, for
every d ≥ 2. It is enough to prove Lemma 2.3 only for ρ = 1, and to rescale. To simplify our
computations, we shall assume without restricting generality that cd ≤ (d− 1)ωd−1, where ωd−1 is
the volume of the unit ball in Rd−1. We consider the unit ball B1 ⊆ Rd+1 and the d-dimensional
unit sphere Sd ⊆ Rd+1, Sd = ∂B1. Let u ∈ SBV (Sd) be fixed, such that

ε(u) :=

ˆ
Sd
|∇τu|2dx+Hd−1(Ju) ≤ cΛ1−d. (11)

The value of c will be specified below.
We introduce an auxiliary problem

min
w∈SBV (Sd)

ˆ
Sd
|∇τw|2dHd +Hd−1(Jw) + ΛdHd({u 6= w}), (12)

and prove that for a sufficiently small constant c in (11), depending only on the dimension of the
space, a minimizer w of (12) will satisfy Hd−1(Jw) = 0. Note that here the hypothesis Λ ≥ 1 can
be relaxed. Consequently, for this minimizer w we have w ∈ H1(Sd) and

ˆ
Sd
|∇τw|2dHd + ΛdHd({u 6= w}) ≤

ˆ
Sd
|∇τu|2dx+Hd−1(Ju)

so that we achieve the proof of Lemma 2.3 in Rd+1.
Let us consider a minimizer w for the auxiliary problem (12) and assume for contradiction

that Hd−1(Jw) 6= 0, for some value of the constant c. We can further assume that the point
ed+1 = (0, 0, .., 0, 1) is a regular point of the jump set Jw and consider the orthogonal projection

Π : Sd ∩B 1
2
(ed+1) 7−→ Rd × {0}.

Let us denote in the sequel the (d-dimensional) ball Bd
1
2

(0) ⊆ Rd and introduce the functions

w, u ∈ SBV (Bd
1
2

(0)) defined by

w(x) = w ◦Π−1(x), u(x) = u ◦Π−1(x).

Then w is a minimizer for the functionalˆ
Bd1

2

|∇w|2dx+Hd−1(Jw) + ΛdHd({u 6= w}) +R(w,Λ,
1

2
),

where 0 ≤ R(w,Λ, r) ≤ Cd(1 + Λ)rd, for some constant Cd depending only on the dimension of
the space. Consequently, w is a (1, 1, c1) almost-quasi minimizer of a free discontinuity problem for
Λ = 1, α = 1 and c1 = (Λ + 1)(d + Cd), so that we can use the monotonicity formula of Theorem
2.2.
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On the one hand, since 0 is a regular point of Jw(x) we have

lim
ρ→0+

E(ρ) ≥ cd
d− 1

∧ ωd−1 =
cd

d− 1
.

Meanwhile, from the monotonicity formula we get for every ρ ∈ (0, 1/2)[ 1

ρd−1

( ˆ
Bρ

|∇w|2dx+Hd−1(Jw ∩Bρ)
)]
∧ cd
d− 1

+ (d− 1)(Λ + 1)(d+ Cd)ρ ≥
cd

d− 1
. (13)

Assume that for some ρ we have that

cΛ1−d

ρd−1
<

cd
d− 1

.

If ρ is fixed (its value will be given below), this assumption will be satisfied as soon as c will be
chosen small enough.

Indeed, combining hypothesis (11) with (13) and the assumption above, we get that

c

(Λρ)d−1
+ (d− 1)(Λ + 1)(d+ Cd)ρ ≥

cd
d− 1

,

or introducing suitable dimensional constants, for ρ ≤ cd
2(d−1)2(d+Cd)

we get

c

(Λρ)d−1
+ C ′dΛρ ≥

cd
2(d− 1)

.

Let us fix ρ :=
C′′d c

1/d

Λ . It is enough to take c small enough, e.g.

C ′′d c
1/d

Λ
<

C ′′dCd
(d− 1)Λ

∧ cd
2(d− 1)2(d+ Cd)

∧ 1

2
,

to obtain a contradiction and finish the proof. 2

3 Regularity properties for free discontinuity problems

Relaying on the monotonicity formula, in this section we prove the primary regularity property
for almost-quasi minimizers of free discontinuity problems: their jump set is closed and satisfies
density estimates from above and below (i.e. it is Ahlfors regular) and the function is smooth in
the complement of the this set.

3.1 Closure of the jump set

Theorem 3.1 Let u be an almost-quasi minimizer of a free discontinuity problem and denote Ju
the family its jump points. Then Hd−1(Ju \ Ju) = 0.

