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1 Introduction

We consider nonlinear systems of partial differential equations

div a(·, u,Du) = 0 on Ω (1.1)

for vector-valued functions u : Ω → R
N with N ∈ N. Here, Ω is an open and

bounded subset of Rn, where 2 ≤ n ∈ N, and a : Ω × R
N × R

Nn → R
Nn is

a given structure function. Moreover, we study the minimization problem in
Dirichlet classes for multidimensional variational integrals

F [u] :=
∫

Ω
f(·, u,Du) dx (1.2)

with a given integrand f : Ω × R
N × R

Nn → R. For both these problems
we investigate the interior regularity properties of weak solutions u. Specifi-
cally, in the present paper we deal with the integrability properties of the first
derivative Du, while in the second part [52] of our work on asymptotically
regular problems we will focus on problems of (partial) Lipschitz regularity.

For the purposes of this introduction let us restrict our exposition to the
simpler case of integrals

F [u] :=
∫

Ω
f(Du) dx (1.3)

with a locally bounded Borel integrand f : RNn → R (the more general cases
will be recovered in Section 2.3). A classical assumption on the integrand
f is that f be strictly convex. We will say that f is regular (see Definition
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2.1 for a precise statement) if this holds together with some supplementary
assumptions ensuring that the natural space for the investigation of (1.3)
is the Sobolev space W 1,p(Ω,RN ) with p ≥ 2. As a matter of fact, if f is
regular then minimizers u exist in W 1,p(Ω,RN ) and are actually more regular;
precisely, Campanato [11] for N > 1 and Giaquinta & Giusti [31], Giaquinta
& Modica [34] and Manfredi [46] for N = 1 proved

u ∈ W 1,p#

loc (Ω,RN), (1.4)

where we have set

p# :=







np
n−2

+ κ if n ≥ 3, N ≥ 2

∞ if n = 2 or N = 1

with some constant κ > 0. We record that (1.4) implies Hölder continuity of
u in low dimensions, namely for n ≤ p+ 2.

Heuristically, it is plausible that the validity of (1.4) should depend only on the
behavior of f near infinity in R

Nn. Indeed, the aim of the present paper is to
clarify this heuristic idea and to investigate whether (1.4) holds for a broader
class of problems than just the regular ones. We will introduce this class, which
we call the asymptotically regular problems, below. However, before providing
more precise statements let us briefly comment on some previous results in
the literature concerning variational problems with a quadratic or p-Laplacean
structure at infinity:

First of all, Chipot & Evans [12] (see also [44,45]) proved that minimizers u
of F from (1.3) satisfy

u ∈ W 1,∞
loc (Ω,RN) (1.5)

provided f fulfills

lim
|z|→∞

D2f(z) = A

for some inner product A on R
Nn. Clearly, (1.5) is stronger than (1.4) and

can, in general, not even be expected for regular problems as demonstrated
by recent counterexamples of Sverak & Yan [53]. However, (1.5) is explained
by the fact that stronger regularity results are available for minimizers of
the quadratic comparison functional 1

2

∫

ΩA(Dv,Dv) dx which can be partially
carried over to minimizers of F .

Subsequently, Giaquinta & Modica [34] obtained an analogous result for inte-
grands f with superquadratic growth; namely, they showed that (1.5) holds
also if f satisfies

lim
|z|→∞

D2f(z)−D2
z(

1
p
|z|p)

|z|p−2
= 0 (1.6)

for some p ≥ 2 (see also [51,26,27,21,24]). Again, this result is based on an
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improved regularity theory for the comparison integral 1
p

∫

Ω |Dv|p dx, namely

on Uhlenbeck’s famous regularity result [55] for the p-Laplacean system.

Finally, merely requiring the weaker condition

lim
|z|→∞

|f(z)− 1
p
|z|p|

|z|p = 0 (1.7)

instead of (1.6) Fuchs [25] (see also [44]) proved

u ∈ C0,α
loc (Ω,R

N) for all α < 1 (1.8)

and Dolzmann & Kristensen [15] (see also [17]) showed that even

u ∈ W 1,q
loc (Ω,R

N) for all q <∞ (1.9)

still holds. Moreover, Morrey space regularity for Du in a quite general setting
has been proved recently in [22,23]. However, in the simple situation described
here these results are already contained in (1.9).

In the present paper we will not impose any quadratic, p-Laplacean or other
special structure near infinity. Instead, we will cover a broader class of prob-
lems which we call the asymptotically regular ones. Precisely, weakening (1.7)
again we will only require that f is close to an arbitrary regular function g
near ∞ in the sense of

lim
|z|→∞

|f(z)− g(z)|
|z|p = 0. (1.10)

Then by Sverak & Yan’s examples [53] one can no longer hope for (1.5), (1.8)
or (1.9). However, as a particular case of our main results we will prove

u ∈ W 1,q
loc (Ω,R

N) for all q < p#

in this situation.

We stress that, in general, our assumptions do not imply the existence of
minimizers (although minimizers may still exist in some cases, even if f is
not convex). Therefore, we will also discuss the validity of our results for
generalized minimizers: On the one hand, following ideas from [57,8,15] based
on Ekeland’s variational principle we will prove an equi-integrability result
for minimizing sequences, which yields, in particular, higher integrability of
Young measure minimizers and weak cluster points; compare [15,23]. On the
other hand, we will apply our results in the context of relaxation.

We believe that our result can not be obtained following the blow-up strategies
of [12,25,15] which make essential use of the homogeneity of the comparison
functional. Instead, invoking some ideas of [34,25] we base our strategy of proof
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on Caffarelli & Peral’s method [9,10] for obtaining gradient estimates. More
precisely, we will use an extension of this method due to Acerbi & Mingione
[3] and Kristensen & Mingione [38] (compare also [4] for another approach to
gradient estimates and [18,40,41] for applications to boundary regularity). In
addition, we will also present a more elementary method based on estimates
in Morrey spaces, which allows to obtain somewhat weaker but related results.
In particular, the latter method provides a self-contained proof for the Hölder
continuity of minimizers in the case n ≤ p+ 2.

Anyway, both these methods are not restricted to the case touched above or to
proving higher integrability up to the exponent p#, which enters only through
the estimates for the regular integral G[v] :=

∫

Ω g(Dv) dx. Indeed, if for some
reason minimizers of G are more regular then we can improve on our results.
Recovering at the same time the general cases (1.1) and (1.2), we work out this
idea in Section 2.3; we come out with a quite general statement unifying all
the results mentioned before, apart from the fact that we cannot reach (1.5),
but only (1.9) in some cases. However, by an example of [16] this loss cannot
be avoided when passing from a condition for the second derivatives like (1.6)
to conditions for the integrands themselves like (1.7) and (1.10). Anyway, we
will come back to this point addressing questions of Lipschitz regularity and
partial Lipschitz regularity in our forthcoming work [52].

Finally, we believe that it is natural to ask whether the existence of a regular
integrand g with (1.10) can be characterized as a property of f itself. Indeed,
we have obtained such a characterization of asymptotic regularity (Theorem
2.16), whose proof is elementary, but surprisingly non-trivial. More precisely,
we exhibit a disturbed convexity condition for f near infinity which is equiv-
alent to (1.10).

2 Statements

For the remainder of the paper we fix a growth exponent 2 ≤ p < ∞,
dimensions n,N ∈ N with n ≥ 2 and a non-empty bounded open set Ω in R

n.

2.1 The autonomous case

Here, we are concerned with autonomous systems

div a(Du) = 0 on Ω (2.1)
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and autonomous integrals

F [u] :=
∫

Ω
f(Du) dx. (2.2)

We start specifying our notion of regular problems.

Definition 2.1 Let m ∈ N. We say that a function b : Rm → R
m is regular

if b is of class C1 on R
m and satisfies the ellipticity and growth conditions

Db(z)ξ · ξ ≥ γ(1 + |z|)p−2|ξ|2
|Db(z)| ≤ Γ(1 + |z|)p−2

for all z, ξ ∈ R
m and some positive constants γ and Γ. Similarly, we say that

an integrand g : Rm → R is regular if g is of class C2 on R
m and satisfies

the convexity and growth conditions

D2g(z)(ξ, ξ) ≥ γ(1 + |z|)p−2|ξ|2
|D2g(z)| ≤ Γ(1 + |z|)p−2

for all z, ξ ∈ R
m and some positive constants γ and Γ.

Remark 2.2 In particular, regular functions b and g satisfy the coercivity and
growth conditions

b(z) · z ≥ l|z|p − C, (2.3)

|b(z)| ≤ L(1 + |z|)p−1 (2.4)

and

l|z|p − C ≤ g(z) ≤ L(1 + |z|)p, (2.5)

respectively, for all z ∈ R
m with constants L ≥ l > 0 and C ∈ R.

With this terminology we state our main result for systems, which we will
prove in Section 6.

Theorem 2.3 (Asymptotically elliptic systems) We suppose that a : RNn →
R

Nn is Borel-measurable and locally bounded. Moreover, we assume that there
exists a regular b : RNn → R

Nn such that

lim
|z|→∞

|a(z)− b(z)|
|z|p−1

= 0 (2.6)

Then every weak solution u ∈ W 1,p(Ω,RN ) of (2.1) satisfies

u ∈ W 1,q
loc (Ω,R

N) for all q < p#,
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where we have set

p# :=







np
n−2

+ κ if n ≥ 3, N ≥ 2

∞ if n = 2 or N = 1
(2.7)

with some constant κ > 0 depending only on n, p and Γ
γ
. Moreover, for every

q < p# and for every cube Q with 4Q ⊂ Ω we have the estimate

−
∫

Q
|Du|q dx ≤ C

(

1 +−
∫

4Q
|Du|p dx

)
q
p

, (2.8)

where C depends only on n, p and q, on the constants γ and Γ from Definition
2.1 and on |a−b|. More precisely, it depends only on an upper bound for |a−b|
determined by a function ω as in Theorem 2.21.

Here, we call u ∈ W 1,p(Ω,RN ) a weak solution of (2.1) iff

∫

Ω
a(Du) ·Dϕdx = 0 (2.9)

holds for all ϕ ∈ C∞
cpt(Ω,R

N). We stress that (2.3), (2.4) and (2.6) together
with the local boundedness of a imply the coercivity and growth conditions

a(z) · z ≥ l|z|p − C, (2.10)

|a(z)| ≤ L(1 + |z|)p−1 (2.11)

for a, possibly with different constants. Thus, the integral in (2.9) is well-
defined and finite for all ϕ ∈ W 1,p(Ω,RN ) and (2.9) holds for all ϕ ∈ W 1,p

0 (Ω,RN).

Next, we present our main result for integrals. For the proof we refer to Section
6 once more.

Theorem 2.4 (Asymptotically convex integrals) We suppose that f :
R

Nn → R is a locally bounded Borel integrand. Moreover, we assume that
there exists a regular g : RNn → R such that

lim
|z|→∞

|f(z)− g(z)|
|z|p = 0.

Then every minimizer u ∈ W 1,p(Ω,RN) of (2.2) satisfies

u ∈ W 1,q
loc (Ω,R

N ) for all q < p#

and the estimate (2.8), where p# is defined in (2.7).

Here, we say that u ∈ W 1,p(Ω,RN ) is a minimizer of (2.2) provided

F [u] ≤ F [u+ ϕ]
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holds for all ϕ ∈ W 1,p
0 (Ω,RN). We record that our assumptions imply

l|z|p − C ≤ f(z) ≤ L(1 + |z|)p (2.12)

and thus F [u] is well-defined and finite for all u ∈ W 1,p(Ω,RN ).

Next, let us discuss the existence of weak solutions and minimizers. Proving
the existence of weak solutions of (2.1) with given boundary values one usually
requires a to be monotone; see [58, Chapter 26]. However, in Theorem 2.3 we
have assumed monotonicity only near infinity and thus weak solutions need
not exist in the full generality of our setting. Nevertheless, Theorem 2.3 covers
some interesting cases, where also an existence theorem is available, such as
systems with degenerate monotonicity or quasimonotone systems; see [59] for
an existence theorem in the latter case.

The situation is similar in the case of integrals (2.2), where convexity is the
classical assumption in proving the existence of minimizers in a given Dirichlet
class. However, in the variational case several existence results for non-convex
integrals have been established: Clearly, the most important ones deal with
the quasiconvex case (see for instance [48,1] and [14, Chapter 8]), but there are
also some results for non-quasiconvex integrals (see [14, Chapter 11] and the
references given there). These existence theorems supply a number of appli-
cations for Theorem 2.4. Nevertheless, minimizers need not exist, in general,
as can be seen already in the simple case n = 2, N = 1, p = 4 with zero
boundary values, considering the integrand

f(z1, z2) = (z21 − 1)2 + z42 ;

see [14, Example 11.28]. This non-existence result motivates us to provide ex-
tensions of Theorem 2.4 to different kinds of generalized minimizers — which
always exist. Namely, we will discuss the validity of our result for minimiz-
ing sequences, Young measure minimizers, weak cluster points and relaxed
minimizers.

For the remainder of this section we fix a Dirichlet class D := u0+W
1,p
0 (Ω,RN )

with u0 ∈ W 1,p(Ω,RN) and we consider F as in (2.2), where f : RNn → R will
always be assumed to be Borel measurable and to fulfill (2.12). Then infD F is
finite and we may introduce the following notions of generalized minimizers:

2.1.1 Minimizing sequences

Definition 2.5 (Minimizing sequence) We say that a sequence (uk)k∈N of
functions in D is a minimizing sequence for F iff F [uk] converges to infD F
when k approaches ∞.

