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Abstract. We prove the existence of an exponent p > 2 with the property that

the approximate gradient of any local minimizer of the 2-dimensional Mumford-Shah

energy belongs to Lp
loc.

1. Introduction

Let Ω ⊂ R2 be a bounded open set and denote by

MS(v,A) =

ˆ
A

|∇v|2dx+H1(Jv ∩ A), (1.1)

the Mumford-Shah energy of v ∈ SBV (Ω) on the open subset A ⊆ Ω. In case A = Ω

we shall drop the dependence on the set of integration. In what follows, the letter u will

always denote a local minimizer of the energy (1.1), that is any function u ∈ SBV (Ω)

with MS(u) < +∞ and such that

MS(u) ≤ MS(w) whenever {w 6= u} ⊂⊂ Ω.

The class of all local minimizers shall be denoted byM(Ω). The aim of this note is to

prove the following higher integrability result that was conjectured by De Giorgi in all

space dimensions (cp. with [9, Conjecture 1]).

Theorem 1.1. There is p > 2 such that ∇u ∈ Lploc(Ω) for all u ∈ M(Ω) and for all

open sets Ω ⊆ R2.

Our interest is motivated by the paper [1], where the authors investigated the connec-

tion between the higher integrability of ∇u and the Mumford-Shah conjecture, which

we recall for the reader’s convenience.

Conjecture 1.2 (Mumford-Shah [20]). If u ∈M(Ω), then Ju is the union of (at most)

countably many injective C1 arcs γi : [ai, bi]→ Ω with the following properties:

• Any compact K ⊂ Ω intersects at most finitely many arcs;

• Two arcs can have at most an endpoint p in common and if this is the case,

then p is in fact the endpoint of three arcs, forming equal angles of 2π
3

.

1



2 DE LELLIS AND FOCARDI

If Conjecture 1.2 does hold, then ∇u ∈ Lploc for all p < 4 (cp. with [1, Proposition 6.3]

under C1,1 regularity assumptions on Ju, see also Proposition 1.5 below). Viceversa,

the higher integrability can be translated into an estimate for the size of the singular

set of Ju (see [1, Corollary 5.7]): in particular this set has Hausdorff dimension 2 − p
2

under the apriori assumption that ∇u ∈ Lploc for some p > 2. In fact [1] proves also an

higher-dimensional analog of this second result.

Following a classical path, the key ingredient to establish Theorem 1.1 is a reverse

Hölder inequality for the gradient, which we state independently.

Theorem 1.3. For all q ∈ (1, 2) there exist ρ ∈ (0, 1) and C > 0 such that

‖∇u‖L2(Bρ) ≤ C‖∇u‖Lq(B1) for any u ∈M(B1). (1.2)

Using the obvious scaling invariance of (1.1), Theorem 1.3 yields a corresponding

reverse Hölder inequality for balls of arbitrary radius: Theorem 1.1 is then a conse-

quence of (by now) classical arguments (see for instance [15]). The exponent p could

be explicitely estimated in terms of q, C and ρ. However, since our argument for

Theorem 1.3 is indirect, we do not have any explicit estimate for C (ρ can instead be

computed). Hence, combining Theorem 1.1 with [1] we can only conclude that the

dimension of the singular set of Ju is strictly smaller than 1. This was already proved

in [8] using different arguments and, though not stated there, Guy David pointed out

to the first author that the corresponding dimension estimate could be made explicit.

In fact, after discussing the present result, he suggested to the first author that also

the constant C in Theorem 1.3 might be estimated: a viable strategy would combine

the core argument of this paper with some ideas from [8] (see Remark 6.1 below; note

that the proof of Theorem 1.3 given here makes already a fundamental use of the paper

[8], but depends only on the ε-regularity theorem for ”spiders” and ”segments”, cp.

with Theorem 2.1). However, the resulting estimate would give an extremely small

number, whereas the proof would very likely become much more complicated. Since

we do not see any way to make further progress, we have decided not to pursue this

issue here. We remark instead that a basic ingredient of our proof, namely the com-

pactness Theorem 5.1, gives a more elementary approach, valid in any dimension, to

identify the limits of sequence of minimizers in the regime of small gradients. Similar

results appear in [1] using Almgren’s minimal sets and stationary varifolds, whereas

our strategy is based only on the concept of minimal Caccioppoli partitions: therefore

not only is the proof less technical but the limiting objects satisfy a stronger variational

property. As shown in [12], Theorem 5.1 allows to derive the results of [1] directly from

the regularity theory for minimal Caccioppoli partitions.
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Moreover, as a side effect of our considerations, we remark a small improvement of the

result in [1] in the 2-dimensional case: a weaker form of the Mumford-Shah conjecture

in 2d is equivalent to a sharp Lp estimate of the gradient of the minimizers.

Conjecture 1.4. If u ∈ M(Ω), then Ju is the union of (at most) countably many

injective C0 arcs γi : [ai, bi]→ Ω which are C1 on ]ai, bi[ and satisfy the two conditions

of Conjecture 1.2.

Proposition 1.5. The Conjecture 1.4 holds true for u ∈ M(Ω) if and only if ∇u ∈
L4,∞
loc (Ω), i.e. if for all Ω′ ⊂⊂ Ω there is a constant K = K(Ω′) > 0 such that

|{x ∈ Ω′ : |∇u(x)| > λ}| ≤ Kλ−4.

The if direction of Proposition 1.5 is achieved by first proving that Ju has locally

finitely many connected components and then invoking the result of Bonnet [4]. In

turn, the proof that the connected components are locally finite is a fairly simple

application of David’s ε-regularity theorem. The subtle difference between Conjecture

1.2 and Conjecture 1.4 is in the following point: assuming Conjecture 1.4 holds, if

p = γi(ai) is a “loose end” of the arc γi, i.e. does not belong to any other arc, then the

techniques in [4] show that any blowup is a cracktip, but do not give the uniqueness.

In particular, Bonnet is not able to exclude the possibility that γi “spirals” around p

infinitely many times (compare with the discussion at the end of [4, Section 1]). As far

as we know this point is still open.

Several minor lemmas and propositions reported in this paper, such as Lemma 2.5,

Proposition 3.2 (see for instance [18, Section 30.3] or [19]), Lemma A.1 and Lemma

A.2 are well known in the literature. On the other hand we have not been able to find

a precise reference: we therefore provide a proof just for completeness.

1.1. Sketch of the proof of Theorem 1.3. We fix an exponent q ∈ (1, 2) and a

suitable radius ρ (whose choice will be specified later). Assuming that (1.2) is false,

we consider a sequence (uk)k∈N ∈M(B1) such that

‖∇uk‖L2(Bρ) ≥ k‖∇uk‖Lq(B1). (1.3)

Since the Mumford-Shah energy of u ∈M(B1) can be easily bounded apriori, we have

‖∇uk‖Lq(B1) → 0. A suitable competitor argument then shows that:

(a) The L2 energy of the gradients of uk converge to 0;

(b) The jump set Juk of uk converges to a set J which is a (locally finite) union of

minimal connections.
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Though this last statement is, intuitively, quite clear, it is technically demanding,

because we do not have any apriori control of the norms ‖uk‖L1 . Very similar results

are contained in [1, Proposition 5.3, Theorem 5.4] under the stronger assumption that

‖∇uk‖L2 converges to 0. As already mentioned such results hinge upon the notion of

Almgren’s area minimizing sets, and thus need a delicate study of the behaviour of the

composition of SBV functions with Lipschitz deformations that are not necessarily

one-to-one. Instead, in Theorem 5.1 below we shall set the analysis into the framework

of Caccioppoli partitions, naturally related to the SBV theory. Because of this, as

pointed out in item (a) above, the fact that the Dirichlet energy of uk is infinitesimal

turns out to be a consequence of (1.3) and of the energy upper bound for functions in

M(B1).

Having established (a) and (b), an elementary argument shows the existence of a

universal constant ρ such that the intersection of J with B2ρ is:

(i) either empty;

(ii) or a straight segment;

(iii) or a spider, i.e. three segments meeting at a common point with equal angles.

We use then the regularity theory developed by David (see [8]) to conclude that, if k is

large enough, Juk ∩ B2ρ is diffeomorphic to (and a small perturbation of) one of these

three cases. Finally a variational argument (based on a simple ”Fubini and competitor”

trick) shows the existence of a constant C (independent of k) with the property that

‖∇uk‖L2(Bρ) ≤ C‖∇uk‖Lq(B1) (1.4)

which contradicts (1.3). This last elementary argument is similar to the one used by

the first author and Emanuele Spadaro in the work [13].