Proof Since Ju is rectifiable, it is contained in a countable union of C1 hypersurfaces, up to a set
of zero Hd−1-measure. We denote Jru the set of regular points of Ju (i.e. which have density 1 in
some of these C1 manifolds). Let us consider xn ∈ Jru such that xn → x ∈ Ju. For every such point
xn, we have

lim
ρ→0

Hd−1(Ju ∩Bρ(xn))

ρd−1
≥ ωd−1,
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so that relaying on the monotonicity formula and comparing E(ρ) to the behaviour of E near 0,
we get for ρ ∈ (0, d∂Ω(xn))

1

ρd−1

( ˆ
Bρ(xn)

|∇u|2dx+Hd−1(Ju ∩Bρ(xn))
)]

+ (d− 1)
cα
α
ρα ≥ ωd−1 ∧

cdΛ
2−d

d− 1
(14)

There exists ρ0, C0 > 0 independent on n such that, provided ρ ≤ ρ0 ∧ d∂Ω(xn),

ˆ
Bρ(xn)

|∇u|2dx+Hd−1(Ju ∩Bρ(xn)) ≥ C0ρ
d−1. (15)

By continuity, inequality (15) holds also at the point x

ˆ
Bρ(x)

|∇u|2dx+Hd−1(Ju ∩Bρ(x)) ≥ C0ρ
d−1. (16)

In general, for every function u ∈ SBV (Ω), it is well known (see for instance [5, Theorem 3.6])
that for Hd−1-almost every point y ∈ Ω \ Ju we have

lim
ρ→0

ρ1−d
[ ˆ

Bρ(y)
|∇u|2dx+Hd−1(Ju ∩Bρ(y))

]
= 0. (17)

Consequently, there exists a set A such that Hd−1(A) = 0 and such that every point y satisfying
inequality (16) belongs to A∪ Ju, and so the point x. Consequently J

r
u ⊆ Ju ∪A. Since Hd−1(Ju \

Jru) = 0, we get that Hd−1(Ju ∪ A \ J
r
u) = 0. As the following argument shows, the set Ju \ J

r
u is

empty, which concludes the proof since this implies Ju ⊆ J
r
u and so Hd−1(Ju \ Ju) = 0.

Indeed, since J
r
u is closed and Hd−1(Ju \J

r
u) = 0, we get that u ∈ H1(Ω\Jru). Since u is a local

almost minimizer for the Dirichlet energy in the open set Ω \ Jru, we get that u ∈ C0, 1∧α
2 , so that

u has no jump points outside J
r
u (see for instance [2, Remark 7.20]).

2

Remark 3.2 The proof of the result above shows in fact a slightly stronger result, precisely
Hd−1(Su \ Su) = 0 where Su stands for the family of singular points of u. The set Su consists
on all the points where the approximate limit of u does not exist (see [2, Definition 3.63]), and may
be slightly larger than the set of jump points Ju. Nevertheless Hd−1(Su \ Ju) = 0.

3.2 Ahlfors regularity

The Ahlfors regularity of the jump set can be proved as a consequence of the monotonicity theorem
2.2 and of the decay lemma [2, Lemma 7.14], as we show below. In the next paragraph we shall
give a more technical monotonicity type lemma, which not only gives in a direct way the Ahlfors
regularity, but also contains implicit estimates of the density constants.

We start with the following density result for the energy which is a consequence of almost-quasi-
minimality and of the monotonicity formula.

Corollary 3.3 There exists constants c = c(d,Λ), ρ0 = ρ0(d, α, cα,Λ) such that for every almost
quasi-minimizer u, for every x ∈ Ju and for every 0 < ρ < ρ0 such that Bρ(x) ⊆ Ω we have

1

c
≥ 1

ρd−1

(ˆ
Bρ

|∇u|2dx+Hd−1(Ju ∩Bρ)
)
≥ c. (18)
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Remark 3.4 There exists ρ′0 > 0, c′ > 0 such that for every x ∈ Ju and for every ρ < ρ′0 satisfying
Bρ(x) ⊆ Ω, we have

c′ρd−1 ≤ Hd−1(Ju ∩Bρ(x)) ≤ 1

c′
ρd−1. (19)

Indeed, the right hand side of the inequality is a direct consequence of the minimality of u. To
prove the inequality of the left hand side, one can relay on [2, Lemma 7.14], which roughly speaking
asserts that if Hd−1(Ju ∩ Bρ) ≤ ερd−1 for ε small enough, then the decay of the energy is like ρd

which is in contradiction with the monotonicity Theorem 2.2 which gives a density estimate of the
energy.

Assume for contradiction that there exist sequences xn ∈ Ju, ρn → 0, Cn → 0 such that

Hd−1(Ju ∩Bρn(xn)) ≤ Cnρd−1
n . (20)

Inequalities (41)-(19)-(20) imply that there exist εn → 0 such that

εn
1

c
ρd−1
n ≥ εn

ˆ
Bρn (xn)

|∇u|2dx ≥ Hd−1(Ju ∩Bρn(xn)).

