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Abstract

In this paper we study the nonconvex anisotropic mean curvature flow of a hypersur-
face. This corresponds to an anisotropic mean curvature flow where the anisotropy has
a nonconvex Frank diagram. The geometric evolution law is therefore forward-backward
parabolic in character, hence ill-posed in general. We study a particular regularization
of this geometric evolution, obtained with a nonlinear version of the so-called bidomain
model. This is described by a degenerate system of two uniformly parabolic equations of
reaction-diffusion type, scaled with a positive parameter ε. We analyze some properties
of the formal limit of solutions of this system as ε → 0+, and show its connection with
nonconvex mean curvature flow. Several numerical experiments substantiating the formal
asymptotic analysis are presented.

1 Introduction

Mean curvature flow, namely the motion of a hypersurface having normal velocity equal to
its mean curvature, is the gradient flow of the area functional, and has been the subject
of several papers in the last few years, see [12], [28], [21], [29], [30], and the more recent
monographs [17], [22], [31] and the references therein. Among the various extensions of this
geometric evolution, that has been considered for geometric reasons and also for applications
to phase transitions and crystals growth, there is the so-called anisotropic mean curvature
flow. In this case, the ambient space Rd is endowed with a Riemann, or more generally a
Finsler [2] metric ϕ inducing the corresponding distance dϕ. Then anisotropic mean curvature
flow is the gradient flow of the ϕ-anisotropic perimeter functional (called also weigthed area).
The integrand of this functional is the dual ϕo of ϕ weighting the normal directions to the
hypersurface, which consequently evolves with velocity along its Cahn-Hoffman direction nϕ

equal to its ϕ-anisotropic mean curvature, see for instance [25], [11], [10]. A sort of limiting
case is when ϕ is polyhedral, and this corresponds to crystalline mean curvature flow, where
the mean curvature becomes, in some sense, nonlocal: see [38], [39], [40], [20], [23], [24], [6],
[7], [8].
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A natural subsequent step in the study of geometric evolutions of hypersurfaces, and which
is our main interest in the present paper, is to consider what we can call the nonconvex mean
curvature flow. This corresponds to an anisotropic mean curvature flow where, however, the
unit ball of ϕo (that with a small abuse of language we continue to call Frank diagram, as
it is customary in the Finsler case) is not anymore convex, but is just a smooth bounded
star-shaped symmetric1 set containining the origin in its interior. Here the situation becomes
immediately quite intricated: just to mention only a few aspects of the problem, the bound-
ary of the dual body of the Frank diagram has, in general, self-intersections and cusps. In
particular, we cannot straightforwardly speak about the distance induced by a norm dual
of ϕo. Furthermore, the nonconvexity of ϕo implies that we are considering the gradient
flow of a nonconvex (and nonconcave) functional: this leads to a forward-backward parabolic
evolution problem, which for a large set of initial data is, in general, ill-posed. From the
mathematical point of view, and to our best knowledge, understanding a class of evolving
hypersurfaces where reasonably looking for a gradient flow solution in accordance with nu-
merical experiments, is an open problem, as well as a related short time existence result.
Taking an initial hypersurface having all normals in the region where ϕo is locally convex,
shows that the resulting evolution should not coincide with the anisotropic mean curvature
evolution corresponding to the convexified of ϕo. The numerical experiments of [19] (see
also [4] in a nongeometric case) obtained by suitable regularization procedures, confirm this
assertion. Note, incidentally, that no comparison principle should be expected for noncon-
vex mean curvature flow, at least in the standard form which is valid for anisotropic and
crystalline mean curvature flows.
When facing an ill-posed parabolic problem, a natural idea is to regularize it in some ways,
and then try to pass to the limit as the regularization parameter goes to zero, see for instance
[36], [35], [16], [19], [18], [4], [37] and references therein. As it happens for forward-backward
parabolic equations in one space dimension, various different regularizations are possible, and
in principle they could lead to different (subsequential) limits, even for a large class of initial
data. In the case of geometric evolutions one possibility is to add to the evolution a higher
order term, which for instance in the case of curves (d = 2) is usually obtained by computing
the first variation of the elastica functional (see [5] for the case of mean curvature flow).
Our interest here is focused on a completely different regularization, coming from the so-called
“bidomain model”, which provides an approximating problem described by a degenerate
system of two uniformly parabolic partial differential equations. The two equations are of
reaction-diffusion type in the scalar unknown functions ui

ε, ue
ε, and the system reads as follows:{

ε2∂t(ui
ε − ue

ε)− ε2divT i(∇ui) + f(ui
ε − ue

ε) = 0,

ε2∂t(ui
ε − ue

ε) + ε2divT e(∇ue
ε) + f(ui

ε − ue
ε) = 0.

(1.1)

The function f in the reaction terms is the derivative of a potential W with two minima at
equal depth. For definiteness we fix W (u) := (u2 − 1)2 for u ∈ R, so that f(u) = 4u(u2 − 1),
see Figure 1.
In system (1.1), ε > 0 is a small parameter that will tend to zero, and T i, T e : Rd → Rd are

1Symmetry of the Frank diagram leads to symmetry of the related distance, which in turn implies that the
related anysotropic mean curvature is independent of the choice of the orientation of the flowing hypersurface.
The results of this paper hold true also in the nonsymmetric case.
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Figure 1: Plot of the potential W (left) and its derivative f (right).

two possibly nonlinear monotone functions defined as

T i =
1
2
∇αi, T e =

1
2
∇αe,

where
αi, αe : Rd → [0,+∞) (1.2)

are smooth, uniformly convex, and positively homogeneous functions of degree two, i.e.

αi(µξ?) = µ2αi(ξ?), αe(µξ?) = µ2αe(ξ?), µ ≥ 0, ξ? ∈ Rd, (1.3)

and consequently T i and T e are positively homogeneous of degree one2. Using the Euler
identity for homogeneous functions, the positive two-homogeneity of αi and αe entails

αi(ξ?) = 〈ξ?, T i(ξ?)〉, αe(ξ?) = 〈ξ?, T e(ξ?)〉, ξ? ∈ Rd, (1.4)

and
T i(ξ?) = M i(ξ?)ξ?, T e(ξ?) = M e(ξ?)ξ?, ξ? ∈ Rd, (1.5)

where M i(ξ?) and M e(ξ?) are symmetric positive definite (d × d) matrices depending on ξ?

and positively homogeneous of degree zero, given by

M i(ξ?) = (M i
hk(ξ

?)) with M i
hk(ξ

?) =
1
2

∂2αi(ξ?)
∂ξ?

h∂ξ?
k

=
∂T i

h(ξ?)
∂ξ?

k

, ξ? ∈ Rd, (1.6)

M e(ξ?) = (M e
hk(ξ

?)) with M e
hk(ξ

?) =
1
2

∂2αe(ξ?)
∂ξ?

h∂ξ?
k

=
∂T e

h(ξ?)
∂ξ?

k

, ξ? ∈ Rd. (1.7)

Remark 1.1. Symmetry of αi and αe, i.e. αi(−ξ?) = αi(ξ?) and αe(−ξ?) = αe(ξ?) is not
required here. However it is useful to keep in mind that a nonsymmetric choice would lead to
a notion of anysotropic “norm” ϕ and “distance” distϕ (see Section 3.2) that do not satisfy
the symmetry property.

To continue our discussion we need the concept of combined anisotropy.
2The notation ξ? is used to recall that ξ? is considered as a covector.
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Definition 1.2. We define Φ, he combined anisotropy of αi and αe, as follows:

Φ2 :=
[

1
αi

+
1
αe

]−1

=
αiαe

αi + αe
. (1.8)

We set
FΦ := {ξ? ∈ Rd : Φ(ξ?) ≤ 1},

and we call FΦ the Frank diagram of the combined anisotropy. We also let TΦ := 1
2∇(Φ)2.

Remark 1.3. A very special situation corresponds to linearly dependent anisotropies, i.e.
when αe is a positive multiple of αi (this is called the case of equal anisotropic ratio). In
these circumstances system (1.1) reduces (as it can be seen by taking a suitable convex
combination of the two equations) to a single reaction-diffusion equation of Allen-Cahn type
in the unknown ui

ε − ue
ε where the combined anisotropy is itself a factor times αi. The

mathematical study is not particularly new in this case, and therefore we will not address
the equal anisotropic ratio in the present paper.

Before describing in more details the origin of the bidomain model and hence of system (1.1),
it is worthwhile to advise the reader that:

(i) we will distinguish the linear bidomain model from what we will call the nonlinear
bidomain model. The linear case corresponds to when the maps T i and T e are linear3,
hence αi and αe are two riemannian metrics,

αi(ξ?) = 〈M iξ?, ξ?〉, αe(ξ?) = 〈M eξ?, ξ?〉, ξ? ∈ Rd, (1.9)

and M i, M e are two symmetric positive definite matrices independent of ξ?. This is a
case studied in the literature, and a well-posedness result for system (1.1) is available
[15]. We believe the nonlinear case, of which we are not aware about well-posedness
results, to be natural for various reasons, that will be made more clear, for instance, in
Sections 2 and 3. In the present paper we will be interested in the asymptotic behaviour
of solutions ui, ue to system (1.1) as ε → 0+ also in the nonlinear case.

(ii) Convexity of Φ2 is not guaranteed even in the linear case, and this is indeed the main
point of the present paper. The Frank diagram FΦ of Φ is, indeed, a smooth bounded
star-shaped set containing the origin in its interior, and is not necessarily convex. Notice
that when it happens that FΦ is convex, then Φ is in general a Finsler norm, and not
necessarily a Riemann one, even when αi and αe are riemannian.

(iii) The result of Section 3 shows that, asymptotically as ε → 0+, the quantity ui
ε − ue

ε

has a zero-level set that, approximately, evolves by Φ-anisotropic mean curvature. This
is proved here only at a formal level, based on matched asymptotic expansions, and
assuming uniform convexity and smoothness of Φ. A previous formal result, in the
linear case (again valid under the assmption that Φ is uniformly convex and smooth),

3T i and T e are in this case linear in the gradient. In the literature they are usually supposed to depend
also on the position x, so that T i = T i(x,∇ui(x)), T e = T e(x,∇ue(x)), and the two matrices M i, Me in (1.9)
depend on the position x. The x-dependence will not be considered in the present paper.
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appeared in [3], and one of its consequences is that ui
ε − ue

ε tends to solve a nonlinear
single reaction-diffusion equation leading in the limit ε → 0+ to Φ-anisotropic mean
curvature flow (see also Section 5.1 for the nonlinear case). This result has, in some
sense, been confirmed from a different perspective in [1]; in this paper the authors
showed that system (1.1), in the linear case and for suitable choices of M i and M e,
is the gradient flow, with respect to a degenerate scalar product, of a sequence of
functionals (defined on vector-valued functions) which Γ-converge, as ε → 0+, to a
limit integral functional. The unit ball of the limit integrand is proven to contain FΦ

(and therefore its convex hull co(FΦ)), and to be properly contained in the smallest
ellipsoid containing co(FΦ)4.