8



Clearly, there is always a minimizing sequence for F in D, and we have the
following equi-integrability result:

Theorem 2.6 In addition to the hypotheses of Theorem 2.4 we suppose that
f : RNn → R is lower semicontinuous, and consider a minimizing sequence
(uk)k∈N for F in D. Then we can find another minimizing sequence (vk)k∈N
for F in D such that uk − vk converges to 0 strongly in W 1,p

0 (Ω,RN ) and such
that for every q < p# and every cube Q with 4Q ⊂ Ω we have

−
∫

Q
|Dvk|q dx ≤ C

(

1 +−
∫

4Q
|Dvk|p dx

)
q
p

, (2.13)

where C depends only on n, p, q, γ, Γ and on |f−g|, but is independent of
k. In particular, the sequence (Dvk)k∈N is bounded in W 1,q(K,RNn) for every
open set K with K ⊂⊂ Ω.

The proof of the above theorem is contained in Section 7.

2.1.2 Young measure minimizers

A fruitful idea in the calculus of variations, overcoming the possible lack of
minimizers in D, is to search for a minimizer in a larger class, namely among
the gradient p-Young measures; see for instance [7,50,36] for definitions, nota-
tion and general properties of Young measures.

Definition 2.7 (Young measure minimizer) We write Y for the family of
all gradient p-Young measures generated by sequences in D. For ν =

∫

Ω δx ⊗
νx dx ∈ Y we let

F [ν] :=
∫

Ω×RNn
f(X) dν(x,X) =

∫

Ω

∫

RNn
f dνx dx

and we call ν a Young measure minimizer of F iff

F [ν] ≤ F [u] holds for all u ∈ D.

With this definition, [36, Theorem 2.4] implies that every minimizing sequence
for F in D generates a Young measure minimizer of F in Y and, in particular,
that there always exists a Young measure minimizer of F in Y . Moreover,
taking into account [36, Corollary 1.8 and Theorem 2.4], we note:

Remark 2.8 For every Young measure minimizer ν ∈ Y of F we even have

F [ν] = inf
D
F = min

Y
F.
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Following [15] we note that Theorem 2.6 implies a higher integrability result
for Young measure minimizers:

Corollary 2.9 Under the assumptions of Theorem 2.6, we consider a Young
measure minimizer ν =

∫

Ω δx ⊗ νx dx ∈ Y of F . Then for every q < p# and
every cube Q with 4Q ⊂ Ω we have

−
∫

Q

∫

RNn
| · |q dνx dx ≤ C

(

1 +−
∫

4Q

∫

RNn
| · |p dνx dx

)
q
p

,

where C is the constant from Theorem 2.6. In particular, ν has a finite q-th
moment on K ×R

Nn for every set K ⊂⊂ M .

Proof. We choose a generating sequence (uk)k∈N in D for ν. Via Theorem
2.6 we find another generating sequence (vk)k∈N in D for ν for which (2.13)
holds. In particular, (2.13) implies that (vk)k∈N is bounded in W 1,q and thus
(|Dvk|p)k∈N is equi-integrable away from the boundary of Ω. Consequently,
applying [36, Theorem 2.4] twice we get

−
∫

Q

∫

RNn
| · |q dνx dx ≤ lim inf

k→∞
−
∫

Q
|Dvk|q dx

≤ C
(

1 + lim
k→∞

−
∫

4Q
|Dvk|p dx

)
q
p

= C
(

1 +−
∫

4Q

∫

RNn
| · |p dνx dx

)
q
p

,

for all cubes Q with 4Q ⊂⊂ Ω. However, since C is independent of Q, the
resulting inequality still holds if we merely require 4Q ⊂ Ω as claimed. �

2.1.3 Weak cluster points

By (2.12) minimizing sequences always possess a weak cluster point, and from
Theorem 2.6 we deduce a corresponding regularity result:

Corollary 2.10 Under the assumptions of Theorem 2.6, we consider a cluster
point u — with respect to the weak W 1,p-topology — of a minimizing sequence
for F in D. Then we have

u ∈ W 1,q
loc (Ω,R

N) for all q < p#.

Let us add a brief comment on the relationship between Corollary 2.9 and
Corollary 2.10: Starting from a weak cluster point u as in Corollary 2.10,
we find a minimizing sequence in D, weakly convergent to u, which gen-
erates a Young measure minimizer ν =

∫

Ω δx ⊗ νx dx ∈ Y . Then we have
Du(x) =

∫

RNn X dνx(X) for a.e. x ∈ Ω and consequently, Jensen’s inequality
gives |Du(x)|q ≤ ∫

RNn | · |q dνx for a.e. x ∈ Ω. Thus, Corollary 2.10 may also
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be deduced from Corollary 2.9, together with the additional estimate

−
∫

Q
|Du|q dx ≤ C

(

1 +−
∫

4Q

∫

RNn
| · |p dνx dx

)
q
p

for every cube Q with 4Q ⊂ Ω and all q < p#.

2.1.4 Quasiconvexity and Strong Local Minimizers

Now we point out applications of Theorem 2.3 and Theorem 2.4 in the theory
of quasiconvex integrals.

We start by recalling that f : RNn → R is said to be quasiconvex (in the sense
of Morrey) iff

−
∫

B1

f(z +Dϕ) dx ≥ f(z)

holds for all z ∈ R
Nn and ϕ ∈ W 1,p

0 (B1,R
N). Quasiconvexity is a generaliza-

tion of convexity and it was first observed by Morrey [48] (see also [1]) that
quasiconvexity of f is equivalent to sequential weak lower semicontinuity of
F and thus implies the existence of a minimizer in D; see [14, Chapter 8]
for further information on quasiconvexity, weak lower semicontinuity and ex-
istence theorems in the calculus of variations. Moreover, quasiconvexity and
the related notions of polyconvexity and rank-one convexity are also crucial
in nonlinear elasticity as recognized by Ball [6]. Additionally, inspired by pre-
vious results in the setting of geometric measure theory, Evans [20] (see also
[28,33,2,35]) demonstrated that quasiconvexity is an appropriate notion for
proving the partial regularity of minimizers; that is, regularity outside a neg-
ligible set. While it is known from a celebrated example of Müller & Sverak
[49] that partial regularity fails for mere solutions of the Euler equation, Kris-
tensen & Taheri [42, Theorem 4.1] have shown that Evans’ result extends to
an intermediate case, namely to strong local minimizers; that is, local minima
of F with respect to the W 1,q-topology for some p < q < ∞. However, they
needed to assume that the minimizer is a priori in W 1,q

loc (Ω,R
N), a condition

which need not even be satisfied for absolute minimizers. Actually, it even
seems difficult to obtain any everywhere regularity results for general qua-
siconvex integrals 1 . Thus, a twofold interest arises in the question whether
higher integrability results can be obtained at least in some particular situa-
tions: On the one hand, such results for absolute minimizers are of interest in
themselves; on the other hand, results for weak solutions of systems cover the
case of strong local minimizers, and may be used to verify the assumptions of
the partial regularity theorem [42, Theorem 4.1].

1 Indeed, the only results for quasiconvex integrals exceeding almost-everywhere
regularity are Gehring’s improvement and the dimension reduction in [39].
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Clearly, the results of [12,34,15] mentioned in the introduction apply to abso-
lute minimizers provided f is of special structure near infinity, and analogous
results for systems have been established in [42, Proposition 5.1]. With Theo-
rem 2.3 and Theorem 2.4 we extend all these results covering a much broader
class of integrands f . For instance we include such genuine examples as

f(z) := g(z) + |det z|2

with a regular g and p > 2n = 2N . In exchange, we pay for this generality
with the restriction q < p#.

2.1.5 Relaxation

Next, we discuss another approach of defining generalized minimizers. If f
fails to be quasiconvex, one may consider its quasiconvex envelope Qf defined
by

Qf(z) := sup
{

g(z) : g is quasiconvex with g ≤ f on R
Nn
}

.

Clearly, Qf is quasiconvex and thus a minimizer of

QF [u] :=
∫

Ω
Qf(Du) dx

in D always exists. Moreover, by Dacorogna’s relaxation theorem [13,1] we
have

QF [u] = inf
{

lim inf
k→∞

F [uk] : uk − u −−−⇀
k→∞

0 weakly in W 1,p
0 (Ω,RN)

}

(2.14)

for all u ∈ W 1,p(Ω,RN ) and thus

inf
D
F = min

D
QF (2.15)

holds. In particular, if a minimizer of F exists, it is also a minimizer of QF .
Hence, it is reasonable to introduce the following terminology:

Definition 2.11 (Relaxed Minimizer) We say that u ∈ W 1,p(Ω,RN) is a
relaxed minimizer of F iff it is a minimizer of QF .

The following simple lemma, proved in Appendix A, implies that Theorem 2.4
holds for relaxed minimizers.

Lemma 2.12 Under the assumptions of Theorem 2.4 we have

lim
|z|→∞

|f(z)− Cf(z)|
|z|p = 0,

where Cf denotes the convex envelope of f .
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Consequently, if f satisfies the assumptions of Theorem 2.4, then also Qf
satisfies the same assumptions and we get:

Corollary 2.13 Suppose that f is as in Theorem 2.4. Then every relaxed
minimizer u ∈ W 1,p(Ω,RN ) of F satisfies

u ∈ W 1,q
loc (Ω,R

N) for all q < p#,

and the estimate (2.8), where p# is defined in (2.7).

Finally, we stress that starting from (2.14), (2.15) and (2.12) one can show
that the relaxed minimizers of F are exactly the weak cluster points of mini-
mizing sequences for F . Hence, Corollary 2.10 and Corollary 2.13 are in fact
equivalent.

2.2 A characterization of asymptotic regularity

We say that a function a : RNn → R
Nn is asymptotically regular iff it satis-

fies the assumptions of Theorem 2.3, and that an integrand f : RNn → R is
asymptotically regular iff it satisfies the assumptions of Theorem 2.4. In the
following twin theorems we provide the characterization of asymptotic regu-
larity that we have announced in the introduction. The theorems show that
asymptotic regularity is in fact equivalent to certain weakened forms of the
usual monotonicity, convexity and growth conditions. We will state them for
functions a : Rm → R

m and f : Rm → R with an arbitrary m ∈ N. The
proofs will be given in Section 9.

Theorem 2.14 We consider a measurable function a : Rm → R
m. Then the

following assertions are equivalent:

(i) There exists a regular function b : Rm → R
m such that

lim
|z|→∞

|b(z)− a(z)|
|z|p−1

= 0.

(ii) There exist positive constants γ, Γ and M0 and a function ω : [M0,∞) →
[0,∞) with

lim
t→∞

ω(t) = 0

such that the inequalities

(a(z2)−a(z1)) · (z2−z1) ≥ γ(|z1|+ |z2|)p−2|z2−z1|2−Ω(|z1|, |z2|)|z2−z1|,

|a(z2)− a(z1)| ≤ Γ(|z1|+ |z2|)p−2|z2 − z1|+ Ω(|z1|, |z2|)
hold for all z1, z2 ∈ R

m with |z1| ≥M0 and |z2| ≥ M0. Here, we used the
abbreviation Ω(s, t) := ω(min{s, t})(s+ t)p−1.
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(iii) There exist positive constants γ, Γ and M0 and a function ϕ : [M0,∞) →
(0,∞) with

lim
t→∞

ϕ(t) = 0

such that the following holds: Whenever the conditions

|z1| ≥ t, |z2| ≥ t and |z2 − z1| ≥ ϕ(t)(|z1|+ |z2|) (2.16)

are satisfied for some t ≥ M0 and z1, z2 ∈ R
m, we have

(a(z2)− a(z1)) · (z2 − z1) ≥ γ(|z1|+ |z2|)p−2|z2 − z1|2,
|a(z2)− a(z1)| ≤ Γ(|z1|+ |z2|)p−2|z2 − z1|.

Remark 2.15 All three conditions imply the coercivity and growth conditions
(2.10) and (2.11) for |z| ≫ 1 and some constants L ≥ l > 0 and C ∈ R.
Clearly, if a is locally bounded these conditions hold for all z ∈ R

m.

Theorem 2.16 We consider a measurable and locally bounded function f :
R

m → R. Then the following assertions are equivalent:

(i) There exists a regular integrand g : Rm → R such that we have

lim
|z|→∞

|g(z)− f(z)|
|z|p = 0.

(ii) There exist positive constants γ, Γ and M0 and a function ω : [M0,∞) →
[0,∞) with

lim
t→∞

ω(t) = 0

such that for all λ ∈ [0, 1], z1, z2 ∈ R
m and z := λz1 + (1 − λ)z2 with

|z| ≥M0 the following inequalities hold:

λf(z1) + (1− λ)f(z2) ≥ f(z) + γ(|z1|+ |z2|)p−2λ(1− λ)|z2 − z1|2
− ω(|z|)(|z1|+ |z2|)p−2|z|2, (2.17)

λf(z1) + (1− λ)f(z2) ≤ f(z) + Γ(|z1|+ |z2|)p−2λ(1− λ)|z2 − z1|2
+ ω(|z|)(|z1|+ |z2|)p−2|z|2. (2.18)

(iii) There exist positive constants γ, Γ and M0 and a function ϕ : [M0,∞) →
(0,∞) with

lim
t→∞

ϕ(t) = 0

such that the following holds: Whenever the conditions

|z| ≥ t and λ(1− λ)|z2 − z1|2 ≥ ϕ(t)|z|2 (2.19)

are satisfied for some t ≥ M0, λ ∈ [0, 1] and z1, z2 ∈ R
m with z :=

λz1 + (1− λ)z2, we have

λf(z1) + (1− λ)f(z2) ≥ f(z) + γ(|z1|+ |z2|)p−2λ(1− λ)|z2 − z1|2 (2.20)
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and

λf(z1) + (1−λ)f(z2) ≤ f(z) +Γ(|z1|+ |z2|)p−2λ(1−λ)|z2− z1|2. (2.21)

Remark 2.17 We note λ(1− λ)|z2 − z1|2 = |z2 − z||z1 − z|.