Consequently, the deviation from minimality (see [2, Definition 7.2] for its definition) of u for
ψΛ(u,Bρ(x)) :=

´
Bρ(x) |∇u|

2dx+ ΛHd−1(Ju ∩Bρ(x)) in Bρn(xn) satisfies

Dev (u,Bρn(xn)) ≤
[
(Λ− 1)

εn
c

+ cαρ
α
n

]
ρd−1
n ≤ θnψΛ(u,Bρn(xn)),

for some θn → 0. For every τ > 0, we can apply [2, Lemma 7.14] so that there exists C > 0 such
that for n large enough

ψΛ(u,Bτρn(xn)) ≤ CτdψΛ(u,Bρn(xn)).

which contradicts the lower density estimate in (41), provided τ is chosen small enough.

3.3 Density estimates

In the sequel, we give a refined monotonicity type formula which allows a direct proof of the
Ahlfors regularity and moreover gives explicit estimates for the density constants, depending on
the dimension of the space, Λ, α, cα.

We start with a technical result consisting in a refined inequality for harmonic extensions of
H1-functions.

Lemma 3.5 There exists a constant αd > 0 such that for every harmonic function w in B1, such
that w|∂B1 ∈ H1(∂B1), we have

ˆ
∂B1

|∇τw|2dx ≥ (d− 1)

ˆ
B1

|∇w|2dx+ αd

ˆ
∂B1

|∇τ (w − w)|2dx, (21)

where w(y) =

 
B1

wdx+
(  

B1

∇wdx
)
· y.

Proof The proof is a consequence of the identity

ˆ
∂B1

|∇τw|2dx = (d− 1)

ˆ
B1

|∇w|2dx+
1

2

ˆ
B1

(1− |x|2)|D2w|2dx,

8



and of the following inequality

1

2

ˆ
B1

(1− |x|2)|D2w|2dx ≥ αd
ˆ
∂B1

|∇τ (w − w)|2dx,

which can be proved, for instance, by contradiction. Clearly, equality holds in the previous inequal-
ity if and only if w = w. 2

In the sequel, we assume that u is an almost quasi minimizer of a free discontinuity problem,

satisfying the hypotheses of Theorem 2.2. We shall denote uρ(x) =
u(ρx)

ρ1/2
and, as before,

E(ρ) =

ˆ
Bρ

|∇u|2dx+Hd−1(Ju ∩Bρ).

Lemma 3.6 There exist constants ρ0 = ρ0(d, α, cα,Λ)and δ, ε, β depending on d only, such that
∀x ∈ Ω, ∀0 < ρ < ρ0 with Bρ(x) ⊆ Ω at least one of the following assertions holds:

a) Hd−2(Juρ ∩ Sd−1) ≥ δ;

b) Hd−2(Juρ∩Sd−1) < δ and E(ρ) < ρd−1

d−1

´
Sd−1 |∇τuρ|2dx+βΛρd−1Hd−2(Juρ∩Sd−1)+cαρ

d−1+α,
and

1− ε
d− 1

<
E(ρ)

ρd−1
´
Sd−1 |∇τuρ|2dx

<
1 + ε

d− 1
,

and ∃aρ ∈ R, ∃ξρ ∈ Rd such that

Hd−1({x ∈ Sd−1 : |uρ(x)− aρ − ξρ · x| > δ|ξρ|}) < δ and 2|ξρ|2 ≥
 
Sd−1

|∇τuρ|2.

c) E(ρ) < 1−ε
d−1ρ

d−1
´
Sd−1 |∇τuρ|2dx+ βΛρd−1Hd−2(Juρ ∩ Sd−1)

Proof Notice that by almost quasi minimality of u, condition a) implies condition c) for some
suitable constant β. Without restricting the generality, we assume x = 0.
Step 1. From the minimality of u, we get for every admissible ρ ≤ 1 and for a suitable constant
K1

E(ρ) ≤ Λρd−1dωd + cαρ
d−1+α ≤ K1ρ

d−1. (22)

For some constant c̃ > d− 1, if ˆ
Sd−1

|∇τuρ|2dx ≥ c̃K1, (23)

then

E(ρ) ≤ 1

c̃
ρd−1

ˆ
Sd−1

|∇τuρ|2dx.

Introducing ε, given by
1

c̃
=

1− ε
d− 1

,

assertion c) holds.
Step 2. We assume the contrary of (23), i.e.

´
Sd−1 |∇τuρ|2dx < c̃K1. For some constants c1, c2,

we introduce the following auxiliary problem on Sd−1:

min
w∈SBV (Sd−1)

c1

Λ

ˆ
Sd−1

|∇τw|2dx+ c2Hd−1({w 6= uρ} ∩ Sd−1) +Hd−2(Jw ∩ Sd−1). (24)

9



Following Lemma 2.3, there exists a constant c such that if

c1

Λ

ˆ
Sd−1

|∇τuρ|2dx+Hd−2(Juρ ∩ Sd−1) <
c

( c2
d−1)d−2

(25)

then problem (24) has a solution w such that w ∈ H1(Sd−1)), so Hd−2(Jw ∩ Sd−1) = 0.
We introduce

δ <
1

2

c

( c2
d−1)d−2

,

and fix c1 such that
c1

Λ
c̃K1 <

1

2

c

( c2
d−1)d−2

(26)

Consequently, either assertion a) holds with

Hd−2(Juρ ∩ Sd−1) ≥ δ,

or condition (25) is satisfied.
Step 3. Assume in the sequel that Hd−2(Juρ ∩Sd−1) < δ and condition (25) is satisfied. We know
that

c1

Λ

ˆ
Sd−1

|∇τw|2dx+ c2Hd−1({w 6= uρ} ∩ Sd−1) ≤ c1

Λ

ˆ
Sd−1

|∇τuρ|2dx+Hd−2(Juρ ∩ Sd−1).