(iv) Our main numerical simulations in Section 6 are based on a discretization of system
(1.1) when Φ is not convex, in the linear case and for d = 2, thus combining two suitable
ellipses (the Frank diagrams of αi and αe). A rigorous justification of the convergence
of {ui

ε − ue
ε = 0} to a nonconvex mean curvature flow is missing, and seems a difficult

open problem.

1.1 The bidomain model

We now come to a quick introduction of the (linear) bidomain model, referring to the papers
[15], [14] and references therein for the details. The bidomain model for the cardiac tissue
originates with the aim of modelling the propagation of the electric signal in the cardiac
muscle and of reproducing a complete heartbeat. The myocardium is first considered at
a microscopic level as decomposed in an intra-cellular and an extra-cellular domain, where
the electric potential is governed through a Poisson equation. The two potentials ui (intra-
cellular) and ue (extra-cellular) are coupled at the common interfacial membrane where the
difference ui−ue (called transmembrane potential) plays the most importan role. It first varies
rapidly during the depolarization phase where it reaches a plateau value s+; then the (less
rapid) repolarization phase allows to recover the basic rest state s−. The resulting ionic model
is governed by the Hodgkin-Huxley formalism [27] and requires also the introduction of a
number of so-called gating variables. These can be reduced to a single recovery variable in the
FitzHugh-Nagumo simplification, see e.g. [32]. The recovery variable is governed by a simple
ODE and is basically only required to model the repolarization phase. However we are mainly
interested in the dynamics of the depolarization phase, so that we shall simply neglect the
recovery variable. This microscopic model is then locally averaged by using a homogeneization
technique (see [14]) leading to a macroscopic model in which the two potentials, now indicated
by ui

ε and ue
ε, coexist in a common domain Ω representing the cardiac tissue. The (small)

quantity ε > 0 combines in a nondimensional way the various dimensional physiological
constants that characterize the electric properties of the tissue. The complex geometry of
the microscopic model, involving the shape of the cells, leads to the presence of a strong
anisotropy at the macroscopic level. The anisotropy is described by means of two symmetric
positive definite matrices mentioned in item (i) above: M i governes the anisotropy of the
intra-cellular potential ui

ε, whereas M e refers to the extra-cellular potential ue
ε. The two

4It is not known whether there is coincidence between the unit ball of the integrand of the Γ-limit and
co(FΦ).
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matrices have common principal axes aligned with the direction of the longitudinal axis
of the cells which are typically quite elongated in shape. The transmembrane potential
ui

ε − ue
ε typically exhibits a thin transition region of thickness of order ε that separates the

advancing depolarized region where ui
ε − ue

ε ≈ s+ from the “rest” region where ui
ε − ue

ε ≈ s−,
s− < s+ are the two minima of a double-well potential W with W (s+) < W (s−) during
depolarization. Since we are interested mostly in the curvature effect, we shall however take
W (s−) = W (s+), see Figure 1. The anisotropy governed by M i and M e is highly space
dependent, since the orientation of the myocardium fibers changes from point to point and
undergoes approximately a 120 degrees variation between the external boundary and the
internal (atrial/ventricular) boundary. As already said in a previous footnote, in this paper
we will neglect this dependence, and we will concentrate only on the gradient dependence of
T i and T e.
Duly motivated, let us address now the nonlinear bidomain model. For a given bounded
domain Ω ⊂ Rd, d = 2, 3 and ε ∈ (0, 1], we will consider system (1.1), coupled with an initial
condition5 for the difference ui

ε(·, 0)− ue
ε(·, 0) and suitable Dirichlet boundary conditions on

∂Ω for both ui
ε and ue

ε, guaranteeing in particular that ui
ε − ue

ε = 1 +O(ε2).
Basing on the results of Section 3, we will numerically analyze the nonconvex Φ-mean cur-
vature flow, mainly in the special case of inverted anisotropic ratio. This case is somehow
the opposite of the equal anisotropy ratio mentioned in Remark 1.3. In the linear case this
corresponds to matrices M i and M e having common principal directions (as in the equal
anisotropy assumption) and with eigenvalues λ1, λ2, λ2 for M i and correspondingly λ2, λ1, λ1

for M e (if d = 2 we have respectively λ1, λ2 and λ2, λ1). In particular we have M i+M e = λId
with λ := λ1 + λ2. As we will see in Section 4.1, if the ratio λ2/λ1 is sufficiently large this
leads to a nonconvex combined anisotropy Φ.
Our numerical experiments will focus in particular on the wrinkling phenomenon. Indeed,
due to the backward character of the expected limit geometric equation, a sort of instability
shows up, resulting in a quick formation of a microstructure6 in parts of the evolving interface
[19]. This is called the wrinkling phenomenon, and has been numerically observed for other
regularizations of backward-forward parabolic equations, see for instance [4]. The nature of
the wrinkling phenomenon deserves further investigation, as well as a rigorous proof of its
existence.
The plan of the paper is the following. In Section 2 we make some remarks on the prop-
erties of the combined anisotropy Φ, that will be used throughout the paper, and we give
some geometric insight on the construction of the set FΦ. In Section 3 we perform the
matched asymptotic expansion for solutions to system (1.1), by transforming it in an equiv-
alent parabolic-elliptic system (see (3.2)). In Section 4 we focus on the case when Φ is
nonconvex, in the inverted anisotropic ratio regime, by explicitly computing examples of
nonconvex combined anisotropies. In Section 5 we describe the discrete algorithm concerning
system (1.1), that we employ for the numerical simulations. In Section 6 we describe and
comment on the results of the numerical experiments, performed with d = 2, for the linear
bidomain model and in the case of inverted anisotropic ratio.

5See [15] for a discussion on the proper boundary and initial conditions for the linear bidomain model.
6The observed microstructure profiles are smoothened by the parabolic system (1.1).

6



2 Remarks on the combined anisotropy

It is interesting to observe how to geometrically construct the Frank diagram of Φ, starting
from the Frank diagrams of αi and αe. We shall denote by S the collection of all subsets of
Rd that are compact, star-shaped7 and having the origin in their interior. Let F1, F2 ∈ S,
Given a unit vector ν ∈ Rd and λ1, λ2 ∈ R+ such that λiν ∈ Fi we construct the point√

λ2
1 + λ2

2 ν. The set F of the points obtained in this way belongs to S and we call it the
star-shaped combination of F1 and F2. If F1 and F2 are smooth, then also their star-shaped
combination is smooth. When F1 = {αi ≤ 1} and F2 = {αe ≤ 1}, for αi and αe as in (1.2),
(1.3), then the resulting set F is the Frank diagram FΦ of the combined anisotropy Φ.
The collection of convex sets in S is not closed under star-shaped combination, an explicit
example of this fact will be constructed in Section 4 and it would be interesting to characterize
those sets in S that can be obtained as star-shaped combination of two convex sets in S. Note
that any convex set can be obtained by star-shaped combination of two suitably rescaled
copies of itself.
In dimension d = 2 it is convenient to represent a set F ∈ S as the inverse polar plot of some
function γF = γF (θ), θ ∈ R/2πZ, i.e. F = {r(cos θ, sin θ) : 0 ≤ r ≤ 1

γF (θ)}. The associated
function γF satisfies 0 < F− = infθ γF ≤ γF ≤ supθ γF = F+. If F is convex, then it is the
Frank diagram of the anisotropy associated to ϕo(ρ(cos θ, sin θ)) = ργF (θ). Given F,G ∈ S,
the star-shaped combination H of F and G can now be represented by the function

γH(θ) =
γF (θ)γG(θ)√
γ2

F (θ) + γ2
G(θ)

.

For a smooth set F ∈ S (d = 2) it is well-known that its convexity is equivalent to γF +γ′′F ≥ 0.
It is convenient to introduce the functions8

HF :=
γ′F
γF

, KF :=
γF + γ′′F

γ3
F

.

In terms of such quantities it is possible to compute HH and KH for the star-shaped combi-
nation H of F and G as

HH =
γ2

GHF + γ2
FHG

γ2
F + γ2

G

, KH = KF +KG − 3
(HF −HG)2

γ2
F + γ2

G

(2.1)

If F ∈ S is smooth and convex, a direct computation involving the comparison between ∂F
and its tangent line at a generic point allows to obtain the estimate

γ2
F + (γ′F )2 ≤ F 2

+

which together with γF ≥ F− entails

|HF | ≤
F+

F−
− 1

7Throughout the paper, F is star-shaped means “F is star-shaped about the origin”, i.e. µx ∈ F for all
x ∈ F , µ ∈ [0, 1].

8The euclidean curvature of the boundary is given by γ+γ′′

(1+H2)3/2 = K
V 3 where V =

√
1+H2

γ
is the velocity of

a point on the boundary moving with unit angular speed.

7



leading to an upper bound for |HH | and lower bound for KH

|HH | ≤
G2

+

(
F+

F−
− 1
)

+ F 2
+

(
G+

G−
− 1
)

F 2
− + G2

−
, KH ≥ −3

(
F+

F−
+ G+

G−
− 2
)2

F 2
− + G2

−

that are uniform with respect to smoothing of a possibly nonregular pair of convex sets F ,
G ∈ S, so that they lead to conditions on the star-shaped combination of two generic possibly
nonsmooth convex sets in S. The first estimate leads to an internal angle condition with an
angle with aperture that depends on the four quantities F−, F+, G−, G+ and bisector through
the origin (thus excluding the presence of cusps pointing outwards), the second leads to an
external tangent ball condition with a ball having radius that depends on F−, F+, G−, G+

(thus excluding the presence of reentrant corners).
We can then conclude that Sconvex ⊂ Scombined ⊂ S, with proper inclusions, where Sconvex =
{F ∈ S : F is convex} and Scombined is the collection of the star-shaped combination of two
sets in Sconvex.