Remark 2.18 Keeping Remark 2.17 and the local boundedness of f in mind,
all three conditions can be shown to imply the coercivity and growth conditions
(2.12) for all z ∈ R

m and some constants L ≥ l > 0 and C ∈ R.

2.3 The general case

Finally, we provide more general versions of Theorem 2.3, Theorem 2.4 and
Theorem 2.6, which cover the general cases (1.1) and (1.2) from the very
beginning. However, an essential difference to Section 2.1 is that we now simply
postulate certain regularity results for the comparison problems; see the end
of the section for a discussion of this hypothesis.

We start with a technical definition.

Definition 2.19 (Admissibility) We write L for the σ-algebra of measur-
able subsets of Ω, B for the σ-algebra of Borel subsets of RN ×R

Nn and L⊗B
for their product σ-algebra. We say that a : Ω × R

N × R
Nn → R

Nn is an
admissible structure function iff a is L⊗B-measurable. Similarly, we call
f : Ω×R

N ×R
Nn → R an admissible integrand iff f is L⊗B-measurable.

Remark 2.20 Admissibility ensures that the compositions a(·, u,Du) : Ω →
R

Nn and f(·, u,Du) : Ω → R, respectively, are still measurable for every
weakly differentiable function u : Ω → R

N . Moreover, it should be noted that a
function is admissible if and only if it coincides with a Borel function outside
E×R

N×R
Nn for some negligible set E ⊂ Ω; see the discussion after Definition

5.5 and Exercise 5.4 in [5].

Next, we present the generalization of Theorem 2.3 to systems of type (1.1).
We refer to Section 6 for the proof.

Theorem 2.21 We suppose that a : Ω×R
N×R

Nn → R
Nn and b : Ω×R

Nn →
R

Nn are admissible structure functions such that we have

|a(x, y, z)− b(x, z)| ≤ ω(|z|)(1 + |z|)p−1 (2.22)

for all x ∈ Ω, y ∈ R
N and z ∈ R

Nn and some bounded function ω : [0,∞) → R

with

lim
t→∞

ω(t) = 0.
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Moreover, we require b to be C1 in its last argument and we impose the growth
and ellipticity conditions

|b(x, z)| ≤ Ψ(x) + L|z|p−1, (2.23)

Dzb(x, z)(ξ, ξ) ≥ γ(1 + |z|)p−2|ξ|2 (2.24)

for some positive constants γ and L, some function 0 < Ψ ∈ L
p

p−1 (Ω) and
for all x ∈ Ω and z, ξ ∈ R

Nn. Finally, we assume that every weak solution
v ∈ W 1,p(Ω,RN) of

div b(·, Dv) = 0 on Ω (2.25)

satisfies v ∈ W 1,q#

loc (Ω,RN ) and

−
∫

Q
|Dv|q# dx ≤ H

(

1 +−
∫

2Q
|Dv|p dx

)
q#

p

on all cubes Q with 2Q ⊂ Ω, with some positive constant H and some exponent
p < q# <∞. Then every weak solution u ∈ W 1,p(Ω,RN) of

div a(·, u,Du) = 0 on Ω (2.26)

satisfies u ∈ W 1,q
loc (Ω,R

N ) with

−
∫

Q
|Du|q dx ≤ C

(

1 +−
∫

4Q
|Du|p dx

)
q
p

,

for all q < q# and all cubes Q with 4Q ⊂ Ω. Here, the constant C depends
only on n, p, q, q#, H, γ and ω.

Here, the notion of a weak solution is defined analogously to (2.9) by testing
with C∞

cpt-functions; clearly, keeping (2.23) in mind, one may also test (2.25)

with W 1,p
0 -functions. Moreover, we record that (2.23) and (2.24) imply the

coercivity condition

b(x, z) · z ≥ l|z|p − CΨ(x)
p

p−1 (2.27)

with constants l > 0 and C ∈ R. In addition, taking into account (2.22), the
conditions (2.23) and (2.27) can be carried over to a, possibly with different
constants, and we deduce that (2.26) may also be tested with W 1,p

0 -functions.

Next, generalizing Theorem 2.4 and Theorem 2.6, we turn our attention to
integrals of type (1.2). We begin with the generalization of Theorem 2.4, which
we will establish in Section 6.

Theorem 2.22 We suppose that f : Ω×R
N×R

Nn → R and g : Ω×R
Nn → R

are admissible integrands such that we have

|f(x, y, z)− g(x, z)| ≤ ω(|z|)(1 + |z|)p (2.28)
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for all x ∈ Ω, y ∈ R
N and z ∈ R

Nn and some bounded function ω : [0,∞) → R

with
lim
t→∞

ω(t) = 0.

Moreover, we require g to be C2 in its last argument and we impose the coer-
civity and convexity conditions

g(x, z) ≥ l|z|p −Ψ(x) (2.29)

D2
zg(x, z)(ξ, ξ) ≥ γ(1 + |z|)p−2|ξ|2 (2.30)

for some positive constants l and γ, some function 0 < Ψ ∈ L1(Ω) and for
all x ∈ Ω and z, ξ ∈ R

Nn. Finally, we assume that every minimizer v ∈
W 1,p(Ω,RN ) of

G[v] :=
∫

Ω
g(·, Dv) dx (2.31)

satisfies v ∈ W 1,q#

loc (Ω,RN ) and

−
∫

Q
|Dv|q# dx ≤ H

(

1 +−
∫

2Q
|Dv|p dx

)
q#

p

,

on all cubes Q with 2Q ⊂ Ω, with some positive constant H and some exponent
p < q# <∞. Then every minimizer u ∈ W 1,p(Ω,RN ) of

F [u] :=
∫

Ω
f(·, u,Du) dx

satisfies
u ∈ W 1,q

loc (Ω,R
N)

and (2.8) for all q < q#.

Here, we have called u ∈ W 1,p(Ω,RN) a minimizer of F iff we have F [u] <∞
and F [u] ≤ F [u + ϕ] for all ϕ ∈ W 1,p

0 (Ω,RN ). Clearly, a minimizer of G is
defined analogously. The reader should note that this definition is consistent
with the one given in Section 2.1, where — recalling the growth condition
in (2.12) — the requirement F [u] < ∞ was trivially satisfied. However, in
Theorem 2.22 we have not imposed any upper bounds for the growth of f or
g.

In contrast, we have assumed the lower bound (2.29) for g and invoking (2.28)
we get the analogous lower bound

f(x, y, z) ≥ l

2
|z|p −Ψ(x)− C (2.32)

for f , with some C ∈ R. In particular, the functionals F and G are bounded
from below and for every Dirichlet class D we have infD F > −∞.

Finally, assuming that the Dirichlet class D satisfies infD F <∞, let us briefly
discuss an extension to minimizing sequences.
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Definition 2.23 (Normal integrand) We say that an admissible integrand
f : Ω×R

N ×R
Nn → R is a normal integrand iff for a.e. x ∈ Ω the function

f(x, ·, ·) : RN ×R
Nn → R is lower semicontinuous.

Theorem 2.24 In addition to the hypotheses of Theorem 2.22 we require f to
be a normal integrand. Then starting from a minimizing sequence (in the sense
of Definition 2.5) (uk)k∈N for F in D, we can find another minimizing sequence
(vk)k∈N for F in D such that uk − vk converges to 0 strongly in W 1,p

0 (Ω,RN )
and such that we have (2.13) for every q < q# with C independent of k.

For the proof see Section 7.

Clearly, most remarks we have made in Section 2.1 apply also in the cur-
rent situation. In particular, starting from Theorem 2.24, higher integrability
can be carried over to the various kinds of generalized minimizers. Instead of
elaborating on further details, we rather discuss the crucial hypothesis of this
section:

On the regularity theory for the comparison problems: In contrast
to Section 2.1 we have now simply assumed higher integrability properties
of solutions v. This assumption is justified by the fact that such results are
available in several particular situations. Let us record only some of them
without entering into the details of the corresponding estimates:

• For functions b or g of special structure, e.g. a linear/quadratic or p-Laplacean
one, adequate integrability results are available (see e.g. [55,34,54,29]) and
we regain most of the results mentioned in the introduction, but also more
general results allowing some x- and y-dependence.

• For N = 1 or n = 2, imposing natural growth and continuity conditions
on b or g, we have v ∈ W 1,∞

loc (Ω,RN ) (cf. [31,34,46,35] for N = 1 and [38,
Section 9] for n = 2) and consequently the theorems give u ∈ W 1,q

loc (Ω,R
N )

for all q <∞.
• Considering — in view of Section 4 — regular functions b and g which are
independent of x, we recover the results of Section 2.1.

• More generally, if b or Dg is Hölder continuous in x with exponent α < 1
and satisfies some additional growth conditions, then by [47, Proposition
3.1] and the fractional Sobolev embedding we have

v ∈ W 1,q
loc (Ω,R

N ) for all q <
np

n− 2α

and the theorems guarantee the same degree of integrability for u.

Finally, let us mention that one may think about considering even more gen-
eral comparison problems; for instance, one might weaken the smoothness
assumptions on b and g or allow an additional dependence on y. However,
we believe that the treatment of such generalizations would result in further
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technicalities and lies beyond the scope of the present paper.

3 Preliminaries

Notation.

Constants. We use the notations c and C for positive constants, possibly vary-
ing from line to line. The dependences of such constants will only occasionally
be highlighted. Anyway, we widely follow the convention that large constants
will be denoted by capital letters, and small constants by lowercase letters.

Balls and spheres. By Br(x) we denote the open ball in R
n with center x ∈ R

n

and radius r > 0. Similarly, we write Sr(x) for the (n−1)-dimensional sphere
with center x ∈ R

n and radius r. Here, the centers will be omitted if they are
0. In addition, the volume of the unit ball B1 will be abbreviated by ωn and
if B denotes a ball we will occasionally write 2B for the ball with the same
center and twice the radius.

Cubes. In the following a cube will always denote an open cube in R
n with

edges parallel to the axes; more precisely, the cube with edges of length l > 0

and center x ∈ R
n is the set x+

]

− l
2
, l
2

[n
. If Q is a cube with edges of length l,

we write rQ for the cube with the same center and edges of length rl. Finally,
by a subcube of Q we simply mean another cube which is contained in Q.

Mean values. We use the common notations fA and −
∫

A f dx for the mean value
1
|A|
∫

A f dx of f on A, where |A| is the Lebesgue measure of A. In particular,
in the case of balls we abbreviate fx,r := fBr(x) and fr := f0,r.

Function spaces. As usual we write Lp, W k,p and Ck,α for Lebesgue, Sobolev
and Hölder spaces, respectively. Moreover, for λ ≥ 0 we write Lp,λ(Ω,RN) for
the Morrey space consisting of all functions u ∈ Lp(Ω,RN ) with

sup
x∈Ω

0<ρ<diamΩ

ρ−λ
∫

Bρ(x)∩Ω
|u|p dx <∞.

Finally, we introduce localized function spaces: Let F ∈ {Lp,W k,p, Ck,α, Lp,λ}.
Then, we write Floc(Ω,R

N) for the space of all functions u : Ω → R
N with

u ∈ F(K,RN) for every open set K with ∅ 6= K ⊂⊂ Ω.

The function V . For z ∈ R
Nn we let

V (z) := (1 + |z|2) p−2
4 z. (3.1)
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Some inequalities.
We recall the standard inequality (see for instance [33, Lemma 2.1])

∫ 1

0
(1 + |z0 + s(z − z0)|)p−2 ds ≥ c(|z0|+ |z|)p−2 ≥ c|z − z0|p−2 (3.2)

for all z0, z ∈ R
Nn with some positive constant c depending only on p. In

particular, we deduce

∫ 1

0

∫ 1

0
(1 + |z0 + tξ + stz|)p−2 ds t dt ≥ c

∫ 1

0
|tz|p−2t dt =

c

p
|z|p−2. (3.3)

for all z0, z, ξ ∈ R
Nn.

The maximal function.
Denote by Q a cube in R

n. We introduce the Hardy-Littlewood maximal
function restricted to Q:

MQϕ(x) := sup
x∈W⊂Q

−
∫

W
|ϕ| dx for ϕ ∈ L1(Q),

where the supremum ranges over all subcubes W of Q containing x. We recall
that M is sublinear, in particular

MQ(ϕ1 + ϕ2) ≤MQϕ1 +MQϕ2 on Q, (3.4)

and bounded in the sense of

|Q ∩ {MQϕ > λ}| ≤ C

λq

∫

Q
|ϕ|q dx (3.5)

for all q ∈ [1,∞) and all λ > 0, where C depends only on n and q. In the case
q = 1 the above inequality holds with C = 4n.

Dyadic decomposition of cubes and Calderón-Zygmund coverings.
Next, we introduce some terminology concerning dyadic decompositions of
cubes: For a cube Q = y+]0, l[n (with center y + 1

2
(l, l, . . . , l) this time) the

cubes y + 2−klz+]0, 2−kl[n with k ∈ N0 and z ∈ {0, 1, 2, . . . , 2k − 1}n are
called the dyadic subcubes of Q. Moreover, for a dyadic subcube W of Q the
predecessor of W is the smallest (with respect to inclusion) dyadic subcube of
Q which strictly contains W . For W 6= Q the predecessor of W exists and is
unique and we will always denote it by W ∗.