Using Lemma 3.5 and multiplying by Λ
c1

we get:

(d− 1)

ˆ
B1

|∇w|2dx+ αd

ˆ
Sd−1

|∇τ (w − w)|2dx+
Λc2

c1
Hd−1({w 6= uρ} ∩ Sd−1) (27)

≤
ˆ
Sd−1

|∇τuρ|2dx+
Λ

c1
Hd−2(Juρ ∩ Sd−1). (28)

We introduce some ε > 0 (which will be fixed later) and assume that c) does not hold for this ε.
Then

E(ρ) ≥ 1− ε
d− 1

ρd−1

ˆ
Sd−1

|∇τuρ|2dx+ βΛρd−1Hd−2(Juρ ∩ Sd−1). (29)

We fix β = 1
c1(d−1) . Then, by simple computation and using (27)

(d− 1)E(ρ) + ερd−1

ˆ
Sd−1

|∇τuρ|2dx ≥ ρd−1

ˆ
Sd−1

|∇τuρ|2dx+
Λ

c1
ρd−1Hd−2(Juρ ∩ Sd−1)

≥ ρd−1
[
(d− 1)

ˆ
B1

|∇w|2dx+ αd

ˆ
Sd−1

|∇τ (w − w)|2dx+
Λc2

c1
Hd−1({w 6= uρ} ∩ Sd−1)

]
.

We chose c2 = 2c1(d− 1) and use the almost quasi minimality of u. Consequently,

(d− 1)E(ρ) + ερd−1

ˆ
Sd−1

|∇τuρ|2dx

≥ (d−1)E(ρ)+αdρ
d−1

ˆ
Sd−1

|∇τ (w−w)|2dx+(d−1)ρd−1ΛHd−1({w 6= uρ}∩Sd−1)−(d−1)cαρ
d−1+α,
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thus

ερd−1

ˆ
Sd−1

|∇τuρ|2dx+ (d− 1)cαρ
d−1+α (30)

≥ αdρd−1

ˆ
Sd−1

|∇τ (w − w)|2dx+ (d− 1)ρd−1ΛHd−1({w 6= uρ} ∩ Sd−1) (31)

We notice in the same time (we successively apply the quasi-minimality, inequality (6) and the
auxiliary problem)

E(ρ) ≤ ρd−1

ˆ
B1

|∇w|2dx+ Λρd−1Hd−1({w 6= uρ} ∩ Sd−1) + cαρ
d−1+α

≤ ρd−1

d− 1

[ˆ
Sd−1

|∇τw|2dx+ Λ(d− 1)Hd−1({w 6= uρ} ∩ Sd−1)
]

+ cαρ
d−1+α

≤ ρd−1

d− 1

[ ˆ
Sd−1

|∇τuρ|2dx+
Λ

c1
Hd−2(Juρ ∩ Sd−1)

]
+ cαρ

d−1+α.

Finally

E(ρ) ≤ ρd−1

d− 1

[ˆ
Sd−1

|∇τuρ|2dx+
Λ

c1
Hd−2(Juρ ∩ Sd−1)

]
+ cαρ

d−1+α. (32)

Assume that ρ0 ≤ 1 is such that
εc̃Λdωd ≥ (d− 1)cαρ

α
0 .

Then, from (30)

2εc̃Λdωd ≥ αd
ˆ
Sd−1

|∇τ (w − w)|2dx+ ΛHd−1({w 6= uρ} ∩ Sd−1).

For ε small enough, using the Poincaré inequality on Sd−1 we get

Hd−1({x ∈ Sd−1 : |uρ(x)− w| > δ|ξρ|}) < δ.

From (29)

E(ρ) ≥ 1− ε
d− 1

ρd−1

ˆ
Sd−1

|∇τuρ|2dx.

Since Hd−2(Juρ ∩ Sd−1) < δ for a suitable ε′ we get

E(ρ) ≤ 1 + ε′

d− 1
ρd−1

ˆ
Sd−1

|∇τuρ|2dx.

Assume that ˆ
Sd−1

|∇τw|2dx ≤ (1− ε′)
ˆ
Sd−1

|∇τuρ|2dx.

Then ˆ
B1

|∇w|2dx ≤ 1− ε
d− 1

ˆ
Sd−1

|∇τuρ|2dx.

