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Abstract. We address in this paper the study of a geometric evolution, cor-

responding to a curvature which is non-local and singular at the origin. The

curvature represents the first variation of the energy Mρ(E) defined in (1.1),

proposed in a recent work [5] as a variant of the standard perimeter penaliza-

tion for the denoising of nonsmooth curves.

To deal with such degeneracies, we first give an abstract existence and

uniqueness result for viscosity solutions of non-local degenerate Hamiltonians,

satisfying suitable continuity assumption with respect to Kuratowsky conver-

gence of the level sets. This abstract setting applies to an approximated flow.

Then, by the method of minimizing movements, we also build an “exact” cur-

vature flow, and we illustrate some examples, comparing the results with the

standard mean curvature flow.

1. Introduction

In a recent paper [5], the last two authors, together with M. Barchiesi, S. H. Kang

and T. Le, proposed a variational model for (binary) image denoising, which was

supposed to preserve small scale details (or small oscillations of the boundary) while

regularizing the large scales. This model is a variant of the celebrated Mumford-

Shah functional, where the perimeter term is replaced by the following one

(1.1) Mρ(E) =
1

2ρ

∣∣{x ∈ Rd : dist(x,E) ≤ ρ ,dist(x,Rd \ E) ≤ ρ
}∣∣ ,

defined for any E ⊆ Rd, where ρ > 0 acts as a scale selection parameter. Here and

throughout the paper, given A ⊂ Rd measurable, we denote by |A| its Lebesgue

measure. Notice that the energy is finite if and only if ∂E is compact. The idea

behind such a variant is that fluctuations of ∂E at lengths much smaller than ρ > 0

will have very little influence on the energy; on the other hand, it behaves as the

standard perimeter on much larger smooth boundaries, and in a more complicated

non-local way on sets with fine microstructures on scales of order ρ.

The sort of denoising which is obtained in [5] is shown in Fig. 1, where small

oscillations (here the stripes of the fingerprints) are almost untouched, while the

noise has mostly been removed.

In this paper, we try to investigate some mathematical analysis aspects of this

model. More precisely, we want to study the geometric evolution of curves and

shapes by the gradient flow of the functional proposed by these authors.

To this purpose, we first extend our energy to L1 functions, and express it in

terms of a function depending on the oscillation of u on balls of radius ρ, following
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Figure 1. An example from [5, Fig. 4.1]: the fingerprint (left:

noisy, right: denoised).

the approach in [16]. With this point of view, it turns out that (1.1) is the restriction

to characteristics functions of a convex, l.s.c. functional, satisfying a suitable “coarea

formula”. Then, we introduce the “curvature” as the first variation of this functional

with respect to inner variations of the sets. This curvature is not continuous and it

is not well defined for all smooth sets. Therefore, in (2.6) we introduce a smoother

version Mf of (1.1), which roughly speaking consists in averaging Mr over r, for

r varying in a neighborhood of ρ. The corresponding curvature is now well defined

on smooth sets.

After this preliminary analysis to define a proper notion of curvature, we study

the corresponding geometric flow. Using a level set approach and working in the

framework of viscosity solutions, we define a mean curvature flow equation, which is

both non-local and singular. Indeed, our Hamiltonian F (x,Du,D2u,K) depends in

a non-local way on the level set K, and behaves like a power (d−1) of the curvature

tensor of ∂K for vanishing sets, being thus singular in dimension d ≥ 3 (see (3.27)).

To deal with such degeneracy we combine the approach by Slepčev [26] to non-local

Hamiltonians with the approach by Ishii and Souganidis [23] and Goto [20] to de-

generate Hamiltonians. However, the approach in [26] is based on the assumption

that the Hamiltonian is continuous with respect to all its variables, in particular

with respect to L1 convergence of the sets. This is not the case of our Hamiltonian

(and of any reasonable regularization of it). Therefore, we build up a variant of

the approach in [26] that works for a general class of Hamiltonians satisfying suit-

able continuity properties with respect to the Kuratowski convergence instead of

L1 convergence of sets. We adapt the notion in [23] of viscosity solutions for sin-

gular Hamiltonians to our non local setting, and we show a corresponding result of

existence and uniqueness. This result will apply to a general class of Hamiltonians,

which does not include the Hamiltonian corresponding to our non-local curvature

flow, but only a suitable continuous approximation of it.

Finally, we study the minimizing movements corresponding to the energy Mf .

We introduce an implicit time-discretization of the motion, and we show that it

converges, up to a subsequence, to a solution of the level set equation in the vis-

cosity sense. In this way we recover an existence result for viscosity solutions also

for the exact Hamiltonian corresponding to the first variation of Mf , yet without

uniqueness. We mention that in a recent paper of Caffarelli and Souganidis [9], a

similar strategy (based, this time, on a diffusion/thresholding time-discrete scheme)
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has been successfully implemented to build up a non-local curvature flows associ-

ated to fractional diffusions. Our time-discretization approach can be numerically

implemented, following the approach in [16]: we show eventually in Section 5 a few

examples which are compared with the classical mean curvature flow, and seem to

confirm a slower smoothing of oscillatory boundaries.

We mention the existence of a few interesting alternative approaches to non-local

evolutions. The recent papers of [21, 8] provide a point of view slightly different

from ours, and address different kinds of evolutions. In particular, [8] also deals with

non-monotone evolutions, such as the one describing the motion of dislocation lines

in crystals (see also [2, 3, 6, 7, 12, 22]). Another approach is described in the papers

of Cardaliaguet [10, 11], Cardaliaguet and Rouy [15], Cardaliaguet and Ley [13, 14].

There, appropriate definition for evolving tubes are proposed and the convergence

of a time-discrete scheme (of the same kind as ours) is addressed in [14]. Moreover,

except in the preliminary work [10], the authors of this series of papers have taken

care to never need to evaluate the velocity on arguments which are not “natural”

(such as smooth level sets and their normal or second fundamental form), contrarily

to what is needed in our proof of uniqueness (as in [26]). Unfortunately, extending

their work to our approach raises complicated technical issues, since in particular

our velocity does not have the required continuity properties, and our minimizers

have unknown regularity. This is an interesting direction for future research, but we

also believe it is useful to develop the level-set approach in the non-local geometric

setting.

To summarize, the first goal of this paper is to investigate the geometric flow

corresponding to a non-local variant of the perimeter introduced in [5], in connection

with image denoising. We have developed a viscosity approach to non-local singular

Hamiltonians, combining many ideas from [26], [23] and [20]. Through the viscosity

approach we have obtained existence and uniqueness for a suitable regularization of

our Hamiltonian, while a minimizing movements approach yields a solution for the

original Hamiltonian. The abstract approach is itself interesting and stimulating:

a complete picture at the moment is still missing, and this paper represents a first

attempt to study singular non-local Hamiltonians, not even continuous with respect

to L1 convergence, but only with respect to Kuratowski convergence of level sets.

The combination of the minimizing movements variational method with viscosity

techniques seems to be a promising approach to complete the picture. To our

knowledge, up to now this kind of study has been carried out only in [14], [18],

and a few papers by the first author and co-workers. We hope that (borrowing in

particular from [14]) we will be able to extend these ideas to other motions, and

also, understand how to make the proof of the comparison result less dependent on

the extension of the Hamiltonian out of its natural domain of definition.

2. The energy functionals

2.1. The ρ-neighborhood. As mentioned, we focus on the study of (1.1). It is

well-known that, under mild regularity assumption on E (see for instance [4]) we
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have

lim
ρ→0
Mρ(E) = Hd−1(∂E) = Per(E),

where Per(E) is the standard perimeter of E. It is also very easy to show thatMρ

Γ-converges to the standard perimeter [17]. An issue with definition (1.1) is that it

depends on the choice of the representative within the Lebesgue equivalence class

of the set E. For this reason, one may introduce the following variant:

(2.1) Eρ(E) =
1

2ρ

∫
Rd

oscB(x,ρ)(χE) dx

where oscA(u) denotes the essential oscillation of the measurable function u over a

measurable set A, defined by

oscA(u) = ess sup
A
u − ess inf

A
u.

One checks that Eρ(E) coincides with the measure of the ρ-neighborhood of the

essential boundary of E. Moreover,

Eρ(E) = inf{Mρ(E
′) : |E4E′| = 0},

where E4E′ denotes the symmetric difference (E \E′)∪ (E′ \E). Finally, Eρ(E) =

Eρ(Ec) and it is finite if and only if either E or Ec is (essentially) bounded (where

Ec := Rd \E). An advantage of Definition (2.1) is that can be easily generalized to

a measurable function u ∈ L1
loc(Rd). By a slight abuse of notation, we still denote

Eρ(u) the functional:

(2.2) Eρ(u) =
1

2ρ

∫
Rd

oscB(x,ρ)(u) dx.

One can check that this energy is one-homogeneous, convex and therefore sub-

additive. Moreover, it is lower semicontinuous with respect to weak∗ convergence

in L∞loc, and satisfies the following generalized coarea formula

(2.3) Eρ(u) =

∫ ∞
−∞
Eρ({u > s}) ds.

This follows from the fact that for any A and u we have

oscA(u) =

∫ ∞
−∞

oscA(χ{u>s}) ds.

Moreover, one easily deduces that, given two measurable sets A,B ⊂ Rd,

(2.4) Eρ(A ∪B) + Eρ(A ∩B) ≤ Eρ(A) + Eρ(B) .

Indeed, observing that χA∪B +χA∩B = χA +χB , by coarea formula and in view of

the subadditivity of Eρ, we have

Eρ(A ∪B) + Eρ(A ∩B) =

∫ ∞
−∞
Eρ({χA∪B + χA∩B > s}) ds

= Eρ(χA + χB) ≤ Eρ(χA) + Eρ(χB) = Eρ(A) + Eρ(B).(2.5)
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2.2. The continuous energy functional. Fix ρ0 > 0 and δ ∈ (0, ρ0). We consider

now a Lipschitz function f : R → R+ which is even, with suppf = [−ρ0, ρ0],

constant in [−δ, δ] and nonincreasing in R+.

We then introduce the following variant of (1.1):

(2.6) Mf (E) =

∫
Rd
f(dE(x)) dx,

where dE is the signed distance to ∂E (negative inside E and positive outside).

Notice that Mf (E) is finite if and only if ∂E is compact, i.e., E or its complement

is bounded. We now show that

Mf (E) =

∫ ρ0

0

(−2sf ′(s))Ms(E) ds.