2.1 Representation of the hessian of the combined anisotropy

In Section 3 we will need various representations of the hessian ∇2Φ of Φ, that we present
here. A direct computation gives

1
2
∇2(Φ2) = Q + Q0, (2.2)

where

- Q = Q(ξ?) takes the form

Q =
1
2

(
αe

αi + αe

)2

∇2αi +
1
2

(
αi

αi + αe

)2

∇2αe =
(

αe

αi + αe

)2

M i +
(

αi

αi + αe

)2

M e,

(2.3)
which can also be written as

Q = Φ2

(
M i

αi
+

M e

αe
− M i + M e

αi + αe

)
, (2.4)

- Q0 = Q0(ξ?) depends only on first derivatives of αi, αe and takes the form

Q0 =− (αe)2

(αi + αe)3
∇αi ⊗∇αi − (αi)2

(αi + αe)3
∇αe ⊗∇αe

+
2αiαe

(αi + αe)3
∇αi ⊗∇αe = − w ⊗ w

(αi + αe)3
,

where w = w(ξ?) reads as w = αi∇αe − αe∇αi. Notice that

〈w(ξ?), ξ?〉 = 0, ξ? ∈ Rd, (2.5)

since 〈w(ξ?), ξ?〉 = αi(ξ?)αe(ξ?)− αe(ξ?)αi(ξ?), as a consequence of (1.4).

8



From (2.2) and (2.5) we obtain the following representation:

TΦ(ξ?) = Q(ξ?)ξ?, ξ? ∈ Rd. (2.6)

In terms of Q(·), which is homogeneous of degree zero, we can also recover the following
alternative representation of Φ:

Φ(ξ?) =
√
〈ξ?, Q(ξ?)ξ?〉, ξ? ∈ Rd.

Remark 2.1. We stress that, in view of its dependence on ξ?, matrix Q(ξ?) is not uniquely
defined by relation (2.6), even among symmetric positive definite matrices. Indeed the Hessian
of 1

2Φ2(ξ?) provides another (and perhaps more natural) matrix M c(ξ?) satisfying (2.6). It
differs from Q by Q0 = M c −Q. It is a matrix of rank one having ξ? in its kernel.

2.2 Notation when Φ is convex

When Φ is convex, we define the function ϕ : Rd → [0,+∞) as the dual Φo of Φ, therefore
by the convexity assumption Φ = ϕo and ϕ := ϕoo. We denote by distϕ(x, y) := ϕ(y − x)
the associated anisotropic distance between the two points x, y ∈ Rd, and distϕ(x,E) :=
inf{distϕ(x, y) : y ∈ E} the anisotropic distance of a point x ∈ Rd from a set E ⊆ Rd. We
also set

T o = TΦ. (2.7)

Notice that viewing in this case Φ as a dual justifies the use of the notation ξ? to indicate its
argument, which indeed should be considered as a covector, namely an element of the dual
of Rd.

3 Matched asymptotics for the nonlinear bidomain model

In this section we perform a formal matched asymptotic expansion for the nonlinear bidomain
model; we will follow the computations made in [3] for the linear case9, writing the parabolic
nonlinear system as an equivalent nonlinear parabolic-elliptic system. As we shall see, the
nonlinearities of T i and T e are source of various difficulties, so that the final result cannot be
deduced from [3]. Differently with respect to the linear case, we will make the computations
only up to the first order; a complete formal asymptotic analysis of this model, and of its
generalizations to arbitrary dimensions and to an arbitrary number of phases, will appear
elsewhere. The outcoming relevant result is that the nonlinear bidomain model formally
approximate the (convex and nonconvex) anisotropic mean curvature flow. It is worthwhile
to notice that various algebraic relations that we will use in the computations10 show that
the extension of the linear bidomain model to the nonlinear case is rather natural.
Due to the strong reaction term we expect the difference ui

ε(·, t) − ue
ε(·, t) to assume values

near the two minima ±1 of the potential W (indicating the two phases Ω−(t) and Ω+(t))
in most of the domain with a thin, smooth, transition region between the two phases where

9In [3] a double well potential with wells at different depth is considered, which gives an additional term
to the normal velocity of the interface. In the present paper we are concerned with a different scaling of the
equations, with respect to [3].

10See for instance (3.18), (3.23).
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it transversally crosses the unstable zero u = 0 of f . This motivates the use of matched
asymptotics in the outer Ω−(t) ∪ Ω+(t) region (outer expansion) and in the transition layer
(inner expansion). As a consequence, at least formally, the front generated by (1.1) propagates
with the same law as the front generated by an anisotropic mean curvature flow, with the
combined anisotropy.
Taking the difference of the two equations in (1.1) gives div

(
T i(∇ui

ε)+T e(∇ue
ε)
)

= 0, which
can be rewritten in terms of

uε := ui
ε − ue

ε, wε := ui
ε (3.1)

as div
(
T i(∇wε) + T e(∇wε −∇uε)

)
= 0. We end up with the equivalent formulationε2∂tuε − ε2div

(
T i(∇wε)

)
+ f(uε) = 0

div
(
T i(∇wε) + T e(∇wε −∇uε)

)
= 0.

(3.2)

3.1 Outer expansion

Expand formally uε and wε in terms of ε as uε = u0+εu1+ε2u2+..., wε = w0+εw1+ε2w2+....
Substituting these expressions into the parabolic equation in (3.2) and using the expansion
f(uε) = f(u0)+εf ′(u0)u1 +ε2

(
u2
1f ′′(u0)

2 + f ′(u0)u2

)
+O(ε3) we get f(u0) = 0 and u1f

′(u0) =
0. Hence, excluding u0 = 0 (the unstable zero of f), we obtain

u0 ≡ 1 or u0 ≡ −1, u1 ≡ 0,

and therefore
u2 =

1
f ′(u0)

div
(
T i(∇w0)

)
. (3.3)

Using the elliptic equation in (3.2) we find

div
(
T i(∇w0) + T e(∇w0)

)
= 0. (3.4)

This is, in general, a nonlinear elliptic equation (to be considered with suitable Dirichlet
boundary conditions on ∂Ω); the boundary conditions across the limit interface to be coupled
with (3.4) will arise by matching the outer expansion with the inner expansion, see (3.33) and
(3.34) (jump condition and jump of the normal derivative of w0, respectively). We assume
this elliptic problem to be solvable, thus providing w0 and therefore u2 from (3.3). By using
a Taylor expansion of T i and T e, namely

T i(η? + εζ?) =T i(η?) + εM i(η?)ζ? +O(ε2),

T e(η? + εζ?) =T e(η?) + εM e(η?)ζ? +O(ε2),
(3.5)

a computation gives
div
((

M i(∇w0) + M e(∇w0)
)
∇w1

)
= 0,

which is a linear elliptic equation in w1, that we do not need to inspect.

Remark 3.1. Notice that the outer expansion has been performed without assuming that
Φ is convex.
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3.2 Inner expansion

We assume in this section that Φ is uniformly convex (and smooth): therefore we can employ
the notation introduced in Section 2.2, in particular Φ equals the dual ϕo of a convex norm
ϕ and T o = TΦ, distϕ is the anisotropic distance associated with ϕ, dϕ

ε (x, t) := distϕ(x, Rd \
Eε(t)) − distϕ(x,Eε(t)) is the signed distance function from Eε(t) positive in Eε(t) where,
recalling the definition of uε in (3.1), we let

Eε(t) := {x ∈ Ω : uε(x, t) ≥ 0}.

For notational simplicity we set Σε(t) := ∂Eε(t) = {x ∈ Ω : uε(x, t) = 0}.
Our aim is to formally identify the geometric evolution law of Σε(t) as ε → 0+. To this aim
it is convenient to introduce the stretched variable yε, defined as yϕ

ε (x, t) := dϕ
ε (x,t)

ε .
We parametrize Σε(t) with a parameter s which varies in a fixed reference (d−1)-dimensional
smooth manifold of fixed topological type, and the function x(s, t; ε) gives the position in
Ω of the point s at time t. We let, for x in a suitable tubular neighbourhood of Σε(t),
nϕ

ε (x, t) := −T o(∇dϕ
ε (x, t)) be the Cahn-Hoffman vector field (pointing toward Rd \ Eε(t))),

for which we suppose the expansion nϕ
ε := nϕ

0 + εnϕ
1 + ....

Points on the evolving manifold Σε(t) are assumed to move in the direction of nϕ
ε (·, t), i.e.,

∂tx(s, t; ε) = V ϕ
ε nϕ

ε ,

where Vε is conventionally positive for an expanding set, and where we assume the validity
of the expansion V ϕ

ε = V0 + εV1 + ε2V2 + .... The anisotropic projection of a point x on Σε(t)
will be denoted by sϕ

ε (x, t), which satisfies

∂ts
ϕ
ε = 0. (3.6)

Hence
∂td

ϕ
ε (x, t) = V ϕ

ε (sϕ
ε (x, t), t). (3.7)

We also recall (see [11], [10]) that the ϕ-anisotropic laplacian of dϕ
ε corresponds to the

anisotropic mean curvature of the level hypersurface at that point and that it can be ap-
proximated by the anisotropic mean curvature κϕ

ε of Σε(t) (positive when Eε(t) is uniformly
convex) as follows

div (T o(∇dϕ
ε (x, t))) = −κϕ

ε (sϕ
ε (x, t), t)− εyϕ

ε hϕ
ε (sϕ

ε (x, t), t) +O(ε2(yϕ
ε )2) (3.8)

for a suitable hϕ
ε depending on the local shape of Σε(t), which we do not need to specify. We

assume the expansions κϕ
ε = κ0 + εκ1 +O(ε2), hϕ

ε = h0 +O(ε). For notational simplicity, in
the sequel of this section we shall drop the superscript ϕ in dε, yε, sε, κε and hε. With abuse
of notation, for a given ε, we let x(y; s, t) be the point of Ω having signed distance εy and
ϕ-anisotropic projection s on Σε(t). We have

x(y; s, t) = x(s, t)− εynϕ
ε +O(ε2y2). (3.9)