Using quasi-minimality and the auxiliary problem, from (30) one reduces this case to c).
Assume now that ˆ

Sd−1

|∇τw|2dx > (1− ε)
ˆ
Sd−1

|∇τuρ|2dx
11



and ˆ
Sd−1

|∇τ (w − w)|2dx > ε

ˆ
Sd−1

|∇τw|2dx.

Relying on (21) we arrive again in situation c).
If ˆ

Sd−1

|∇τw|2dx > (1− ε)
ˆ
Sd−1

|∇τuρ|2dx

and ˆ
Sd−1

|∇τ (w − w)|2dx ≤ ε
ˆ
Sd−1

|∇τw|2dx,

then by direct computation

(1− ε)
ˆ
Sd−1

|∇τw|2dx ≤
ˆ
Sd−1

|∇τw|2dx,

so that

(1− ε)2

ˆ
Sd−1

|∇τuρ|2dx ≤
ˆ
Sd−1

|∇τw|2dx = |Sd−1||ξ0|2.

2

Lemma 3.7 (Decay Lemma) There exists constants c = cd, ε = εd, δ = δd and ρ0 = ρ0(d, α, cα,Λ)
such that for every jump point x and min{ρ0, ∂Ωc(x)} > ρ2 > ρ1 > 0, one of the following situations
holds:

ρ−d̃2

ρ−d̃1

E(ρ2)

E(ρ1)
≥ 1

c
exp

(
− cΛ

ˆ ln ρ2

ln ρ1

eσHd−2(eσSd−1 ∩ Ju)

E(eσ)
dσ
)
, (33)

where d̃ = d−1
1−ε , or ∑

ρ1<ρ<ρ2

Hd−1(Sd−1 ∩ Juρ) > δ. (34)

Proof As noticed, case a) in Lemma 3.6 can be seen as a particular case of c), possibly considering
a slightly greater β. As a consequence, only issues b) and c) shall be considered in the sequel after
a possible modification of β.

We shall work for simplicity in logarithmic co-ordinates by setting σ = ln ρ. We get after
rescaling and denoting χb, χc the characteristic functions associated to cases b) and c) in the
previous lemma

∂σ ln E(eσ) ≥ (d− 1)χb(σ) +
d− 1

1− εd
χc(σ) +

ρ

E(eσ)

ˆ
ρSd−1

|∇u · n|2dx− βΛ
ρ

E(eσ)
Hd−2(Ju ∩ ρSd−1).

(35)
If χb(σ0) = 1, let a0 = aρ0 ∈ R and ξ0 = ξ = ξρ0 ∈ Rd be given by point b). We introduce the set

M0 = {x ∈ Sd−1 : |uρ − a0 − x · ξ0| ≤ δ|ξ0|}.

One can choose the set M0 to be symmetric with respect to every axes hyperplane, so that

∀i 6= j,

ˆ
M0

xixjdHd−1 = 0,
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and Hd−1(Sd−1 \M0) ≤ δ. We have

|Sd−1|δ2|ξ0|2 ≥
ˆ
M0

|uρ0−a0−x·ξ0|2dx =

ˆ
M0

|uρ0−a0|2dx+

ˆ
M0

|x·ξ0|2dx−2

ˆ
M0

(uρ0−a0)(x·ξ0)dx.

Using the symmetry property of M0, we get that
ˆ
M0

|x · ξ0|2dx = Cd|ξ0|2.

Provided δ is small enough, we get
ˆ
M0

(uρ0 − a0)(x · ξ0)dx ≥ C ′d|ξ0|2. (36)

Let us introduce

f(ρ) = ρd−1

( ´
M0
|uρ − a0| |x · ξ0|dx

)2

( ´
M0
|x · ξ0|2

)2 .

From (36) and the density of the energy, if condition b) holds, we have for a suitable constant c > 0

f(ρ) ≥ c2E(ρ) if χb(ρ) = 1. (37)

If the second assertion of the Lemma does not hold, so that we can chose M0, possibly decreasing
its measure, such that

M0 ∩
⋃

ρ,Hd−1(Juρ∩Sd−1)6=0

{Juρ ∩ Sd−1} = ∅,

then for a suitable constant c′

∂σ[ln f(eσ) ∨ (ln(E(eσ)− c′)]χb = ∂σ ln f(eσ)χb,

and

|∂σ ln f(eσ)− (d− 2)|2 ≤ c′′ρ
´
ρM0
|∇u · n|2dx
f(eσ)

. (38)

This inequality relies on the derivative of the boundary integral in the expression of f with respect
to the parameter ρ.

In view of (38), inequality (35) becomes

∂σ ln E(eσ) ≥ (d−1)χb(σ)+
d− 1

1− εd
χc(σ)+

f(eσ)

c′′E(eσ)
|∂σ ln f(eσ)−(d−2)|2−βΛ

ρ

E(eσ)
Hd−2(Ju∩ρSd−1).