1.2. Outline of the paper. Section 2 contains a summary of the regularity theory

needed in our proof, a simple trace inequality which plays a key role in proving (1.4)

and a few important properties of minimal connections. Section 3 relates minimal

2-dimensional partitions to minimal networks: the main proposition is well-known

but, since we have not been able to find a reference, we provide a proof. Section 4

contains the first key ingredient: the argument which gives the alternatives (i)-(ii)-(iii)

listed above. Section 5 contains a proof of the compactness properties (a) and (b)

for sequences (uk)k∈N ⊂ M(B1) with ‖∇uk‖Lq → 0, q ≥ 1. Section 6 collects all the

technical statements of the previous sections to give a rigorous proof of Theorem 1.3

following the argument sketched above. Finally, in Section 7 we prove Proposition 1.5.
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2. Preliminaries

2.1. Regularity results for M(Ω). In case Ω is a ball Bρ(x), a simple comparison

argument gives the following energy upper bound which we shall repeatedly invoke in

the sequel,

sup
M(Bρ(x))

MS(u,Bρ(x)) ≤ 2πρ. (2.1)

Throughout the whole paper we shall take advantage of several results available in

literature for functions in M(Ω). We shall quote precise references (mainly referring

to the book [2]) when needed. Here, we limit ourselves to recall two main properties:

the density lower bound and David’s ε-regularity Theorem.

The density lower bound estimate by De Giorgi, Carriero and Leaci, reported below in

the form proved by the last two authors, establishes the existence of a constant θ0 > 0

such that

H1(Ju ∩Bρ(x)) ≥ θ0ρ for any u ∈M(Ω), x ∈ Ju and ρ ∈ (0, dist(x, ∂Ω)) (2.2)

(see [10], [5], [7] and [2, Theorem 7.21]). In the two dimensional setting an alternative

derivation of the property above and an explicit estimate on the constant θ0 has been

recently obtained by the authors (see [11]).

An obvious corollary of (2.2) and of standard density estimates is that Ju is essentially

closed, i.e. H1(Ju \ Ju) = 0.

We next summarize the ε-regularity theorem first proved by David (cp. with [8,

Proposition 60.1]; see also [2, Theorem 8.2] for a weaker version in any dimension).

To this aim we call minimal cone any set which is either a line or a spider, i.e., the

union of three half-lines meeting with angles 2
3
π in a point called center. Moreover, we

denote by distH the Hausdorff distance.

Theorem 2.1. There exists ε > 0 and an absolute constant c ∈ (0, 1) with the following

properties. If u ∈M(Ω), x ∈ Ju, Br(x) ⊂ Ω and C is a minimal cone such thatˆ
Br(x)

|∇u|2 dx+ distH(Ju ∩Br(x),C ∩Br(x)) ≤ ε r, (2.3)

then there exists a C1-diffeomorphism φ of Br(x) onto its image with

Ju ∩Bcr(x) = φ (C ) ∩Bcr(x).

In addition, for any given δ ∈ (0, 1/2), there is ε > 0 such that, if (2.3) holds, then

Ju ∩ (B(1−δ)r(x) \Bδr(x)) is δ-close, in the C1 norm, to C ∩ (B(1−δ)r(x) \Bδr(x)).

Remark 2.2. The last sentence of Theorem 2.1 is not contained in [8, Proposition

60.1]. However it is a simple consequence of the theory developed in there. By scaling,
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we can assume r = 1 and x = 0. Fix a cone C , a δ > 0 and a sequence {uk} ⊂ M(B1)

for which the left hand side of (2.3) goes to 0. If C is a segment, then it follows from

[8] (or [2]) that there are uniform C1,α bounds on Juk ∩ B1−δ. We can then use the

Ascoli-Arzelà Theorem to conclude that Juk is converging in C1 to C .

In case the minimal cone C is a spider, then observe that C ∩ (B1 \ Bδ/2) consists

of three distinct segments at distance δ/2 from each other. Covering each of these

segments with balls of radius comparable to δ and centered in a point belonging to

the segment itself, we can argue as above and conclude that, for k large enough,

Juk ∩ (B1−δ \ Bδ) consist of three arcs, with uniform C1,α estimates. Once again the

Ascoli-Arzelà Theorem shows that Juk∩(B1−δ\Bδ) is converging in C1 to C∩(B1−δ\Bδ).

2.2. A simple trace lemma. The following is a simple fact which will play a key role

in our proof.

Lemma 2.3. For any q ∈ (1, 2) there exists C = C(q) > 0 such that the following

holds. For any arc γ ⊆ ∂B1 and any g ∈ W 1,q(γ), there exists w ∈ W 1,2(B1) with trace

g on γ and

‖∇w‖L2(B1) ≤
C

(2π −H1(γ))1− 1
q

‖g′‖Lq(γ). (2.4)

Proof. Let α, β ∈ ∂B1 denote the extreme points of γ. By the Hölder inequality

|g(α)− g(β)| =
∣∣∣∣ˆ
γ

g′dH1

∣∣∣∣ ≤ (H1(γ))1− 1
q ‖g′‖Lq(γ) .

Linearly interpolating g on ∂B1 \ γ, we get an extension h ∈ W 1,p(∂B1) of g satisfying

the estimate

‖h′‖qLq(∂B1\γ) = (2π −H1(γ))1−q|g(α)− g(β)|q ≤
(
H1(γ)

2π −H1(γ)

)q−1

‖g′‖qLq(γ) . (2.5)

In turn, if we set k := h−
ffl
∂B1

h, the Poincaré inequality and (2.5) yield

‖k‖qLq(∂B1) ≤ C‖h′‖qLq(∂B1) ≤ C

(
2π

2π −H1(γ)

)q−1

‖g′‖qLq(γ) . (2.6)

The embedding W 1,q(∂B1) → H1/2(∂B1) provides us with a function v ∈ W 1,2(B1)

with boundary trace k and such that

‖∇v‖L2(B1) ≤ C‖k‖H1/2(∂B1) ≤ C‖k‖W 1,q(∂B1)

(2.6)

≤ C

(2π −H1(γ))1− 1
q

‖g′‖Lq(γ).

By the latter inequality the function w := v +
ffl
∂B1

h fulfills the assertions of the

Lemma. �
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2.3. Minimal connections.

Definition 2.4. A minimal connection of {q1, . . . , qN} ⊂ R2 is any minimizer Γ of the

Steiner problem

min
{
H1(Σ) : Σ closed and connected and q1, . . . , qN ∈ Σ

}
. (2.7)

It is well known that minimizers for (2.7) exist (for instance cp. with [21, Theorem

1.1]). In the next lemma we collect some results for minimal connections that we shall

use repeatedly in the forthcoming sections.

Lemma 2.5.

(a) If Γ is a minimal connection of {q1, . . . , qN}, then Γ is the union of finitely

many segments {σi = [αi, βi]}Mi=1 such that

(a1) either σi ∩ σj = ∅ or σi ∩ σj = {p} ⊂ {α1, . . . , αM , β1, . . . , βM};
(a2) if αi (resp. βi) 6∈ {q1, . . . , qN}, then it is the endpoint of three σj’s, meeting

at angles 2
3
π (and hence forming a spider in a neighborhood of αi).

(b) If in addition {q1, . . . , qN} ⊂ ∂Bρ, then

(b1) Γ ⊂ Bρ and Γ ∩ ∂Bρ = {q1, . . . , qN};
(b2) each qi is the endpoint of at most two σj, meeting at an angle ≥ 2π/3;

(c) If ({qk1 , . . . , qkL})k∈N converges in the sense of Hausdorff to {q1, . . . qN} and Γk
are minimal connections of {qk1 , . . . , qkL}, then a subsequence of (Γk)k∈N con-

verges in the Hausdorff sense to a minimal connection Γ of {q1, . . . , qN} and

lim
k
H1(Γk) = H1(Γ);

(d) There exists δ > 0 such that, for all N ≥ 4 and all N-tuple of distinct points

qi ∈ ∂Bρ, any minimal connection Γ of the qi’s satisfies

H1(Γ) ≤ (N − δ)ρ. (2.8)

Proof of Lemma 2.5. The properties listed in items (a) and (b) are classical and we

refer to [21, Theorem 1.2] for a recent account and an elegant elementary approach.