For a given ε the triplet (y; s, t) will parametrize a tubular neighbourhood of ∪t(Σε(t)×{t}).
We define Uε(y; s, t) and Wε(y; s, t, x) so that

uε(x, t) = Uε(dε(x, t)/ε, sε(x, t), t), wε(x, t) = Wε(dε(x, t)/ε, sε(x, t), t, x).
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We find convenient, as in [3], to allow Wε to explicitly depend on the “outer” variable x
(of course implicit dependence on x is given through y and s). As a notation, when we
differentiate Wε using one of the symbols ∇, div, or ∇2, we mean that only partial derivative
of Wε with respect to the x variable is considered.
We will write Wε = W0+εW1,ε = W0+εW1+ε2W2,ε, where W0 and W1 are allowed to depend
explicitly on x (and hence on ε) in the same way as Wε. We suppose the remainders W1,ε, W2,ε

to be bounded as ε → 0+. We adopt a similar notation for Uε = U0+εU1,ε = U0+εU1+ε2U2,ε,
where however we require U0 not to depend on ε.
We have

ε2∂tuε = εU ′
ε ∂tdε + ε2Uεsβ

∂tsεβ + ε2Uεt = εU ′
εVε + ε2Uεt,

where we use (3.6) and (3.7) and summation on repeated indices is understood. Furthermore11

ε2T i(∇wε) =T i
(
εW ′

ε∇dε + ε2Wεsβ
∇sεβ + ε2∇Wε

)
=εW ′

ε T i(∇dε) + ε2Wεsβ
M i(∇dε)∇sεβ + ε2M i(∇dε)∇Wε +O(ε3),

(3.10)

and similarly, recalling that Uε does not depend explicitly on x,

ε2T e(∇wε −∇uε) =T e
(
ε(W ′

ε − U ′
ε)∇dε + ε2(Wεsβ

− Uεsβ
)∇sεβ + ε2∇Wε

)
=ε(W ′

ε − U ′
ε)T

e(∇dε) + ε2(Wεsβ
− Uεsβ

)M e(∇dε)∇sεβ

+ ε2M e(∇dε)∇Wε +O(ε3).

(3.11)

Taking into account (see (1.5)) that 〈∇sεβ, T i(∇dε)〉 = 〈∇dε,M
i(∇dε)∇sεβ〉, and that12

ε2div
(
M i(∇dε)∇Wε

)
= ε〈∇W ′

ε, T
i(∇dε)〉+ ε2F,

we now differentiate (3.10) and we obtain, using also (1.4),

ε2divT i(∇wε) = αi(∇dε)W ′′
ε + 2εW ′

εsβ
〈∇sεβ, T i(∇dε)〉+ 2ε〈∇W ′

ε, T
i(∇dε)〉

+ εW ′
εdiv(T i(∇dε)) + ε2Wεsβsδ

〈∇sεδ, M i(∇dε)∇sεβ〉+ ε2〈∇Wεsβ
,M i(∇dε)∇sεβ〉

+ ε2Wεsβ
div
(
M i(∇dε)∇sεβ

)
+ ε2F +O(ε3).

Differentiating (3.11), and taking into account that13

ε2div(M e(∇dε)∇Wε) = ε〈∇W ′
ε, T

i(∇dε)〉+ ε2G,

we obtain

ε2divT e(∇wε −∇uε)
=αe(∇dε)(W ′′

ε − U ′′
ε ) + 2ε(W ′

εsβ
− U ′

εsβ
)〈∇sεβ, T e(∇dε)〉+ 2ε〈∇W ′

ε, T
e(∇dε)〉

+ ε(W ′
ε − U ′

ε)div(T e(∇dε)) + ε2(Wεsβsδ
− Uεsβsδ

)〈∇sεδ,M
e(∇dε)∇sεβ〉

+ ε2〈∇Wεsβ
,M e(∇dε)∇sεβ〉

+ ε2(Wεsβ
− Uεsβ

)div(M e(∇dε)∇sεβ) + ε2G +O(ε3).

11Use (3.5), and remember that M i is zero-homogeneous, so that M i(W ′
ε∇dε) = M i(∇dε).

12We use once more (1.5); do not need to explicitate the term F in our subsequent computations.
13We do not need to explicitate the term G in our subsequent computations.
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In terms of Uε and Wε the expansion of the parabolic equation in (3.2) reads as

0 =− αi(∇dε)W ′′
ε + f(Uε)

+ ε
(
VεU

′
ε − 2W ′

εsβ
〈∇sεβ, T i(∇dε)〉 − 2〈∇W ′

ε, T
i(∇dε)〉 −W ′

εdivT i(∇dε)
)

+ ε2
(
Uεt −Wεsβsδ

〈∇sεδ,M
i(∇dε)∇sεβ〉 − 〈∇Wεsβ

,M i(∇dε)∇sεβ〉

−Wε,sβ
div(M i(∇dε)∇sεβ)− F

)
+O(ε3),

(3.12)

and the expansion of the elliptic equation in (3.2) reads as

0 =
(
αi(∇dε) + αe(∇dε)

)
W ′′

ε − αe(∇dε)U ′′
ε

+ ε

(
2W ′

εsβ
〈∇sεβ, T i(∇dε) + T e(∇dε)〉 − 2U ′

εsβ
〈∇sεβ, T e(∇dε)〉

+ 2〈∇W ′
ε, T

i(∇dε) + T e(∇dε)〉+ W ′
εdiv

(
T i(∇dε) + T e(∇dε)

)
− U ′

εdivT e(∇dε)

)

+ ε2

(
Wεsβsδ

〈∇sεδ,
(
M i(∇dε) + M e(∇dε)

)
∇sεβ〉 − Uεsβsδ

〈∇sεδ,M
e(∇dε)∇sεβ〉

+∇Wεsβ

(
M i(∇dε) + M e(∇dε)

)
∇sεβ + Wεsβ

div
( (

M i(∇dε) + M e(∇dε)
)
∇sεβ

)
− Uεsβ

div
(
M e(∇dε)∇sεβ

)
+ F + G

)
+O(ε3).

(3.13)

As we have already mentioned at the beginning of this section, we will not make the compu-
tations at the order two: therefore, the coefficients of ε2 in equations (3.12) and (3.13) are
given for completeness, and for consistency with the linear case discussed in [3].

3.3 Matching with the outer expansion and formal conclusions

The matching procedure is not necessary for functions Ui, since they are uniquely determined
at infinity by a polynomial growth requirement. Therefore, we shall match the inner/outer
asymptotic expansions for the functions Wi. We will make use of the change of variables
(3.9), and we will match the two expansions in the region of common validity y →∞ and x
approaching Σε(t):

wε(x(s, t)− εynϕ
ε +O(ε2y2), t) ≈ Wε(y; s, t, x(s, t)− εynϕ

ε +O(ε2y2)).

By expanding the left and right hand sides, understanding that wε is computed at x(s, t) ∈
Σε(t), we get

wε − εy〈nϕ
ε ,∇wε〉+O(ε2) ≈ Wε − εy〈nϕ

ε ,∇Wε〉+O(ε2).

Expanding wε, Wε, and in powers of ε and matching the first two orders we get in particular

lim
y→±∞

W0(y, s(x, t), t, x) = w0(x, t)

lim
y→±∞

{
W1(y, s(x, t), t, x)− w1(x, t)− y(〈nϕ

0 ,∇W0(y, s(x, t), t, x)〉 − 〈nϕ
0 ,∇w0(x, t))〉

}
= 0

(3.14)
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where wi are evaluated at each side of the interface14 accordingly to when y goes to plus or
minus infinity. The first relation in (3.14) in particular suggests limy→±∞ W ′

0(y, s(x, t), t, x) =
0, and the jump [[w0]] of w0 across the interface is given by

[[w0]](s(x, t), t) =
∫

R
W ′

0(y, s(x, t), t, x) dy. (3.15)

By differentiating the second equation in (3.14) we get

lim
y→±∞

{
W ′

1(y, s(x, t), t, x)− 〈nϕ
0 ,∇W0(y, s(x, t), t, x)〉 − y〈nϕ

0 ,∇W ′
0(y, s(x, t), t, x)〉

}
=− 〈nϕ

0 ,∇w0(x, t)〉.
(3.16)

After identification of W ′
0 given by relation (3.20) below, it will also follow (see in addi-

tion (3.22)) that also limy→±∞(y∇W ′
0(y, s(x, t), t, x)) = 0 and that ∇W0(y, s(x, t), t, x) is

bounded, so that W ′
1 is also bounded and

−[[〈nϕ
0 ,∇w0〉]](x, t) =

∫
R

(
W ′′

1 (y, s(x, t), t, x)− 〈nϕ
0 ,∇W ′

0(y, s(x, t), t, x)〉
)

dy. (3.17)

• Order 0. Recall that ∇dε satisfies the anisotropic eikonal equation [10], [3]:

αi(∇dε(x, t))αe(∇dε(x, t))
αi(∇dε(x, t)) + αe(∇dε(x, t))

=
(
Φ(∇dε(x, t))

)2
= 1, (3.18)

for x in a suitable tubular neighbourhood of Σε(t).
Collecting the zero order terms15 in (3.13) gives

(
αi(∇dε) + αe(∇dε)

)
W ′′

0 − αe(∇dε)U ′′
0 = 0.

Hence, using (3.18), we have

W ′′
0 =

αe(∇dε)
αi(∇dε) + αe(∇dε)

U ′′
0 =

1
αi(∇dε)

U ′′
0 . (3.19)

Since U0 (see below) and W0 are bounded at infinity we also get by integration

W ′
0 =

1
αi(∇dε)

U ′
0. (3.20)

Using the expansion f(Uε) = f(U0) + εU1,εf
′(U0) + 1

2ε2(U1,ε)2f ′′(U0) +O(ε3), from (3.12) we
get −αi(∇dε)W ′′

0 + f(U0) = 0. Our substitution in (3.19) gives

−U ′′
0 + f(U0) = 0, (3.21)

so that
U0(y, s, t) = γ(y) := tgh(

√
2y), (3.22)

and therefore U0 does not depend on (s, t). Note that W ′
0 will depend explicitly on x through

the coefficient 1
αi(∇dε)

; it is, on the other hand, independent of (s, t).