Let c1 be a sufficiently small constant and γ > 0 a constant that will be fixed later. Then

∂σ ln
(
E(eσ)[(

(E(eσ)

f(eσ)

)γ
∨ 1

c1
) ∧ c1]

)
= ∂σ ln E(eσ),

if
(
E(eσ)
f(eσ)

)γ
6∈ [ 1

c1
, c1], so that we are not in situation b). Being in c) we get

∂σ ln E(eσ) ≥ d− 1

1− εd
− βΛ

ρ

E(eσ)
Hd−2(Ju ∩ ρSd−1)

13



Otherwise,

∂σ ln
(
E(eσ)[(

(E(eσ)

f(eσ)

)γ
∨ 1

c1
) ∧ c1]

)
= ∂σ ln(E(eσ)γ+1)− ∂σ ln(f(eσ)γ) ≥

(1 + γ)(d− 1) +
1 + γ

c′′c1
|∂σ ln f(eσ)− (d− 2)|2 − (1 + γ)βΛ

ρ

E(eσ)
Hd−2(Ju ∩ ρSd−1)− γ∂σ ln f(eσ).

Since
1 + γ

c′′c1
|∂σ ln f(eσ)− (d− 2)|2 − γ(∂σ ln f(eσ)− (d− 2)) ≥ − 1

c4
γ2,

for a constant c4 small enough and independent on γ, we get

∂σ ln
(
E(eσ)[(

(E(eσ)

f(eσ)

)γ
∨ 1

c1
) ∧ c1]

)
≥ (1 + γ)(d− 1)− γ(d− 2 +

γ

c4
− (1 + γ)βΛ

ρ

E(eσ)
Hd−2(Ju ∩ ρSd−1)− γ∂σ ln f(eσ).

For γ small enough, we get for some d̃ > d

∂σ ln
(
E(eσ)[(

(E(eσ)

f(eσ)

)γ
∨ 1

c1
) ∧ c1]

)
≥ d̃− 1− (1 + γ)βΛ

ρ

E(eσ)
Hd−2(Ju ∩ ρSd−1).

Summing between ρ1 < ρ2, we conclude the proof. 2

Corollary 3.8 There exists d̃ = d̃d > d− 1, c = c(d,Λ) and ρ0 = ρ0(d, α, cα,Λ) such that ∀x ∈ Ju,
∀0 < ρ < ρ0, Bτρ(x) ⊆ Ω and for every τ > 1 we have either

cHd−1((Bτρ(x) \Bρ(x)) ∩ Ju) ≥ E(ρ), (39)

or
cE(τρ) ≥ τ d̃E(ρ). (40)

Proof For some τ > 1, we consider 0 < ρ1 < ρ2 such that ρ2 = τρ1. Assume that assertion (34)
in Lemma 3.7 holds. Then

δ <
∑

ρ1<ρ<ρ2

Hd−1(Sd−1 ∩ Juρ) =
∑

ρ1<ρ<ρ2

Hd−1(Sρ ∩ Ju)

ρd−1
≤ H

d−1((Bρ2 \Bρ1) ∩ Ju)

ρd−1
1

.

From the density estimate of the energy (41), relation (39) holds.
Assume that (39) does not hold. Consequently, assertion (33) in Lemma 3.7 holds so we get

ρ−d̃2

ρ−d̃1

E(ρ2)

E(ρ1)
≥ C1,

where C1 depends on d and Λ. Thus (40) holds. 2

We conclude with the following corollary, as a consequence of the Corollaries 3.3 and 3.8.

Corollary 3.9 There exist constants c = c(d,Λ), ρ0 = ρ0(d, α, cα,Λ) such that for every almost
quasi-minimizer u, for every x ∈ Ju and for every 0 < ρ < ρ0 such that Bρ(x) ⊆ Ω we have

1

c
ρd−1 ≥ Hd−1(Ju ∩Bρ) ≥ cρd−1. (41)
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4 A free boundary problem with Robin conditions

Let D be a smooth, bounded open subset of Rd, d ≥ 2 such that B1 ⊆ D. Let 0 < α1 < α2, 0 < β
and g ∈ H1(B1) such that a.e. x ∈ B α1 ≤ g(x) ≤ α2. We consider the following free boundary
problem, the unknown being a (sufficiently smooth) open set Ω and a function u ∈ H1(Ω):

min
B1⊆Ω⊆D

min
u∈H1(Ω),u=g on B1

ˆ
Ω
|∇u|2dx+ β

ˆ
∂Ω
u2dHd−1 + |{u > 0}|. (42)

Formally, if β = +∞, this is a free boundary problem of Bernoulli type (see for instance the seminal
paper of Alt-Caffarelli [1]). If β is finite, (42) becomes a free discontinuity problem, with Robin
boundary conditions on the unknown jump set.

Indeed, if Ω is fixed and smooth enough, the boundary trace term in the formulation above
is well defined and the minimizer u ∈ H1(Ω) solves in Ω \ B1 the following elliptic equation with
Robin conditions on the free boundary ∂Ω:

∆u = 0 in Ω \B1,
∂u
∂n + βu = 0 on ∂Ω \ ∂B1

u = g on ∂B1.