We next address (c). Let U be a bounded neighborhood of {q1, . . . , qN}. For k large

enough {qk1 , . . . , qkL} ⊂ U and a simple projection argument implies that Γk is contained

in the closed convex hull C of U . Hence, by compactness we may find a subsequence

of (Γk)k∈N (not relabeled) converging in the Hausdorff sense to a closed connected set

Γ ⊆ C. Go lab’s theorem (see [3, Theorem 4.4.7]) implies then

H1(Γ) ≤ lim inf
k
H1(Γk).
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Because of the Hausdorff convergence, given ε > 0, there is n0 large enough such that,

for any k ≥ n0 and any qki , there is a qi′ at distance at most ε from qki . Therefore, adding

to Γ L segments with length at most ε we find a connected closed set Σk containing

the points {qk1 , . . . , qkL}. Σk is a competitor for problem (2.7), thus by minimality of Γk
we have

H1(Γk) ≤ H1(Σk) ≤ H1(Γ) + Lε .

Letting first k ↑ ∞ and then ε ↓ 0+ we infer

lim sup
k
H1(Γk) ≤ H1(Γ).

Arguing in the same fashion we conclude that Γ is a minimizer of the Steiner problem.

Finally, we show (d). Without loss of generality we can assume ρ = 1. Since

H1(∂B1) = 2π < 7 the inequality is obvious for N ≥ 7 and we assume, there-

fore, N ∈ {4, 5, 6}. Assume by contradiction that (2.8) does not hold. For some

N ∈ {4, 5, 6}, there exists a sequence of N -tuples of distinct points ({qk1 , . . . , qkN})k∈N
of ∂B1 such that, if Γk is a corresponding minimal connection,

H1(Γk) ≥ N − 1

k
.

Upon the extraction of subsequences, we assume that each sequence (qki )k∈N converges

to a point qi ∈ ∂B1, 1 ≤ i ≤ N . By (c) a subsequence of (Γk)k∈N (not relabeled)

converges in the Hausdorff sense to a minimal connection Γ of {q1, . . . , qN} with

H1(Γ) = lim
k
H1(Γk) ≥ N. (2.9)

For each qi let γi be the closed segment [0, qi], which obviously has length one. Consider

the closed connected set Σ = γ1 ∪ . . .∪ γN . Since H1(Σ) ≤ N , the inequality (2.9) and

the minimality of Γ imply that all the qi’s must be distinct and that Σ is a minimal

connection as well. However, since N ≥ 4, Σ violates (a2). �

3. Caccioppoli partitions I

Definition 3.1. A Caccioppoli partition of Ω is a countable partition E = {Ei}∞i=1 of Ω

in sets of (positive Lebesgue measure and) finite perimeter with
∑∞

i=1 Per(Ei,Ω) <∞.

For each Caccioppoli partition E we set

JE :=
⋃
i

∂∗Ei .

The partition E is said to be minimal if

H1(JE ) ≤ H1(JF )
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for all Caccioppoli partitions F for which there exists an open subset Ω′ ⊂⊂ Ω with∑∞
i=1 L2 ((Fi4Ei) ∩ (Ω \ Ω′)) = 0.

Note that any Caccioppoli partition satisfies
∞∑
i=1

Per(Ei) = 2H1(JE ). (3.1)

In addition, if Ω = Bρ(x) for some ρ > 0 and x ∈ R2, an elementary comparison

argument implies the following energy upper bound

H1(JE ) ≤ 2πρ. (3.2)

We quote [2, Section 4.4] and the papers [6], [16] as main references for the theory of

Caccioppoli partitions.

Minimal Caccioppoli partitions are linked to minimal connections in a natural way.

Proposition 3.2. Let E be a minimal Caccioppoli partition. Then JE is essentially

closed. Moreover, if we denote by J its closure, then any sphere ∂Bρ(x) ⊂⊂ Ω intersects

J in finitely many points, each connected component K of J ∩Bρ(x) satisfies H0(K ∩
∂Bρ(x)) ≥ 2, and it is a minimal connection of K ∩ ∂Bρ(x).

The statement of this last proposition is a well-known fact, but since we have not

been able to find a reference, we include below its proof for the reader’s convenience.

Proof. Let us first prove that JE is essentially closed, i.e. H1(J \ JE ) = 0 (recall that

J = JE ). We shall actually show that

Ω \ J =
{
x ∈ Ω : H1(Br(x) ∩ JE ) < r, for some r ∈ (0, d(x, ∂Ω))

}
, (3.3)

the latter equality together with standard density estimates imply the conclusion.

Denote by ΩE the set on the right hand of (3.3). Clearly Ω \ J ⊆ ΩE . To prove the

opposite inclusion let x ∈ ΩE . The Co-Area formula (see [2, Theorem 2.93]) implies

that the set {ρ ∈ (0, r) : H0(∂Bρ(x)∩ JE ) = 0} has positive length. Therefore, we can

find a radius ρ for which ∂Bρ(x) belongs to a single set of the Caccioppoli partition E ,

which for convenience we denote by E0.

We consider the new partition F := {E0 ∪ Bρ(x)} ∪ ∪i>0{Ei \ Bρ(x)}. F is an

admissible competitor for E and hence H1(JE ) ≤ H1(JF ). This obviously implies that

H1(JE ∩Bρ(x)) = 0. We have proved that ΩE ⊆ Ω \ JE ; since ΩE is open we conclude

ΩE ⊆ Ω \ J .

Note that E can therefore be seen as a classical partition of Ω in a countable collection

of open sets {Ei}i∈N and the closed set J = JE of finite length and is the union of ∂Ei∩Ω.

From now on we omit this set from E . Moreover, we consider the new partition given
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by the connected components of Ω \ J . This new partition must be minimal as well

and, by abuse of notation, we keep denoting it by E = {Ei}i∈N.

Given x ∈ Ω, we consider the family of concentric balls {Bρ(x) ⊂ Ω : ρ > 0}. Without

loss of generality we assume x = 0. The Co-Area formula implies that H0(J ∩ ∂Bρ) <

+∞ for a.a. ρ. Let ρ > 0 be such that Bρ ⊂⊂ Ω and J ∩ ∂Bρ is finite. We will now

show the last statement of the Proposition for this particular ρ, that is:

(Cl) each connected component H of J ∩Bρ is a minimal connection for H ∩ ∂Bρ.

This would conclude the proof of the Proposition, because for any Br ⊂⊂ Ω, we can

choose a ρ > r such that Bρ ⊂⊂ Ω and J ∩∂Bρ is finite. By Lemma 2.5 we then would

conclude that Bρ ∩ J consists of finitely many segments, and hence that ∂Br ∩ J is

finite.

We now come to the proof of (Cl), which will be split in several steps. From now

on without loss of generality we assume that ρ = 1, and introduce the notation Ai to

denote the connected components of B1 \ J .

Step 1. Each Ai is simply connected.

Otherwise, one of them, which for convenience we denote by A0, contains a simple

closed curve γ which is not contractible in B1 \ J . By the Jordan-Schoenflies Theorem

(see [22, Corollary 2.9]) γ bounds a topological disk U contained in B1. Since the

curve is not contractible in B1 \ J , U must contain at least a point of J . By (3.3),

H1(U ∩ J) > 0. Denote by E0 the element of E containing A0. Note that F =

{E0 ∪ U} ∪
⋃
i>0{Ei \ U} would then be a competitor with H1(JF ) < H1(JE ), which

is a contradiction.

Step 2. ∂Ai \ J 6= ∅ for all i.

Indeed, first of all observe that each x ∈ J must be in the closure of two Aj’s.

Otherwise there would be a neighborhood U of x ∈ J such that U \ J is contained

in one single connected component Aj, which in turn is contained in a single element

Ej ∈ E . But then we could redefine Ej as Ej ∪ U decreasing H1(JE ).

Next assume the existence of Ai such that ∂Ai ⊂ J . By the observation above it

follows that ∂Ai ⊂
⋃
j 6=i ∂Aj. Hence there must be a j 6= i such thatH1(∂Ai∩∂Aj) > 0.

Observe that Ai coincides necessarily with an element of the partition, which we denote

by Ei, whose closure is contained in B1. Instead, Aj is contained in one element E`
of the partition. Since we are assuming that the Ek’s are the connected component of

Ω \ J , E` is necessarily distinct from Ei (otherwise there would be a continuous path

γ joining a point x ∈ Ai and a point y ∈ Aj; this path cannot cross ∂B1 because
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Ai ⊂ B1; but this would be a contradiction because then Ai and Aj would be the same

connected component of B1 \ J).

We next define the following new partition F = {Fk}k∈N, where Fk = Ek if k 6∈ {`, i},
F` = E`∪Ei∪(∂Ei∩∂E`) and Fi = ∅. Observe that F is a competitor for E . Moreover,

H1(JF ) = H1(JE )−H1(∂Ei ∩ ∂E`) = H1(JE )−H1(∂Ai ∩ ∂A`) < H1(JE ),

which contradicts the minimality of E .

Step 3. The connected components of J ∩ B1 are finitely many and they all contain

at least one point of ∂B1.