14Here by interface we mean the jump set of u0.
15There is no need of expanding dε in terms of ε, since we are taking a reference system based on the zero

level sets of ui
ε − ue

ε.
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• Order 1. Differentiating the eikonal equation (3.18) with respect to x we obtain

0 = ∇ 1
αi(∇dε)

+∇ 1
αe(∇dε)

, (3.23)

which allows to express ∇ 1
αe = −∇ 1

αi . Moreover using (2.6), (2.4) and (3.18) we get

T o(∇dε) =
1

αi(∇dε)
T i(∇dε) +

1
αe(∇dε)

T e(∇dε)

− 1
αi(∇dε) + αe(∇dε)

(
T i(∇dε) + T e(∇dε)

)
,

(3.24)

and therefore

divT o(∇dε) =div
1

αi(∇dε)
T i(∇dε) + div

1
αe(∇dε)

T e(∇dε)

− div
(

1
αi(∇dε) + αe(∇dε)

(
T i(∇dε) + T e(∇dε)

))
.

(3.25)

Notice that, from (3.18) and (3.24) it also follows

T o(∇dε) =
1

αi(∇dε)2
T i(∇dε) +

1
αe(∇dε)2

T e(∇dε).

Collecting all terms of order one in (3.13), remembering once more that U0 and W0 do not
depend explicitly on s and t, we obtain for the order one, in the elliptic equation,(

αi(∇dε) + αe(∇dε)
)
W ′′

1 − αe(∇dε)U ′′
1

+ W ′
0div

(
T i(∇dε) + T e(∇dε)

)
︸ ︷︷ ︸

:=A

+2〈∇W ′
0, T

i(∇dε) + T e(∇dε)〉−U ′
0divT e(∇dε)︸ ︷︷ ︸

:=B

= 0. (3.26)

We want to isolate a term involving divT o(∇dε) from A + B, by employing (3.25).
From (3.20) and the obvious relation

div
(

1
αi(∇dε) + αe(∇dε)

(T i(∇dε) + T e(∇dε))
)

=〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉+

1
αi(∇dε) + αe(∇dε)

div(T i(∇dε) + T e(∇dε)),

we deduce, using the identity αi(∇dε) + αe(∇dε) = αi(∇dε)αe(∇dε) (see (3.18)),

A =
U ′

0

αi(∇dε)
div
(
T i(∇dε) + T e(∇dε)

)
=U ′

0

αi(∇dε) + αe(∇dε)
αi(∇dε)

div
(

1
αi(∇dε) + αe(∇dε)

(T i(∇dε) + T e(∇dε))
)

− U ′
0

αi(∇dε) + αe(∇dε)
αi(∇dε)

〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉

=U ′
0 αe(∇dε)

[
div
(

1
αi(∇dε) + αe(∇dε)

(T i(∇dε) + T e(∇dε))
)

− 〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉

]
.
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We also rewrite B as

B =U ′
0α

e(∇dε)

[
− div

(
1

αe(∇dε)
T e(∇dε)

)
+ 〈T e(∇dε),∇

1
αe(∇dε)

〉

]
.

We then find

A + B

=U ′
0α

e(∇dε)

[
div
(

1
αi(∇dε) + αe(∇dε)

(T i(∇dε) + T e(∇dε))
)
− div

(
1

αe(∇dε)
T e(∇dε)

)

− 〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉+ 〈T e(∇dε),∇

1
αe(∇dε)

〉

]
,

(3.27)
from which we can extract the term divT o(∇dε) via relation (3.25), thus obtaining

A + B =U ′
0α

e(∇dε)

[
− divT o(∇dε) + div

1
αi(∇dε)

T i(∇dε)

− 〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉+ 〈T e(∇dε),∇

1
αe(∇dε)

〉

]
.

(3.28)

Inserting this results into (3.26) and using once more (3.18), we get

αi(∇dε)αe(∇dε)W ′′
1 = (αi(∇dε) + αe(∇dε))W ′′

1

=αe(∇dε)U ′′
1 + U ′

0α
e(∇dε)

[
divT o(∇dε)− div

1
αi(∇dε)

T i(∇dε)

+ 〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉 − 〈T e(∇dε),∇

1
αe(∇dε)

〉

]
− 2〈∇W ′

0, T
i(∇dε) + T e(∇dε)〉,

(3.29)

that we rewrite more conveniently as

αi(∇dε)W ′′
1

=U ′′
1 + U ′

0

[
divT o(∇dε)− div

1
αi(∇dε)

T i(∇dε)

+ 〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉 − 〈T e(∇dε),∇

1
αe(∇dε)

〉

]
− 2

αe(∇dε)
〈∇W ′

0, T
i(∇dε) + T e(∇dε)〉.

(3.30)

We now insert this result into the expansion of the parabolic equation. Collecting all terms
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of order one in (3.12), using (3.30) and (3.20), we obtain

− U ′′
1 + U1f

′(U0) =

U ′
0

[
− V0 + divT o(∇dε)− div

1
αi(∇dε)

T i(∇dε)

+ 〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉 − 〈T e(∇dε),∇

1
αe(∇dε)

〉

]
+ W ′

0divT i(∇dε) + 2〈∇W ′
0, T

i(∇dε)〉 −
2

αe(∇dε)
〈∇W ′

0, T
i(∇dε) + T e(∇dε)〉︸ ︷︷ ︸

=:C

.

We have, using (3.20),

C =U ′
0

1
αi(∇dε)

divT i(∇dε) + 2U ′
0〈T i(∇dε),∇

1
αi(∇dε)

〉

− 2
αe(∇dε)

U ′
0〈T i(∇dε) + T e(∇dε),∇

1
αi(∇dε)

〉.

Hence

− U ′′
1 + U1f

′(U0) = U ′
0

[
− V0 + divT o(∇dε)

−div
1

αi(∇dε)
T i(∇dε) +

1
αi(∇dε)

divT i(∇dε)︸ ︷︷ ︸
=:D

+ 〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉 − 〈T e(∇dε),∇

1
αe(∇dε)

〉

+ 2〈T i(∇dε),∇
1

αi(∇dε)
〉 − 2

αe(∇dε)
〈T i(∇dε) + T e(∇dε),∇

1
αi(∇dε)

〉

]
.

Since D = −〈T i(∇dε),∇ 1
αi(∇dε)

〉, we have

−U ′′
1 + U1f

′(U0) = U ′
0

(
− V0 + divT o(∇dε) + E

)
where

E =〈T i(∇dε),∇
1

αi(∇dε)
〉 − 〈T e(∇dε),∇

1
αe(∇dε)

〉

+ 〈T i(∇dε) + T e(∇dε),∇
1

αi(∇dε) + αe(∇dε)
〉 − 2

αe(∇dε)
〈T i(∇dε) + T e(∇dε),∇

1
αi(∇dε)

〉.

Observe that, using (3.23),

∇ 1
αi(dε) + αe(dε)

= ∇ 1
αi(∇dε)αe(∇dε)

=
1

αi(∇dε)
∇ 1

αe(∇dε)
+

1
αe(∇dε)

∇ 1
αi(∇dε)

=− 1
αi(∇dε)

∇ 1
αi(∇dε)

+
1

αe(∇dε)
∇ 1

αi(∇dε)
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Hence, expressing ∇ 1
αe using ∇ 1

αi in E, we get

E =
(

1− 1
αi(∇dε)

− 1
αe(∇dε)

)
〈T i(∇dε) + T e(∇dε),∇

1
αi(∇dε)

〉 = 0,

since 1
αi(∇dε)

+ 1
αe(∇dε)

= 1. We conclude, using the expansion of divT o(∇dε) in terms of the
ϕ-anisotropic mean curvature κε,

−U ′′
1 + f ′(U0)U1 = U ′

0

[
V0 − κ0

]
.

From (3.8) and the Fredholm alternative (see for instance [9]) we end up with the remarkable
result

V0 = −κ0 (3.31)

so that U1 = 0.
We are now in a position to recover the first term w0 of the outer expansion of wε by adding
to (3.4) a jump condition for w0 and for 〈nϕ

0 ,∇w0〉 across the interface16 Σ0(t). For this
derivation it is convenient to write W ′′

1 from (3.30) in an alternative form: we have

W ′′
1 = U ′

0

{
div
[

1
αi

T o(∇dε)−
1

(αi)2
T i(∇dε)

]
−∇ 1

αi
· T o(∇dε)

}
,

where we used twice 1
αi div(?) = div( 1

αi ?) − ∇ 1
αi · ?; definition (3.20); ∇ 1

αi+αe = ∇ 1
αiαe =

1
αi∇ 1

αe + 1
αe∇ 1

αi ; ∇ 1
αe = −∇ 1

αi and 1
αe = 1− 1

αi .
By recalling T o(∇dε) = Q(∇dε)∇dε = 1

(αi)2
T i(∇dε) + 1

(αe)2
T e(∇dε), see (2.3)17, expanding

the first term in the divergence and collecting terms involving T i (resp. T e), we finally arrive
at

W ′′
1 = U ′

0

{
div

1
αM

[
1
αe

T e(∇dε)−
1
αi

T i(∇dε)
]
−∇ 1

αi
· T o(∇dε)

}
. (3.32)

From (3.20) we get

[[w0]] =
2

αi(∇dε)
. (3.33)

Using (3.17), (3.32), and again (3.20), recalling that nϕ = −T o(∇dε), we end up with

−[[〈nϕ
0 ,∇w0〉]] = 2div

[
1

αM

(
1
αe

T e(∇dε)−
1
αi

T i(∇dε)
)]

. (3.34)

The two jump conditions on w0 across Σ0(t), together with equation (3.4) and appropriate
boundary conditions at ∂Ω, allow to obtain a unique solution w0.
Note that the jump in the conormal derivative [[〈nϕ

0 ,∇w0〉]] vanishes in the special case αe =
λαi, and hence T e = λT i (equal anisotropic ratio).

