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1. Introduction

When dealing with problems in the calculus of variations involving geometric objects
as curves and surfaces, suitable spaces of currents proved to be the right weak ambient
space where compactness and semicontinuity can be obtained at the same time, and still
homological constraints make sense. This framework proved to be successful in solving
Plateau's problem, namely �nding a mass minimizing current satisfying suitable boundary
conditions, as documented in the classical book [17]. Following an intuition of De Giorgi
[11] the theory of currents has been extended to nonsmooth spaces by Ambrosio and
Kirchheim in [7], where the duality with smooth di�erential forms is replaced by the
duality with Lipschitz functions (see also [23] for a friendly exposition and a local variant
of the theory). This framework, available in a fairly general class of metric spaces, allows
to prove again existence of solutions to Plateau's problem for integral currents.
If we move from normal currents to �at currents with �nite mass, other remarkable

extensions of the classical theory have been obtained by White in [33], dealing with
Euclidean spaces and general group coe�cients) and by De Pauw and Hardt [15], dealing
with general spaces and general group coe�cients at the same time. In this connection
see also [9, 8], where coe�cients in Zp are dealt with also in metric spaces, using the idea
of taking the quotients of integral currents.
In [12], De Lellis proved in the metric framework the recti�ability of the �lowest dimen-

sional part� of a �at chain with �nite mass and real coe�cients. As an example, one might
consider the distributional derivative Du of a BV function in Rn, that can canonically
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be viewed as a �at (n − 1)-dimensional current with �nite mass. In this case only the
restriction of Du to the so-called jump set of u provides a (n − 1)-recti�able measure,
while the remaining part of Du is di�use.
The main goal of the paper is to provide an analogous recti�ability result also for �at

chains with possibly in�nite mass. We are looking, in the same spirit of [12], only to the
recti�ability of the lowest dimensional part of T , de�ned in a suitable sense (di�erent from
[12], since the mass need not to be �nite). For us, the main motivation for the study of
�at chains with in�nite mass has been the generalization of the theory of Mumford-Shah
type functionals and special functions of bounded variation (see [3] and the references
therein) to codimension higher than one. In this extension, that will be developed in [21],
in order to get good semicontinuity and compactness properties it is useful to model the
Jacobian current Ju as the sum of a current with �nite mass (describing the absolutely
continuous part) and a current with �nite size (describing the singularities).
The paper is organized as follows. In Section 2 we will carry out a thorough presentation

of the space of �at k-currents Fk(E) in the metric context: in particular we will remark
how many useful properties enjoyed by normal currents extend to this larger space.
Section 3 is devoted to the de�nition of the concentration measure µT for �at currents

and the size functional S(T ) = µT (E), the main objects of our investigation. They
are de�ned through an integral-geometric approach that involves only the 0-dimensional
slices of the current which are required, in the case of �nite size, to have a �nite support
(and, as a consequence, �nite mass, according to Theorem 3.3). Then, we prove lower
semicontinuity of size with respect to �at convergence, obtaining in particular a closure
property for sequences of currents with equibounded size.
In Section 4 we introduce a quantity G(T, T ′), called hybrid distance, in the class B0(E)

of �at boundaries with �nite mass: it takes into account all representations T−T ′ = ∂(X+
R), with X having �nite mass and R having �nite size. This results in a smaller distance,
compared to the classical one where no R term is present, which allows to extend the
BV estimates for the slice operator from currents with �nite mass to currents with �nite
size. Here we use the �exibility of these BV estimates, namely the possibility to adapt
them to several classes of �geometric� distances (see for instance [25]). The distance G,
though weaker than the classical �at distance, will be proved to be still su�ciently strong
to control the oscillations of the atoms of the slices. In order to show the separability of
(B0(E),G), we will use some results from the theory of optimal transportation in geodesic
spaces, see for instance [4].
Since we aim to prove a recti�ability result, we recall in Section 5 the concept of

recti�able set and the main features of the theory of functions of bounded variation
taking values in metric spaces introduced in [5]. In particular we will extensively use the
concept of approximate upper limit of the di�erence quotient as a tool to measure the
slope of a function: along the lines of [9, 33] we can turn pointwise control of this slope
into Lipschitz estimates on a family of sets which exhaust almost all the domain (see
Theorem 5.3 for the precise statement).
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The main result of our paper is described in Section 6: we prove the recti�ability of the
concentration measure µT for currents T of �nite size, namely that µT is concentrated on
a countably H k-recti�able set set(T ). This result is established �rst for 1-dimensional
currents, and then extended to the general case via an iterated slicing procedure, along
the lines of [9, 33] but using the distance G adapted to our problem.
In the last Section 7 we compare µT to H k set(T ). Along the lines of [7, 6], we are

able to describe the density λ(x) of µT w.r.t. H k set(T ) in terms of the geometry of
the approximate tangent space Tan(k)(set(T ), x). In the Euclidean case, the factor λ is
equal to 1.