Since Mf (E) =Mf (Ec) we can assume that Ec is bounded. Then, thanks to the

co-area formula we have

Mf (E) =

∫
Rd
f(dE(x))|DdE(x)| dx =

∫ ρ0

−ρ0
f(s)Hd−1(∂{dE > s}) ds

= −
∫ ρ0

−ρ0
−f ′(s)|{s < dE < ρ0}| ds

=

∫ ρ0

0

−f ′(s)(|{−s < dE < ρ0}| − |{s < dE < ρ0}|) ds

=

∫ ρ0

0

(−2sf ′(s))Ms(E) ds.

Thanks to this, we can introduce the following variant ofMf , defined on Borel sets

and which depends only on the Lebesgue equivalence class

(2.7) Ef (E) =

∫ ρ0

0

(−2sf ′(s))Es(E) ds.

As before, we consider the convex extension of Ef , defined for all functions u ∈
L1
loc(Rd) by

(2.8) Ef (u) =

∫ ρ0

0

(−2sf ′(s))Es(u) ds =

∫
Ω

∫ ρ0

0

(−2sf ′(s))oscB(x,s)(u) ds dx.

By construction, Ef is a convex, lower semicontinuous energy which satisfies the

generalized coarea formula

(2.9) Ef (u) =

∫ ∞
−∞
Ef ({u > s}) ds.

Clearly, (2.4) is still true also for Ef .

2.3. The non-local curvature. Let E ⊂ Rd be a smooth set with compact bound-

ary. We denote by νE(x) the outer normal unit vector to ∂E at x. The non-local

curvature κρ is formally defined as the first variation of the energy Eρ in (2.1). Set

(2.10) κρ(E, x) = κ+
ρ (E, x) + κ−ρ (E, x),
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where

(2.11) κ+
ρ (E, x) =


1

2ρ
det(I + ρ∇νE(x)) if dist(x+ ρνE(x), E) = ρ ,

0 otherwise,

(2.12) κ−ρ (E, x) =


− 1

2ρ
det(I − ρ∇νE(x)) if dist(x− ρνE(x), Ec) = ρ ,

0 otherwise.

Let us decompose ∂E into three sets: ∂E = A+
ρ ∪B+

ρ ∪N+
ρ , where

A+
ρ := {x ∈ ∂E : there exists t > ρ : dist(x+ tνE(x), E) = t},

B+
ρ := {x ∈ ∂E : dist(x+ ρνE(x), E) < ρ}.
N+
ρ = ∂E \ (A+

ρ ∪B+
ρ ).

Analogously, we defineA−ρ , B
−
ρ , N−ρ with νE(x) replaced by −νE(x), and we set

Nρ := N+
ρ ∪N−ρ .

Lemma 2.1. Let E ⊂ Rn be a set of class C2 with compact boundary, such that

Hd−1(Nρ) = 0. Then, for every ϕ ∈ C2(∂E;R) we have

(2.13)
d

dε
Eρ
(
Φε(E)

)
|ε=0

=

∫
∂E

κρϕdHd−1,

where Φε is a diffeomorphism such that Φ(x) = x+ εϕ(x)νE(x) for x ∈ ∂E.

Remark 2.2. Notice that the assumption of Lemma 2.1 holds true for generic

smooth sets. More precisely, given a smooth set E, then for almost all positive ρ

one has Hd−1(Nρ) = 0. Moreover, such assumption is crucial. Indeed, let E be a

rectangle of sides 2 and 4, respectively, and set ρ = 1. In this case, a curvature κρ

satisfying (2.13) is not well defined. Indeed, one readily sees that such curvature κρ

should depend in a non-local way on ϕ. More precisely, let ϕ = ϕ1 + ϕ2, where ϕi

are defined in a small neighborhood of the middle points pi of the large sides Li of

E, and assume that ϕi have constant sign. Then, if ϕ1(p1)+ϕ2(p2) > 0, then (2.13)

holds true, while if ϕ1(p1) +ϕ2(p2) < 0, then (2.13) holds true with κρ replaced by

κ+
ρ . In particular, the “curvature” at p1 depends on the value of ϕ at p2.

Proof of Lemma 2.1. We will show that

(2.14)
d

dε
E±ρ
(
Φε(E)|E

)
|ε=0

=

∫
∂E

κ±ρ ϕdHd−1,

where, for every set F

E+
ρ (F |E) :=

1

2ρ

∫
Ec

oscB(x,ρ)(χF ) dx and E−ρ (F |E) =
1

2ρ

∫
E

oscB(x,ρ)(χF ) dx.

In order to prove (2.13), we will focus on the identity

(2.15)
d

dε
E+
ρ

(
Φε(E)

)
|ε=0

=

∫
∂E

κ+
ρ ϕdHd−1,

the variation of E−ρ being analogous. The proof is divided in three steps: first, we

prove that (2.15) holds if the support of ϕ is contained in A+
ρ . Then, we show that
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the variation vanishes on B+
ρ . Finally, by a localization argument, recalling also

Hd−1(N+
ρ ) = 0, we deduce the validity of (2.15).

Step 1. In this Step we assume that supp(ϕ) ⊆ A+
ρ , and then prove (2.15). For

every x ∈ A+
ρ let yε(x) := Φε(x) = x+ εϕ(x)νE(x), and set

(2.16) E+
ϕ,ε :=

{
yε(x) + tνΦε(E)(yε(x)), x ∈ ∂E, t ∈ (−ρ, ρ)

}
\ E,

so that, for ε small enough

E+
ρ

(
Φε(E)|E

)
= |E+

ϕ,ε|.

Set now

Ẽ+
ϕ,ε := {x+ tνE(x), x ∈ ∂E, t ∈ (0, ρ+ εϕ(x))} \ E.

By construction, since ∂E is of class C2, one can see that |E+
ϕ,ε4Ẽ+

ϕ,ε| = o(ε).

Finally, we have

E+
ρ

(
Φε(E)|E

)
− E+

ρ

(
E|E

)
ε

=
|E+
ϕ,ε| − |E+

ϕ,0|
ε

=
|Ẽ+
ϕ,ε| − |E+

ϕ,0|
ε

+ o(1)

=
1

ε

∫
∂E

dx

∫ εϕ(x)

0

|det
(
I + (ρ+ t)∇νE(x)

)
|dt+ o(1).

For ε→ 0 we recover (2.15).

Step 2. In this step we show that the curvature κ+
ρ vanishes on B+

ρ . This amounts

to show that, if ϕ has support in B+
ρ , then

d

dε
E+
ρ

(
Φε(E)

)
|ε=0

= 0.

This is readily seen, since by definition of B+
ρ we have that, for ε small enough,

E+
ϕ,ε = E+

ϕ,0, so that

E+
ρ

(
Φε(E)|E

)
= |E+

ϕ,ε| = |E+
ϕ,0| = E+

ρ

(
E|E

)
.

Step 3. In this step we conclude the proof by standard localization arguments.

Given δ > 0, we can always write ϕ = ϕ1 + ϕ2 + ϕ3 where supp(ϕ1) ⊂ A+
ρ ,

supp(ϕ2) ⊂ B+
ρ , Hd−1(supp(ϕ3)) ≤ δ and |ϕi| ≤ |ϕ|. Notice that

E+
ρ

(
Φε(E)|E

)
= |E+

ϕ1+ϕ2+ϕ3,ε| = |E
+
ϕ1+ϕ2,ε|+ r,

where |r| ≤ Cεδ. Moreover, for ε small enough

E+
ϕ1+ϕ2,ε = E+

ϕ1,ε.

Therefore, using Step 1, and since κ+
ρ ϕ2 ≡ 0 by Step 2, we conclude

lim sup
ε→0

∣∣∣∣∣E+
ρ

(
Φε(E)|E

)
− E+

ρ

(
E|E

)
ε

−
∫
∂E

κ+
ρ ϕdHd−1

∣∣∣∣∣ ≤
lim
ε→0

∣∣∣∣∣ |E+
ϕ1,ε| − |E

+
ϕ1,0
|

ε
−
∫
∂E

κ+
ρ ϕ1 dHd−1

∣∣∣∣∣+ C ′δ = C ′δ.

(2.17)

We conclude by the arbitrariness of δ.

�
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Now we introduce the non-local curvature κf associated to the energy (2.7):

(2.18) κf (E, x) = κ+
f (E, x) + κ−f (E, x),

where

(2.19) κ±f (E, x) =

∫ ρ

0

(−2sf ′(s))κ±s (E, x) ds.

The following result is a direct consequence of (2.7), Lemma 2.1 and Remark 2.2:

Theorem 2.3. Let E ⊂ Rn be an open bounded set of class C2. Then, for every

ϕ ∈ C2(∂E;R) we have

(2.20)
d

dε
E
(
Φε(E)

)
|ε=0

=

∫
∂E

κf (E, x)ϕ(x) dHd−1(x),

where Φε is a diffeomorphism such that Φ(x) = x+ εϕ(x)νE(x) for x ∈ ∂E.

3. Viscosity solutions of the non-local level-set equation

In this section we introduce the level set formulation of the geometric evolution

problem

(3.1) V = κf ,

where V represents the normal velocity of the boundary of the evolving sets t 7→ Et,

and we give a proper notion of viscosity solution. Then, we develop an abstract

setting where we provide existence and uniqueness results, for a suitable class of

Hamiltonians. Unfortunately, as already said in the introduction, this theory applies

only to a suitable regularization of the curvature κf . However, we will also provide

later on (Section 4) an existence result, without uniqueness, for equation (3.1).

3.1. The non-local evolution. Here we introduce the level set formulation of the

geometric evolution problem (3.1). To this aim, following the level set approach,

we identify Et with the superlevel set {u ≥ 0} of a function u : R× Rd 7→ R, and

study the corresponding degenerate parabolic equation in u. Let Md×d
sym denote the

class of d× d symmetric matrices, and C(Rd) the class of closed subsets of Rd. We

introduce the Hamiltonian Ff : Rd × Rd ×Md×d
sym × C(Rd) 7→ R defined by

(3.2) Ff (x, p,X,K) :=

∫ ρ0

0

(−2sf ′(s))Fs(x, p,X,K) ds ,

where

(3.3) Fs(x, p,X,K) = F+
s (x, p,X,K) + F−s (x, p,X,K)

and the functions F+
s and F−s are defined as follows:

F+
s (x, p,X,K) =


|p|
2s

det

[
I − s

|p|
Pp̂XPp̂

]+

if

 p 6= 0,

dist(x− sp̂,K) ≥ s,

0 otherwise,
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F−s (x, p,X,K) =


−|p|

2s
det

[
I +

s

|p|
Pp̂XPp̂

]+

if

 p 6= 0,

dist(x+ sp̂,Kc) ≥ s,

0 otherwise.