16We will assume that Σε(t) can be expanded in ε, and written as a graph over an hypersurface at ε = 0
along the direction nϕ

0 . We denote by Σ0(t) such an hypersurface.
17Remember that from the definition of dε we have αi + αe = αiαe.
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4 On the nonconvexity of the combined anisotropy

Recalling (1.8), the Frank diagram FΦ of Φ is the set

FΦ = {ξ? ∈ Rd : αi(ξ?) + αe(ξ?) ≥ αi(ξ?)αe(ξ?)} = {ξ? ∈ Rd : J(ξ?) ≤ 0} (4.1)

where J(ξ?) := αi(ξ?)αe(ξ?) − αi(ξ?) − αe(ξ?). The inequality above becomes an equality
only if ξ? is the origin or if it belongs to the boundary of the Frank diagram.
In the linear case, function J is a polinomial of degree four in the components of ξ?. From
the equivalence of all norms in finite dimension it follows that both αi and αe can be bounded
from below and above by m|ξ?|2 and M |ξ?|2 for suitable constants 0 < m < M independent
of ξ?, so that

αiαe ≤ M2|ξ?|4, αi + αe ≥ 2m|ξ?|2

and J(ξ?) < 0 for |ξ?| sufficiently small and nonzero. Similarly we see that J(ξ?) > 0 for |ξ?|
sufficiently large. For a given ξ̄, function p(t) = J(tξ?) is a polinomial of degree four with
a double zero at the origin (because p(0) = 0 and is nonpositive near 0) and has two more
zeros simmetrically placed with respect to the origin since p is positive at ±∞. Since we have
collected all the zeros of p we conclude that the set p(t) ≤ 0 is a segment centered at the
origin, and in the end FΦ is symmetric and star-shaped about the origin. However, it is not
in general convex.
We shall now restrict to the case of inverted anisotropic ratio and consider the special case
where the matrices M i and M e are given by

M i :=
[
1 0
0 ρ

]
, M e :=

[
ρ 0
0 1

]
, ρ > 0. (4.2)

The results of this section will also be valid whenever the two matrices are transformed in
the form above after scaling and rotation.

4.1 Identifying the nonconvex regime for inverted anisotropic ratio

If ξ? = (cos θ, sin θ) we can express ϕo(ξ?) in terms of θ as ϕo(ξ?) = γ(θ) with

γ = γ(θ) =

√
αiαe

αi + αe
, αi = cos2 θ + ρ sin2 θ, αe = sin2 θ + ρ cos2 θ (4.3)

now
8αiαe =8 cos2 θ sin2 θ + 8ρ cos4 θ + 8ρ sin4 θ + 8ρ2 cos2 θ sin2 θ

=2(1 + ρ2) sin2 2θ + 4ρ(1 + cos2 2θ)

=4ρ + (1 + ρ2)(1− cos 4θ) + 2ρ(1 + cos 4θ)

=ρ2 + 6ρ + 1− (ρ− 1)2 cos 4θ

and
αi + αe = ρ + 1

whence
8(ρ + 1)γ2 = ρ2 + 6ρ + 1− (ρ− 1)2 cos 4θ (4.4)
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Differentiating with respect to θ we get:

16(ρ + 1)γγθ = 4(ρ− 1)2 sin 4θ (4.5)

Differentiating again we get:

16(ρ + 1)(γγθθ + γ2
θ ) = 16(ρ− 1)2 cos 4θ

which allows to express the second derivative γθθ as

γθθ =
(ρ− 1)2 cos 4θ − (ρ + 1)γ2

θ

(ρ + 1)γ
(4.6)

It is well known that convexity of the Frank diagram of an anisotropy expressed in polar form
as above is equivalent to γ + γθθ ≥ 0, or, equivalently, to 8(ρ + 1)γ2 + 8(ρ + 1)γγθθ ≥ 0, since
γ is positive for all θ. By combining (4.4) and (4.6) we then get

8(ρ + 1)γ(γ + γθθ) = ρ2 + 6ρ + 1 + 7(ρ− 1)2 cos 4θ − 8(ρ + 1)γ2
θ

Equation (4.5) and (4.4) allows to compute 8(ρ + 1)γ2
θ as

8(ρ + 1)γ2
θ =

(ρ− 1)4 sin2 4θ

2(ρ + 1)γ2
=

4(ρ− 1)4 − 4(ρ− 1)4 cos2 4θ

ρ2 + 6ρ + 1− (ρ− 1)2 cos 4θ

so that by writing Θ in place of (ρ− 1)2 cos 4θ we arrive at

8(ρ + 1)γ(γ + γθθ) =ρ2 + 6ρ + 1 + 7Θ− 4(ρ− 1)4 − 4Θ2

ρ2 + 6ρ + 1−Θ

=
−3Θ2 + 6(ρ2 + 6ρ + 1)Θ + (3ρ2 + 2ρ + 3)(−ρ2 + 10ρ− 1)

ρ2 + 6ρ + 1−Θ

By (4.4) the denominator is actually 8(ρ+1)γ2 and is always strictly positive, hence it suffices
to study the sign of the numerator N . Recalling the definition of Θ above N can be written
as

N = −3(ρ− 1)4 cos2 4θ + 6(ρ2 + 6ρ + 1)(ρ− 1)2 cos 4θ − (3ρ2 + 2ρ + 3)(ρ2 − 10ρ + 1)

which is a second degree polynomial in cos 4θ with roots

c± =
ρ2 + 6ρ + 1± 8(ρ + 1)

√
ρ
3

(ρ− 1)2
.

They are invariant under the change ρ → 1
ρ which suggests the change of variables σ =

1√
3

(√
ρ + 1√

ρ

)
(note that

√
3σ > 2 for all ρ > 0). We arrive at

c± =
3σ2 + 4± 8σ

3σ2 − 4
.
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The larger root c+ is always larger than 1, so that the only possible zeros of the numerator
are solutions of

cos 4θ =
(3σ − 2)(σ − 2)

3σ2 − 4
.

The right-hand side is strictly increasing for σ > 2√
3
, goes to −∞ as σ → 2√

3
from the right

and goes to 1 as σ → +∞. It evaluates to −1 for σ = 4
3 , which corresponds to ρ = 3 and

ρ = 1
3 . We have thus proved the following

Theorem 4.1. The unit ball {ϕo ≤ 1} is convex if and only if 1
3 ≤ ρ ≤ 3. It is strictly

convex in the open interval 1
3 < ρ < 3. It is convex for ρ = 3 or ρ = 1

3 with zero curvature
at the intersections with ξ?

2 = ±ξ?
1. It is not convex for ρ > 3 and 0 < ρ < 1

3 . In this latter
case, the values of θ where ∂FΦ is concave are those that satisfy

cos 4θ <
(3σ − 2)(σ − 2)

3σ2 − 4
=

ρ2 + 6ρ + 1− 8(ρ + 1)
√

ρ
3

(ρ− 1)2
(4.7)

4.2 Computing the bitangent for ρ > 3

With the definition (4.2), setting ξ? = (x, y), we have:

αi = x2 + ρy2, αe = ρx2 + y2 (4.8)

So that function J in FΦ = {J(ξ?) ≤ 0} can be written as

J(x, y) = (x2 + ρy2)(ρx2 + y2)− (1 + ρ)(x2 + y2). (4.9)

We can take advantage of the symmetry of the algebraic curve defined by J(x, y) = 0 and
look for a bitangent line of the form x+y = h for some h > 0. We get the intersections of this
line with the algebraic curve by substituting y = h − x into (4.9) which gives a polynomial
of degree four p4(x) in the indeterminate x with coefficients depending on ρ and h. We seek
a value for h such that this polynomial is of the form c(x− a)2(x− b)2 for some a, b ∈ R, i.e.
it has two double zeroes, corresponding to a bitangential position of the line.
Carrying out the formal computations with wxmaxima we end up with

h =
√

ρ + 1
ρ− 1

which we can substitute in p4 and solve the resulting fourth degree equation (again with
wxmaxima) to get the x coordinate (and then the y coordinate) of one of the two contact
points:

B1 =
1
2

[√
ρ + 1
ρ− 1

+
√

ρ− 3
ρ− 1

,

√
ρ + 1
ρ− 1

−
√

ρ− 3
ρ− 1

]
, (4.10)

the other can be obtained by exchanging the two coordinates. Note that |B1| = 1. This
result has been used to produce some of the figures of Section 6.
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4.3 Computing the dual norm in the convex regime

If 1
3 ≤ ρ ≤ 3 we have convexity of Φ = ϕo so that we have a well-defined dual norm ϕ given

by

ϕ(ξ) = sup
ξ? 6=0

〈ξ?, ξ〉
ϕo(ξ?)

= max
θ

ξ1 cos θ + ξ2 sin θ

γ(θ)

In particular, for ξ = (cos η, sin η) we have

γ̂(α) = ϕ((cos α, sinα)) = max
θ

cos(α− θ)
γ(θ)

=
cos(α− θ)

γ(θ)

Finding the maximum point θ amounts to solve the following algebraic equation of degree 5
for x in terms of y, after substituting (4.4) where x = tan θ, y = tan α

p(x) = x5 − σyx4 + 2x3 − 2yx2 + σx− y = 0

with σ = ρ + 1
ρ − 1, so that 1 ≤ σ ≤ 7

3

A graphic plot of p and p′′ as a function of x for various values of σ and y suggests that
if σ ≤ 2 the polynomial is convex between its only root in the interval [0, 1] and the value
y ∈ [0, 1] which implies we can employ the Newton method for solving p(x) = 0 with y
as a starting value. This procedure has been used to obtain the initial datum for the first
simulation of Section 6, see Figure 3.

5 Discretization

We employ standard piecewise linear finite elements in space and a forward difference scheme
in time. Ω ∈ R2 is assumed to be a two-dimensional polygonal domain. Problem (1.1) will
be approximated in the special linear case described in Section 1.1, see (1.9).
The weak formulation of the parabolic/elliptic formulation (compare (3.2)) reads as{(

(M i + M e)∇wε, v
)
L2(Ω)

− (M e∇uε, v)L2(Ω) = 0 ∀v ∈ H1
0 (Ω),

ε2 (∂tuε, v)L2(Ω) − ε2
(
M i∇wε, v

)
L2(Ω)

+ (f(uε), v))L2(Ω) = 0 ∀v ∈ H1
0 (Ω),

(5.1)

with18 uε(·, t) ∈ H1
u(Ω) := {u ∈ H1(Ω) : Tr(u) = 1}, wε(·, t) ∈ H1

w(Ω) := {u ∈ H1(Ω) :
Tr(u) = gw}, for a given boundary datum gw.
For a given h > 0 (space discretization parameter) we construct a subdivision Th = {K :
K ∈ Th} of Ω with triangles K with diam(K) ≤ h such that Ω = ∪K∈Th

K and satisfying the
usual compatibility conditions of finite element subdivisions [13].
The finite element spaces V h and V h

0 and the affine spaces V h
u , V h

w are defined by

V h :={v ∈ C0(Ω) : v|K ∈ P1(K) ∀K ∈ Th},
V h

0 :=V h ∩H1
0 (Ω),

V h
u :={v ∈ V h : v|∂Ω = 1},

V h
w :={v ∈ V h : v|∂Ω = Πh(gw)}.