Recall that J intersects ∂B1 in finitely many points and hence divides it into finitely

many arcs. Since ∂Ai \ J 6= ∅, each ∂Ai must intersect one of these arcs, which we call

γ. For any x ∈ γ there is r > 0 sufficiently small such that Br(x) ∩ B1 ⊂ B1 \ J . But

then there is an open set U containing γ such that U ∩ B1 ⊂ B1 \ J and U ∩ B1 is

connected. This implies that γ ⊂ ∂Ai and γ ∩ ∂Aj = ∅ for every j 6= i. We conclude

therefore that there are finitely many Ai’s. Since each Ai is a bounded topological

open disk of R2, its boundary must be connected (see Lemma A.2 for an elementary

proof). Moreover, ∂Ai ⊂ ∂B1 ∪ J , which has finite length. By a well-known theorem

about continua, ∂Ai must be arcwise connected (see [14, Lemma 3.12]). Let now H be

a connected component of J ∩ B1. H intersects some ∂Ai in a point x. There exists

then a continuous curve η : [0, 1]→ ∂Ai such that η(0) ∈ ∂Ai∩H and η(1) ∈ ∂B1. Let

s ∈ [0, 1] be the least number such that η(s) ∈ ∂B1. Then η([0, s]) must be contained

in J and hence in H (because H is a connected component of J ∩ B1). Moreover

η(s) ∈ ∂B1. Thus H must contain at least one point of J ∩ ∂B1, which is the claim of

this step.

Step 4. Each connected component H of J ∩B1 contains at least two distinct points

of J ∩ ∂B1.

Assume by contradiction that H ∩ ∂B1 consists of exactly one point, which we call

{p}. Set K = (J ∩ B1) \H and consider the connected component Ω′ of B1 \K such

that ∂Ω′ 3 p. Ω′ is a topological disk. Indeed, if it were not simply connected, it would

contain a simple curve γ which is not contractible: if U is the topological disk bounded

by γ, we would have U ⊂ B1 and being γ not contractible in Ω′ we would necessarily

have ∂Ω′ ∩ U 6= ∅. Since ∂Ω′ ∩ B1 ⊂ K, this would mean that K ∩ U 6= ∅. But since

∂U ⊂ Ω′, K does not intersect ∂U . This means that at least one connected component

of K is contained in U . Since each connected component of K is a connected component

of J , this contradicts Step 3.
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∂Ω′ is a compact connected set with finite length. Then there exists a Lipschitz curve

γ : [0, 1] → R2 such that γ([0, 1]) = ∂Ω′ (see [14, Exercise 3.5]). Thus ∂Ω′ is the

continuous image of a locally connected set and it is therefore locally connected (see

the last paragraph of page 19 of [22]). We can then apply the [22, Continuity Theorem,

page 18] to conclude that there is a continuous map z : B1 → Ω′ such hat z|B1 is a

(conformal) homeomorphism onto Ω′. It is obvious that z maps ∂B1 onto ∂Ω′. It is

also true that z−1(q) consists of one single point whenever q ∈ (∂B1 ∩ ∂Ω′) \K. This

follows from the fact that such q’s do not disconnect ∂Ω′, see [22, Section 2.3]. However

we have not found a simple proof for this quite intuitive fact and we provide a rather

subtle one in the appendix (see Lemma A.1).

Consider now the connected component H. H \ {p} is obviously contained in Ω′.

Moreover, by the remark above there is a ball Bρ(p) such that each point of Bρ(p)∩Ω′

has one single counterimage through z. This means that z is an homeomorphism

between Bρ(p)∩Ω′ and U = z−1(Bρ(p)∩Ω′). We conclude therefore that H ′ = z−1(H)

intersects ∂B1 at one single point which we denote by p′.

Any connected component of Ω′ \H is a connected component of B1 \ J . Recall that

z is an homeomorphism of B1 onto Ω′. Thus, if {Ξi}i∈N are the connected components

of B1 \ H ′, {z(Ξi)}i∈N are all the (distinct) connected components of Ω′ \ H. Let

q ∈ ∂B1 \ {p′}. Then Br(q) ∩ B1 ⊂ B1 \ H ′ provided r is sufficiently small. Since

Br(q)∩B1 is connected, there is one and only one i such that q ∈ ∂Ξi. However, since

H ′ intersects ∂B1 in one single point, for every pair q, q′ ∈ ∂B1 \ {p′} we can easily

construct a continuous curve γ : [0, 1]→ B1 such that

γ(0) = q, γ(1) = q′ and γ(]0, 1[) ⊂ B1 \H ′ (see Figure 1). (3.4)

Thus, ∂B1 \ {p′} is contained in the boundary of a single Ξi and without loss of

generality we assume i = 1. If there is a second distinct connected component Ξ2, then

∂Ξ2 ⊂ H ′. Thus A2 = z(Ξ2) is a connected component of B1 \ J with the property

that ∂A2 ⊂ z(H ′) = H ⊂ J . But then A2 would contradict Step 2. We conclude

that B1 \H ′ is connected and so is A1 = Ω′ \H. This means that H is all contained

in the boundary of a connected component A1 of B1 \ J and does not intersect any

other connected component. Once again we could define a new partition by setting

F = {A1 ∪H} ∪
⋃
i 6=1Ai, violating the minimality of E .

Step 5. Each connected component H of J ∩B1 is a minimal connection of H ∩∂B1.

Recall that in Step 3 we have shown that B1 \ J = ∪`s=1As. Let γ1 and γ2 be two arcs

of ∂B1\J . Each γi is contained in a single ∂Asi . Assume s1 6= s2. Let H1, . . . HN be the

connected component of J ∩B1 (they are finitely many by Step 4). Then there is one
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H ′

q

q′

p′

ε

Figure 1. If ε is chosen sufficiently small, the curve in the picture

satisfies (3.4)

Hj with the property that the γi’s belong to the boundaries of two distinct connected

components of B1 \ Hj. However, by the same construction of Figure 1, this implies

that the γi’s must belong to distinct connected components of ∂B1\Hj. Thus there are

two points p, q ∈ Hj ∩ ∂B1 dividing ∂B1 into two arcs, each containing one of the γi’s.

Let Kj be a minimal connection for Hj ∩ ∂B1. Kj then contains a piecewise smooth

injective arc joining p and q and it is obvious that the γi’s belong to the boundaries of

distinct connected components of B1 \Kj.

For every i consider therefore a minimal connection Ki of Hi ∩ ∂B1 and the corre-

sponding distinct connected components O1, . . . , OL of B1 \ ∪Ni=1Ki. The argument

above implies that for each i there is an s(i) such that ∂Oi ∩ ∂B1 ⊆ ∂As(i), which

means that there is a σ(i) such that ∂Oi ∩ ∂B1 ⊂ Eσ(i).

We therefore define a competitor F in the following way:

Fτ := (Eτ \B1) ∪
⋃

i:σ(i)=τ

Oi .
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It is easy to check that F is a competitor for E and

N∑
i=1

H1(Hi) +H1(J ∩ (Ω \B1)) = H1(JE ) ≤ H1(JF ) ≤
N∑
i=1

H1(Ki) +H1(J ∩ (Ω \B1)) .

On the other hand by the minimality of Ki we have H1(Hi) ≥ H1(Ki). We conclude

therefore that each Hi is a minimal connection of Hi ∩ ∂B1. �

4. Caccioppoli partitions II

Lemma 4.1. There exists a radius ρ0 ∈ (0, 1) with the following property. Assume E

is a minimal Caccioppoli partition of B1. Then, for all ρ ∈ (0, ρ0]

H0(JE ∩ ∂Bρ) ≤ 3, and H1(JE ∩Bρ) ≤ 3ρ. (4.1)

Proof. We divide the proof into two steps. In the first one we take advantage of

Lemma 2.5 and a compactness argument to show that minimal Caccioppoli partitions

with jump set JE intersecting ∂Bρ in N ∈ {4, 5, 6} points, for some ρ ∈ (0, 1), have

length uniformly less than Nρ itself. The second step iterates this estimate to show

that one can always reduce to the case of at most three intersections. To simplify the

notation, we set J = JE .

Step 1. There exists δ ∈ (0, 1) such that, if E is as in the statement with additionally

H0(J ∩ ∂Bρ) ∈ {4, 5, 6}, for some ρ, then

H1(J ∩Bρ) ≤
(
H0(J ∩ ∂Bρ)− δ

)
ρ.