With this terminology we restate the following covering lemma, which will
play a crucial role in our proofs:

Lemma 3.1 ([10, Lemma 1.2]) We consider a cube Q in R
n and measur-

able sets A ⊂ B ⊂ Q such that for some ς ∈ (0, 1) we have

|A| ≤ ς|Q|
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and the following property:

(P) For each dyadic subcube W of Q with |A∩W | > ς|W | one has W ∗ ⊂ B.

Then, there holds |A| ≤ ς|B|.

The proof of Lemma 3.1 is elementary. It is based on a Calderón-Zygmund
covering technique, i.e. on a covering of A with certain disjoint dyadic subcubes
of Q; see [10, Lemma 1.1] for details.

Ekeland’s variational principle.
The main tool in proving our regularity theorems for minimizing sequences
will be Ekeland’s variational principle. We state a version of this principle,
which can be found for instance in [19, Theorem 1.1] or [35, Theorem 5.6 and
Remark 5.5]. It allows to pass from an almost-minimizer to a minimizer of
some disturbed functional, which will be very convenient later.

Lemma 3.2 We consider a functional F : X → (−∞,∞] on a complete
metric space X and we assume that F is lower semicontinuous and bounded
from below. Then, for every δ > 0 and every u ∈ X with

F [u] ≤ inf
X
F + δ

there is a v ∈ X with d(u, v) ≤
√
δ and F [v] ≤ F [u] such that

F [v] ≤ F [w] +
√
δ d(v, w)

holds for all w ∈ X.

4 Regular problems

In this section we collect some regularity results for regular problems. We start
with a standard result concerning the existence of second derivatives:

Theorem 4.1 Let Ω ⊂ R
n denote either a ball with radius l or a cube with

edges of length l, and consider a regular structure function b : RNn → R
Nn.

Then, for every weak solution v ∈ W 1,p(2Ω,RN) of

div b(Dv) = 0 on 2Ω (4.1)

the function
V̄ := V (Dv)

with V from (3.1) satisfies

V̄ ∈ W 1,2(Ω,RN)
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and
∫

Ω
|DV̄ |2 dx ≤ C

∫

2Ω\Ω

∣

∣

∣

∣

∣

V̄ − ξ

l

∣

∣

∣

∣

∣

2

dx (4.2)

for all ξ ∈ R
Nn, where C depends only on p and Γ

γ
.

To prove Theorem 4.1 one uses the difference quotient method to differentiate
the system (4.1). This is usually done using balls (see [11]), but works in the
same manner for cubes.

Once the Caccioppoli inequality (4.2) is obtained, Giaquinta & Modica’s ver-
sion [32] of Gehring’s higher integrability lemma [30] givesW 1,2+κ-integrability
for V̄ , where κ is some positive constant depending only on n, p and Γ

γ
:

Theorem 4.2 ([11, Theorem 1.V]) There is a positive number κ > 0 de-
pending only on n, p and Γ

γ
with the following property: Under the assumptions

of Theorem 4.1 we have

V̄ ∈ W 1,2+κ(Ω,RN)

and

−
∫

Ω
|DV̄ |2+κ dx ≤ C



−
∫

2Ω

∣

∣

∣

∣

∣

V̄ − V̄2Ω
l

∣

∣

∣

∣

∣

2

dx





2+κ
2

,

where C depends only on n, p and Γ
γ
.

The reader should note that one of the main features of Theorem 4.2 is that
it implies Hölder continuity of Dv for n = 2 and of v for n ≤ p + 2, while
Theorem 4.1 only gives Hölder continuity of v for n < p+ 2.

Recently, Kristensen & Melcher [37] have established a refined version of The-
orem 4.2. Precisely, in the case p = 2 they proved that κ can be chosen depend-
ing only on the dispersion ratio Γ

γ
— precisely κ = 1

50
γ
Γ
—, but independent

of the dimension n.

Finally, in the scalar case N = 1 the above results can be considerably
strengthened and weak solutions are Lipschitzian 2 ; see [31,34,46,35]. Com-
bining this with the above results and Sobolev’s embedding we get:

Corollary 4.3 Under the assumption of Theorem 4.1 we have

v ∈ W 1,p#(Ω,RN )

and
(

−
∫

Ω
|Dv|p# dx

) 1

p# ≤ C
(

1 +−
∫

2Ω
|Dv|p dx

) 1
p

,

2 In fact, weak solutions are even C
1,α
loc -regular, but this will not be relevant for the

purposes of this paper.
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where p# is defined in (2.7), κ is the constant from Theorem 4.2 and C depends
only on n, p and Γ

γ
. Here, in the case p# = ∞ the left-hand side of (2.7) should

be interpreted as supΩ |Dv|.

Proof. We start with the case n ≥ 3, N ≥ 2: First we note (2+κ)∗ ≥ 2n
n−2

+ 2
p
κ,

where (2+κ)∗ denotes the Sobolev exponent of 2+κ. Thus, from Theorem 4.2
and Sobolev’s embedding we deduce

−
∫

Ω
|V̄ − V̄Ω|

2n
n−2

+ 2
p
κ dx ≤ C

(

−
∫

2Ω
|V̄ − V̄2Ω|2 dx

) n
n−2

+κ
p

.

Clearly, this implies

−
∫

Ω
|V̄ | 2n

n−2
+ 2

p
κ dx ≤ C

(

|V̄Ω|2 +−
∫

2Ω
|V̄ |2 dx

) n
n−2

+κ
p

.

Finally, recalling the definition of V̄ we have |Dv|p ≤ |V̄ |2 ≤ C(1+ |Dv|p) and
|V̄Ω|2 ≤ C (1 + −

∫

2Ω |Dv|p dx); thus, we infer

−
∫

Ω
|Dv| np

n−2
+κ dx ≤ C

(

1 +−
∫

2Ω
|Dv|p dx

)
n

n−2
+κ

p

,

which proves the claim.

Replacing integrals by supremums, the case n = 2 is analogous, but simpler.
Finally, for the case N = 1 we refer to [35, Theorem 8.2]. �

Remark 4.4 In particular, taking into account the Euler equation

divDg(Dv) = 0 on 2Ω,

all the results of this section apply to minimizers v of regular integrals

G[v] :=
∫

2Ω
g(Dv) dx.

5 Comparison estimates

In this section we prove that solutions of asymptotically regular problems can
be approximated, close to infinity, by solutions of regular problems.

Lemma 5.1 Assume that structure functions a and b are given which satisfy
the assumptions of Theorem 2.21. Then for every ε > 0, there is a constant
K(ε), depending only on p, γ, ω and ε with the following property: When-
ever u, v ∈ W 1,p(Ω,RN) are weak solutions of the systems (2.26) and (2.25),
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respectively, with u− v ∈ W 1,p
0 (Ω,RN ), then the assumption

−
∫

Ω
|Du|p dx > Kp(ε)

implies

−
∫

Ω
|Du−Dv|p dx ≤ ε−

∫

Ω
|Du|p dx.

Proof. We choose a constant ε1 ∈ (0, 1) to be fixed later and observe that by
the assumption (2.22) we may choose a constant M1 so large that

sup
x∈Ω, y∈RN

|a(x, y, ξ)− b(x, ξ)| ≤ ε1(1 + |ξ|p−1) for |ξ| ≥M1. (5.1)

We let Sε := ‖ω‖L∞(1 +Mp−1
1 ) < ∞. Next we observe that by the condition

(2.24), we have the pointwise estimate

b(·, Du) · (Du−Dv)− b(·, Dv) · (Du−Dv)

=
∫ 1

0
Dzb(·, Dv + t(Du−Dv)) dt (Du−Dv,Du−Dv)

≥ γ|Du−Dv|2
∫ 1

0
(1 + |Dv + t(Du−Dv)|)p−2 dt

≥ cγ |Du−Dv|p,

where we used the inequality (3.2) in the last step. The constant c depends only
on p. Recalling (2.23) we see that u − v ∈ W 1,p

0 (BR(x),R
N) is an admissible

test function in the weak formulation of (2.25). Therefore, integrating the
above inequality yields

cγ
∫

Ω
|Du−Dv|p dx≤

∫

Ω
b(·, Du) · (Du−Dv) dx

=
∫

Ω
[b(·, Du)− a(·, u,Du)] · (Du−Dv) dx,

where here we used the equation (2.26) in the last step. By the choice of M1

according to (5.1) and by the definition of Sε, we conclude

cγ
∫

BR(x)
|Du−Dv|p dx

≤ ε1

∫

{|Du|≥M1}
(1 + |Du|p−1)|Du−Dv| dx+ Sε

∫

{|Du|≤M1}
|Du−Dv| dx.

Applying Hölder’s inequality, we arrive at
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−
∫

Ω
|Du−Dv|p dx

≤
[

ε1
cγ

(

−
∫

Ω
|Du|p dx

)1− 1
p

+
Sε + 1

cγ

]

(

−
∫

Ω
|Du−Dv|p dx

) 1
p

.

The last estimate implies

−
∫

Ω
|Du−Dv|p dx≤C

(

ε1
γ

)
p

p−1

−
∫

Ω
|Du|p dx+ C

(

Sε + 1

γ

)
p

p−1

. (5.2)

Now if we assume that for some K > 0 there holds

−
∫

Ω
|Du|p dx > Kp,

then the estimate (5.2) implies

−
∫

Ω
|Du−Dv|p dx ≤ C





(

ε1
γ

)
p

p−1

+

(

Sε + 1

γ

)
p

p−1 1

Kp



−
∫

Ω
|Du|p dx.

Thus, we have established the claim choosing first ε1 > 0 small enough and
then K large enough to ensure that the factor preceding the last integral does
not exceed ε. �

Next, we state a version of the comparison lemma for minimizers. It holds
also for the disturbed functionals that come into play by Ekeland’s variational
principle applied to minimizing sequences. Precisely, given the minimizer u ∈
W 1,p(Ω,RN ) we consider the functional

Fδ[w] :=
∫

Ω
f(·, w,Dw) dx+

√
δ|Ω|

(

−
∫

Ω
|Dw −Du|p dx

)
1
p

with 0 ≤ δ ≤ 1. Clearly, since F0 equals F we include the case of minimizers
of F .

Lemma 5.2 Assume that integrands f and g are given which satisfy the as-
sumptions of Theorem 2.22 and let 0 ≤ δ ≤ 1. Then for every ε > 0, there is
a K(ε) > 0, depending only on p, γ, ω and ε, such that the following holds:
For a minimizer u ∈ W 1,p(Ω,RN) of Fδ and a minimizer v ∈ u+W 1,p

0 (Ω,RN )
of G from (2.31), the property

−
∫

Ω
|Du|p dx > Kp(ε)

implies

−
∫

Ω
|Du−Dv|p dx ≤ ε−

∫

Ω
|Du|p dx.
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Proof. Let ε1 ∈ (0, 1) be a constant which will be chosen later in dependence
on ε. By the assumption (2.28) we can choose M1 large enough so that

sup
x∈Ω, y∈RN

|f(x, y, ξ)− g(x, ξ)| ≤ ε1(1 + |ξ|p) for |ξ| ≥M1. (5.3)

and let Sε := ‖ω‖L∞(1 + Mp
1 ) < ∞. Introducing the auxiliary map w :=

1
2
(u+ v), we get from the minimizing property of v

∫

Ω

[

g(·, Du)− g(·, Dw)
]

dx ≥
∫

Ω

[

g(·, Dv) + g(·, Du)− 2g(·, Dw)
]

dx. (5.4)

The integrand on the right-hand side can be written as

g(·, Dv) + g(·, Du)− 2g(·, Dw)

=
1

2

∫ 1

0

[

Dzg(·, Dw + t(Dv−Dw))−Dzg(·, Dw + t(Du−Dw))
]

dt (Dv−Du)

=
1

2

∫ 1

0

∫ 1

0
D2

zg(·, Dw+ t(Du−Dw) + st(Dv−Du)) ds t dt (Dv−Du,Dv−Du)
(2.30)
≥ γ

2
|Du−Dv|2

∫ 1

0

∫ 1

0
(1 + |Dw + t(Du−Dw) + st(Dv−Du)|)p−2 ds t dt

≥ cγ|Dv−Du|p,

where we used (3.3) in the last step and where c depends only on p. Integrating
the last estimate and using (5.4), we arrive at

cγ−
∫

Ω
|Du−Dv|p dx

≤−
∫

Ω
(g(·, Du)− g(·, Dw)) dx

≤−
∫

Ω
[f(·, u,Du)− f(·, w,Dw)] dx

+−
∫

Ω

[

|g(·, Du)− f(·, u,Du)|+ |(g(·, Dw)− f(·, w,Dw)|
]

dx

≤
√
δ
(

−
∫

Ω
|Du−Dw|p dx

)1/p

+ 2Sε + ε1−
∫

Ω
(2 + |Du|p + |Dw|p) dx

≤
√
δ
(

−
∫

Ω
|Du−Dv|p dx

)1/p

+ 2Sε + Cε1−
∫

Ω
(1 + |Du|p + |Dv|p) dx,

where we used in turn the minimizing property of u, the definition of Sε, the
estimate (5.3) and the definition of w. By Young’s inequality with exponents
p and p

p−1
, we conclude that there is a constant C, depending only on p, such

that
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γ−
∫

Ω
|Du−Dv|p dx

≤C
(

Sε + ε
1/(1−p)
1

)

+ Cε1−
∫

Ω
|Du|p dx+ Cε1−

∫

Ω
|Du−Dv|p dx.