18We fix Dirichlet boundary conditions for the two unknown functions as uε = 1 at ∂Ω (the evolving phase
uε)·, t) ≈ −1 is compactly contained in Ω) and wε = gw.
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Then for a given τ > 0 (time discretization parameter) and initial datum u
(0)
h ∈ V h

u , the
fully discrete problem consists in finding functions w

(n)
h ∈ V h

u , n = 0, . . . , N and u
(n)
h ∈ V h

w ,
n = 1, . . . , N (from which we can readily retrieve an approximation of ui

ε and ue
ε) such that


(
(M i + M e)∇w

(n)
h ,∇vh

)
L2(Ω)

−
(
M e∇u

(n)
h ,∇vh

)
L2(Ω)

= 0 ∀vh ∈ V h
0 ,(

u
(n+1)
h −u

(n)
h , vh

)h

L2(Ω)
− τ

(
M i∇w

(n)
h ,∇vh

)
L2(Ω)

+ τ
ε2

(
f(u(n)

h ), vh)
)h

L2(Ω)
= 0 ∀vh ∈ V h

0 .

(5.2)
The notation (v, w)h

L2(Ω) =
∫
Ω Πh(vw) dx indicates the use of the trapezoidal quadrature

rule to approximate the exact L2 scalar product, which leads to a diagonal mass matrix
(mass lumping). Functions u

(n)
h and w

(n)
h represent an approximation of the exact solution

ui
ε(·, tn)− ue

ε(·, tn) and ui
ε(·, tn) at time tn = nτ , n = 0, . . . , N .

Let {xj}J
j=1 be the internal nodes (vertices of the triangular elements) of Th and {φj}J

j=1 the

corresponding nodal basis of V h
0 . Function u

(n)
h (resp. w

(n)
h ) can then be written as

u
(n)
h = ûh +

J∑
j=1

u(n)
j φj , w

(n)
h = ŵh +

J∑
j=1

w(n)
j φj ,

where u(n)
j = u

(n)
h (xj) (resp. w(n)

j = w
(n)
h (xj)), j = 1, . . . , J , and ûh ∈ V h

u (resp. ŵh ∈ V h
w ) is

a fixed function that vanishes at all internal node and takes care of the Dirichlet boundary
datum.
We can now test the two equations in (5.2) against each of the basis functions φi, i = 1, . . . , J
to obtain the matrix formulation{

Aw(n) = Aeu(n) + b(n) n = 0, . . . , N,

Mu(n+1) = Mu(n) + τAiw(n) − τ
ε2

Mf(u(n)) + τc n = 1, . . . , N,
(5.3)

where function f acts componentwise. With reference to the first problem (a linear system
that is the discrete counterpart of the elliptic equation in (5.1)), we have two (J×J) “stiffness”
matrices A = (Aij)ij , Ae = (Ae

ij)ij ; b(n) = (b(n)
i )i is a vector in RJ that takes into account

the Dirichlet boundary data,

Aij =
(
(M i + M e)∇φj ,∇φi

)
L2(Ω)

, i, j = 1, . . . , J

Ae
ij =(M e∇φj ,∇φi)L2(Ω) , i, j = 1, . . . , J

b(n)
i =(M e∇ûh,∇φi)L2(Ω) −

(
(M i + M e)∇ŵh,∇φi

)
L2(Ω)

, i = 1, . . . , J.

With reference to the second problem in (5.3) (the discrete counterpart of the parabolic
equation in (5.1)) we have a diagonal mass matrix M , a (J × J) stiffness matrix Ai = (Ai

ij)ij

and a vector c defined by

Mij =(φi, φj)
h
L2(Ω) =

∫
Ω

φidx δij

Ai
ij =

(
M i∇φj ,∇φi

)
L2(Ω)

ci =
(
M i∇ŵh,∇φi

)
L2(Ω)

.
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To obtain (5.3) we also used that (ûh, φi)
h
L2(Ω) = 0, for i = 1, . . . , J .

The second equation in (5.3) is trivially solvable, since M is a diagonal matrix. Moreover the
use of finite elements leads to a sparse matrix Ai with O(J) nonzero elements, leading to a
computational cost of O(J) floating point operations per time step.
The first equation in (5.3) is a linear system of order J with a sparse positive definite matrix A
(that the right-hand side is known from the previous time step, up to a sparse matrix-vector
multiplication).
The linear system can be solved by using a preconditioned conjugate gradient method. Direct
experimentation shows that a fair preconditioning can achieved using a modified incomplete
Choleski factorization. This amounts to carrying out a standard Choleski LDLt factorization
exept that we force to zero elements of L corresponding to zero elements of A; moreover such
neglected elements are accumulated into the diagonal matrix D. The preconditioner then
takes the form P = LDLt and we need to solve at each conjugate gradient step the linear
system Pz = r, which can be done efficiently with forward and backward substitution to
solve the two triangular systems with a cost of O(J) due to the sparseness of L.
We solve the problem on a domain Ω = (−l, l)× (−l, l) with initial and boundary conditions
that are symmetric about the two coordinate axes. This permits to use a computational
domain given by the square (0, l) × (0, l) with homogeneous Neumann boundary conditions
on nodes along the coordinate axes. This particular choice of the computational domain
allows the use of a structured triangulation obtained by first dividing the domain in a grid of
small h×h squares with h = l/n for a given n and then dividing each square in two rectangular
triangles using the diagonal parallel to the bisector of the first and third quadrant.
Finally we restrict ourselves to diagonal matrices M i and M e. With this restriction the re-
sulting stiffness matrices A, Ai, Ae assume a particularly simple structure with a maximum of
5 nonzero entries on each line. Moreover Aij 6= 0 implies |i−j| ∈ {0, 1, n} (recall that J = n2)
and similarly for Ai and Ae. Specifically, the three stiffness matrices can be regarded as block
tridiagonal with n×n blocks, the blocks along the diagonal are tridiagonal (n×n) matrices,
whereas the off-diagonal blocks are diagonal (n× n) matrices. Such structure allows to take
advantage of a multiprocessor architecture with the important exception of the solution of
the preconditioning system because of the use of forward and backward substitution, which
are intrinsically sequential algorithms. Making the preconditioning system more paralleliz-
able requires further investigation and possibly also a different choice of the preconditioning
matrix.

5.1 The anisotropic Allen-Cahn equation

The matched asymptotics of Section 3 suggests that for small values of ε > 0 the transition
layer of the bidomain evolution approximates a front that evolves by anisotropic mean cur-
vature with the combined anisotropy Φ defined in (1.8), at least when the latter anisotropy
is convex (i.e. Φ = ϕo, see Section 2.2). For a nonconvex anisotropy such a statement no
longer makes sense, since anisotropic mean curvature flow becomes an ill-posed problem.
The corresponding Allen-Cahn equation (now one equation only) reads as

ε2∂tuε − ε2divT o(∇uε) + f(uε) = 0, (5.4)

where T o is defined in (2.7). The problem is completed by adding the same initial condition
(difference between ui

ε and ue
ε) as the one used for the bidomain problem (1.1) and Dirichlet
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Figure 2: The Frank diagram (solid line) and Wulff shape (dashed line) for ρ = 2 (left) and ρ = 5 (right).
In the nonconvex case (ρ = 5) the swallowtails are just artifacts that correspond to the nonconvex portions of
the anisotropy.

boundary condition given by the difference between the boundary conditions enforced for
(1.1). The solution of (5.4) produces an evolving transition layer that approximates the
Φ-anisotropic geometric evolution (with an O(ε2) error) [26]. This suggests the use of the
Allen-Cahn equation as a tool to provide a comparison for the bidomain solution, at least in
the convex regime, i.e. for ρ ≤ 3.
A discretization procedure for equation (5.4) is described in [33].

6 Numerical simulations

We present here two sets of numerical simulations, all for d = 2, corresponding to the inverted
anisotropic ratio case. The matrices M i and M e are defined as

M i :=
[
1 0
0 ρ

]
, M e :=

[
ρ 0
0 1

]
. (6.1)

6.1 Simulations with ρ = 2

In the first set of simulations we fix ρ = 2 for the inverted ratio as defined in (6.1). This leads
to a convex combined anisotropy ϕo as defined in Section 2.2. Its unit ball (Frank diagram)
is shown in Figure 2 left. The unit ball of the dual ϕ = ϕoo of ϕo is usually referred to as the
Wulff shape, and is depicted with a dashed line in Figure 2 left. Formal asymptotics suggests
that the transition layer of ui

ε − ue
ε approximates with an O(ε) error a curve that evolves by

ϕ-anisotropic curvature [10].
It is known that anisotropic curvature flow evolves the Wulff shape Wϕ selfsimilarly, more
precisely we have the following exact anisotropic curvature evolution: Σ(t) =

√
1− 2t ∂Wϕ.