By scaling, we can assume that ρ = 1. Arguing by contradiction we assume that there

is a sequence (Ek)k∈N of minimal Caccioppoli partitions of B1 such that, if Jk = JEk ,

then

(i) H0(Jk ∩ ∂B1) ∈ {4, 5, 6};
(ii) H1(Jk ∩B1) > H0(Jk ∩ ∂B1)− 1

k
.

Upon the extraction of subsequences (not relabeled in what follows) we may assume

that H0(Jk ∩ ∂B1) is a constant value N ∈ {4, 5, 6}. Recall next that, by Proposition

3.2, the connected components of Jk are minimal connections (and hence they are at

most three). In what follows Lk denotes a connected component of Jk. Obviously,

joining each point of Lk ∩ ∂B1 with 0, we conclude the trivial estimate

H1(Lk ∩B1) ≤ H0(Lk ∩ ∂B1) . (4.2)

Combining (4.2) with (ii) we then conclude

H1(Lk ∩B1) > H0(Lk ∩ ∂B1)− 1

k
(4.3)
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Given any sequence {Lk}k∈N we can, after extracting a subsequence, assume that

H0(Lk ∩ ∂B1) is a constant N̄ ∈ {2, 3, 4, 5, 6}, that Lk ∩ ∂B1 converges to a set E

consisting of at most N̄ points and that Lk ∩B1 converges to a minimal connection L

of E (we apply Lemma 2.5). Thus

N̄ = H1(L) ≤ H0(E) ≤ N̄ .

This implies that N̄ is at most 3 by Lemma 2.5 and indeed that L is either a diameter

of B1 or is a spider centered at its origin.

Thus, for k large enough, each connected component of Jk must be either close to

a centered spider or to a diameter in the Hausdorff distance. Since N ≥ 4 there are

at least two such connected components and since they have to be disjoint sets, none

of them can be a spider. They therefore must all be close to a diameter, which must

be the same for all of them. Hence, upon extraction of a subsequence, each Jk ∩ B1

consists either of three or of two (nonintersecting) straight segments converging to a

diameter of B1.

If k is large enough, there exists then a single closed connected set Hk contained in B1

with Hk ∩∂B1 = Jk ∩∂B1 and H1(Hk) ≤ 3. Without loss of generality, we can assume

that the boundary of each connected component Aj of B1 \ Hk intersects ∂B1 \ Jk.
Recall that Jk = ∪i∂∗Ei, with Ek = {Ei}i∈N minimal Caccioppoli partition of B1/ρ.

Since Hk is connected, each (∂Aj ∩∂B1)\Jk is contained in a single set Ei(j). But then

we can define a new Caccioppoli partition Fk = {(Ei \ B1) ∪
⋃
j: i(j)=iAj}i∈N. Using

this partition as a competitor, we get

H1(Jk) ≤ H1(JFk
) = H1(Jk \B1) +H1(Hk) ≤ H1(Jk \B1) + 3,

which is obviously a contradiction in view of (i) and (ii).

Step 2. Conclusion.

Fix λ ∈ (2π/7, 1), by the energy upper bound (3.2) and the Co-Area formula we may

find ρ1 ∈ (1 − λ, 1) such that H0(J ∩ ∂Bρ1) ≤ 6. By Step 1 we infer H1(J ∩ Bρ1) ≤
(6− δ)ρ1, so that a radius ρ2 ∈

(
δ
7
ρ1, ρ1

)
can be selected satisfying H0(J ∩ ∂Bρ2) ≤ 5.

Iterating twice this argument shows the existence of a radius ρ4 ∈
(
δ3

73
(1− λ), 1

)
such

that

H0(J ∩ ∂Bρ4) ≤ 3.

Proposition 3.2 guarantees that J ∩ Bρ4 is a minimal connection for J ∩ ∂Bρ4 . Hence

three different configurations are then possible:

(a) H0(J ∩ ∂Bρ4) = 0, and then J ∩Bρ4 = ∅;
(b) H0(J ∩ ∂Bρ4) = 2, and then J ∩Bρ4 is a segment;



16 DE LELLIS AND FOCARDI

(c) H0(J ∩ ∂Bρ4) = 3, and then J ∩Bρ4 is a spider.

In any event, the conclusion follows by setting ρ0 := δ3

73
(1− λ). �

5. Sequences in M(B1) with ‖∇uk‖L1 → 0

In what follows we analyze the compactness properties of sequences of local minimizers

with vanishing gradient energy: the conclusions are summarized in Theorem 5.1 below.

Observe that we do not assume any uniform Lp bound, since the theorem will be later

applied to sequences of minimizers for which any Lp norm might indeed blow up. This

lack of control upon the size of the functions makes the argument slightly involved.

We point out that Theorem 5.1 below is stated and proved only in the two dimensional

case of interest here. In spite of this, the analogous statement in any dimension can be

obtained only with straightforward notational changes in the proof below.

Furthermore, Theorem 5.1 should be compared with [1, Proposition 5.3, Theorem 5.4]

where under the stronger assumption that ‖∇uk‖L2 is infinitesimal, it is proved that

any weak-∗ limit of Hn−1 Suk is a (n − 1)-rectifiable measure with multiplicity one

concentrated on an area minimizing set according to Almgren.

In what follows we agree to identify each measurable set E with its measure theoretic

closure given by those points where the density of E is strictly positive.

Theorem 5.1. Let (uk)k∈N ⊂M(B1) be such that

lim
k
‖∇uk‖L1(B1) = 0. (5.1)

Then, (up to the extraction of a subsequence not relabeled for convenience) there exists

a minimal Caccioppoli partition E = {Ei}i∈N such that (Juk)k∈N converges locally in

the Hausdorff distance to JE and

lim
k

MS(uk, A) = lim
k
H1(Juk ∩ A) = H1(JE ∩ A) for all open sets A ⊂ B1. (5.2)

Proof. The sequence (uk)k∈N does not satisfy, apriori, any Lp bound, thus in order to

gain some insight on the asymptotic behaviour of the corresponding jump sets we first

construct a new sequence (wk)k∈N with null gradients introducing an infinitesimal error

on the length of the jump set of wk with respect to that of uk. Then, we investigate

the limit behaviour of the corresponding Caccioppoli partitions.

Step 1. There exists a sequence (wk)k∈N ⊆ SBV (B1) satisfying

(i) ∇wk = 0 L2 a.e. on B1,

(ii) ‖uk − wk‖L∞(B1) ≤ 2‖∇uk‖1/2

L1(B1),

(iii) H1 (Jwk \ (Juk ∪Hk)) = 0 for some Borel measurable set Hk, with H1(Hk) =

o(1) as k ↑ ∞.
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Note that in turn item (iii) implies that

MS(wk) = H1(Jwk) ≤ H1(Juk) + o(1) ≤ MS(uk) + o(1). (5.3)

In Step 2 below we shall eventually show that |MS(wk)−MS(uk)| ≤ o(1).

Recall that the BV Co-Area formula (see [2, Theorem 3.40]) establishesˆ
B1

|∇uk|dx = |Duk|(B1 \ Juk) =

ˆ
R

Per (∂∗{uk ≥ t} \ Juk) dt. (5.4)

Denote by Iki a partition of R of intervals of equal length ‖∇uk‖1/2

L1(B1). Equation (5.4)

and the Mean value Theorem provide the existence of levels tki ∈ Iki satisfying

∞∑
i=1

Per
(
∂∗{uk ≥ tki } \ Juk

)
≤ ‖∇uk‖1/2

L1(B1). (5.5)

Then define the functions wk to be equal to tki on {uk ≥ tki }\{uk ≥ tki+1}. The choice of

the Iki ’s, (5.5) and the very definition yield that wk belongs to SBV (B1) and that it sat-

isfies properties (i) and (ii). To conclude, note that H1
(
Jwk \ (∪i∂∗{uk ≥ tki } ∪ Juk)

)
=

0 by construction, thus item (iii) follows at once from (5.5).

Step 2. Compactness for the jump sets.

Each function wk determines a Caccioppoli partition Ek = {Ek
i }i∈N of B1 (see [6,

Lemma 1.11]). In addition, upon reordering the sets Ek
i ’s, we may assume that

L2(Ek
i ) ≥ L2(Ek

j ) if i < j. Then, the compactness theorem for Caccioppoli parti-

tions (see [16, Theorem 4.1, Proposition 3.7] and [2, Theorem 4.19]) provides us with

a subsequence (not relabeled) and a Caccioppoli partition E := {Ei}i∈N such that

lim
j

∞∑
i=1

L2(Ek
i4Ei) = 0, and

∞∑
i=1

Per(Ei, A) ≤ lim inf
k

∞∑
i=1

Per(Ek
i , A) (5.6)

for all open subsets A in B1. We claim that E determines a minimal Caccioppoli

partition and in proving this we will also establish (5.2).