For sufficiently small ε1 > 0, we can absorb the last integral on the left-hand
side. Thus, assuming

−
∫

Ω
|Du|p dx > Kp

for some K > 0, we deduce

−
∫

Ω
|Du−Dv|p dx ≤

C
(

Sε + ε
1/(1−p)
1

)

γKp
−
∫

Ω
|Du|p dx+ Cε1

γ
−
∫

Ω
|Du|p dx.

We have thus established the claim if we choose ε1 > 0 so small that Cε1
γ

≤ ε
2

and then K large enough to ensure that the factor in front of the penultimate
integral is not larger than ε

2
either. �

6 Calderón-Zygmund estimates

This section contains the proofs of Theorems 2.3, 2.4, 2.21 and 2.22. All of
them can be deduced from the following result.

Theorem 6.1 Consider a cube Q in R
n and assume that the integrand f :

4Q×R
N×R

Nn → R satisfies the assumptions of Theorem 2.22 (with Ω = 4Q).
In particular, for some q# > p and all cubes W with 4W ⊂ 4Q the minimizers
v ∈ W 1,p(4W,RN) of the comparison functional G are assumed to satisfy
v ∈ W 1,q#(2W,RN) and

−
∫

2W
|Dv|q# dx ≤ H

(

1 +−
∫

4W
|Dv|p dx

)
q#

p

for some constant H > 0. Let u ∈ W 1,p(4Q,RN) be a minimizer of the func-
tional

Fδ[w] :=
∫

4Q
f(·, w,Dw) dx+

√
δ|4Q|

(

−
∫

4Q
|Dw −Du|p dx

)
1
p

in the Dirichlet class u + W 1,p
0 (4Q,RN), where 0 ≤ δ ≤ 1. Then for every

q ∈ [1, q#) we have u ∈ W 1,q(Q,RN ) and

−
∫

Q
|Du|q dx ≤ C

(

1 +−
∫

4Q
|Du|p dx

)
q
p

, (6.1)

where C depends only on n, p, q, q#, H, γ and ω.
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Analogously, if u ∈ W 1,p(4Q,RN) is a solution to the system

div a(·, u,Du) = 0 on 4Q, (6.2)

where the structure function a : 4Q×R
N ×R

Nn → R
Nn satisfies the assump-

tions of Theorem 2.21, then there holds u ∈ W 1,q(Q,RN ) for every q ∈ [1, q#)
and the estimate (6.1).

The proof of Theorem 6.1 will follow ideas of [9,10,3,38] applying the Calderón-
Zygmund covering lemma (Lemma 3.1) to the superlevel sets of the maximal
function M4Q(|Du|p). The crucial point is contained in the following proposi-
tion verifying the property (P) from Lemma 3.1.

Proposition 6.2 Under the assumptions of Theorem 6.1 there is a constant
L > 1 depending only on n, p, q# and H, and for every K > 1 there is a
λ0 > 1 depending only on n, p, q#, H, γ, ω and on K such that the following
holds: If u ∈ W 1,p(4Q,RN) is either a minimizer of Fδ from Theorem 6.1 or
a solution to the system (6.2), where Q is an arbitrary cube in R

n, then

|W ∩ {M4Q(|Du|p) > KLλ}| > K− q#

p |W |

implies
W ∗ ⊂ {M4Q(|Du|p) > λ}

for every dyadic subcube W of Q with W 6= Q and every λ ≥ λ0.

Proof. We fixK > 1. For λ0 to be chosen later we assume the above statement
to be wrong. Then, there are a λ ≥ λ0 and a dyadic subcube W of Q with
W 6= Q such that we have

|W ∩ {M4Q(|Du|p) > KLλ}| > K− q#

p |W |, (6.3)

but
M4Q(|Du|p)(x0) ≤ λ for some x0 ∈ W ∗. (6.4)

We choose the comparison map v ∈ u+W 1,p
0 (4W,RN) to be the solution of the

system (2.25) or the minimizer of G from (2.31) on 4W , respectively. Indeed,
such a v exists — and by the way is unique — as one proves by Galerkin’s
method for monotone operators (see [58, Chapter 26]) and the direct method
in the calculus of variations (see [35, Chapter 4]), respectively. By assumption
we have v ∈ W 1,q#(2W,RN) with the corresponding estimate (6.1).

We begin the proof with the observation

M4Q(|Du|p)(y) ≤ max{M2W (|Du|p)(y), 5nλ} for all y ∈ W. (6.5)

To verify this claim we fix y ∈ W and consider a subcube Z of 4Q containing
y. In the case Z ⊂ 2W , we obviously have −

∫

Z |Du|p ≤ M2W (|Du|p)(y), while
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in the case Z 6⊂ 2W , there holds |Z| ≥ 2−n|W | = 4−n|W ∗|, which enables us
to find another cube Z̃ with Z ∪W ∗ ⊂ Z̃ ⊂ 4Q and |Z̃| ≤ 5n|Z|. Hence, (6.4)
implies −

∫

Z |Du|p dx ≤ 5n−
∫

Z̃ |Du|p dx ≤ 5nλ in the latter case and (6.5) follows.
Assuming L ≥ 5n and recalling K > 1 we deduce from (6.5)

|W ∩ {M4Q(|Du|p) > KLλ}| ≤ |W ∩ {M2W (|Du|p) > KLλ}|.

With an ε ∈ (0, 1) to be fixed later we apply Lemma 5.1 in the case of systems
and Lemma 5.2 in the case of minimizers to infer that we have either

−
∫

4W
|Du|p dx ≤ Kp(ε) (6.6)

or

−
∫

4W
|Du−Dv|p dx ≤ ε−

∫

4W
|Du|p dx. (6.7)

We will derive an estimate for |W ∩{M2W (|Du|p) > KLλ}| distinguishing the
above cases. In the first case, we have by (3.5) and (6.6)

|W ∩ {M2W (|Du|p) > KLλ}| ≤ 4n

KLλ

∫

2W
|Du|p dx ≤ 42n

KLλ0
Kp(ε)|W |.

In the second case (6.7) we easily conclude, since x0 ∈ W ∗ ⊂ 4W ⊂ 4Q

−
∫

4W
|Du−Dv|p dx ≤ ελ, (6.8)

−
∫

4W
|Dv|p dx ≤ 2p−1(1 + ε)−

∫

4W
|Du|p dx ≤ 2pλ. (6.9)

By the assumption (6.1) we deduce from (6.9), since λ > 1,

(

−
∫

2W
|Dv|q# dx

)
p

q# ≤ C(p,H)λ. (6.10)

Applying (3.4), we find the estimate

|W ∩ {M2W (|Du|p) > KLλ}|
≤ |W ∩ {M2W (|Du−Dv|p) +M2W (|Dv|p) > 21−pKLλ}|
≤ |W ∩ {M2W (|Du−Dv|p) > 2−pKLλ}|

+ |W ∩ {M2W (|Dv|p) > 2−pKLλ}|.

Next we note that due to (3.5) and (6.10), we can control the last term on the
right-hand side in the following way.

|W ∩ {M2W (|Dv|p) > 2−pKLλ}| ≤ C(n, p, q#)(KLλ)−
q#

p

∫

2W
|Dv|q# dx

≤ C(n, p, q#, H)(KL)−
q#

p |W |.
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In order to estimate the other term, we use (3.5) and (6.8) with the result

|W ∩ {M2W (|Du−Dv|p) > 2−pKLλ}|

≤ 4n2p

KLλ

∫

2W
|Du−Dv|p dx ≤ 42n2p

KL
ε|W |.

Collecting all the estimates, we infer either

|W ∩ {M4Q(|Du|p) > KLλ}| ≤ 42n

KLλ0
Kp(ε)|W |

or

|W ∩ {M4Q(|Du|p) > KLλ}| ≤ C(n, p, q#, H)(KL)−
q#

p |W |+ 42n2p

KL
ε|W |.

Now we fix L, ε and λ0. First we choose L ≥ 5n such that

C(n, p, q#, H)L− q#

p ≤ 1

2
,

then ε such that
42n2p

KL
ε ≤ 1

2
K− q#

p

and, finally, λ0 such that

42n

KLλ0
Kp(ε) ≤ K− q#

p .

In view of these choices we have

|W ∩ {M4Q(|Du|p) > KLλ}| ≤ K− q#

p |W |

in any case, which contradicts (6.3), thus completing the proof. �

Proof of Theorem 6.1. We abbreviate h := M4Q(|Du|p) and µh(λ) :=
|Q ∩ {h > λ}|. For q ∈ (p, q#), we fix K > 1 such that

LqKq−q# < 1 (6.11)

holds, where L denotes the constant from Proposition 6.2. In particular, this
fixes λ0. Moreover, we choose

λ1 := max











λ0,
4nK

q#

p

|Q|
∫

4Q
|Du|p dx











,

which implies in particular, by (3.5) with q = 1,

µh((KL)
kλ1) ≤ K− q#

p |Q| (6.12)

30



for all k ∈ N0. Keeping (6.12) in mind, we apply Lemma 3.1 with ς := K− q#

p

to the sets Q∩{h > KLλ1} and Q∩{h > λ1}. This is possible since property
(P) is satisfied by Proposition 6.2 and we come out with

µh(KLλ1) ≤ K− q#

p µh(λ1).

In the next step, again in view of (6.12) and Proposition 6.2, we apply Lemma
3.1 to Q ∩ {h > (KL)2λ1} and Q ∩ {h > KLλ1} getting

µh((KL)
2λ1) ≤ K− q#

p µh(KLλ1) ≤ K−2 q#

p µh(λ1).

Continuing inductively we arrive at

µh((KL)
kλ1) ≤ K−k q#

p µh(λ1) (6.13)

for all k ∈ N0. This yields an L
q/p-estimate for h in the following way.

∫

Q
h

q
p dx ≤ λ

q
p

1 |Q ∩ {h ≤ λ1}|

+
∞
∑

k=0

((KL)k+1λ1)
q
p |Q ∩ {(KL)kλ1 < h ≤ (KL)k+1λ1}|

≤ λ
q
p

1 |Q ∩ {h ≤ λ1}|+ (KLλ1)
q
p

∞
∑

k=0

(KL)k
q
pµh((KL)

kλ1)

≤ λ
q
p

1 |Q|+ (KLλ1)
q
p

∞
∑

k=0

(LqKq−q#)
k
p |Q|,

where we used (6.13) in the last step. By the choice of K according to (6.11),
the last series converges and we have proved h ∈ Lq/p(Q) with −

∫

Q h
q/p dx ≤

cλ
q/p
1 , where c depends on n, p, q, q#, K and L. By Lebesgue’s differentiation

theorem we have |Du|p ≤ h almost everywhere on 4Q, which gives Du ∈
Lq(Q,RNn) and

−
∫

Q
|Du|q dx ≤ Cλ

q
p

1 .

Taking into account the choice of λ1 and the dependences of K, L and λ0,
we finally arrive at (6.1). The claim u ∈ W 1,q(Q,RN ) follows via Poincaré’s
inequality. �

Finally, the regularity theorems of Section 2 follow from Theorem 6.1:

Proof of Theorem 2.21 and Theorem 2.22. The claims readily follow
from the above Theorem 6.1 (taking δ = 0 in case of Theorem 2.22). �

Proof of Theorem 2.3 and Theorem 2.4. Taking into account Corollary
4.3 and (2.4) we see that Theorem 2.3 is a special case of Theorem 2.21, applied
with q# = p# in the case p# <∞ and with any q# <∞ in the case p# = ∞.
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Similarly, recalling Remark 4.4 and (2.5), Theorem 2.4 follows from Theorem
2.22. �

7 Minimizing Sequences

In this section, we will prove Theorem 2.6 and Theorem 2.24.

Proof of Theorem 2.24. We will apply Ekeland’s variational principle on
the Dirichlet class D = u0 +W 1,p

0 (Ω,RN ), equipped with the metric

d(u, v) := |Ω|
(

−
∫

Ω
|Du−Dv|p dx

) 1
p

for u, v ∈ D,

which makes D a complete metric space. According to our assumptions, the
integrand f : Ω × R

N × R
Nn → R is lower semicontinuous in the two last

arguments and recalling (2.32), it is additionally bounded from below. Thus,
as a consequence of Fatou’s lemma the functional

F [u] =
∫

Ω
f(·, u,Du) dx

is lower semicontinuous with respect to the metric d. Furthermore, F is bounded
from below, so that Ekeland’s principle is applicable.

Now let (uk)k∈N be a minimizing sequence for F in D as in the theorem, that
is,

δk := F [uk]− inf
D
F −→

k→∞
0.

Then, in view of the above discussion we may apply Lemma 3.2 coming out
with a sequence (vk)k∈N in D, where vk minimizes the functional

Fk[w] := F [w] +
√

δk d(vk, w)

for every k ∈ N and satisfies furthermore

d(uk, vk) ≤
√

δk −→
k→∞

0 and F [vk] ≤ F [uk] for all k ∈ N.

By this last property, (vk)k∈N is itself a minimizing sequence for F in D.
Clearly, it is not restrictive to assume δk ≤ 1 for all k ∈ N. Then, since
vk minimizes the functional Fk, Theorem 6.1 yields the higher integrability
vk ∈ W 1,q

loc (Ω,R
N ) for every q < q# with the estimates

−
∫

Q
|Dvk|q dx ≤ C

(

1 +−
∫

4Q
|Dvk|p dx

)
q
p

for every cube Q with 4Q ⊂ Ω and all k ∈ N, where the constant C does not
depend on k. This completes the proof. �
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Proof of Theorem 2.6. Recalling Corollary 4.3, Remark 4.4 and (2.5) once
more, we see that Theorem 2.6 is a special case of Theorem 2.24. �

8 An alternative approach:
Morrey estimates and Hölder continuity

In this section we present an elementary method, related to ideas of [34,25],
which is based on the iteration of Morrey space estimates. This method enables
us to give a short and widely self-contained proof of parts of the results of
Section 2 and avoids some of the more technical tools like Calderòn-Zygmund
coverings and Gehring’s lemma. However, it does not allow to prove higher
integrability of the gradient Du, but only weaker regularity properties, namely
Morrey and Campanato regularity for Du and Hölder continuity of u in low
dimensions.