This suggests a numerical simulation of the bidomain problem on the square (0, 1) × (0, 1)
with an initial transition region corresponding to ∂Wϕ. The initial datum ui

ε(·, 0) − ue
ε(·, 0)

is thus defined by

γ

(
ϕ(x)− 1

ε

)
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Figure 3: Left: simulation with ρ = 2, ε = 0.04, h = 0.005 at time steps intervals of 0.1, the small plot at
the top-right corner shows the Frank diagram of the combined anisotropy. The initial datum corresponds to
the Wulff shape. Right: comparison at time 0.3 with the exact anisotropic mean curvature flow (dotted line).
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Figure 4: Simulation with ρ = 2, ε = 0.08, h = 0.01 at time steps intervals of 0.1. Bidomain problem (left);
anisotropic Allen-Cahn (middle); comparison at t = 0.4 between Allen-Cahn (dashed line) and bidomain with
ε = 0.04, h = 0.005 and with ε = 0.08, h = 0.01 (solid lines), (right).

with γ given by (3.22), whereas the Dirichlet boundary data for ui
ε and ue

ε are respectively ±1
2

of the initial datum along the right and top sides of the domain, with homogeneous Neumann
condition along the coordinate axes.
We then select the value ε = 0.04 and solve numerically the bidomain problem with a space
discretization h = 0.005 and a time step suitably chosen so as to ensure stability (τ = Ch2).
The resulting stiffness matrices have dimension 40000×40000. Figure 3 (left) shows the zero-
level sets of the computed difference ui

ε−ue
ε at time intervals of 0.1; it vanishes approximately

at time 0.4975 that should be compared to the value 0.5 for the sharp interface limit with a
relative error of less that 0.005.
A comparison with the exact sharp interface limit (anisotropic curvature flow) is shown in
Figure 3 (right) at time t = 0.3: the dotted line is the expected sharp interface limit (rescaled
Wulff shape).
A second simulation is shown in Figure 4. Now the initial datum is the unit circle (actually, the
initial datum for ui

ε−ue
ε is chosen so that its zero-level set is the unit circle), the domain is the

square (0, 1.2)× (0, 1.2). We do not have the exact sharp limit evolution, so that we compare
the resulting numerical solution with the numerical evolution of the anisotropic Allen-Cahn
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equation with the choice ϕo as anisotropy and with corresponding initial datum. It is known
that the anisotropic Allen-Cahn equation produces a zero-level set that approximates with
an O(ε2) error the corresponding anisotropic curvature flow.
Figure 4 compares the above-mentioned anisotropic Allen-Cahn evolution (middle picture)
end the bidomain numerical solution (left picture) with ε = 0.08 (and h = 0.01). It is
apparent that the bidomain evolution has the tendency to overly smooth out those regions
of the front that correspond to higher (euclidean) curvature of the Wulff shape, this was also
apparent in the simulation shown in Figure 3. Such behaviour could imply a limit evolution
as ε → 0 different from that predicted by the forma asymptotics. Figure 4 (right) however
clarifies the issue by comparing at a fidex time t = 0.4 two bidomain simulations with value
of ε differing of a factor 2, with the anisotropic Allen-Cahn. This comparison is perfectly
consistent with the formal asymptotics and also suggests that the error between the front
and the limit evolution should not be expected to be better that O(ε).

6.2 Selection of h versus ε

An important issue is the choice of the space discretization h. For a fixed ε it is expected that
the discrete approximation converges to the continuous problem as h → 0. We cannot expect
however a good result if h is not sufficiently smaller than ε, since in that case we would have
few nodes across the interfacial region and it will not be resolved with sufficient accuracy. For
the problem at hand the thickness of the interface depends on the choice of the matrices M i

and M e and on the orientation of the front, if we rely on the formal asymptotics. Note that
althought the shape of the interfacial front is fixed, at first order, and given by γ (3.22), the
rescaling is done in terms of dε, which in turn depends on ϕo(∇dε). It is usually understood
that for similar problems that exhibit thin diffused interfaces, a number of nodes across the
interface between 10 and 20 is enough to obtain reliable results, although the issue is not
completely settled.
Actually, however, we cannot take h very small due to the resulting prohibitive computational
cost, and this is particularly true for the simulations with larger inverted anisotropic ratio
such those of Section 6.3. We are then forced to use values of h in a “dangerous” range, which
produces results that could be far from accurate. This issue will be further commented in
the next Section, see also Figure 10 for a visual feedback of the matter.

6.3 Simulations with ρ = 5

The second set of simulations is obtained with an inverted ratio of ρ = 5 as defined in
(6.1). The combined anisotropy Φ in this case is nonconvex; its unit ball (Frank diagram)
is star-shaped with respect to the origin and nonconvex (solid line in Figure 2, right). By
applying the so-called Wulff construction we can still define an analogue of the Wulff shape
(dashed line in Figure 2, right) which now presents swallowtails as a result of the nonconvex
portions of the Frank diagram. The Wulff construction basically amounts in computing T o

on the vectors of the boundary of the Frank diagram Fϕ. In the nonconvex case, the set
T o(∂Fϕ) is no longer the boundary of a convex set (the Wulff shape) and consists of a curve
(if d = 2) with selfintersections and cusps. Convexification of Φ produces a Wulff shape with
the swallowtails cut off.
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Figure 5: Simulation with ρ = 5, ε = 0.008, h = 0.002 at different time steps.

Figure 5 shows the result of the simulation with a choice of ε = 0.008. The initial datum
is specially chosen in order to have large portions of the initial front with a normal in the
concave region of the combined anisotropy. Specifically we select it such that its zero-level
curve is the unit ball with respect to the p = 1.5 norm: |x1|1.5 + |x2|1.5 = 1. The black
arrows in the first picture of Figure 5 enclose the portion of the initial front that corresponds
to locally concave combined anisotropy Φ; the white arrows delimit that portion where the
euclidean normal ξ? is such that Φ(ξ?) is strictly larger than the convexified value (the Frank
diagram lies locally inside its convex hull). The discretization parameter is fixed as h = 0.002,
i.e. one fourth of ε. We are not able at present to decrease h below this value because it
results into a prohibitively heavy computation.
Nonconvexity of Φ leads to an illposed anisotropic mean curvature flow. Indeed we observe
at time t = 0.02 the formation of oscillations along the interface that later evolve into three
waves with roughly flat sides whose normals approximately correspond to the two contact
points between the boundary of the Frank diagram and one of the four bitangent lines. This
is hardly surprising, since the corresponding slopes are the most energetically convenient.
Figures 6 and 7 shows the evolution obtained with a smaller value ε = 0.004 (h = 0.002, it
could not be decreased with respect to the previous simulation due to computational issues),
starting with the same initial datum.
Again we see wrinkling formation starting at time t = 0.005. As soon as the interface
starts to oscillate at some place, the oscillating region propagates very quickly into the
whole locally unstable region (points of the front where the normal correspond to locally
concave parts of the Frank diagram). Whether they also propagate in regions where the
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Figure 6: Simulation with ρ = 5, ε = 0.004, h = 0.002 at different time steps. The black arrows are normals
to the initial front corresponding to inflection points of the Frank diagram; the empty arrows are normals to
the initial front corresponding to bitangent points of the Frank diagram.
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Figure 7: Simulation with ρ = 5, ε = 0.004, h = 0.002. Subsequent times.

normal to the front correspond to locally convex, but strictly internal to the convex hull,
parts of the Frank diagram is difficult to say due to the global motion of the front during
the time of wrinkle formation. It is the opinion of the authors that this is not the case,
which is a behaviour somewhat similar to that observed in [19] and [4] where equation of
forward/backward parabolic type are relaxed either by numerical discretization or by addi-
tion of a small higher-order term. A short animation of the evolution of the front can be
downloaded from http://dmf.unicatt.it/~paolini/research/bidomain/.
Comparing the evolutions with the two values of ε indicates that the wavelength of the oscilla-
tion depends linearly on ε with a somewhat large constant of proportionality of approximately
20 that may depend on the specific shape of the anisotropy as well as nonlocal data that can
dictate the local shape of the potentials ui

ε and ue
ε separately.

Since the wavelength of the wrinkling decreases with ε → 0 one is lead to interpret the
oscillating region as an approximation of a limit evolution where the limit front is thought
as a kind of Young measure, i.e. a (smooth) curve with a hidden microstructure consisting
of infinitesimal wrinkles that mix together two different slopes. Anisotropic curvature flows
in situations where the Frank diagram presents flat portions, which is tipical of the result of
convexification, have the property that the portions of the evolving curve having normals that
fall inside such flat portions have zero anisotropic mean curvature, and hence to not move.
They tend to disappear during evolution because they are eroded by the surrounding evolving
parts. Our approximating wrinkled evolutions would be consistent with a limit anisotropic
curvature flow with the convexified anisotropy provided that the wrinkled portion covers the
whole globally unstable parts of the Frank diagram, i.e. those that are strictly inside the
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Figure 8: Simulation with ρ = 5, ε = 0.004, h = 0.002. Plot of ue at time 0.018.

convexification.
This is not the case if the oscillating portion appears only where the normal stays in the
locally unstable part of the Frank diagram, i.e. that where the Frank diagram is concave, as
apparently suggested by our simulations.
The values of ue

ε at a fixed time t = 0.018 are shown in Figure 8 as grey levels.
In Figure 9 we can see a cross-section of functions ui

ε and ue
ε at the indicated time. The oblique

line in the left picture shows the position where the cross-sections of ui
ε (middle picture) and

ue
ε (right picture) are taken. A visual measurement allows to evaluate the normal ν at the

interface in its intersection with the section line as forming an angle θ of approximately
78.1 degrees. We can then compute the corresponding values of αi(νϕ) and αe(νϕ) where
νϕ = ν

ϕo(ν) corresponds to ∇dε of section 3 using the formulas

αi(νϕ) = 1 +
αi(ν)
αe(ν)

=
6

5 cos2 θ + sin2 θ
, αe(νϕ) = 1 +

αe(ν)
αi(ν)

=
6

cos2 θ + 5 sin2 θ

This allows to compare the theoretical value of the jump [[ui
ε]] ≈ 2

αi ≈ 0.39 (resp. [[ue
ε]] ≈ 2

αe ≈
1.61) in the limit ε → 0 as given by the formal asymptotics, see (3.33), with the experimental
values measured in Figure 9 that amounts to approximately 0.41 (resp. 1.59) with good
agreement with the theoretical values.
We conclude by bringing up again the issue of the front resolution by taking h sufficiently
small with respect to ε. Unfortunately the wrinkling phenomenon is only apparent if ε is
quite small, which would force to select values for h prohibitively small. In our simulations
(particularly that with the smaller ε, Figure 6) the value of h is actually quite large with
respect to ε particularly in view of the somewhat extreme choice of the anisotropy.
In order to try to understand the effect of such large choice of h, Figure 10 compares the
numerical simulation with two different values of h (h = 0.004 and h = 0.002) and the same
value of ε = 0.008. The difference is small in the regularly evolving parts of the front, but
are quite noticeable in the wrinkled part. However the size and shape of the oscillations is
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Figure 9: Section of ui and of ue at time 0.018.

t = 0.02
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Figure 10: Comparison between h = 0.002 (solid line) and h = 0.004 (dashed line) at time t = 0.03 with
ρ = 5 and ε = 0.008.

basically the same so that we have a similar qualitative behaviour of the evolution. It seems
that larger values of h also result into a more easy wrinkle formation, which tend to appear
sooner during the evolution when compared to simulations with smaller values of h.
We thus conclude that although the presented simulations should not be considered particu-
larly quantitatively accurate, nevertheless they show the correct behaviour of the continuous
problem.
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