Here Pp̂ := (I − p̂ ⊗ p̂), where, for p 6= 0, p̂ = p/|p|, and for X a symmetric

matrix, [X]+ is the matrix with all eigenvalues replaced with their positive part (in

particular, det[X]+ = 0 for any X which is not positive definite).

Remark 3.1. If u is a smooth function and u(x) is not a critical level, by Theorem

2.3 we easily deduce that

(3.4) Ff (x,Du(x), D2u, {y ∈ Rd : u(y) ≥ u(x)}) = |Du(x)|κf ({u ≥ u(x)}, x).

In this identity we use in particular that, if p = ∇u, X = D2u, K = {u ≥ u(x)},
then det

[
I − s

|p|Pp̂XPp̂
]+

= 0 means that there is a direction along which the

curvature is larger than 1/s, so that κ+
s (K,x) = 0.

The level set approach consists in solving the following parabolic Cauchy problem

(3.5)


ut(x, t) + Ff (x,Du(x, t), D2u(x, t), {y : u(y, t) ≥ u(x, t)}) = 0

for t > 0 , x ∈ Rd,

u(0, ·) = u0,

in the viscosity sense. The definition of a viscosity solution for such a non-local

Hamiltonian will be introduced in the next subsection. We will prove an existence

and uniqueness result in this setting, which will be applied to a smoothed variant

of Ff .

3.2. The abstract setting. We introduce here a notion of viscosity solutions for

problems such as (3.5). The issues are of course that the Hamiltonian is non-

local, but also that it is singular in p = 0 (at least in dimension d ≥ 3), in the

sense that it grows as the set vanishes as a power (d − 1, in dimension d) of the

curvature tensor. For this reason, we have to adapt both the setting of Slepčev

[26] for non-local evolutions (notice however that we will consider weaker continuity

assumptions with respect to the set variable), and the one of Ishii and Souganidis

[23] (see also Goto [20]) for singular Hamiltonians.

We will first list the properties which our Hamiltonians need to satisfy in order

to show an existence and uniqueness result, and then introduce the appropriate

definition of a viscosity solution (which is almost standard). Let A(Rd) denote

the family of open sets in Rd, and C(Rd) the family of closed sets. We consider

Hamiltonians F : Rd × Rd \ {0} × Md×d
sym × {C(Rd) ∪ A(Rd)} 7→ R satisfying the

following properties:

i) Translational invariance: F (x + r, p,X,E + r) = F (x, p,X,E) for every

r ∈ Rd;
ii) Degenerate ellipticity: F (x, p,X,E) ≥ F (x, p, Y,E) if X ≤ Y ;

iii) Monotonicity in the set variable: F (x, p,X,E) ≥ F (x, p,X,G) if E ⊆ G;

iv) Geometric property: F (x, λp, λX+µp⊗p,E) = λF (x, p,X,E) for all λ ≥ 0,

µ ∈ R.
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v) Continuity: F is continuous with respect to its first variable, moreover, the

following properties hold:

v.1) If xn → x, pn → p 6= 0, Xn → X and {Kn} ⊂ C(Rd) is a sequence

converging to K in the Kuratowski sense, then

F (x, p,X,K) ≤ lim inf
n

F (xn, pn, Xn,Kn).

v.2) If xn → x, pn → p 6= 0, Xn → X and {An} ⊂ A(Rd) is a sequence

such that Acn converges to Ac in the Kuratowski sense, then

F (x, p,X,A) ≥ lim sup
n

F (xn, pn, Xn, An).

vi) There exists a continuous function c : (0,+∞) 7→ (0,+∞) such that, for all

x ∈ Rd, p ∈ Rd \ {0}, E ∈ C(Rd) ∪ A(Rd) we have

(3.6) −c(|p|) ≤ F (x, p,±I, E) ≤ c(|p|).

Following [23], we introduce the family F of functions f ∈ C2([0,∞)) such that

f(0) = f ′(0) = f ′′(0) = 0, and such that f ′′(r) > 0 for all r > 0 which satisfy

(3.7) lim
p→0

f ′(|p|)
|p|

c(|p|) = 0.

We refer to [23, p. 229] for the proof that the family F is not empty.

Let T > 0 be fixed. As a slight variant to [23], we introduce the following

definition.

Definition 3.2. We will say that ϕ ∈ C0(Rd × (0, T )) is admissible at the point

ẑ = (x̂, t̂) if it is of class C2 in a neighborhood of ẑ and, in case Dϕ(ẑ) = 0, the

following holds: there exists f ∈ F and ω ∈ C0([0,∞)) satisfying limr→0 ω(r)/r = 0,

such that

|ϕ(x, t)− ϕ(ẑ)− ϕt(ẑ)(t− t̂)| ≤ f(|x− x̂|) + ω(|t− t̂|)

for all (x, t) in a neighborhood of ẑ.

Given a function u0, which is uniformly continuous in Rd, we want to solve

(3.8) ut(x, t) + F (x,Du(x, t), D2u(x, t), {y : u(y, t) ≥ u(x, t)}) = 0

for (x, t) ∈ Rd × (0, T ),

subject to the initial condition u(0, ·) = u0. We introduce the following definition

of a viscosity sub/supersolution, inspired from both frameworks of [23] and [26].

Definition 3.3. An upper semicontinuous function u : Rd×[0, T )→ R is a viscosity

subsolution of (3.8) if for all z := (x, t) ∈ Rd × (0, T ) and all ϕ ∈ C0(Rd × (0, T ))

such that u− ϕ has a maximum at z and ϕ is admissible at z we have

(3.9)


ϕt(z) + F

(
x,Dϕ(z), D2ϕ(z), {y : ϕ(y, t) ≥ ϕ(z)}

)
≤ 0 if Dϕ(z) 6= 0,

ϕt(z) ≤ 0 otherwise.

A lower semicontinuous function is a viscosity supersolution of (3.8) if for all z ∈
Rd × (0, T ) and all ϕ ∈ C0(Rd × (0, T )) such that u − ϕ has a minimum at z and
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ϕ is admissible at z we have

(3.10)


ϕt(z) + F

(
x,Dϕ(z), D2ϕ(z), {y : ϕ(y, t) > ϕ(z)}

)
≥ 0 if Dϕ(z) 6= 0,

ϕt(z) ≥ 0 otherwise.

Finally, a function u is a viscosity solution of (3.8) if its upper semicontinuous

envelope is a subsolution and its lower semicontinuous envelope is a supersolution

of (3.8).

As it is standard in the theory of viscosity solutions, the maximum in the

definition of subsolutions can be assumed to be strict, while the test functions ϕ

can be assumed to be coercive (and similarly for supersolutions). For the reader’s

convenience, we show that this is the case also in our non-local setting. Assume

for instance that u is a subsolution, u− ϕ has a maximum at some (x, t), with ϕ

admissible at (x, t). If Dϕ(x, t) 6= 0 we replace ϕ with

ϕε(y, s) := ϕ(y, s) + ε|y − x|2 + |t− s|2.

Then the maximum of u− ϕε at (x, t) is strict, and we recover the inequality (3.9)

for ϕ by letting ε → 0 and using the semicontinuity of F , observing that the sets

{ϕ(y, t) + ε|y − x|2 ≥ ϕ(x, t)} converge to {ϕ(y, t) ≥ ϕ(x, t)} in the Kuratowski

sense. We use then the semicontinuity property v.1) to conclude.

If Dϕ(x, t) = 0, we choose f ∈ F as in Definition 3.2, and replace ϕ by

ϕ̃(y, s) := ϕ(y, s) + f(y − x) + |t− s|2.

We still have Dϕ̃(x, t) = 0, ϕ̃ is admissible at (x, t), ϕ̃t(x, t) = ϕt(x, t) and now the

maximum of u− ϕ̃ is strict.

Notice that our definition of supersolutions and subsolutions is formally different

than the one given in [26], that involves the superlevel sets of u instead of ϕ. Indeed,

in the case of a subsolution we can assume that the test function ϕ is such that

u ≤ ϕ, and u(x, t) = ϕ(x, t). Then, {y : u(y, t) ≥ u(x, t)} ⊂ {y : ϕ(y, t) ≥ ϕ(x, t)}
so that

F
(
x,Dϕ(x, t), D2ϕ(x, t), {y : u(y, t) ≥ u(x, t)}

)
≥ F

(
x,Dϕ(x, t), D2ϕ(x, t), {y : ϕ(y, t) ≥ ϕ(x, t)}

)
.

Therefore, our definition seems actually weaker. The following Lemma shows that,

in fact, it is equivalent.

Lemma 3.4. Let u be a viscosity subsolution of (3.8). Then, for all (x, t) in

Rd × (0, T ) and all ϕ ∈ C0(Rd × (0, T )) admissible at (x, t), with Dϕ(x, t) 6= 0, and

such that u− ϕ has a maximum at (x, t) we have

(3.11) ϕt(x, t) + F
(
x,Dϕ(x, t), D2ϕ(x, t), {y : u(y, t) ≥ u(x, t)}

)
≤ 0.

A similar statement holds for supersolutions.

Proof. We can assume that the test function ϕ is such that u ≤ ϕ and u(x, t) =

ϕ(x, t). Consider a decreasing sequence ψn of functions which are smooth and

such that infn ψ
n = u, ψn ≥ u + 1/n. Such a sequence exists because u is upper-

semicontinuous. We consider now the test function ϕn = min{ϕ,ψn}, and notice
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that ϕn = ϕ in a neighborhood of (x, t), and hence u− ϕn still has a maximum at

(x, t). By the very definition of subsolutions we have

ϕt(x, t) + F
(
x,Dϕ(x, t), D2ϕ(x, t), {y : ϕn(y, t) ≥ u(x, t)}

)
≤ 0.