We start off observing that the first identity (5.6) and the Co-Area formula yield the

existence of a set I ⊂ (0, 1) of full measure such that

lim inf
k

∞∑
i=1

H1
(
(Ek

i4Ei) ∩ ∂Bρ

)
= 0 ∀ρ ∈ I . (5.7)

Define the measures µk as µk(A) := MS(uk, A) + MS(wk, A) (A being an arbitrary

Borel subset of B1). Condition (2.1) and item (iii) in Step 1 ensure that, upon the

extraction of a further subsequence, µk converges weakly∗ to a finite measure µ on B1.

W.l.o.g. we may assume that for all ρ ∈ I we have, in addition, µ(∂Bρ) = 0.
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Let us now fix a Caccioppoli partition F := {Fi}i∈N suitable to test the minimality of

E , i.e.
∑∞

i=1 L2
(
(Fi4Ei) ∩ (B1 \Bt)

)
= 0 for some t ∈ (0, 1). Moreover, we may also

suppose that
∑∞

i=1H1 ((Fi4Ei) ∩ ∂Bρ) = 0 for all ρ ∈ I ∩ (t, 1). Let then ρ and r be

radii in I ∩ (t, 1) with ρ < r and assume, after passing to a subsequence (not relabeled)

that the lim inf in (5.7) is actually a lim for these two radii. We define

ωk :=

wk on B1 \Bρ

tki on Fi ∩Bρ.

Note that ωk ∈ SBV (B1) with ∇ωk = 0 L2 a.e. on B1, and since t < ρ ∈ I it follows

H1
(
Jωk4

(
(JF ∩Bρ) ∪ (∪i∈N(Ek

i4Ei) ∩ ∂Bρ) ∪ (Jwk ∩ (B1 \Bρ))
))

= 0.

Consider ϕ ∈ Lip ∩ Cc(B1, [0, 1]) with ϕ|Br ≡ 1, and |∇ϕ| ≤ (1 − r)−1 on B1, and set

vk := ϕωk + (1− ϕ)uk. Clearly, vk is admissible to test the minimality of uk.

Consider next any open set A contanining Bt. Simple calculations lead to

MS(uk, A) ≤ MS(vk, A)

≤ MS(ωk, A) + 2MS(uk, B1 \Br) +
2

(1− r)2
‖uk − ωk‖2

L2(B1\Br)

≤ H1 (JF ∩ A) +
∑
i∈N

H1
(
(Ek

i4Ei) ∩ ∂Bρ

)
+H1

(
Jwk ∩ (A \Bρ)

)
+2MS(uk, B1 \Br) +

2

(1− r)2
‖uk − wk‖2

L2(B1\Br)

≤ H1 (JF ∩ A) +
∑
i∈N

H1
(
(Ek

i4Ei) ∩ ∂Bρ

)
+ 3µk(B1 \Bρ)

+
2

(1− r)2
‖uk − wk‖2

L∞(B1). (5.8)

Note that in the third inequality we have used that ωk and wk coincide on B1 \Bρ, and

that ρ < r. By letting k ↑ ∞ in (5.8), we infer

H1(JE ∩ A) ≤ lim inf
k
H1(Juk ∩ A) ≤ lim inf

k
MS(uk, A) ≤ lim sup

k
MS(uk, A)

≤ lim sup
k

MS(vk, A) ≤ H1 (JF ∩ A) + 3µ(B1 \Bρ),

where we have used that r and ρ belong to I, inequality (5.3), the convergence µk ⇀
∗ µ,

and the limit (5.7). Finally, by letting ρ ∈ I tend to 1− we conclude

H1(JE ∩ A) ≤ H1 (JF ∩ A) , (5.9)

which proves the minimality of E in A (and hence, in particular, in B1). Therefore,

JE satisfies the density lower bound H1(JE ∩ Br(x)) ≥ 1 for all x ∈ JE (see Step 1 of
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Proposition 3.2), hence it is essentially closed. Using the De Giorgi, Carriero, Leaci

density lower bound (see formula (2.2)), we conclude that (Juk)k∈N converges to JE in

the local Hausdorff topology on B1. In addition, choosing E = F (which therefore

allows us to take A arbitrary), we infer (5.2). �

6. Proof of Theorem 1.3

Fix any exponent q ∈ (1, 2) and set ρ = ρ0/8, where ρ0 is the radius provided by

Lemma 4.1.

We argue by contradiction and assume that a sequence (uk)k∈N ⊆M(B1) exists with

ˆ
Bρ

|∇uk|2dx ≥ k

(ˆ
B1

|∇uk|qdx
)2/q

. (6.1)

The energy upper bound (2.1) then leads to

lim
k

ˆ
B1

|∇uk|qdx = 0.

Thus, Theorem 5.1 gives us a subsequence (not relabeled for convenience) and a Cac-

cioppoli partition E such that all the conclusions there hold true. By Lemma 4.1, we

have H0(J̄E ∩ ∂Bρ0) ≤ 3.

Since JE and Juk are both essentially closed, from now on we use, by a slight abuse of

notation, the same names for their closures. We can distinguish three different cases:

(a1) H0(JE ∩ ∂Bρ0) = 0, then set % := ρ0;

(a2) H0(JE ∩ ∂Bρ0) = 2, hence JE ∩ Bρ0 is a segment and ∂Bρ0 \ JE is the union of

two arcs. Then, either both arcs have length less than 4π
3
ρ0, or JE ∩Bρ0/2 = ∅.

In the first alternative we set % := ρ0, in the latter % := ρ0/2;

(a3) H0(JE ∩ Bρ0) = 3, JE is a (possibly off-centered) spider and ∂Bρ0 \ JE is the

union of three arcs. Then, either all of them have length less than (2π − 1
8
)ρ0

and in this case we set % := ρ0, or H0(JE ∩ Bρ0/2) = 2. In this last event we

are back in the setting of item (ii) above with ρ0
2

playing the role of ρ0. Thus

∂Bρ0/2 \ JE is either the union of two arcs, both with length smaller than 2
3
πρ0

(and we set % := ρ0
2

), or JE ∩Bρ0/4 = ∅, and then set % := ρ0
4

.

Summarizing: % ≥ ρ0/4 and

(b1) either JE ∩B% = ∅;
(b2) or JE ∩B% is a segment and ∂B% \ JE is the union of two arcs each with length

< 4π
3
%;

(b3) of JE ∩ B% is a spider and ∂B% \ JE the union of three arcs each with length

< (2π − 1
8
)%.
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By (5.2) in Theorem 5.1 and the local Hausdorff convergence of (Juk)k∈N to JE on B1,

it is possible to select L > 0 such that for all k ≥ L the following condition holds trueˆ
B%

|∇uk|2 dx+ distH(JE ∩B%, Juk ∩B%) ≤ ε %.

By Theorem 2.1 (we keep the notation introduced there), we may find a constant

β ∈ (0, 1/3) such that for all k ≥ L one of the following alternatives happens

(c1) Juk ∩B% = ∅;
(c2) For each t ∈ ((1 − β)%, %), ∂Bt \ Juk is the union of two arcs γk1 and γk2 each

with length < (2π − 1
9
)t, whereas Juk ∩ Bt is connected and divides Bt in two

components Bk
1 , Bk

2 with ∂Bk
i = γki ∪ (Juk ∩Bt);

(c3) For each t ∈ ((1 − β)%, %), ∂Bt \ Juk is the union of three arcs γk1 , γk2 and γk3
each with length < (2π − 1

9
)t, whereas Bt ∩ Juk is connected and divides Bt in

three connected components Bk
1 , Bk

2 and Bk
3 with ∂Bk

i ⊂ γki ∪ (Juk ∩Bt).

We finally choose r ∈ ((1− β)%, %) and a subsequence, not relabeled, such that

(A) gk := uk|∂Br belongs to W 1,q(γ) for any connected component γ of ∂Br \ Juk ;
(B) gk satisfiesˆ

∂Br\Juk

|g′k|qdH1 ≤ 1

β%

ˆ
B%

|∇uk|q dx ≤
4

βρ0

ˆ
B1

|∇uk|q dx.

Let us conclude our argument by showing that (6.1) is violated for k sufficiently big.

To this aim we note first that the choices of ρ, β and % yield r > ρ.

In case (c1) holds, ∂Br ∩ Juk = ∅ and uk is the harmonic extension of its boundary

trace gk. Hence, for some constant C > 0 (independent of k)ˆ
Bρ

|∇uk|2 ≤
ˆ
Br

|∇uk|2 ≤ C min
c
‖gk − c‖2

H1/2(∂Br)

≤ C

(ˆ
∂Br

|g′k|q dH1

)2/q (B)

≤ C

(
4

βρ0

ˆ
B1

|∇uk|q dx
)2/q

,

contradicting (6.1).