(43)

In order to deal with problem (42), we write the relaxed formin the SBV framework (see [3])

min
u∈SBV

1
2 (D),u=g on B1

ˆ
D
|∇u|2dx+ β

ˆ
Ju

[(u+)2 + (u−)2]dHd−1 + |{u > 0}|. (44)

Above, SBV
1
2 (D) stands for all nonnegative measurable functions u such that u2 ∈ SBV (D). The

existence of a solution of the relaxed problem (44) is a direct consequence of [3, Theorem 3.3],
once we have remarked that the minimization process has to be carried in the class of functions
satisfying a.e. u(x) ≤ α2. In order to apply the regularity result for almost-quasi minimizers, the
key point is to prove that any solution u is minorated a.e. on its positivity region by a positive
constant.

Notice, that if the set {u > 0} were a priori smooth, the fact that u has a strictly positive
lower bound on {u > 0} is a consequence of the Hopf’s lemma and of the pointwise equality
∂u
∂n(x) + βu(x) = 0 on ∂Ω, given by the Robin boundary condition.

Theorem 4.1 For every solution u of the free discontinuity problem (44), there exists α > 0 such
that

u(x) ≥ α, a.e. x ∈ {u > 0}.

In particular u ∈ SBV (D) and Hd−1(Ju) < +∞.

Proof We introduce the following notations:

• f(s) := Hd−1(∂∗{u > s} \ Ju)

• Ω(ε, δ) := {δ < u < ε}, Ω(ε) = Ω(ε, 0)

• E(ε, δ) =

ˆ
Ω(ε,δ)

|∇u|2dx, E(ε) = E(ε, 0)

• γ(ε, δ) = Hd−1(∂∗Ω(ε, δ) ∩ Ju)
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For 0 < δ < ε < α1, we get estimates for f(s),Ω(ε, δ), E(ε, δ), γ(ε, δ) relying on the co-area formula,
the isoperimetric inequality and the optimality of u. All the estimates hold for almost every ε and δ.
For the simplicity of the exposition, up to the end of the proof we omit the words almost everywhere
and work only with ε and δ in the complement of a zero measure set.

We notice first that u · 1Ω(ε,δ) ∈ SBV (D). By the co-area formula we have

ˆ
Ω(ε,δ)

|∇u|dx =

ˆ ε

δ
Hd−1(∂∗{u > s} \ Ju)ds,

and by the Cauchy inequality

ˆ ε

δ
f(s)ds =

ˆ
Ω(ε,δ)

|∇u|dx ≤ |Ω(ε, δ)|
1
2E(ε, δ)

1
2 . (45)

Denoting by γd the isoperimetric constant in Rd, from the isoperimetric inequality we get

|Ω(ε, δ)|
d−1
d ≤ γd

(
f(ε) + f(δ) +Hd−1(∂∗Ω(ε, δ) ∩ Ju)

)
,

so
|Ω(ε, δ)|

d−1
d ≤ γd

(
f(ε) + f(δ) + γ(ε, δ)

)
. (46)

For almost every ε > δ > 0, the optimality condition written for u and the test function u · 1{u≥ε}
gives

E(ε) + δ2γ(ε, δ) + |Ω(ε)| ≤ ε2f(ε). (47)

The main idea of the proof relies on a sort of reverse asymptotic method and can be summarized
as follows: prove that if for some interval I1 ⊆ (0, α1) the sum

´
I1
f(s)ds is small enough, then

there exists a smaller non trivial interval I2 ⊆ I1 such that
´
I2
f(s)ds = 0. The optimality of u will

directly give that u(x) ≥ sup I2 a.e. {u > 0}.
More precisely, let η > 0. We construct two sequences (εn)n and (δn)n such that

ε0 = η, δ0 =
η

2
, εi = (1− αi)εi−1, δi = (1 + αi)δi−1,

where αi > 0 is chosen such that εi → ε∞, δi → δ∞, with δ∞ < ε∞. We shall prove that for η small
enough, there exists a suitable choice of αi such that

ˆ ε∞

δ∞

f(s)ds = 0. (48)

For simplicity, we denote

ai =

ˆ εi

δi

f(s)ds and bi = |Ω(εi, δi)|.

We start with the following estimates: for η ≥ ε > δ ≥ η
2 , from (47) we get

δ2γ(ε, δ) ≤ ε2f(ε) so γ(ε, δ) ≤ 4f(ε).

From (46) we get

|Ω(ε, δ)|
d−1
d ≤ γd(5f(ε) + f(δ)) ≤ 5γd(f(ε) + f(δ)).
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Summing between [εi, εi−1] and taking into account the range of εi, δi we get

|Ω(εi, δi)|
d−1
d αiεi ≤ 5γd

[ˆ εi−1

εi

f(s)ds+ f(δ)αiεi
]
,

and further summing on [δi−1, δi]

|Ω(εi, δi)|
d−1
d α2

i εiδi ≤ 5γd
[
αiδi

ˆ εi−1

εi

f(s)ds+ αiεi

ˆ δi

δi−1

f(s)ds
]
≤ 5γdεαi(ai−1 − ai).