Consider Kn = {ϕn(·, t) ≥ u(x, t)} ⊇ K = {u(·, t) ≥ u(x, t)}. Since the sequence

of the sets Kn is nonincreasing, Kn →
⋂
kKk in the Kuratowski sense, and by

construction K =
⋂
kKk. It follows that

lim inf
n→∞

F
(
x,Dϕ(x, t), D2ϕ(x, t), {y : ϕn(y, t) ≥ u(x, t)}

)
≥ F

(
x,Dϕ(x, t), D2ϕ(x, t), {y : u(y, t) ≥ u(x, t)}

)
and (3.11) follows. �

Remark 3.5. By the assumption iv) on F , a standard argument shows that if u

is a subsolution (supersolution) and θ : R → R is increasing, then θ ◦ u is still a

subsolution (supersolution).

3.3. A comparison result. Here we provide a comparison result, that is the main

ingredient to get existence and uniqueness in the viscosity setting. Let us set

QT := Rd × (0, T ), ∂pQT = Rd × {0}, RT = QT ∪ ∂pQT .

Moreover, we denote by USC(RT ) and LSC(RT ) the space of upper and lower

semicontinuous functions on RT , respectively. The following comparison principle

is an extension of [23, Theorem 1.7] for non local evolutions.

Theorem 3.6. Let u ∈ USC(RT ) and v ∈ LSC(RT ) be a subsolution and a

supersolution of (3.8), respectively. Assume that

(3.12) lim
r↓0

sup{u(z)− v(ζ) : (z, ζ) ∈ ∂pQT ×RT )∪ (RT ×∂pQT ), |z− ζ| ≤ r} ≤ 0.

Then u ≤ v in RT , and moreover,

lim
r↓0

sup{u(z)− v(ζ) : z, ζ ∈ RT , |z − ζ| ≤ r} ≤ 0.

Proof. The proof follows the line of the proof of [23, Theorem 1.7]. We do not

provide a self-contained proof; we only indicate the changes needed to adapt that

proof to the context of our non-local setting. For the reader’s convenience, we will

use the same notation as in [23], up to the fact that in our case, Ω = Rd (and the

space dimension is denoted by d instead of N).

As in [23], by Remark 3.5 we may assume without loss of generality that u and

v are bounded, and we extend their domain of definition on QT by setting

u(x, T ) = lim
r↓0

sup{u(y, s) : (y, s) ∈ RT , |y − x|+ |s− T | ≤ r} ,

v(x, T ) = lim
r↓0

inf{v(y, s) : (y, s) ∈ RT , |y − x|+ |s− T | ≤ r} .

The functions u and v are still upper and lower semicontinuous in QT , respectively.

We first show that u is still a subsolution (and v a supersolution) in Rd × (0, T ]

in the obvious sense. Assume indeed that u−ϕ has a strict maximum at z = (y, T ),

where ϕ is admissible and coercive.
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Assume first that Dϕ(z) 6= 0. For any n ∈ N large enough, the function (x, t) 7→
u(x, t) − ϕ(x, t) − 1/[n(T − t)] attains a maximum at a point zn = (yn, tn) ∈ QT ,

where zn → z as n→∞, moreover we have Dϕ(zn) 6= 0 for n large. Hence,

ϕt(zn) +
1

n(T − tn)2
+ F (xn, Dϕ(zn), D2ϕ(zn), {ϕ(·, tn) ≥ ϕ(zn)}) ≤ 0.

Since any Kuratowski limit of {ϕ(·, tn) ≥ ϕ(zn)} is contained in {ϕ(·, t) ≥ ϕ(z)},
using properties iii) and v.1) of F we deduce

ϕt(z) + F (x,Dϕ(z), D2ϕ(z), {ϕ(·, t) ≥ ϕ(z)}) ≤ 0.

If now Dϕ(z) = 0, we follow the lines of [23, Proposition 1.3]. Since ϕ is admissi-

ble at z = (y, T ), there are δ > 0, f ∈ F and ω ∈ C0(R) with ω(r)/r → 0 as r → 0

such that

|ϕ(x, t)− ϕ(z)− ϕt(z)(t− T )| ≤ f(|x− y|) + ω(t− T )

for all (x, t) ∈ B(z, δ). Without loss of generality we assume that ω ∈ C1(R) and

ω(0) = ω′(0) = 0 and also that ω(r) > 0 for r 6= 0. Next choose a sequence

ωn ∈ C2(R) such that ωn(r)→ ω(r) and ω′n(r)→ ω′n(r) locally uniformly in R and

set

ψ(x, t) = ϕt(z)(t− T ) + 2f(|x− y|) + 2ω(t− T ) ,

ψn(x, t) = ϕt(z)(t− T ) + 2f(|x− y|) + 2ωn(t− T )− 1

n(T − t)
.(3.13)

We have u− ψ has a strict maximum at z. Hence for n large enough u− ψn has

a strict maximum at zn = (yn, tn) ∈ QT , with zn → z, and ψn is admissible at zn.

As u is a subsolution, we have, using also property iv) of F ,

(3.14) ϕt(z) + 2ω′n(tn − T ) +
1

n(T − tn)2

+
2f ′(|yn − y|)
|yn − y|

F (yn, yn − y, I, {ψn(·, tn) ≥ ψn(zn)}) ≤ 0

if yn 6= y, while ϕt(z) + 2ω′n(T − tn) + 1/[n(T − tn)2] ≤ 0 if yn = y. Letting n→∞,

we get ϕt(z) ≤ 0 thanks to (3.7). Hence, as claimed, u is a subsolution in Rd×(0, T ].

Now, as in [23], we assume that

(3.15) θ0 := lim sup
r↓0

{
u(z)− v(ζ) : (z, ζ) ∈ Q2

T , |z − ζ| ≤ r
}
> 0

and try to get a contradiction. The proof then follows identically the proof in [23]

from page 238 until the middle of page 241. In particular (using exactly the same

notation), the case “θ̂ = θ” is identical (since the non-locality does not play any

role in that case), and we may jump to the case θ̂ < θ. As in [23], we then let

(x̂, t̂, ŷ, ŝ) ∈ QT ×QT be the maximum point of

(3.16) u(x, t)− v(y, s)− αf(|x− y|)− α(t− s)2 − εt− εs− δ|x|2 − δ|y|2,

where f ∈ F , and ε, α > 0 are suitable positive constants, and δ > 0 is chosen

in such a way that the value of this maximum point is strictly positive. We then

can jump to the middle of page 241 (more precisely, up to “Now the definition of
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viscosity solution yields”). Here, the situation is a bit changed. By Lemma 3.4 we

get

2α(t̂− ŝ) + ε+ F

(
x̂, αf ′(|p̂|) p̂

|p̂|
+ 2δx̂,X + 2δI, {u(·, t̂) ≥ u(x̂, t̂)}

)
≤ 0,

and

2α(t̂− ŝ)− ε+ F

(
ŷ, αf ′(|p̂|) p̂

|p̂|
− 2δŷ,X − 2δI, {v(·, ŝ) > v(ŷ, ŝ)}

)
≥ 0.

Here X is a suitable symmetric matrix which also depends on δ, and p̂ := x̂ − ŷ.

Moreover, X, p̂, t̂ and ŝ are uniformly bounded, while |p̂| is bounded from below.

Therefore, we may assume that they converge, as δ → 0, to some limit denoted in

[23] by Y, p̄ 6= 0, t̄, s̄, respectively. Denote

Kδ := {u(·, t̂) ≥ u(x̂, t̂)} − x̂, Lδ := {v(·, ŝ) > v(ŷ, ŝ)} − ŷ.

We may also assume that Kδ → K, Lcδ → Lc in the Kuratowski sense, for some

K ∈ C(Rd), L ∈ A(Rd). We deduce (using the semicontinuity properties of F and

the translational invariance) that

(3.17)

2α(t̄− s̄) + ε+ F

(
0, αf ′(|p̄|) p̄

|p̄|
, Y,K

)
≤ 0,

2α(t̄− s̄)− ε+ F

(
0, αf ′(|p̄|) p̄

|p̄|
, Y, L

)
≥ 0.

By (3.16) we have

(3.18) u(x, t̂)− u(x̂, t̂) ≤ v(y, ŝ)− v(ŷ, ŝ)−(
αf(|x̂− ŷ|)− αf(|x− y|) + δ|x̂|2 − δ|x|2 + δ|ŷ|2 − δ|y|2

)
.

Let R > 0 and choose ξ ∈ Kδ ∩ BR. Let also η ∈ (0, 1/2) and q = 2ηp̂ (recall

p̂ = x̂ − ŷ). Choose z with |z| ≤ η|p̂|. Choosing x = x̂ + ξ and y = ŷ + ξ + q + z

in (3.18), and observing that x− y = (1− 2η)p̂− z so that |x− y| ≤ (1− η)|p̂|, we

obtain since ξ ∈ Kδ

0 ≤ u(x̂+ ξ, t̂)− u(x̂, t̂) ≤ v(ŷ + ξ + q + z, ŝ)− v(ŷ, ŝ)−(
αf(|p̂|)− αf((1− η)|p̂|)− δξ · (2x̂+ ξ)− δ(ξ + q + z) · (2ŷ + ξ + q + z)

)
.

Since δ(|x̂|+ |ŷ|)→ 0 (see [23]), |ξ| ≤ R, and

αf(|p̂|)− αf((1− η)|p̂|) ≥ c > 0

for some c independent of δ (as |p̂| is bounded away from zero), we have

αf(|p̂|)− αf((1− η)|p̂|)− δξ · (2x̂+ ξ)− δ(ξ + q + z) · (2ŷ + ξ + q + z) > 0

for δ small. Thus, ξ + q + z ∈ Lδ. As this is true for all |z| ≤ η|p̂|, we find that for

δ small enough,

q + (Kδ ∩BR(0)) +Bη|p̂|(0) ⊆ Lδ.

In other words, the sets q + (Kδ ∩ BR(0)) are at distance at least η|p̂| from Lcδ.

Taking the (Kuratowski) limits as δ → 0 we deduce that dist(2ηp̄ + K,Lc) ≥ η|p̄|,
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and in particular that 2ηp̄+K ⊂ L. Using property iii) of F and the translational

invariance again, we deduce that

F

(
−2ηp̄, αf ′(|p̄|) p̄

|p̄|
, Y,K

)
≥ F

(
0, αf ′(|p̄|) p̄

|p̄|
, Y, L

)
for any η ∈ (0, 1/2). Taking the limit η → 0, and using the continuity of F with

respect its first variable together with (3.17), we obtain that 2ε ≤ 0, a contradiction.