In case (c2) or (c3) hold the construction is similar. Denote by Kk the minimal

connection relative to Juk ∩ ∂Br. Then Kk splits Br into two (case (c2)) or three (case

(c3)) regions denoted by Bi
r. Let γi be the arc of ∂Br contained in the boundary of Bi

r.

By Lemma 2.3 we find a function wik ∈ W 1,2(Br) with boundary trace gk and satisfying

for some absolute constant C > 0
ˆ
Br

|∇wik|2 dx ≤ C

(ˆ
γi
|g′k|q dH1

)2/q

. (6.2)
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Denote by wk the function equal to wik on Bi
k. It is easy to check that wk ∈ SBV (Br),

and that Jwk ⊆ Kk. The minimality of uk implies thenˆ
Bρ

|∇uk|2 ≤
ˆ
Br

|∇uk|2 ≤
ˆ
Br

|∇wk|2 +H1(Kk)−H1(Juk ∩Br) ≤
ˆ
Br

|∇wk|2

(6.2)

≤ C

(ˆ
∂Br\Juk

|g′k|q dH1

)2/q
(B)

≤ C

(
4

βρ0

ˆ
B1

|∇uk|q dx
)2/q

, (6.3)

contradicting (6.1). �

Remark 6.1. After the first technical step in which we reduce to the case where the

sets Juk have a nice structure, the core of the argument is the construction of the

competitor wk. Our knowledge of Juk is used to make Jwk shorter than Juk , which is a

key point for (6.3).

In order to give an explicit estimate for the constant C in Theorem 1.3 it would then

suffice to find a variational argument which avoids the first compactness step of the

proof, i.e. an argument which works without any apriori knowledge of the structure of

Juk . To this aim one would like to construct a competitor wk enjoying the bounds

ˆ
Br

|∇wk|2 ≤ C

(∑
i

ˆ
γi
|g′k|qdH1

) 2
q

(6.4)

and

H1(Juk ∩Br)−H1(Jwk ∩Br) ≤ C

(ˆ
B1

|∇uk|q dx
)2/q

. (6.5)

Under the present assumptions we do not know, however, whether Juk “separates”

those pairs of arcs γi, γj for which ∣∣∣∣−ˆ
γj
gk −−

ˆ
γi
gk

∣∣∣∣
is large compared to ‖g′k‖Lq . To overcome this difficulty we could enlarge Juk so that

Jwk does separate those pairs of arcs. In this case the total added length should then

be estimated in terms of ∇uk. As suggested by Guy David to the first author, this

might be done by adding portions of level sets of uk, which in turn can be estimated

in terms of ∇uk using the coarea formula. Some technical lemmas exploiting this idea

are already present in [8].

7. A remark on the Mumford-Shah conjecture

In this section we shall prove Proposition 1.5, for which we need the following prelim-

inary observation.



22 DE LELLIS AND FOCARDI

Lemma 7.1. Let f ∈ L4,∞
loc (Ω), then for all ε > 0 the set

Dε :=

{
x ∈ Ω : lim inf

r

1

r

ˆ
Br(x)

f 2(y) dy ≥ ε

}
(7.1)

is locally finite.

Proof. We shall show in what follows that if f ∈ L4,∞(Ω) then Dε is finite, an obvious

localization argument then proves the general case.

Let ε > 0 and consider the set Dε in (7.1) above. First note that, for any Br(x) ⊂ Ω

and any λ > 0 we have the estimateˆ
{y∈Br(x): |f(y)|≥λ}

f 2(y) dy ≤
ˆ
{y∈Ω: |f(y)|≥λ}

f 2(y) dy

= 2

ˆ +∞

λ

t |{y ∈ Ω : |f(y)| ≥ t}|dt

≤
ˆ +∞

λ

2K

t3
dt =

K

λ2
. (7.2)

If x ∈ Dε and r > 0 satisfy ˆ
Br(x)

f 2(y) dy ≥ ε

2
r, (7.3)

choosing λ = 2(K/rε)1/2 in (7.2) we concludeˆ
{y∈Br(x): |f(y)|< 2(K

rε
)1/2}

f 2(y) dy ≥ ε

4
r. (7.4)

Furthermore, the trivial estimateˆ
{y∈Br(x): |f(y)|<λ}

f 2(y) dy < πλ2r2,

implies for λ = (ε/8πr)1/2

ˆ
{y∈Br(x): |f(y)|<( ε

8πr
)1/2}

f 2(y) dy <
ε

8
r. (7.5)

By collecting (7.4) and (7.5) we inferˆ
{y∈Br(x): ( ε

8πr
)1/2≤|f(y)|< 2(K

rε
)1/2}

f 2(y) dy ≥ ε

8
r,

that in turn implies

|{y ∈ Br(x) : |f(y)| ≥ (
ε

8πr
)1/2}| ≥ ε2r2

32K
. (7.6)
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Let {x1, . . . , xN} ⊆ Dε and r > 0 be a radius such that the balls Br(xi) ⊆ Ω are

disjoint and (7.3) holds for each xi. Then, from (7.6) and the fact that f ∈ L4,∞(Ω),

we infer

N
ε2r2

32K
≤ |{y ∈ Ω : |f(y)| ≥ (

ε

8πr
)1/2}| ≤ K(8πr)2

ε2
=⇒ N ≤ 211K2π2

ε4
,

and the conclusion follows at once. �

We are now ready to give the proof of Proposition 1.5.

Proof of Proposition 1.5. To prove the direct implication we assume without loss of

generality that Ω = BR for some R > 1, being the result local. In addition, we may

also suppose that Ju ∩ ∂B1 = {y1, . . . , yM}. Theorem 2.1 and Theorem 5.1 yield that

there exists some ε0 > 0 such that for all points x ∈ BR \ Dε0 the set Ju ∩ Br(x) is

either empty or diffeomorphic to a minimal cone, for some r > 0. In particular, in the

latter event Br(x) \ Ju is not connected.

Supposing that Dε0 ∩B1 = {x1, . . . , xN}, and setting

Ωk := B1−1/k \
N⋃
i=1

B1/k(xi) ,

a covering argument and the last remark give that for every x ∈ Ωk ∩ Ju there is a

continuous arc γk : [0, 1] → Ju with γk(0) = x and γk(1) = y ∈ ∂Ωk. Then, the

sequence (γ̃k)k∈N of reparametrizations of the γk’s by arc length converges to some arc

γ : [0, 1]→ Ju with γ(0) = x and γ(1) ∈ {x1, . . . , xN , y1, . . . , yM}.
From this, we deduce that B1 ∩ Ju has a finite number of connected components.

Bonnet’s regularity results [4, Theorems 1.1 and 1.3] then provide the thesis.

To conclude we prove the opposite implication. To this aim we consider Ω′ ⊂⊂
Ω′′ ⊂⊂ Ω and suppose that Ju∩Ω′′ is a finite union of C1 arcs of finite length. Observe

that these arcs are locally C∞ (see for instance [2]). Denote by {x1, . . . , xN} the

end points of the arcs in Ω′ and let r > 0 be such that B4r(xi) ⊆ Ω′ for all i, and

B4r(xi) ∩ B4r(xj) = ∅ if i 6= j. [2, Theorem 7.49] (or [8, Proposition 17.15]) implies

that ∇u has a C0,α extension on both sides of (Ω′′ ∩ Ju) \ ∪iBr(xi) for all α < 1. In

particular, ∇u is bounded on Ω′ \ ∪iB2r(xi).

Next consider the sequence rk = r/2k−1, k ≥ 0, and fix i ∈ {1, . . . , N}. Then, by

[8, Proposition 37.8] (or [4, Theorem 2.2]) we can extract a subsequence kj ↑ ∞ along

which the blow-up functions uj(x) := r
−1/2
kj

u(xi + rkjx) − aj converge to some w in

W 1,2
loc (B4 \ K), for some piecewise constant function aj : Ω \ Juj → R, and (Juj)j∈N

converges to some set K in the Hausdorff metric.
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By Bonnet’s blow-up theorem [4, Theorem 4.1] only two possibilities occur: either xi
is a spider point, i.e., K is a spider and w is locally constant on B4 \K, or xi is a spiral

point, i.e., up to a rotation K = {(x, 0) : x ≤ 0} and w(ρ, θ) = C ±
√

2
π
ρ · sin(θ/2) for

θ ∈ (−π, π), ρ > 0 and some constant C ∈ R (note that in principle the blow-up limit

in this case might be non unique, as if Ju was a slow-turning spiral ending in xi (cp.

with [8, Theorem 69.29])).