1.1. Acknowledgments. The authors wish to thank R.Hardt and N.Gigli for useful
discussions on the topic of this paper. The authors also acknowledge the support of the
ERC ADG GeMeThNES.

2. Notation and basic properties of flat chains

2.1. Flat currents in a metric space. Our ambient space will be a boundedly compact
geodesic space (E, d) (i.e. bounded closed sets are compact). Notice that any such space is
separable. We will use the standard notation Br(x) for the open balls in E, Lip(E) for the
space of real-valued Lipschitz functions and Lipb(E) for bounded Lipschitz functions. In
this paper we will adopt the concept of current in a metric space developed in [7, 6, 8, 23]:
a metric k-current T is a map

T : Lipb(E)× [Lip(E)]k → R

de�ned on (k+1)-tuples (f, π1, . . . , πk) satisfying the following properties of multilinearity,
continuity and locality introduced in [7]:

(i) T is multilinear in (f, π1, . . . , πk),
(ii) limi T (f, πi1, . . . , π

i
k) = T (f, π1, . . . , πk) whenever πik → πi pointwise in E with

Lip(πij) ≤ C,
(iii) T (f, π1, . . . , πk) = 0 if for some i ∈ {1, . . . , k} the function πi is constant in a

neighborhood of {f 6= 0}.
It can be proved that these three properties imply that the map T is alternating in the
(π1, . . . , πk) variables, hence we use the more expressive notation fdπ1 ∧ · · · ∧ dπk for the
generic argument. The concepts of boundary operator ∂, mass M and push forward of a
current in the metric contest are taken for granted, and as customary we denote byMk(E)
the space of �nite mass k-dimensional currents with real coe�cients and by Nk(E) the
subspace of normal currents. We recall that the action of currents with �nite mass can
canonically be extended to fdπ with f bounded Borel and π1, . . . πk Lipschitz.
For every k-current T we let

F(T ) = inf{M(T − ∂Y ) + M(Y ) : Y ∈Mk+1(E)}. (2.1)
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be its �at norm. It is a straightforward calculation to show that F is a norm on Mk(E),
and that

F(∂T ) ≤ F(T ) ≤M(T ). (2.2)

Our primary space of currents is the following:

De�nition 2.1. We de�ne the space of �at currents Fk(E) as the F-completion of the

space of normal currents:

Fk(E) = N̂k(E)
F

.

The �rst inequality in (2.2) immediately implies that if T ∈ Fk(E) then ∂T ∈ Fk−1(E).
Recall also that any �at current T of �nite mass can be approximated by a sequence (Zh)
of normal currents in mass norm. In fact, by de�nition there exist currents (Th) ⊂ Nk(E)
and (Yh) ⊂Mk+1(E) such that

M(T − Th − ∂Yh) + M(Yh)→ 0.

The hypothesis M(T ) < ∞ yields M(∂Yh) < ∞, hence the currents Zh = Th + ∂Yh are
normal and clearly M(T −Zh)→ 0. As we will see later on, many properties of the space
of normal currents behave nicely under convergence in the �at norm (2.1) and therefore
can be extended to the completion. On the other hand, every de�nition involving a
completion procedure somehow hides the true nature of the objects under consideration.
The following proposition partially overcomes this inconvenience:

Proposition 2.2 ([17, 4.1.24]). The space of �at k-currents can be characterized as

Fk(E) = {X + ∂Y : X ∈ Fk(E), Y ∈ Fk+1(E), M(X) + M(Y ) <∞}. (2.3)

Proof. We need only to show that Fk(E) is contained in the right hand side, as the
opposite inclusion follows by additivity and stability of �at currents under the boundary
operator. Let (Th) ⊂ Nk(E) be a sequence of normal currents fastly converging towards
T ∈ Fk(E):

∑
hF(Th+1 − Th) <∞. There exist normal currents Xh and Yh such that

Th+1 − Th = Xh + ∂Yh and M(Xh) + M(Yh) < 2F(Th+1 − Th).
The M-converging series

∑
hXh and

∑
h Yh de�ne two �at currents, respectively X ∈

Fk(E) and Y ∈ Fk+1(E), of �nite mass such that T − T0 = X + ∂Y . �

2.2. Restriction and slicing. Let us recall the de�nition of slicing: given T ∈ Nk(E)
and u ∈ Lip(E), the slicing of T via u is de�ned as

〈T, u, r〉 = ∂(T {u < r})− (∂T ) {u < r}
and belongs to Nk−1(E) for L 1-a.e. r ∈ R. We will sometimes write Tr = 〈T, u, r〉 to
shorten the writing and to emphasize the dependence of the slice on the variable r. The
slices 〈T, u, r〉 are uniquely determined, up to Lebesgue negligible sets, by the following
two properties (see [7, Theorem 5.7]):

〈T, u, r〉 is concentrated on u−1(r) for L 1-a.e. r ∈ R; (2.4)
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φ(r)〈T, u, r〉 dr = T (φ ◦ u)du for all φ bounded Borel. (2.5)

In [8, 6] (and [17, 4.2.1] for the classical case in Euclidean space), it is proved that these
families of currents enjoy the following estimates:∫ ∗b

a

F(T {u < r}) dr ≤ (b− a+ Lip(u))F(T ), (2.6)∫ ∗b
a

F(〈T, u, r〉) dr ≤ Lip(u)F(T ), (2.7)

where
∫ ∗

denotes the outer integral.