�

3.4. Existence and uniqueness of viscosity solutions. To show the existence

of viscosity solutions, we need the following stability result.

Proposition 3.7. Let (un)n≥1 be a sequence of upper semicontinuous subsolutions

of (3.8) and let, for any z = (x, t),

u∗(z) = lim
r↓0

sup

{
un(ζ) : |z − ζ| ≤ r , n ≥ 1

r

}
.

Then u∗ is also a subsolution of (3.8).

Of course, a symmetric result holds for supersolutions.

Proof. The proof of this result is a variant of the proof of [23, Prop. 1.3] (see also

the proof of property (P2) in [26]), observing that if zn = (xn, tn) → z = (x, t)

and ϕ is a test function, then the sets Kn := {ϕ(·, tn) ≥ ϕ(zn)} converge (up to a

subsequence) in the Kuratowski sense to a set K ⊆ {f(·, t) ≥ ϕ(z)}. We conclude

using the monotonicity and the semicontinuity properties of F . �

Given A ⊂ Rn, we denote by BUC(A) the space of bounded, uniformly contin-

uous functions from A to R. We now can state a general existence and uniqueness

result:

Theorem 3.8. Let u0 ∈ BUC(Rd). Then, there exists a unique viscosity solution

u ∈ BUC(Rd × [0,∞)) of (3.8) with initial condition u0.

Proof. The proof of this result is very classical, see [19, 23] and based on Perron’s

method. We introduce

ū(x, t) = sup
{
u(x, t) : u subsolution of (3.8), minu0 ≤ u ≤ maxu0 , u(·, 0) ≤ u0

}
,

and u∗, u∗, its upper and lower semicontinuous envelopes. The fact that u∗ is a

subsolution follows from Proposition 3.7, observing that at each point (x, t) we

can find a suitable sequence of subsolutions (un)n≥1 whose relaxed upper limit is

u∗(x, t).

The fact that u∗ is also a supersolution is classical and obtained by contradiction,

assuming that at some point z̄ = (x̄, t̄) of (strict) contact with a test function ϕ ≤ u∗,
ϕ does not satisfy (3.10). If Dϕ(z̄) 6= 0, one can use the test function ϕ to construct

a new subsolution ū > u∗ in a neighborhood of z̄, thus contradicting the maximality

of u∗. To treat the case Dϕ(z̄) = 0 one repeats the same construction, but (as in

the proof of [23, Prop. 1.3]) with ϕ replaced by

ψ(x, t) = ϕ(z̄) + ϕt(z̄)(t− t̄)− 2f(|x− x̄|)− 2ω(t− t̄).
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The regularity properties of u and the fact that the initial condition is attained,

can be shown as in the last part of the proof of [23, Theorem 1.8]. �

3.5. Application to our evolution problem. Here we show how to apply the

viscosity approach developed above to our specific problem. First, we extend the

Hamiltonian Ff in (3.2) to open sets, enforcing that the evolution of a closed set K

agrees with the evolution of its complement, i.e., setting for every A ∈ A(Rd):

(3.19) Ff (x, p,X,A) := −Ff (x,−p,−X,Ac) = Ff (x, p,X,Ac),

where the last identity follows by the very definition (3.2), (3.3) of Ff . It turns

out, however, that the Hamiltonian Ff in (3.2) does not satisfy all the assumptions

which are required in Theorem 3.8. In fact, it lacks assuptions v), v.1), v.2). A

basic counterexample is as follows: Let K be a ball, and xn → x ∈ ∂K with xn 6∈ K
for all n. Then, F−ρ (xn, p,X,K) = 0 for all n and any p,X, while if p is the inner

normal to ∂K, X is small enough and the radius of the ball K is large enough,

then F−ρ (x, p,X,K) < 0. On the other hand, F+
ρ (xn, p,X,K) will be constant

(and positive). Hence Ff , in that case, will be l.s.c., but not continuous, and in

particular v.2) does not hold, neither the continuity with respect to x.

In fact, we observe now that a continuous Hamiltonian extending the non-local

curvature (2.18) does not exist. Indeed, let K = B := B1(0) ⊂ R2 and x ∈ ∂B. Let

moreover An be open smooth subsets of B̄ and xn ∈ ∂An be satisfying the following

properties: 1) An have vanishing diameter; 2) xn → x; 3) the outer normal and

the (euclidean) curvature of An at xn agree with the outer normal and curvature

of B at x, respectively. These conditions are clearly compatible. Set Kn := B \An.

Then κ±f (Kn, xn) = 0 for n large enough (remember that f ′ = 0 near 0). The idea

now is that, if we could extend κf into a semi-continuous Hamiltonian in the sense

of v), it would follow that κf (K,x) ≤ 0, which is not true. More precisely, let

un = −dKn . By (3.4) and since Dun(xn) = Du(x), D2un(xn) = D2u(x) we have

(3.20) Ff (x,Du(x), D2u(x),K) = κf (K,x) > 0 = lim inf
n→∞

κf (Kn, xn)

= lim inf
n→∞

Ff (xn, Dun(xn), D2un(xn),Kn) = lim inf
n→∞

Ff (xn, Du(x), D2u(x),Kn).

Since xn → x and Kn → K, we conclude that property v.1) does not hold. This

means that Theorem 3.8 does not apply for our particular problem, without further

smoothing (see Proposition 3.10 below).

We can show a continuity slightly weaker than assumptions v), v.1), v.2), which

however will have some utility in the sequel. The following result shows that these

properties are essentially true if (x, p,X,K) are of the form (x,Dϕ(x), D2ϕ(x), {ϕ ≥
ϕ(x)}), when Dϕ(x) 6= 0. Finding a result similar to Theorem 3.8 but under this

weaker assumption would be very interesting, and is a subject for future study.

Lemma 3.9. Let ϕn, ϕ : Rd → R be C2
loc functions, and assume that ϕn → ϕ in

C2
loc as n → ∞. Let x ∈ Rd with Dϕ(x) 6= 0 and consider a sequence (xn) with
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xn → x. Then,

(3.21) Ff (x,Dϕ(x), D2ϕ(x), {ϕ ≥ ϕ(x)})

≤ lim inf
n→∞

Ff (xn, Dϕn(xn), D2ϕn(xn), {ϕn ≥ ϕn(xn)})

and

(3.22) Ff (x,Dϕ(x), D2ϕ(x), {ϕ > ϕ(x)})

≥ lim sup
n→∞

Ff (xn, Dϕn(xn), D2ϕn(xn), {ϕn > ϕn(xn)}) .

Proof. We prove only the first inequality, the second one being a consequence of

the first one and the identity

Ff (x,Dϕ(x), D2ϕ(x), {ϕ > ϕ(x)}) = −Ff (x,−Dϕ(x),−D2ϕ(x), {−ϕ ≥ ϕ(x)}).

First of all, replacing ϕn with y 7→ ϕn(y − x+ xn) we may assume (by translation

invariance of the Hamiltonian) that xn = x for all n ≥ 1. Denote p = Dϕ(x),

pn = Dϕn(x), p̂ = Dϕ(x)/|Dϕ(x)|, and p̂n = Dϕn(x)/|Dϕn(x)|, X = D2ϕ(x),

Xn = D2ϕn(x), K = {ϕ ≥ ϕ(x)}, Kn = {ϕn ≥ ϕn(x)}. One has that pn → p, etc,

except for one detail: Kn may not converge to K: more precisely any Kuratowski

limit of a subsequence of Kn is a set in between {ϕ > ϕ(x)} and K.

Consider now s ∈ [δ, δ] (recall that f is constant on [0, δ]). Since K is C2 near

x (by the implicit function theorem), there exists a positive s∗ ∈ (0, δ], such that

dist(x− sp̂,K) = s if s ≤ s∗, and dist(x− sp̂,K) < s if s ∈ (s∗, δ] (possibly empty).

We want to prove that for a.e. s (in fact, for all s 6= s∗),

(3.23) κ+
s (K,x) ≤ lim inf

n→∞
κ+
s (Kn, x).

Since, clearly,

|pn|
2s

det

[
I − s

|pn|
PpnXnPpn

]+
n→∞−→ |p|

2s
det

[
I − s

|p|
Pp̂XPp̂

]+

,

we need to show (3.23) only when the right-hand side is zero, or more precisely,

when dist(x − sp̂n,Kn) < s for infinitely many n ≥ 1. In this case, let nk be a

subsequence such that Knk → K̃ (Kuratowski) and dist(x − sp̂nk ,Knk) < s for

all k. Let ynk ∈ Knk such that |x − sp̂nk − ynk | < s, and we can also assume that

ynk → y ∈ K̃ ⊂ K. There are two situations:

• either y 6= x, in which case, since |x − sp̂ − y| ≤ s, we have s ≥ s∗. Since

for s > s∗ κ+
s (K,x) = 0, we conclude that (3.23) holds for all s 6= s∗;

• or y = x, in which case there exists zk ∈ [x, ynk ] such that

ϕnk(x) ≤ ϕnk(ynk) = ϕnk(x)+Dϕnk(x)·(ynk−x)+
1

2
(D2ϕnk(zk)(ynk−x))·(ynk−x),

hence

(3.24) 0 ≤ pnk · (ynk − x) +
1

2
(Xnk(zk)(ynk − x)) · (ynk − x).

Now,

s2 > |x− sp̂nk − ynk |2 = |ynk − x|2 + s2 +
2s

|pnk |
(pnk · (ynk − x)),
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and hence, dividing by |ynk − x|2 we have

(3.25) 0 > 1 +
2s

|pnk |
(pnk · (ynk − x))

|ynk − x|2
,

Set ξk = (ynk − x)/|ynk − x|. Up to a subsequence ξk → ξ ⊥ p̂. By (3.24)

and (3.25) we conclude

s

|p|
Xξ · ξ ≥ 1

and in particular, I − s′/|p|Pp̂XPp̂ has a negative eigenvalue as soon as

s′ > s. It follows that s∗ ≤ s and, again, we deduce (3.23) for all s 6= s∗.

Now, it remains to take the integral for s ∈ [δ, δ], and it follows, using Fatou’s

lemma, that:

F+
f (x,Dϕ(x), D2ϕ(x), {ϕ ≥ ϕ(x)})

≤ lim inf
n→∞

F+
f (x,Dϕn(x), D2ϕn(x), {ϕn ≥ ϕn(x)}) .