To simplify our presentation we will abandon some of the technical features
of Section 2 here, restricting ourselves to the simpler setting of Theorem 2.3
and Theorem 2.4. We establish the following result, which is a particular case
of these theorems:

Theorem 8.1 Under the assumptions of either Theorem 2.3 or Theorem 2.4
there is a constant κ > 0, depending only on n, p, γ and Γ, such that we have

Du ∈ Lp,λ
loc (Ω,R

Nn) for all 0 ≤ λ < min{2 + κp, n}.

In particular, for κ > n−p−2
p

— which is guaranteed in the low-dimensional
case n ≤ p+ 2 — this implies

u ∈ C0,α
loc (Ω,R

N) for all 0 ≤ α < min

{

p+ 2− n

p
+ κ, 1

}

.

Let us start with some comments on the alternative proof announced above:
We stress that the only ingredients from the preceding sections are Theorem
4.1 and the comparison estimates of Section 5. In particular, we will not rely on
the Gehring improvement of Theorem 4.2 and Corollary 4.3. Instead, starting
from Theorem 4.1 we will apply Widman’s hole filling trick [56] to obtain
an analogous improvement on the scale of Campanato and Morrey spaces.
Clearly, this application of the hole filling trick is close to Widman’s original
ideas and well-known to experts; nevertheless, let us briefly sketch it:

Lemma 8.2 Consider a regular structure function b : RNn → R
Nn. Then,

there is a constant κ > 0, depending only on n, p, γ and Γ, such that for
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every weak solution v ∈ W 1,p(BR(x0),R
N) of

div b(Dv) = 0 on BR(x0) (8.1)

the function

V̄ := V (Dv)

with V from (3.1) satisfies the Campanato estimate

∫

Bρ(x0)
|V̄ − V̄x0,ρ|2 dx ≤ C

(

ρ

R

)2+κp ∫

BR(x0)
|V̄ − V̄x0,R|2 dx

for all 0 < ρ ≤ 1
2
R. Here, C depends only on n, p, γ and Γ.

Proof. We assume x0 = 0. Combining Theorem 4.1 with the Poincaré in-
equality on the annulus Bρ \Bρ/2 we find

∫

Bρ/2

|DV̄ |2 dx ≤ C
∫

Bρ\Bρ/2

|DV̄ |2 dx.

Next we use the hole filling trick, i.e. we add C
∫

Bρ/2
|DV̄ |2 dx on both sides

and divide by C+1. Choosing κ > 0 with 2−κp = C
C+1

, we arrive at

∫

Bρ/2

|DV̄ |2 dx ≤ 2−κp
∫

Bρ

|DV̄ |2 dx.

Now we recall that the previous inequality holds for all radii ρ ≤ R. Thus, we
may iterate it, coming out with

∫

Bρ

|DV̄ |2 dx ≤
(

2ρ

R

)κp ∫

BR

|DV̄ |2 dx

for all ρ ≤ R. Now, Poincaré’s inequality gives for ρ ≤ 1
2
R

∫

Bρ

|V̄ − V̄ρ|2 dx ≤ Cρ2
∫

Bρ

|DV̄ |2 dx

≤ Cρ2
(

ρ

R

)κp ∫

BR/2

|DV̄ |2 dx

≤ C
(

ρ

R

)2+κp ∫

BR

|V̄ − V̄R|2 dx,

where we applied the Caccioppoli inequality (4.2) from Theorem 4.1 once more
in the last step. This completes the proof of the lemma. �

Next, we will convert the Campanato estimate for V̄ into the following Morrey
estimate for Dv. The essential idea here is to exploit the well-known equiva-
lence of the Morrey spaces Lp,λ and the Campanato spaces Lp,λ for λ < n; see
for instance [43, Theorem 4.6.1].
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Corollary 8.3 In the situation of Lemma 8.2, there holds furthermore

∫

Bρ(x0)
(1 + |Dv|p) dx ≤ C

(

ρ

R

)λ ∫

BR(x0)

(

1 + |Dv|p
)

dx

for all 0 < ρ ≤ 1
2
R and for every λ ∈ [0, n) with λ ≤ 2 + κp. Here, C depends

only on n, p, γ, Γ and λ.

Proof. We assume x0 = 0. For an arbitrary 0 < r ≤ 1
2
R we conclude from

the excess estimate of Lemma 8.2

|V̄r/2 − V̄r| ≤ 2n
(

−
∫

Br

|V̄ − V̄r|2 dx
) 1

2 ≤ C
(

r

R

)
λ−n
2
(

−
∫

BR

|V̄ |2 dx
) 1

2

.

Applying the last inequality with r = ρ, r = 2ρ, r = 22ρ, . . ., 2k0, where
k0 ∈ N ∪ {0} is such that R̃ := 2k0ρ ∈ (1

2
R,R], yields

|V̄ρ| ≤ |V̄R̃|+ C
(

ρ

R

)
λ−n
2

∞
∑

k=0

2k(λ−n)/2
(

−
∫

BR

|V̄ |2 dx
)

1
2

.

Since λ < n, the series on the right-hand side converges. Thus, noting |V̄R̃|2 ≤
2n−
∫

BR
|V̄ |2 dx we may combine the preceding estimates in the following way

∫

Bρ

(

1 + |V̄ |2
)

dx≤ 2
∫

Bρ

|V̄ − V̄ρ|2 dx+ Cρn
(

1 + |V̄ρ|2
)

≤C
(

ρ

R

)λ ∫

BR

|V̄ |2 dx+ Cρn
(

1 + |V̄R̃|2
)

≤C
(

ρ

R

)λ ∫

BR

(

1 + |V̄ |2
)

dx,

where we used λ < n again. Finally, recalling that we have |Dv|p ≤ |V̄ |2 ≤
C(1 + |Dv|p) by the very definition of V̄ , we arrive at the claim. �

Finally, we will carry over the estimate of Corollary 8.3 to solutions of asymp-
totically regular problems. To this aim we assume that u is as in Theorem 8.1
and we fix a ball BR(x0) ⊂ Ω. Then, for 0 < r ≤ R, we introduce the excess

Φ(r) :=
∫

Br(x0)

(

1 + |Du|p
)

dx.

The core of the proof of Theorem 8.1 is now contained in the following decay
estimates for Φ:

Lemma 8.4 Let κ > 0 denote the constant from Lemma 8.2. For every 0 ≤
λ < min{2 + κp, n}, there are constants 0 < τ ≤ 1

2
and L > 0, such that we
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have either

Φ(τR) ≤ τλΦ(R) or Φ(R) ≤ L|BR|.
Here, τ depends only on λ, n, p, γ and Γ and L depends additionally on |a−b|
and |f − g|, respectively.

Proof. As in the proof of Proposition 6.2 we find a solution v of the comparison
problem in u+W 1,p

0 (BR(x0),R
N); that is, v is either a weak solution of (8.1) or

a minimizer of G[v] :=
∫

BR(x0)
g(Dv) dx. Then, the estimates of Lemma 8.2 and

Corollary 8.3 hold for v; compare with Remark 4.4 in the case of minimizers.
Next, for a given 0 < λ < min{2 + κp, n} we may choose a λ# ∈ [0, n),
depending only on n, p, γ, Γ and λ such that we have λ < λ# ≤ 2 + κp. For
0 < τ ≤ 1

2
to be fixed later, we estimate

Φ(τR) ≤ 2p−1
∫

BτR(x0)
(1 + |Dv|p) dx+ 2p−1

∫

BτR(x0)
|Du−Dv|p dx

≤ Cτλ
#
∫

BR(x0)
(1 + |Dv|p) dx+ 2p−1

∫

BτR(x0)
|Du−Dv|p dx

≤ Cτλ
#
∫

BR(x0)
(1 + |Du|p) dx+ C

∫

BR(x0)
|Du−Dv|p dx,

(8.2)

where we applied Corollary 8.3 with ρ = τR in the second step. Here, the
constant C depends only on n, p, γ, Γ and λ. Next, let ε > 0 be given and
suppose, for the moment,

−
∫

BR(x0)
|Du|p dx > Kp(ε). (8.3)

Then combining (8.2) with Lemma 5.1 and Lemma 5.2, respectively, we con-
clude

Φ(τR)≤Cτλ
#
∫

BR(x0)
(1 + |Du|p) dx+ Cε

∫

BR(x0)
|Du|p dx

≤C(τλ
#

+ ε)Φ(R).

Choosing 0 < τ ≤ 1
2
so small that 2Cτλ

# ≤ τλ and ε := τλ
#
, we have proven

that (8.3) implies the first alternative of the lemma. On the other hand, if
(8.3) fails to hold then the second alternative is satisfied with L := 1+Kp(ε).
�

Proof of Theorem 8.1. Let 0 ≤ λ < min{2+κp, n}, where κ still denotes the
constant from Lemma 8.2. We define rk := τkR, where τ is the constant from
Lemma 8.4. Distinguishing the two cases Φ(rk−1) ≤ L|Brk−1

| and Φ(rk−1) >
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L|Brk−1
|, Lemma 8.4 yields

Φ(rk) ≤ max
(

τnkτ−nL|BR|, τλΦ(rk−1)
)

≤ max
(

τλkτ−nL|BR|, τλΦ(rk−1)
)

,

where we used λ < n once more. Iterating this inequality we find

Φ(rk) ≤ τλk max(τ−nL|BR|,Φ(R))

and using a standard argument we arrive at

Φ(ρ) ≤ C(τ)
(

ρ

R

)λ

max(L|BR|,Φ(R)) for all 0 < ρ ≤ R.

In particular, considering ∅ 6= K ⊂⊂ Ω the last inequality holds for every
x0 ∈ K with R = δK := dist (K,Rn \ Ω). Hence, we have

sup
x∈K

0<ρ≤δK

ρ−λ
∫

Bρ(x)
|Du|p dx ≤ C

δλK
max

(

LδnK , δ
n
K + ‖Du‖pLp(Ω,RNn)

)

. (8.4)

Finally, (8.4) implies Du ∈ Lp,λ(K,RNn) and we arrive at the claim Du ∈
Lp,λ
loc (Ω,R

Nn). The remaining claims in Theorem 8.1 concerning the Hölder
continuity of u follow from the Dirichlet growth theorem. �

9 Asymptotic regularity

This section is devoted to the proofs of Theorem 2.14 and Theorem 2.16.
Here, in both theorems the main challenge is to prove that the property (iii)
implies the property (i); that is, to construct regular functions b and g from
a and f , respectively. Before going into the details, let us briefly highlight
the main idea of this construction: We smooth a and f , respectively, with a
variable smoothing radius constructed from the modulus ϕ in (iii). In some
sense this procedure smears the values of a and f , getting back the usual
growth, monotonicity and convexity conditions from the disturbed ones in
(iii). Unfortunately, the implementation of this idea turns out to be quite
technical:

Proof of Theorem 2.14. First we assume that (i) holds with a map b that
is regular with structure constants γ and Γ as in Definition 2.1. Then, there
are a M0 > 0 and a function ω : [M0,∞) → [0,∞) with limt→∞ ω(t) = 0 such
that |b(z)− a(z)| ≤ ω(|z|)|z|p−1 holds for |z| ≥M0. We may assume that ω is
non-increasing. In addition, we note that the ellipticity of b and (3.2) give the
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monotonicity condition

(b(z2)− b(z1)) · (z2 − z1) =
∫ 1

0
Db(z1 + t(z2 − z1)) dt(z2 − z1) · (z2 − z1)

≥ cγ(|z1|+ |z2|)p−2|z2 − z1|2,

where c depends only on p. Thus, for |z1|, |z2| ≥M0 we have

(a(z2)− a(z1)) · (z2 − z1)

≥ (b(z2)− b(z1)) · (z2 − z1)−
[

ω(|z1|)|z1|p−1 + ω(|z2|)|z2|p−1
]

|z2 − z1|
≥ cγ(|z1|+ |z2|)p−2|z2 − z1|2 − ω(min{|z1|, |z2|})(|z1|+ |z2|)p−1|z2 − z1|.

Similarly, we see

|a(z2)− a(z1)| ≤ CΓ(|z1|+ |z2|)p−2|z2 − z1|+ ω(min{|z1|, |z2|})(|z1|+ |z2|)p−1.

Thus, (ii) is valid with the constant cγ and CΓ instead of γ and Γ, respectively.

Now suppose that (ii) holds with constants γ, Γ and M0 and a function ω.

We assume that ω is non-increasing and set ϕ(t) := 2ω(t)
γ

for t ≥M0. Then, if

z1, z2 ∈ R
m satisfy (2.16) for some t ≥ M0, we have

(a(z2)− a(z1)) · (z2 − z1)

≥
(

γ − ω(min{|z1|, |z2|})
ϕ(t)

)

(|z1|+ |z2|)p−2|z2 − z1|2

≥ γ

2
(|z1|+ |z2|)p−2|z2 − z1|2.

Analogously, we get

|a(z2)− a(z1)| ≤
(

Γ +
1

2
γ
)

(|z1|+ |z2|)p−2|z2 − z1|.

Thus, (iii) holds with constants 1
2
γ and Γ + 1

2
γ.