In both cases, we claim that ∇uj has a C0,α extension on the closure of each connected

component of Uj := (B3 \ B1) \ Juj with supj ‖∇uj‖L∞(Uj) ≤ C. This follows as in [2,

Theorem 7.49] (or [8, Proposition 17.15], see also Remark 2.2) locally straightening

Juj ∩ (B4 \B1/2) onto K ∩ (B4 \B1/2) via a C1,α conformal map, a reflection argument

and standard Schauder estimates for the laplacian. Scaling back the previous estimate

gives

|∇u(x)| ≤ C |x− xi|−1/2 for x ∈ ∪j∈N(B3rkj
(xi) \Brkj

(xi)),

in turn from this, the maximum principle and Hopf’s lemma we infer

|∇u(x)| ≤ C r
−1/2
k for x ∈ B2r(xi) \Brk(xi).

The latter inequality finally implies ∇u ∈ L4,∞(B2r(xi)).

Eventually, we are able to conclude ∇u ∈ L4,∞(Ω′), being on one hand ∇u bounded

on Ω′ \ ∪iB2r(xi), and on the other hand belonging to L4,∞(∪iB2r(xi)). �

Appendix A

Lemma A.1. Let Ω ⊂ B1 be a topological disk with ∂Ω locally connected. Assume that

∂Ω = α ∪ L, where α is a closed arc of ∂B1 with (distinct) extrema a and b and L a

compact set with L ∩ α = {a, b}. If p ∈ α \ {a, b}, then ∂Ω \ {p} is connected.

Proof. We apply [22, Continuity Theorem, page 18] to conclude that there is a con-

tinuous map z : B1 → Ω such that z|B1 is a (conformal) homeomorphism onto Ω. By

[22, Proposition 2.5], p disconnects ∂Ω if and only if z−1(p) consists of more than one

point. Observe that if q is another point of α \{a, b}, then ∂Ω\{p} is connected if and

only if ∂Ω \ {q} is connected. Therefore, either each point p ∈ α \ {a, b} has a single

counterimage through z or they all have more than one counterimage. Assume by

contradiction that each p ∈ α\{a, b} has at least two counterimages. By [22, Corollary

2.19] the set of p’s with more than two counterimages is countable.

Consider now any open arc β ⊂⊂ α with endpoints a′, b′ such that z−1(a′) and z−1(b′)

consist both of two points. z−1(β) is an open subset of S1 and hence consists of (at

most) countably many disjoint arcs ηi. The endpoints of each ηi are, by continuity

contained in z−1({a′, b′}. Hence there are exactly two such arcs. Consider a point
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c ∈ α \ {a, b} having exactly two distinct counterimages c1 and c2 and let βi be a

sequence of arcs as above with ∩iβi = {c}. Obviously ∩iz−1(βi) = {c1, c2}. Thus, for

i sufficiently large there are at least two connected components η1 and η2 of z−1(βi),

at positive distance, one containing c1 and the other containing c2. η1 and η2 are two

arcs. Let di, ei be their respective extrema and let a′, b′ be the extrema of βi =: β. We

can (after relabiling the extrema) distinguish two cases.

Case 1 z(d1) = z(e1) = a′ and z(d2) = z(e2) = b′. Consider the open arcs delimited

by d1 and c1 and by c1 and e1. They are both mapped onto the arc delimited by a′

and c. Now, since the points with more than 2 preimages are countably many, the

restriction of z to each arc must be injective. Passing to a smaller arc, we find then an

open arc ω ⊂ α and two open arcs ω1, ω2 ⊂ S1 such that z|ωi is an homeomorphism

onto ω and the distance between the ωi is positive.

Case 2 z(d1) = z(d2) = a′ and z(e1) = z(e2) = b′. Then the two arcs ω1 and ω2 are

precisely given by η1 and η2, whereas ω can be chosen equal to β: indeed, again by the

countability of the points with more than two preimages, z|ηi must be injective, which

means that z maps each ηi homeomorphically onto β.

We fix the arcs ω1, ω2 and ω found above. Let q ∈ ω be such that z−1(q) consists

of two points. Observe that if r belongs to a sufficiently small neighborhood of q,

then z−1(r) consists also of two points. Otherwise there would be a sequence (rk)k∈N
converging to q with z−1(rk) consisting each of at least three points. Since z−1(q) ∩ ωi
consists of exactly one point, this would give a sequence (r′k)j∈N ⊂ S1 \ (ω1 ∪ ω2) such

that z(r′k) = rk. But then there must be a point r′∞ ∈ S1 \ (ω1 ∪ ω2) with z(r′∞) = q.

Since each ωi contains a preimage of q, we conclude that q has at least three preimages,

which is a contradiction.

Therefore, if we make ω smaller, we can assume that z−1(ω) = ω1∪ω2, as well as that

z|ωi is an homeomorphism onto ω.

Let d and e be the endpoints of ω and consider a point P ∈ Ω. Let S be the open

sector delimited by the segments [P, d], [P, e] and the arc ω. If ω is sufficiently small

and the point P sufficiently close to ω, the sector S is containd in Ω. We then define

the map R : [0, 1] × (B1 \ {P}) → B1 as the usual retraction: if x ∈ B1, we let s be

the halfline originating in P and containing x and we define R(1, x) = s ∩ ∂B1 and

R(λ, x) = (1 − λ)x + λR(1, x). Consider the map ζ = R(1, z) (recall that Ω ⊆ B1).

R is an homotopy between z|∂B1 and ζ. We define deg(ζ, P ) as the degree in P of

any continuous extension of ζ to B1 (note that this degree does not depend upon the

chosen extension, see [17, Theorem 2.14]). Since P is not in the image through R(λ, z)
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of ∂B1, by [17, Theorem 2.12] we have deg(z, P ) = deg(ζ, P ). On the other hand, since

z|B1 is a diffeomorphism onto Ω and P ∈ Ω, deg(z, P ) is either 1 or −1. Without loss

of generality, we can assume that deg(z, P ) = 1. Thus deg(ζ, P ) = 1 as well. But since

ζ maps S1 = ∂B1 into itself, deg(ζ, P ) is the winding number W of ζ (see page 20 of

[17]).

Observe next that R(1, ·) is the identity on ω and that it maps any point outside the

sector S in ∂B1 \ ω. Therefore, ζ−1(ω) = ω1 ∪ ω2 and ζ|ωi = z|ωi . It is easy to see

that ζ can be realized as the uniform limit of smooth maps ζk : S1 → S1 retaining the

properties that ζ−1
k (ω) = ω1 ∪ ω2 and that ζk|ωi is an homeomorphism onto ω. So, for

k large enough the winding number W of ζk must be 1. However, if we take a regular

point O of ζk, we can compute W using the formula

W =
∑

q∈ζ−1
k (O)

sign (dζk(q)) .

But for O ∈ ω, the set ζ−1
k (O) consists of exactly two points and hence W is 2, 0 or

−2. This is a contradiction and completes the proof. �

Lemma A.2. Let A ⊂ R2 be a bounded open set homeomorphic to the disk B1. Then

∂A is connected.

Proof. Let z : B1 → A be an homeomorphism. For all k ∈ N \ {0} set

Ek := B1 \B1−1/k and Gk := z(Ek) .

We claim that ⋂
k

Gk = ∂A . (A.1)

From (A.1) the claim of the lemma follows easily. Indeed each Ek is connected and

so is z(Ek), since z is an homeomorphism. But then Gk is the closure of a connected

set, and hence connected. We conclude that the compact sets Gk converge in the sense

of Hausdorff to ∂A and the connectedness of ∂A follows easily (see for instance [14,

Theorem 3.18]).

In order to show (A.1) we first observe that z(Ek) ⊂ A and hence Gk ⊂ Ā. On the

other hand, if x ∈ A, y = z−1(x) ∈ B1 and there esxists ρ > 0 such that Bρ(y) ⊂⊂ B1.

Thus, for k large enough, z(Bρ(y))∩ z(Ek) = ∅, and, since z(Bρ(y)) is a neighborhood

of x, x 6∈ Gk. We therefore conclude ∩kGk ⊂ ∂A. Next, consider x ∈ ∂A. Then there

is a sequence xk → x with (xk)k∈N ⊂ A. A subsequence of (z−1(xk))k∈N converges then

to an element y ∈ B1 and y must necessarily belong to ∂B1. Thus, for any fixed k,

z−1(xk) ∈ Ek provided k is large enough. But this easily implies x ∈ Gk = z(Ek).

Hence we have shown the inclusion ∂A ⊂ ∩kGk, which concludes the proof. �
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