In order to show (3.21), it remains to show a similar inequality for F−f .

This time, we need to show that for almost any s ∈ [δ, δ], if, for a subse-

quence, κ−s (Knk , x) < 0, then κ−s (K,x) must also take the value −1/(2s) det[I +

(s/|p|)Pp̂XPp̂]+. But it means precisely that dist(xnk + sp̂nk ,K
c
nk

) = s for all k,

hence ϕ ≥ ϕ(xnk) on the ball of center xnk + sp̂nk and radius s. Passing to the

limit, we deduce that ϕ ≥ ϕ(x) on the ball of center x + sp̂ and radius s, so that

dist(x+ sp̂,Kc) ≥ s. The thesis follows. �

Finally, we build an approximation of the Hamiltonian Ff which will fulfill the

assumptions (i–v) of Section 3. To this purpose it is clearly enough to approximate

Fρ for fixed ρ; a possibility is a follows,

(3.26) Fε(x, p,X,E) :=
|p|
2ρ

det

[
I − ρ

|p|
Pp̂XPp̂

]+

Hε(dist(x− ρp̂, E)− ρ)

− |p|
2ρ

det

[
I +

ρ

|p|
Pp̂XPp̂

]+

Hε(dist(x+ ρp̂, Ec)− ρ),

where Hε(t) is a continuous approximation of the Heavyside function, which is 1

for t ≥ 0, 0 for t ≤ −ε, and nondecreasing.

In that case,

(3.27)

|Fε(x, p,±I, E)| ≤ |p|
2ρ

(1 +
ρ

|p|

)d−1

+

[(
1− ρ

|p|

)+
]d−1

 ≤ c(|p|) ∼ |p|2−d
as |p| → 0, and in dimension d ≥ 3 this Hamiltonian is indeed singular. The

following result is straightforward:

Proposition 3.10. The Hamiltonian Fε satisties all the properties required in

Section 3.

In particular, by Theorem 3.8 we deduce existence and uniqueness, in the vis-

cosity setting, of the geometric flow corresponding to the regularized non local
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curvature (3.26). In the next section we show an existence result (but with no proof

of uniqueness) for the original non-local flow (3.5).

4. The geometric evolution associated to Ef

We will now follow a different approach, in order to construct a (level-set) flow

of our curvature which is actually a viscosity solution of the equation (3.5), with Ff

the Hamiltonian defined in (3.2). Here we assume that u0 is an initial datum with

compact support, and bounded, uniformly continuous (u0 ∈ BUCc(Rd)).
The construction follows the approach first suggested by Luckhaus and Sturzen-

hecker, and Almgren, Taylor and Wang [24, 1]. We follow here a simple strategy

which has been elaborated in [18] for the classical Mean Curvature Flow, and which

we adapt to our setting.

First, given a time-step h > 0 and a compact set E, we define T−h E (resp, T+
h E)

as the minimal (resp., maximal) solution to

(4.1) min
F⊂Rd

{
Ef (F ) +

1

h

∫
F4E

dist(x, ∂E) dx

}
= min

F⊂Rd

{
Ef (F ) +

1

h

∫
F

dE(x) dx

}
− 1

h

∫
E

dE(x) dx,

where dE(x) = dist(x,E) − dist(x,Rd \ E). The existence of a solution to (4.1) is

not totally obvious, however, it can be established by considering the equivalent

convex variational problem

min
u∈L1(Rd;[0,1])

{
Ef (u) +

1

h

∫
Rd
u(x)dE(x) dx

}
with Ef defined in (2.9), and observing that, given a solution of that problem, for

a.e. s ∈ (0, 1) the sets {u > s} and {u ≥ s} are a solution to (4.1). The existence of

a minimal (or maximal) solution follows from the fact that if E, E′ are solutions,

then also E ∩E′ and E ∪E′ are, thanks to (2.4). Moreover, it is not difficult to see

that if F solves (4.1), then

Mf (F ) = Ef (F ) ,

where Mf (F ) is defined in (2.6). The following classical lemmas hold.

Lemma 4.1. If E ⊂⊂ E′, then T+
h E ⊆ T

−
h E

′. Moreover, if E ⊆ E′, then T±h E ⊆
T±h E

′.

Proof. The proof is classical and we just sketch it. We first assume that E ⊂⊂ E′,
so that dE > dE′ a.e. We compare the energy (4.1) of F = T+

h E with the one of

F ∩F ′, where F ′ = T−h E
′, and the energy (4.1) (with E replaced by E′) of F ′ with

the one of F ∪F ′. We sum both inequalities and use (2.4) to deduce that F ⊆ F ′.
Now, if dE ≥ dE′ , we replace dE with dE + ε and observe that the corresponding

minimal solutions Fε and F ′ satisfy Fε ⊆ F ′. Let F0 be the Kuratowsky limit

of Fε (up to a subsequence). Then, it is easy to see that F0 is a solution, and

T−h E ⊆ F0 ⊆ F ′ = T−h E
′. The proof for T+

h is almost identical. �

Lemma 4.2. Let E ⊂⊂ E′ and let δ = dist(∂E, ∂E′) > 0. Then T+
h E ⊂⊂ T−h E

′

and, more precisely, dist(∂T+
h E, ∂T

−
h E

′) ≥ δ.
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Proof. Let z ∈ Rd with |z| < δ: z + E ⊂⊂ E′ so that T+
h (z + E) ⊆ T−h (E). By

translation invariance of the scheme it follows that z + T+
h (E) ⊆ T−h (E), and we

deduce the thesis. �

If E is a non-compact set with compact boundary, we can define T±h E in a similar

way (or simply let T±h E = Rd \ (T∓h (Rd \ E))), and still the comparison holds.

Thanks to the comparison lemma 4.1, starting from a function u ∈ BUCc(Rd)
(with compact support, or constant outside of a compact set), for s > s′ we have

T+
h {u ≥ s} ⊆ T

−
h {u ≥ s′}. It follows that we can define a function

Thu(x) := sup{s : x ∈ T+
h {u ≥ s}} = sup{s : x ∈ T−h {u ≥ s}}.

We easily see that for a.e. s, {Thu ≥ s} = T±h {u ≥ s}. Using Lemma 4.2, we find

that the distance between two such level sets of Thu is larger than the distance

between the corresponding level sets of u: hence Thu ∈ BUCc(Rd), with the same

modulus of continuity. Finally, we can deduce (by approximation) that for any level

s ∈ R,

T−h {u ≥ s} = {Thu > s} , T+
h {u ≥ s} = {Thu ≥ s}.

Now, starting from u0, we build a function uh(x, t) : Rd × R+ → R by letting

uh(x, t) := (Th)[ th ]u0

where [·] is the integer part. By construction, uh has a uniform spatial modulus of

continuity. The next lemma deals with the non-local evolution of balls.

Lemma 4.3. Let x ∈ Rd, r0 > 0 and let E0 = B(x, r0). Then for every h, t > 0

we have

(T±h )[ th ](E0) = B(x, r±h (t)),

for some r±h (t) ≥ 0. Moreover, r±h (t) → r(t) uniformly in [0, T ∗(r0)] as h → 0,

where r is the solution to

(4.2)

 ṙ(t) =

∫ δ

δ̄

f ′(s)
[
(1 +

s

r
)d−1 −

(
(1− s

r
)+
)d−1

]
ds,

r(0) = r0,

and T ∗(r0) is extinction time of r(t) (i.e, such that r(T ∗(r0)) = 0). Finally, there

exists c0 > 0 such that for every r0 ≤ 1 we have

(4.3) T ∗(r0) ≥ c0 rd0 .

Proof. By translation invariance we may assume x = 0. Since the union of any

family of minimizers of (4.1) is still a minimizer, we deduce that any rotation

of (T+
h )[ th ](E0) is contained in (T+

h )
[ th ]

(E0) i.e., the maximal solution is radially

symmetric. Analogously, by the stability of the minimality property with respect to

intersection we deduce that (T−h )[ th ](E0) is radially symmetric. By a rearrangement

procedure it can be readily seen that the maximal and minimal solutions are in fact

balls. Indeed, let r ≥ 0 be determined by |B(r)| = (T+
h )

[ th ]
(E0). Then it is easy to

see that

Ef (B(r)) ≤ Ef ((T±h )[ th ](E0)) ,∫
B(r)4E0

dist(x, ∂E0) dx ≤
∫

(T±h )[
t
h

](E0)4E0

dist(x, ∂E0) dx
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with strict inequality whenever the radially symmetric set (T±h )[ th ](E0) is not a ball.

For 0 < r < R let e(r,R) be the total energy in (4.1) for E = BR and F = B(r),

i.e.,

(4.4) e(r,R) = −
∫ δ

δ

f ′(s)ωd[(r+ s)d− ((r− s)+)d] ds +
dωd
h

∫ R

r

(R− s)sd−1 ds,

where ωd denotes, as usual, the volume of the unit ball in Rd. A straightforward

computation shows that ∂
∂r e(r,R) = 0 is equivalent to

(4.5)
1

h
(r −R) =

∫ δ

δ

f ′(s)[(1 +
s

r
)d−1 − ((1− s

r
)+)d−1]ds.

Now we construct the approximated evolution starting from B(r0). To this purpose,

let us set rh,0 = r0 and define rh,i recursively, as the minimum point of e(r, rh,i−1)

(and we stop if rh,i = 0). Denote by r̂h(t) the piecewise affine interpolation of ri,h

given by

r̂h(t) = rh,[ th ] +
(
t−
[
t
h

]) (
rh,[ t+1

h ] − rh,[ th ]

)
.

Then, by (4.5), r̂h(t) solves
d

dt
r̂h(t) = g

(
r̂h
([
t+1
h

]))
;

r̂h(0) = r0,

where

g(r) :=

∫ δ

δ̄

f ′(s)
[
(1 +

s

r
)d−1 −

(
(1− s

r
)+
)d−1

]
ds.

Let [0, T ∗(r0)) be the maximal interval of definition for the solution to problem

(4.2). Clearly, we have r(T ∗(r0)) = 0. Moreover, standards stability arguments

in ODE yield that r̂h, and in turn rh, converge uniformly to r in [0, T ] for every

T < T ∗(r0). The uniform convergence in [0, T ∗(r0)] follows by monotonicity.

Noticing that, for r ≤ 1, |g(r)| ≤ c r1−d for some c > 0, the final bound on T ∗(r0)

follows by comparing with the solution to{
ṙ(t) = −cr1−d,

r(0) = r0.