Finally, we suppose that (iii) holds with constants γ, Γ andM0 and a function
ϕ. We may assume that ϕ is decreasing with ϕ ≤ 1

64
on [M0,∞). In the

following we will need a smooth function Φ : [exp(M0 + 2),∞) → (0, 1
8
] with

the following properties: Φ is decreasing with Φ > ϕ and

lim
t→∞

Φ(t) = lim
t→∞

ϕ(t)2

Φ(t)3
= lim

t→∞
tΦ′(t) = 0.

Indeed, such a function Φ can be constructed from ϕ. For instance, choosing
a smooth kernel 0 ≤ θ ∈ C∞

0 (−1, 1) with
∫ 1
−1 θ(s) ds = 1, one checks that

Φ(t) :=
∫ 1
−1 θ(s)

√

ϕ(log t− s− 1) ds has all the desired properties. Next, we
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let
r(z) := 4ϕ(|z|/2)|z|
R(z) := 4Φ(|z|/2)|z| for |z| ≫ 1.

Then, we clearly have

r(z) < R(z) <
1

2
|z| for |z| ≫ 1.

In addition, from the above features of ϕ and Φ we get

lim
|z|→∞

R(z)

|z| = lim
|z|→∞

|z|r(z)2
R(z)3

= lim
|z|→∞

|∇R(z)| = 0. (9.1)

The function r has been chosen in such a way that as a consequence of (iii),
for any z1, z2 ∈ BR(z)(z) with |z| ≫ 1, the condition

|z2 − z1| ≥ r(z)

implies
(a(z2)− a(z1)) · (z2 − z1) ≥ γ(|z1|+ |z2|)p−2|z2 − z1|2,

|a(z2)− a(z1)| ≤ Γ(|z1|+ |z2|)p−2|z2 − z1|.
(9.2)

This property will be used extensively in the remainder of the proof. After
these preparations we introduce

b̃(z) := −
∫

BR(z)

a(z + w) dw = −
∫

BR(z)(z)
a(w) dw

for |z| ≫ 1. Using (9.2) at the points where |w| ≥ r(z) and keeping in mind
that by Remark 2.15, we have the growth condition

|a(z)| ≤ L|z|p−1 for |z| ≫ 1, (9.3)

we estimate

|b̃(z)− a(z)|
|z|p−1

≤ 1

|z|p−1
−
∫

BR(z)

|a(z + w)− a(z)| dw

≤ 1

ωmR(z)m|z|p−1





∫

BR(z)\Br(z)

|a(z + w)− a(z)| dw

+
∫

Br(z)

|a(z + w)− a(z)| dw




≤C(p)Γ
R(z)

|z| + C(p)L

(

r(z)

R(z)

)m

.

In view of (9.1) we conclude

lim
|z|→∞

|b̃(z)− a(z)|
|z|p−1

= 0. (9.4)
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It remains to prove that b̃ is regular at least in a neighborhood of ∞. Actually,
by the growth condition (9.3), a is locally bounded and hence b̃ is locally
Lipschitzian outside a large ball. Calculating the derivative of the BV-function
z 7→ R(z)−m

1BR(z)
(z − w) we find

Db̃(z) =
m

R(z)



−
∫

SR(z)

a(z + w)⊗ w

R(z)
dHm−1(w)

+−
∫

SR(z)

a(z + w) dHm−1(w)⊗∇R(z)

−−
∫

BR(z)

a(z + w) dw ⊗∇R(z)




=:
m

R(z)

[

I1 + I2 + I3
]

for a.e. z ∈ R
m with |z| ≫ 1. Here, Hm−1 denotes the (m−1)-dimensional

Hausdorff measure on R
m. We will estimate I1, I2 and I3 for fixed z ∈ R

m

with |z| ≫ 1 and ζ ∈ R
m with |ζ | = 1. To simplify the notation we write

simply r and R for r(z) and R(z), respectively. Introducing the abbreviations
S+
R := {w ∈ SR : w · ζ > 0} for the halfsphere and w∗ := w− 2(w · ζ)ζ for the

reflection of w at the hyperplane {ζ}⊥ := {w ∈ R
m : w · ζ = 0}, we have

m

R
I1ζ · ζ =

m

2R
−
∫

S+
R

(

a(z + w)− a(z + w∗)
)

· ζ
(

w

R
· ζ
)

dHm−1(w).

Now we introduce the disjoint subsets

A1 :=
{

w ∈ SR : w · ζ > 1√
2
R
}

and A2 :=
{

w ∈ SR : 0 < w · ζ < 1

2
r
}

of S+
R . We note Hm−1(A1) ≥ mωm(

1√
2
R)m−1. Moreover, A2 is empty for m = 1

and Hm−1(A2) ≤ CrRm−2 holds for m ≥ 2 and some constant C depending
only on m. Since w−w∗ is parallel to ζ with |w−w∗| = 2w · ζ for all w ∈ S+

R ,
we can use the lower bound in (9.2) to estimate the integrand from below
outside A2. Keeping these facts in mind and recalling (9.3), we get for |z| ≫ 1

m

R
I1ζ · ζ

≥ c

Rm

∫

A1
|z|p−2|w − w∗| dHm−1(w)− C

r

Rm+1

∫

A2
|z|p−1 dHm−1(w)

≥
(

c− C
|z|r2
R3

)

|z|p−2,

where c and C depend only on m, p, γ and L. In addition, we have

m

R
[I2 + I3] =

m

R
−
∫

SR

∫ 1

0

[

a(z − w)− a(z + tw)
]

mtm−1 dt dHm−1(w)⊗∇R
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and by the upper estimate in (9.2) we get

∣

∣

∣

∣

m

R
[I2 + I3]

∣

∣

∣

∣

≤ C|∇R| |z|p−2,

where C depends only on m, p and Γ. Collecting the estimates for I1, I2 and
I3, we have shown

Db̃(z)ζ · ζ ≥ c|z|p−2 − C

[

|z|r(z)2
R(z)3

+ |∇R(z)|
]

|z|p−2

for a.e. z ∈ R
m with |z| ≫ 1 and all ζ ∈ R

m with |ζ | = 1. In view of (9.1) this
implies

Db̃(z)ζ · ζ ≥ c|z|p−2|ζ |2 (9.5)

for a.e. z ∈ R
m with |z| large enough and all ζ ∈ R

m. Arguing similarly we
find that the upper estimate

|Db̃(z)| ≤ C|z|p−2 (9.6)

holds for a.e. z ∈ R
m with |z| large enough. Finally, we define b∗ as a standard

mollification of b̃, for instance with smoothing radius 1. Then b∗ is C
∞ outside a

large ball and (9.5) and (9.6) are easily seen to hold also for b∗. Moreover, using

(9.6) we see lim|z|→∞
|b∗(z)−b̃(z)|

|z|p−1 = 0 and consequently, (9.4) holds also with b∗

instead of b̃. Finally, recalling (9.3) we apply [52, Corollary 4.6] deducing that
there is a regular function b in the sense of Definition 2.1 such that b(z)
coincides with b∗(z) for large values of |z|. Thus, (i) is valid. �

Proof of Theorem 2.16. We begin by proving that (i) implies (ii). As-
sume that the functions f and g satisfy (i), where g is regular with structure
constants γ and Γ as in Definition 2.1. Then there is a bounded function
ω0 : [0,∞) → [0,∞) with limt→∞ ω0(t) = 0 such that

|f(z)− g(z)| ≤ ω0(|z|)(1 + |z|p) for all z ∈ R
m.

We may assume that ω0 is decreasing by choosing a larger function if necessary.
For λ ∈ [0, 1], z1, z2 ∈ R

m and z := λz1 + (1 − λ)z2, we infer from the strict
convexity of g that

λg(z1) + (1− λ)g(z2)− g(z) ≥ cpγλ(1− λ)(|z1|+ |z2|)p−2|z1 − z2|2

holds with some positive constant cp depending only on p. Putting together
the last two estimates, we conclude

λf(z1) + (1− λ)f(z2)− f(z)

≥ cpγλ(1− λ)(|z1|+ |z2|)p−2|z1 − z2|2 − ω0(|z|)(1 + |z|p)
−
[

λω0(|z1|)(1 + |z1|p) + (1− λ)ω0(|z2|)(1 + |z2|p)
]

. (9.7)

41



We claim that there is a constant M0 > 1 such that |z| ≥M0 implies

X := λω0(|z1|)(1 + |z1|p) + (1− λ)ω0(|z2|)(1 + |z2|p)
≤ (|z1|+ |z2|)p−2

[

ω̃(|z|)|z|2 + cpγ

2
λ(1− λ)|z1 − z2|2

] (9.8)

for some function ω̃ : [M0,∞) → [0,∞) with limt→∞ ω̃(t) = 0, namely for

ω̃(t) := ω0

(√
t
)1 + t2

t2
+
(

max
[0,∞)

ω0

)

1 + tp/2

tp
.

For the proof of (9.8), we assume |z1| ≤ |z2| and |z| > 1 and distinguish the

cases |z1| >
√

|z| and |z1| ≤
√

|z|.

In the first case we infer from the monotonicity of ω0

X ≤ω0

(
√

|z|
)[

1 + λ|z1|p + (1− λ)|z2|p
]

≤ω0

(
√

|z|
)

(|z1|+ |z2|)p−2
[

1 + λ|z1|2 + (1− λ)|z2|2
]

=ω0

(
√

|z|
)

(|z1|+ |z2|)p−2
[

1 + |z|2 + λ(1− λ)|z1 − z2|2
]

, (9.9)

where the last equality follows from the definition of z by a straightforward
calculation.

In the case |z1| ≤
√

|z|, we observe |z1| ≤ |z| and thus |z2| ≥ |z| ≥
√

|z|,
since z is a convex combination of z1 and z2. Using the monotonicity and the
boundedness of ω0, we estimate in this case

X ≤ ω0

(
√

|z|
)(

1 + (1− λ)|z2|p
)

+
(

max
[0,∞)

|ω0|
)

(1 + |z|p/2)

≤ ω0

(
√

|z|
)

|z2|p−2
[

1 + |z|2 + λ(1− λ)|z1 − z2|2
]

+
(

max
[0,∞)

|ω0|
)

|z2|p−21 + |z|p/2
|z|p−2

,

where we used the same equality as in (9.9).

Finally, recalling the definition of ω̃ and choosing M0 > 1 so large that
ω0(

√
M0) ≤ cpγ

2
we arrive in both cases at the claim (9.8).

Combining (9.8) with (9.7), we find

λf(z1) + (1− λ)f(z2)− f(z)

≥ cpγ

2
λ(1− λ)|z1 − z2|2 −

[

ω0(|z|)
1 + |z|p
|z|p + ω̃(|z|)

]

(|z1|+ |z2|)p−2|z|2
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for |z| ≥ M0 ≥ 1. This implies the claim (2.17) with the constant cpγ/2 and
the function ω(t) := ω0(t)

1+tp

tp
+ ω̃(t).

The proof of (2.18) proceeds analogously and we omit the details.

Now assume that (ii) is satisfied with constants γ,Γ,M0 and a function ω :
[M0,∞) → [0,∞). As above, we may assume that ω is decreasing. We claim
that (iii) is satisfied with constants γ

2
,Γ+ γ

2
,M0 and the function ϕ(t) := 2

γ
ω(t)

for t ≥ M0. For λ ∈ [0, 1] and z1, z2 ∈ R
m, we write z := λz1 + (1 − λ)z2.

Suppose that (2.19) is satisfied for some t ≥ M0. Combining this with the
assumption (2.17), we infer

λf(z1) + (1− λ)f(z2)− f(z)

≥
(

γ − ω(|z|)
ϕ(t)

)

λ(1− λ)(|z1|+ |z2|)p−2|z2 − z1|2.

By the choice of ϕ and the monotonicity of ω, the first factor on the right-
hand side is bounded from below by γ/2. This proves (2.20). The claim (2.21)
follows analogously.

Finally, we assume that (iii) holds with constants γ, Γ and M0 and a function
ϕ. In order to show the validity of (i), we start with some preparations: We
let

η(z) :=







1
4
Nm(1− |z|2)2 for |z| ≤ 1

0 for |z| ≥ 1
,

where Nm is chosen in such a way that

∫

Rm
η(z) dz = 1.

We observe that η is C1 and twice weakly differentiable on R
m with support

in B1. We compute

∇η(z) =






−Nm(1− |z|2)z for |z| < 1

0 for |z| > 1

and

∇2η(z) =







Nm

(

2z ⊗ z − (1− |z|2) Im
)

for |z| < 1

0 for |z| > 1
. (9.10)

Here, Im denotes the m×m-unit matrix. Next, we introduce the scaled kernels

ψ(R, z) :=
1

Rm
η
(

z

R

)

for R > 0 and z ∈ R
m.

Clearly, ψ is C1 on ]0,∞[×R
m and its second derivatives exist in the weak
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sense. Moreover, we have

∫

Rm
ψ(R, z) dz = 1 (9.11)

for every R > 0. In particular,
∫

Rm ψ(R, z) dz is independent of R and thus
we get

∫

Rm
∂1ψ(R, z) dz = 0 and

∫

Rm
∂21ψ(R, z) dz = 0 (9.12)

for every R > 0, where ∂1 denotes the partial derivative with respect to the
first argument R. Moreover, partial integration gives

∫

Rm
∂1∇2ψ(R, z) dz = 0 and

∫

Rm
∇2

2ψ(R, z) dz = 0 (9.13)

for every R > 0, where ∇2 is the total derivative with respect to the second
argument z.