Consequently

b
d−1
d

i ≤ 20γd
ai−1 − ai
ηαi

. (49)

On the other hand, from (45) and (47) we get

ˆ ε

δ
f(s)ds ≤ |Ω(ε, δ)|

1
2 εf(ε)

1
2 ≤ |Ω(ε, δ)|

1
2d |Ω(ε, δ)|

d−1
2d εf(ε)

1
2

≤ |Ω(ε, δ)|
1
2d
[
5γd(f(ε) + f(δ))

] 1
2 εf(ε)

1
2 ≤ |Ω(ε, δ)|

1
2d ε(5γd)

1
2 (f(ε) + f(δ)).

Finally, we have ˆ ε

δ
f(s)ds ≤ (5γd)

1
2 |Ω(ε, δ)|

1
2d ε(f(ε) + f(δ)). (50)

We sum again (50) between [εi, εi−1] and [δi−1, δi] with respect to ε and δ, respectively, and using
the monotonicity of ai, bi and the range of ε and δ

αiη

4
ai ≤ (5γd)

1
2 b

1
2d
i−1η(ai−1 − ai),

so

ai ≤
4(5γd)

1
2 b

1
2d
i−1

αi
(ai−1 − ai). (51)

Assume that the choice αi = 4(5γd)
1
2 b

1
2d
i−1 is valid, in the sense that ε∞ > δ∞. Then we get that

ai ≤ ai−1 − ai =⇒ ai ≤
a0

2i
, (52)

which leads to the conclusion (48).
It remains to prove that the choice of αi is valid, i.e. ε∞ > δ∞. This will be ensured by a

suitable choice of η. In an equivalent way, this can be re-written as

∞∏
i=1

(1− αi) >
1

2

∞∏
i=1

(1 + αi) or 2 >

∞∏
i=1

(
1 +

2αi
1− αi

)
.

If αi ≤ 1
3 , it is enough to have

2 > exp
( ∞∑
i=1

(3αi)
)

since

exp
( ∞∑
i=1

(3αi)
)
>

∞∏
i=1

(1 + 3αi) >

∞∏
i=1

(
1 +

2αi
1− αi

)
.
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We need that

∞∑
i=1

αi <
ln 2

3
or, equivalently, by the definition of αi:

∞∑
i=1

b
1
2d
i−1 <

ln 2

12(5γd)
1
2

.

From (49) and (52) we get

b
d−1
d

i ≤ 20γd
a0

2i−1

1

η

1

4(5γd)
1
2

1

b
1
2d
i−1

,

so

bi ≤ (5γd)
1
2
a0

η2i−1

b
1
d
i

b
1
2d
i−1

.

But bi ≤ bi−1 and if η is small enough, bi ≤ 1, so that we have

bi ≤ (5γd)
1
2
a0

η2i−1
.

Consequently, we get

∞∑
i=1

αi ≤
1

4(5γd)
1
2

∞∑
i=1

(5γd)
1
4d

(a0

η

) 1
2d
( 1

2i−2

) 1
2d

= Cd

(a0

η

) 1
2d
,

where Cd is a constant depending only on the dimension of the space.
It remains to prove that we can find some η such that

Cd

(a0

η

) 1
2d
<

ln 2

3
.

From (47) we get
E(ε) + |Ω(ε)| ≤ ε2f(ε).

Summing from ε to 2ε and using the monotonicity of E and Ω, we get

E(ε) + |Ω(ε)| ≤ 1

ε

ˆ 2ε

ε
s2f(s)ds ≤ 4ε

ˆ 2ε

ε
f(s)ds ≤ 4ε

[
E(2ε) + |Ω(2ε)|

]
.

The last inequality above comes from (45) on [ε, 2ε] and the arithmetic/geometric inequality. So
we get

E(ε) + |Ω(ε)| ≤ 4ε
[
E(2ε) + |Ω(2ε)|

]
.

In the same way ˆ ε

ε
2

f(s)ds ≤
[
E(ε) + |Ω(ε)|

]
,

hence ˆ ε

ε
2

f(s)ds

ε
≤ 4
[
E(2ε) + |Ω(2ε)|

]
.

We choose η such that

4
[
E(2η) + |Ω(2η)|

]
≤ 1

C2d
d

( ln 2

3

)d
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so that

a0

η
=

ˆ η

η
2

f(s)ds

η
≤ 1

C2d
d

( ln 2

3

)d
,

and the proof is complete. 2

Theorem 4.2 Every solution u of the free discontinuity problem (44) satisfies Hd−1(Ju \ Ju) = 0
and the density property (41).

Proof After a suitable rescaling in space, u turns out to be an almost-quasi minimizer, as a
consequence of its optimality and of the inequality proved in Theorem 4.1. The conclusion then
follows is a direct consequence of Theorem 3.1 and Corollary 3.9. 2
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