�

Lemma 4.4. There exists a time modulus of continuity ω̂, such that for any δ > 0,

there exists h(δ) such that if x ∈ Rd, 0 < h ≤ h(δ), and t, s ≥ 0 with |t − s| ≤ δ

then

|uh(x, t)− uh(x, s)| ≤ ω̂(δ)

Proof. Let ω be a spatial modulus of continuity for u0, and therefore also for uh(·, t)
with t ≥ 0. Fix r0 > 0. Then, uh(y, t) ≤ uh(x, t) + ω(r0) for all y ∈ Br0(x).

Lemma 4.3 shows that if h is small enough, then uh(x, t + s) ≤ uh(x, t) + ω(r0)

for s ≤ c0r
d
0/2. Analogously, by uh(y, t) ≥ uh(x, t) − ω(r0) for all y ∈ Br0(x) we

deduce uh(x, t+s) ≥ uh(x, t)−ω(r0) for s ≤ c0rd0/2. The thesis follows if we choose

r0 = (2δ/c0)1/d, ω̂(δ) = ω(r0). �
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Thanks to Lemma 4.4, we can extract a subsequence (hk)k≥1 such that uhk
converges locally uniformly in Rd × R+ to a function u(x, t) which is bounded and

uniformly continuous in space and time.

Remark 4.5. Let hn → 0 be such that uhn admits a limit u. Then, as a straightfor-

ward consequence of Lemma 4.3, we deduce that if for some level s ∈ R, u(t, ·) ≥ s
(resp., ≤ s) on a ball of radius r0, then u(·, t′) ≥ s (resp., ≤ s) on the concentric ball

with radius r(t′ − t), for t′ ≥ t, provided that r(t′ − t) > 0 (here r(·) solves (4.2)).

We can now show the main result of this section.

Theorem 4.6. The limit u is a viscosity solution of (3.5), in the sense of Defini-

tion 3.3.

Proof. First it is clear, by construction, that u(0, ·) = u0. Hence we need to show

that the equation holds for t > 0. We only prove that it is a subsolution, the

proof that it is a supersolution being identical. Let ϕ ∈ C∞(Rd × R+) and

(x̄, t̄) ∈ Rd×R+ be a maximum point of u−ϕ. We may assume that this is a strict

maximum point and that ϕ is coercive : if not, we should first replace (as usual)

ϕ with ϕ(x, t) +η(|x− x̄|2 + |t− t̄|2), derive an inequality for this modified function,

and send η → 0, which will give the desired inequality thanks to (3.21).

By standard methods, we can then find (xk, tk) → (x̄, t̄) such that tk > 0 and

uhk − ϕ has a maximum at (xk, tk).

Step 1. Let us first assume that Dϕ(x̄, t̄) 6= 0 so that in particular, for k large

enough, Dϕ(xk, tk) 6= 0. We have that for all (x, t),

(4.6) uhk(x, t) ≤ ϕ(x, t) + ck

where ck := [uhk(xk, tk) − ϕ(xk, tk)], with equality if (x, t) = (xk, tk). Let η > 0

and ϕηhk : Rd → R given by

ϕηhk(x) = ϕ(tk, x) + ck +
η

2
|x− xk|2 ,

then, for all x ∈ Rd,
uhk(tk, x) ≤ ϕηhk(x)

with equality if and only if x = xk. Let ε > 0 and consider the open, nonempty

set Vε = {x : uhk(tk, x) > ϕηhk(x) − ε}, which has positive measure, contains xk,

and converges to {xk} in the Hausdorff sense as ε → 0. In particular, setting

sε := uhk(xk, tk)− ε/2, we have that for ε > 0 sufficiently small |Wε| > 0, where

Wε := {x ∈ Rd : uhk(tk, x) ≥ sε} \ {x ∈ Rd : ϕηhk(x) ≥ ε+ sε} ⊆ Vε ,

Now, by minimality, we have

Ef ({uhk(·, tk) ≥ sε}) +
1

hk

∫
{uhk (·,tk)≥sε}

d{uhk (·,tk−hk)≥sε}(x) dx

≤ Ef ({uhk(·, tk) ≥ sε} ∩ {ϕηhk ≥ ε+ sε})

+
1

hk

∫
{uhk (·,tk)≥sε}∩{ϕηhk≥ε+sε}

d{uhk (·,tk−hk)≥sε}(x) dx .
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Adding to both sides the term Ef ({uhk(·, tk) ≥ sε} ∪ {ϕηhk ≥ ε + sε}) and using

(2.4), we obtain

Ef ({ϕηhk ≥ ε+sε}∪Wε)−Ef ({ϕηhk ≥ ε+sε})+
1

hk

∫
Wε

d{uhk (·,tk−hk)≥sε}(x) dx ≤ 0 .

Observing that by (4.6), {uhk(·, tk − hk) ≥ sε} ⊆ {ϕ(·, tk − hk) ≥ sε − ck}, we also

have

(4.7)

Ef ({ϕηhk ≥ ε+sε}∪Wε)−Ef ({ϕηhk ≥ ε+sε})+
1

hk

∫
Wε

d{ϕ(·,tk−hk)≥sε−ck}(x) dx ≤ 0 .

Now notice that for z ∈Wε we have

(4.8) sε ≤ ϕ(z, tk) + ck +
η

2
|z − xk|2 < ε+ sε.

In particular,

(4.9) Wε ⊆ BC√ε(xk).

Moreover,

(4.10) ϕ(z, tk − hk) = ϕ(z, tk)− hk∂tϕ(z, tk) + h2
k

∫ 1

0

(1− s)∂2
ttϕ(z, tk − shk) ds .

If y is the point closest to z with ϕ(y, tk − hk) = sε − ck, so that |y − z| =

|d{ϕ(·,tk−hk)≥sε−ck}(z)|, then

(4.11) ϕ(z, tk − hk) = ϕ(y, tk − hk) + (z − y) ·Dϕ(y, tk − hk)

+

∫ 1

0

(1− s)(D2ϕ(y + s(z − y), tk − hk)(z − y)) · (z − y) ds

= sε − ck − d{ϕ(·,tk−hk)≥sε−ck}(z)|Dϕ(y, tk − hk)|

+

∫ 1

0

(1− s)(D2ϕ(y + s(z − y), tk − hk)(z − y)) · (z − y) ds .

Combining (4.8), (4.10), and (4.11), we deduce

d{ϕ(·,tk−hk)≥sε−ck}(z)|Dϕ(y, tk − hk)|

≥ −ε+ hk∂tϕ(z, tk) − h2
k

∫ 1

0

(1− s)∂2
ttϕ(z, tk − shk) ds

+

∫ 1

0

(1− s)(D2ϕ(y + s(z − y), tk − hk)(z − y)) · (z − y) ds .

Note that, in view of (4.8), |ϕ(z, tk)−ϕ(y, tk)| ≤ ε+Chk = O(hk), provided that

ε << hk are small enough. In turn, as |Dϕ(xk, tk)| 6= 0, we have |z − y| = O(hk)

and, using also (4.9), we deduce

(4.12)
1

hk
d{ϕ(·,tk−hk)≥sε−ck}(z) ≥

∂tϕ(z, tk)− ε
hk

+O(hk)

|Dϕ(y, tk − hk)|

=
∂tϕ(xk, tk) +O(

√
ε)− ε

hk
+O(hk)

|Dϕ(xk, tk)|+O(hk)
.

We now focus on the term

Ef ({ϕηhk ≥ ε+ sε} ∪Wε)− Ef ({ϕηhk ≥ ε+ sε})
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of inequality (4.7). This is the sum of the two following expressions, which we will

estimate separately:

(4.13)

∫ δ

0

−f ′(s)
(
|({ϕηhk ≥ ε+ sε} ∪Wε) +Bs| − |{ϕηhk ≥ ε+ sε}+Bs|

)
ds ,

(4.14)

∫ δ

0

−f ′(s)
(
|{ϕηhk ≥ ε+ sε} 	Bs| − |({ϕηhk ≥ ε+ sε} ∪Wε)	Bs|

)
ds ,

where A 	 B denotes the set {x : x + B ⊆ A}. We recall that by assumption,

f ′(s) = 0 for s ≤ δ, so that the integrals are in fact on [δ, δ].

Let us first consider (4.13). For any x in a neighborhood of xk, we have x ∈
∂{ϕηhk ≥ ϕηhk(x)} and we can define s∗(x) ∈ (0, δ] such that for s ∈ (0, s∗(x)],

dist(x+sν(x), {ϕηhk ≥ ϕ
η
hk

(x)}) = s and for s ∈ (s∗(x), δ] (possibly empty), dist(x+

sν(x), {ϕηhk ≥ ϕ
η
hk

(x)}) < s. Here ν(x) = −Dϕηhk(x)/|Dϕηhk(x)|, and it is important

to observe that thanks to the regularity of ϕηhk , s∗(x) is continuous near xk.

If ε is small, for x ∈ ∂{ϕηhk ≥ ε + sε}, there exists a minimal h
ε
(x) ≥ 0, with

h
ε
(x) ≤ C

√
ε, such that Wε ∩ {x + tν(x), t ∈ [0, δ]} ⊆ {x + tν(x), t ∈ [0, h

ε
(x)]}.

Clearly, for s ≥ δ and ε small enough,(
{ϕηhk ≥ ε+ sε} ∪Wε + Bs

)
\
(
{ϕηhk ≥ ε+ sε} + Bs

)
⊇
{
x+ tν(x) : x ∈ ∂{ϕηhk ≥ ε+ sε} , s ≤ t ≤ min{s∗(x), s+ h

ε
(x)}

}
The volume of this latter set is∫

∂{ϕηhk≥ε+sε}

∫
I(x)

det(I + t∇ν(x)) dt dHd−1(x)

where I(x) is the interval (possibly empty) {t : s ≤ t ≤ min{s∗(x), s + h
ε
(x)}.