Now, we get back to the function ϕ. Enlarging ϕ if necessary we may assume
that ϕ is decreasing. Similarly as in the proof of Theorem 2.14 we will need a

smooth decreasing Φ with Φ(t) >
√

ϕ(t) for t≫ 1 and

lim
t→∞

Φ(t) = lim
t→∞

√

ϕ(t)

Φ(t)3
= lim

t→∞
tΦ′(t) = lim

t→∞
t2Φ′′(t) = 0.

This time, choosing a smooth kernel 0 ≤ θ ∈ C∞
0 (−1, 1) with

∫ 1
−1 θ(s) ds = 1

one finds that Φ(t) :=
∫ 1
−1 θ(s)

7

√

ϕ(log t− s− 1) ds works. Next, we let

r(z) := 2
√

ϕ(|z|/2)|z|
R(z) := 2Φ(|z|/2)|z|

for |z| ≫ 1

Then we clearly have

2r(z) < R(z) <
1

2
|z| for |z| ≫ 1.

In addition, the above features of ϕ and Φ imply

lim
|z|→∞

R(z)

|z| = lim
|z|→∞

|z|2r(z)
R(z)3

= lim
|z|→∞

|∇R(z)| = lim
|z|→∞

|z||∇2R(z)| = 0. (9.14)

From the above construction, the defining property of ϕ and Remark 2.17, we
conclude that the conditions

|w2 − w| ≥ r(z) and |w1 − w| ≥ r(z) (9.15)
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for

w = λw1 + (1− λ)w2 ∈ BR(z)(z)

with 0 < λ < 1 and |z| ≫ 1 imply

λf(w1) + (1− λ)f(w2) ≥ f(w) + γ(|w1|+|w2|)p−2|w2−w| |w1−w|,
λf(w1) + (1− λ)f(w2) ≤ f(w) + Γ(|w1|+|w2|)p−2|w2−w| |w1−w|.

(9.16)

We will use this property extensively in the remainder of the proof. Further-
more, we recall that by Remark 2.18, the function f satisfies the growth con-
dition

0 ≤ f(z) ≤ C|z|p for |z| ≫ 1. (9.17)

Finally, for |z| ≫ 1 we construct

g̃(z) :=
∫

Rm
ψ(R(z), w)f(z − w) dw =

∫

Rm
ψ(R(z), z − w)f(w) dw.

Then, employing in turn (9.11), |ψ(R,w)| ≤ CR−m, (9.16) and (9.17) we
calculate

|g̃(z)− f(z)|
|z|p =

1

|z|p
∣

∣

∣

∣

∣

∫

B+
R(z)

ψ(R(z), w)
[

f(z − w) + f(z + w)− 2f(z)
]

dw

∣

∣

∣

∣

∣

≤ C

R(z)m|z|p





∫

B+
R(z)

\B+
r(z)

|f(z − w) + f(z + w)− 2f(z)| dw

+
∫

B+
r(z)

|f(z − w) + f(z + w)− 2f(z)| dw




≤ C





(

R(z)

|z|

)2

+

(

r(z)

R(z)

)m


 −→
|z|→∞

0,

where the superscript + indicates the intersection of the ball with the upper
halfspace R

m−1 × (0,∞). Moreover, a straightforward computation gives

D2g̃(z) =
∫

Rm
∂1ψ(R(z), w)f(z − w) dw∇2R(z)

+
∫

Rm
∂21ψ(R(z), w)f(z − w) dw∇R(z)⊗∇R(z)

+
∫

Rm
∂1∇2ψ(R(z), w)f(z − w) dw ⊙∇R(z)

+
∫

Rm
∇2

2ψ(R(z), w)f(z − w) dw

=: I + II + III + IV,

where a ⊙ b := a⊗ b + b ⊗ a denotes the symmetric product of a, b ∈ R
m. In

the remainder of the proof we will rewrite these four terms such that (9.15)
is satisfied and thus (9.16) can be applied. Simplifying our notation again by
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writing r and R for r(z) and R(z), we start with I: Since ψ and consequently
also ∂1ψ are even in their second argument with (9.12) we may write

I =





∫

B+
R\B+

r

∂1ψ(R,w)[f(z − w) + f(z + w)− 2f(z)] dw

+
∫

Br

∂1ψ(R,w)[f(z − w)− f(z)] dw



∇2R.

Noting |∂1ψ(R,w)| ≤ CR−m−1 we estimate the first integral with (9.16) and
the second one with (9.17) coming out with

|I| ≤ C|z|p−2

[

1 +
|z|2rm
Rm+2

]

R|∇2R| ≤ C|z|p−2

[

1 +
|z|2r
R3

]

|z||∇2R|. (9.18)

Relying on (9.12) and (9.13) and on the fact that ∂21ψ and ∇2
2ψ are also even

in their second argument, estimates for II and IV , namely

|II| ≤ C|z|p−2

[

1 +
|z|2r
R3

]

|∇R|2

and

|IV | ≤ C|z|p−2

[

1 +
|z|2r
R3

]

,

can be obtained analogously and we omit the details.
The same reasoning does not work for III since ∇2ψ(R,w) and ∂1∇2ψ(R,w)
are not even in w. Therefore, we will use a more sophisticated argument: Fixing
a ζ ∈ R

m with |ζ | = 1 and using (9.16), we observe that for all R < s < 2R
there holds

∫

Rm
ζ · ∂1∇2ψ(R,w)f(z − w) dw

≤
∫

Rm
ζ · ∂1∇2ψ(R,w)

[

1

2
f(z − sζ − w) +

1

2
f(z + sζ − w)

]

dw

+ C
s2

R2
|z|p−2

≤ 1

2
ζ ·
∫

Rm

[

∂1∇2ψ(R, z − sζ − w) + ∂1∇2ψ(R, z + sζ − w)
]

f(w) dw

+ C|z|p−2

=:
1

2
IIIs + C|z|p−2.

(9.19)

Integrating the last integral with respect to the parameter s, we calculate
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∫ 2R

R
IIIs ds

=
[ ∫

Rm
∂1ψ(R, z −Rζ − w)f(w) dw−

∫

Rm
∂1ψ(R, z − 2Rζ − w)f(w) dw

+
∫

Rm
∂1ψ(R, z + 2Rζ − w)f(w) dw−

∫

Rm
∂1ψ(R, z +Rζ − w)f(w) dw

]

.

Each of the latter integrals can be estimated in the same way as I in (9.18),
and consequently,

∫ 2R

R
IIIs ds ≤ C|z|p−2

[

1 +
|z|2r
R3

]

R.

We conclude that we can find a parameter s ∈ (R, 2R) with

IIIs ≤ C|z|p−2

[

1 +
|z|2r
R3

]

.

Applying (9.19) with this value of s, we deduce

∫

Rm
ζ · ∂1∇2ψ(R,w)f(z − w) dw ≤ C|z|p−2

[

1 +
|z|2r
R3

]

.

and we arrive at the estimate

|III| ≤ C|z|p−2

[

1 +
|z|2r
R3

]

|∇R|.

Finally, we will provide a finer estimate from below for IV (ζ, ζ): Recalling
(9.10), we have

∇2
2ψ(R,w) = NmR

−m−2

[

2
w ⊗ w

R2
−
(

1− |w|2
R2

)

Im

]

for |w| < R.

Now we fix - once more - a ζ ∈ R
m with |ζ | = 1 and use the superscripts + for

the intersection of a ball or a sphere with the halfspace {w ∈ R
m : w · ζ > 0}

and ∗ for the reflection at {ζ}⊥ as in the proof of Theorem 2.14. Moreover, for

y ∈ {ζ}⊥ ∩ BR we abbreviate ρy := 1√
3

√

R2 − |y|2, so that every w ∈ BR can

be written as w = y + σζ with y ∈ {ζ}⊥ ∩BR and σ ∈ (−
√
3ρy,

√
3ρy). Thus,
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Fubini’s theorem yields

IV (ζ, ζ)

=
∫

Rm
∇2

2ψ(R,w)(ζ, ζ)f(z − w) dw

=
Nm

Rm+2

∫

BR

[

2
(w · ζ)2
R2

−
(

1− |w|2
R2

)]

f(z − w) dw

=
Nm

Rm+2

∫

{ζ}⊥∩BR

∫

√
3ρy

−
√
3ρy

[

2
σ2

R2
−
(

1−|y|2+σ2

R2

)]

f(z−y−σζ) dσ dHm−1(y)

=:
Nm

Rm+4

∫

{ζ}⊥∩BR

IVy dHm−1(y).

(9.20)
In addition, we have

IVy =
∫

√
3ρy

−
√
3ρy

3(σ2 − ρ2y)f(z − y − σζ) dσ

=

(

∫

A0

+
∫

A1

+
∫

A2

)

3(σ2 − ρ2y)
(

f(z − y − σζ)− f(z − y)
)

dσ

=: IV0;y + IV1;y + IV2;y,

where we decomposed the interval [−
√
3ρy,

√
3ρy] into the three sets

A0 :=
[

−
√
3ρy,−

√
2ρy

]

∪
[√

2ρy,
√
3ρy

]

,

A1 :=
[

− ρy, 0
]

∪
[

ρy,
√
2ρy

]

and A2 := −A1.

We first consider the case ρy ≥ r. In tis case, we can use (9.16) to estimate

IV0;y =
∫

√
3ρy

√
2ρy

3(σ2 − ρ2y)
(

f(z − y − σζ) + f(z − y + σζ)− 2f(z − y)
)

dσ

≥ cρ2y

∫

√
3ρy

√
2ρy

σ2|z|p−2 dσ = cρ5y|z|p−2.

In order to estimate the integrals over A1 and A2, we define the decreasing
bijections

T+ :
[

−
√
2ρy,−ρy

]

→
[

0, ρy
]

and T− :
[

ρy,
√
2ρy

]

→
[

− ρy, 0
]

by

T±(σ) := ±
√

ρ2y ± σ
√

2ρ2y − σ2.

These transformations have been chosen in such a way that
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3(T 2
±(σ)− ρ2y)T

′
±(σ) = −3(σ2 − ρ2y)

σ

T±(σ)
.

Thus, the transformation rule yields

IV1;y =
∫

√
2ρy

ρy
3(σ2 − ρ2y)

T−(σ)− σ

T−(σ)

(

−σ
T−(σ)− σ

f(z − y − T−(σ)ζ)

+
T−(σ)

T−(σ)− σ
f(z − y − σζ)− f(z − y)

)

dσ.

Recalling that we are in the case ρy ≥ r we can employ (9.16) to infer that
the integrand is non-negative for T−(σ) ≥ r. On the other hand, if T−(σ) <
r, we use the growth estimates (9.17). We conclude, with a := T−1

− (r) =
√

ρ2y + r
√

2ρ2y − r2,

IV1;y ≥ −C|z|p
(

∫ 0

−r
(σ2 − ρ2y) dσ +

∫ a

ρy
(σ2 − ρ2y) dσ

)

≥ −C|z|prR2.

The term IV2;y can be treated in the same way, using the transformation T+
instead of T−. Combining the estimates for IV0;y, IV1;y and IV2;y we have
proven

IVy ≥ cρ5y|z|p−2 − C|z|prR2 provided ρy ≥ r.

In the case ρy < r starting from the growth estimate (9.17) one finds IVy ≥
−C|z|prR2.

Inserting the estimates for both cases into (9.20) we arrive at

IV (ζ, ζ)≥ c|z|p−2R−m−4
∫

{y∈{ζ}⊥:|y|2<R2−3r2}
(R2 − |y|2)5/2 dHm−1(y)

− CR−m−4Rm−1|z|prR2

≥
(

c− C
|z|2r
R3

)

|z|p−2.

Here, recalling 2r < R and thus
√
R2 − 3r2 ≥ 1

2
R we used that the integrand

in the previous formula can be estimated from below by cR5 for |y| < 1
2
R.

Finally, collecting all our estimates for I, II, III and IV and invoking (9.14)
we have proved that

|D2g̃(z)| ≤ C|z|p−2,

D2g̃(z)(ζ, ζ) ≥ c|z|p−2|ζ |2,
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holds for |z| ≫ 1 and all ζ ∈ R
m. Now, (i) follows as in the proof of Theorem

2.14: Smoothing again we may replace g̃ by a smooth function g∗ with the
same properties and [52, Corollary 4.3] finally yields the claim. �

A The convex envelope

Proof of Lemma 2.12. Setting

ep(z) :=
1

p
(1 + |z|2) p

2

we have

D2ep(z)(ξ, ξ) ≤ (p− 1)(1 + |z|)p−2|ξ|2 for all z, ξ ∈ R
Nn.

Now we fix an arbitrary 0 < ε ≤ γ
2(p−1)

and let

g̃(z) := g(z)− εep(z).

Then our asumptions give

g̃(z) ≤ f(z) for |z| ≫ 1

and

D2g̃(z)(ξ, ξ) = D2g(z)(ξ, ξ)− εD2ep(z)(ξ, ξ)

≥ [γ − ε(p− 1)](1 + |z|)p−2|ξ|2 ≥ γ

2
(1 + |z|)p−2|ξ|2

for all z, ξ ∈ R
Nn. Keeping in mind the preceding two properties of g̃ we may

apply [52, Lemma 4.1] to min{f, g̃} and obtain C(min{f, g̃})(z) = g̃(z) for
|z| ≫ 1. In particular, this implies Cf(z) ≥ g̃(z) for |z| ≫ 1 and we infer

f(z)− 2ε|z|p ≤ g(z)− ε|z|p ≤ Cf(z) ≤ f(z)

for sufficiently large values of |z|. Now, the claim is obvious. �
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[56] K.O. Widman: Hölder continuity of solutions of elliptic systems. Manuscr.
Math. 5, 299–308 (1971).

[57] B. Yan, Z. Zhou: A theorem on improving regularity of minimizing sequences
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