Fix σ > 0. A simple continuity argument yields that, for ε sufficiently small, if

δ ≤ s ≤ s∗(xk)− σ, then s+ h
ε
(x) ≤ s∗(x). We deduce that

(4.15) |({ϕηhk ≥ ε+ sε} ∪Wε + Bs) \ ({ϕηhk ≥ ε+ sε} + Bs)|

≥
∫
{ϕηhk=ε+sε, h

ε
>0}

∫ s+h
ε
(x)

s

det(I + t∇ν(x)) dt dHd−1(x)

=

∫
{ϕηhk=ε+sε, h

ε
>0}

det(I + s∇ν(x))

∫ h
ε
(x)

0

det(I + (s+ t)∇ν(x))

det(I + s∇ν(x))
dt dHd−1(x)

≥ (det(I + s∇ν(xk)) +O(
√
ε))(1 +O(

√
ε))|Wε| ,

where we have used that

|Wε| ≤
∫
{ϕηhk=ε+sε, h

ε
>0}

∫ h
ε
(x)

0

det(I + t∇ν(x)) dt dHd−1(x) .

Finally, integrating over s ∈ [δ, s∗(xk)− σ] we deduce that (4.13) is larger than

(4.16) (1 +O(
√
ε))|Wε|

∫ s∗(xk)−σ

δ

−(2sf ′(s))(κ+
s (Kη

k , xk) +O(
√
ε)) ds

= |Wε|(κ+
f (Kη

k , xk) +O(σ)) ,
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where the “curvature” (defined in (2.11) and (2.19)) is relative to the set Kη
k =

{ϕηhk ≥ ϕ
η
hk

(xk)}. Here we have used the fact that
√
ε < σ, so that O(

√
ε) = O(σ).

Now let us estimate the negative quantity (4.14). It is very similar, but not

equivalent.

We now need to introduce the function hε, defined for x ∈ ∂{ϕηhk ≥ ε + sε},
which is the largest real number (which can be nonzero only in a neighborhood of

xk) such that x + sν(x) ∈ Wε for all s ∈ (0, hε(x)). For x in a neighborhood of

xk, we also introduce s∗(x) ∈ (0, δ], such that dist(x− sν(x), ∂{ϕηhk ≥ ϕ
η
hk

(x)}) = s

for s ≤ s∗(x) and dist(x− sν(x), ∂{ϕηhk ≥ ϕηhk(x)}) < s for s∗(x) < s ≤ δ. Just as

s∗, this quantity is continuous with respect to x, thanks to the regularity of ϕηhk . If

x ∈ ∂{ϕηhk ≥ ε+ sε} and s ≤ s∗(x), one has that

⋃
{ϕηhk=ε+sε, hε>0}

{
x+ tν(x) : −s ≤ t ≤ −s+ hε(x)

}
⊇
(
({ϕηhk ≥ ε+ sε} ∪Wε)	Bs

)
\
(
{ϕηhk ≥ ε+ sε} 	Bs

)
,

at least when Wε is small enough with respect to the scale s (which can be ensured,

as we need to consider only s ≥ δ). It follows that

(4.17)
∣∣(({ϕηhk ≥ ε+ sε} ∪Wε)	Bs

)
\
(
{ϕηhk ≥ ε+ sε} 	Bs

)∣∣
≤
∫
{ϕηhk=ε+sε, hε>0}

∫ −s+hε(x)

−s
det(I + t∇ν(x)) dt dHd−1(x)

=

∫
{ϕηhk=ε+sε, hε>0}

det(I − s∇ν(x))

∫ hε(x)

0

det(I − (s− t)∇ν(x))

det(I − s∇ν(x))
dt dHd−1(x)

≤ (det(I − s∇ν(xk)) +O(
√
ε))(1 +O(

√
ε))|Wε| ,

where we have used, this time, that

|Wε| ≥
∫
{ϕηhk=ε+sε, hε>0}

∫ hε(x)

0

det(I + t∇ν(x)) dt dHd−1(x) .

Fix σ > 0 as before. If s ≥ s∗(xk) + σ, then s ≥ s∗(x) + σ/2 near xk and we see

that

(4.18)
∣∣(({ϕηhk ≥ ε+ sε} ∪Wε)	Bs

)
\
(
{ϕηhk ≥ ε+ sε} 	Bs

)∣∣ = 0 ,

provided that ε is small enough. Integrating (4.17)-(4.18) over s ∈ [δ, δ] we deduce

that (4.14) is larger than

(4.19) (1 +O(
√
ε))|Wε|(

∫ δ

δ

−(2sf ′(s))(κ−s (Kη
k , xk) +O(

√
ε)) ds+O(σ))

= |Wε|(κ−f (Kη
k , xk) +O(σ)) .

It therefore follows from (4.16) and (4.19) that

Ef ({ϕηhk ≥ ε+ sε} ∪Wε)− Ef ({ϕηhk ≥ ε+ sε}) ≥ |Wε|(κf (Kη
k , xk) +O(σ)) .
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Thanks to (4.12), we deduce, after dividing (4.7) by |Wε| and sending ε → 0 and

σ → 0, that

(4.20)
∂tϕ(xk, tk)

|Dϕ(xk, tk)|
+ κf (Kη

k , xk) + O(hk) ≤ 0

where O(hk) depends only on the regularity of ϕ. We may therefore send η to

zero to deduce that (4.20) also holds also with Kη
k replaced by Kk = {ϕ(·, tk) ≥

ϕ(xk, tk)}, thanks to (3.21) and (3.4). Letting now k → ∞, using (3.21) and the

monotonicity property iii), we deduce

(4.21) ∂tϕ(x̄, t̄) + Ff (x̄, Dϕ(x̄, t̄), D2ϕ(x̄, t̄), {ϕ(t̄, ·) ≥ ϕ(x̄, t̄)}) ≤ 0 ,

that is, u is a viscosity subsolution at (t̄, x̄).

Step 2. Now we consider the case Dϕ(z̄) = 0 and we show that ϕt(z̄) ≤ 0. Let ψn

be defined as in (3.13), with T replaced by t̄, and let zn = (xn, tn) be a sequence

of maximizers of u − ψn, such that xn → x̄ and tn → t̄−. If xn 6= x̄ for a (not

relabeled) subsequence, then Dψn(xn, tn) 6= 0 and (4.21) holds for ψn at zn. Passing

to the limit and using the properties of f , we deduce that ϕt(z̄) ≤ 0 (see (3.14) for

the details).

We now assume that zn = (x̄, tn) for all n sufficiently large. Set hn := t̄− tn and

rn := d

√
2hn
c0

,

where c0 is the constant in (4.3). Note now that by (3.7) and (3.27), the function f

appearing in the definition of ψn is of the form f(r) = g(r)rd, for a suitable function

g such that g(r)→ 0+ as r → 0+. It easily follows that

B(x̄, rn) ⊂ {ψn(·, tn) ≤ ψn(x̄, tn) + f(rn)}

=

{
ψn(·, tn) ≤ ψn(x̄, tn) + g(rn)

2hn
c0

}
⊂
{
u(·, tn) ≤ u(x̄, tn) + g(rn)

2hn
c0

}
,

Note that the last inclusion follows from the maximality of u − ψn at zn and the

fact that u(zn) = ψn(zn). By (4.3), the extinction time T ∗(rn) of the ball B(x̄, rn)

under the non-local evolution satisfies T ∗(rn) ≥ c0rd = 2hn. Hence, by comparison

(see Remark 4.5), we deduce that

x̄ ∈
{
u(·, t̄) ≤ u(x̄, tn) + g(rn)

2hn
c0

}
.

Thus, using also the maximality of u− ϕ at z̄,

ϕ(x̄, tn)− ϕ(z̄)

−hn
≤ u(x̄, tn)− u(x̄, t̄)

−hn
≤ g(rn)

2

c0
.

Passing to the limit, we conclude that ϕt(z̄) ≤ 0.

�
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Figure 2. A zebra and its smoothing (left: starting image, center:

the non-local motion, right: the standard curvature flow), at a

small time.

5. Algorithm and numerical examples

5.1. A numerical implementation of the time-discrete scheme. We show

in this section an example of evolution with the motion studied in this paper, in

dimension two. Actually, the implementation is not straightforward and only an

approximate motion is computed, on a discrete rectangular grid. The approach we

follow is described in [16]. It consists in minimizing, given a discretization of the

signed distance function dE
n−1

to the boundary of the set En−1 (negative inside,

positive outside), the energy

(5.1) min
u
J(u) +

1

2h
‖u− dE

n−1

‖2

and define dE
n

as the signed distance function to {u ≤ 0}, computed as precisely

as possible using a Fast-Marching algorithm [27, 25]. Here, u, dE
n−1

are defined on

the discrete points {(i, j) : 0 ≤ i ≤ N − 1 , 0 ≤ j ≤M − 1}, and the term

‖u− dE
n−1

‖2 =
∑
i,j

(ui,j − dE
n−1

i,j )2

is the Euclidean norm. A spatial discretization term can be introduced in an obvious

way. It turns out that if J is a correct approximation of the functional (2.2), then the

algorithm is an approximation of the time-discrete scheme (4.1) studied in Section 4.

In this case, the iterations should be an approximation of the motion driven by the

energy.

The discretization of the “total variation” J(u) is more complicated. Actually,

the simplest here is to approximate (2.2) rather than (2.8). We fix ρ > 0, Let B be

the discrete ball {(i, j) ∈ Z2 : i2 + j2 ≤ ρ}, and let

J(u) =
1

2ρ

∑
i,j

osc(i,j)+B(u)

where the oscillation (here simply the max minus the min) is computed on the finite

sets ((i, j) +B) ∩ [0, N − 1]× [0,M − 1].

It turns out that for this particular energy, there is an approach, based on a graph

representation and the maxflow/mincut duality, for minimizing binary problems
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Figure 3. and at later times (left: the non-local motion, right:

the standard curvature flow).

such as

min
ui,j∈{0,1}

J(u) +
∑
i,j

fi,jui,j

(given any real-valued matrix (fi,j)0≤i<N, 0≤j<M ), and an algorithm for minimiz-

ing (5.1) is easily derived. See [16] for details and in particular [16, Appendix B]

for how this particular J can be implemented.

5.2. Examples: two ways to shrink a Zebra. Figures 2, 3 and 4 show the

motion applied to an initial set of curves with a lot of oscillations. As expected, the

standard curvature motion shrinks the small scale objects much faster than the one

based on the oscillation, in particular the stripes are preserved longer by the non-

local flow. Notice that it is very difficult to estimate the exact corresponding times

for the two flows, moreover, the numerical imprecision may provoke sometimes

the “fusion” of the stripes in the classical curvature flow (wich is computed also

using (5.1), but now J is a discretization of the standard total variation).
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