Proposition 2.3. The operations of restriction and slicing via a Lipschitz map can be

extended to the space of �at currents in such a way that
∑

hF(Th − T ) <∞ implies

F(〈Th, u, r〉 − 〈T, u, r〉)→ 0 for L 1-a.e. r ∈ R.

Moreover, inequalities (2.6) and (2.7) hold for a generic T ∈ Fk(E).

Proof. Let T ∈ Fk(E) and let (Th) be a sequence of normal currents rapidly converging to
T :
∑

hF(Th − T ) <∞. Thanks to the subadditivity of the outer integral it is fairly easy
to show that for L 1-a.e. r both sequences (Th {u < r}) and (〈Th, u, r〉) are F-Cauchy,
hence they admit a limit. Note that these limits do not depend on the particular (Th)
we choose: if (T ′h) were another sequence rapidly converging to T , we could merge it with
(Th) setting T ′′2h = Th, T

′′
2h+1 = T ′h. Then (T ′′h ) would have converging restrictions and

slices for almost every r. Therefore the limits

lim
h
Th {u < r} and lim

h
T ′h {u < r}

must agree for a set of values r of full measure; similarly for the sequence of slices
(〈Th, u, r〉). Finally we write T as an F-convergent sum of normal currents

T = TN +
∞∑
h=N

(Th+1 − Th) with
∞∑
h=N

F(Th+1 − Th) < ε.

Hence, since F(TN) ≤ F(T )+ε, applying (2.6) and the subadditivity of the upper integral∫ ∗b
a

F(T {u < r}) dr ≤
∫ ∗b
a

F(TN {u < r}) dr +
∞∑
h=N

∫ ∗b
a

F((Th+1 − Th) {u < r}) dr

(2.6)

≤ (b− a+ Lip(u))(F(T ) + 2ε)

we prove the thesis. The statement for (2.7) can be proved in the same way. �

Proposition 2.3 allows us to extend many properties of slicing and restriction from normal
currents to �at currents by density.
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First of all, given ` ≤ k the slicing of a current T ∈ Fk(E) by a vector-valued map
π = (π1, . . . , π`) ∈ Lip(E,R`) can be de�ned inductively:

〈T, π, x〉 = 〈〈T, (π1, . . . , π`−1), (x1, . . . , xl−1)〉, π`, x`〉.
Fubini's theorem ensures that these iterated slices are meaningful for L `-a.e. x ∈ R`,
and it is easy to show by induction that ∂〈T, u, r〉 = (−1)`〈∂T, u, r〉. In particular, for
every u ∈ Lip(E) slicing and boundary operator commute via the relation

∂〈T, u, r〉 = −〈∂T, u, r〉. for L 1-a.e. r ∈ R. (2.8)

Lemma 2.4 (Slice and restriction commute). Let T ∈ Fk(E), π, u ∈ Lip(E). Then

〈T, π, r〉 {u < s} = 〈T {u < s}, π, r〉 for L 2-a.e. (r, s) ∈ R2. (2.9)

Proof. We start with T ∈ Nk(E). It is immediate to check that, for s �xed, the currents
in the left hand side of (2.9) ful�l (2.4) and (2.5) relative to T {u < s}, therefore
they coincide with 〈T {u < s}, π, r〉 for L 1-a.e. r ∈ R. Let now T be �at and let
(Th) ⊂ Nk(E) with

∑
hF(Th − T ) <∞: we want to pass to the limit in the identity

〈Th, π, r〉 {u < s} = 〈Th {u < s}, π, r〉 for L 2-a.e. (r, s) ∈ R2. (2.10)

We know that
∑

hF(Th {u < s} − T {u < s}) < ∞ for L 1-a.e. s ∈ R; for any such
s by Proposition 2.3 we can plug (Th − T ) {u < r} into inequality (2.7) and infer that
the right hand sides in (2.10) converge to 〈T {u < s}, π, r〉 with respect to F for L 1-a.e.
r ∈ R. On the other hand, we also know that

∑
hF(〈Th, π, r〉 − 〈T, π, r〉) < ∞ for L 1-

a.e. r ∈ R; for any r for which this property holds the left hand sides in (2.10) converge
with respect to F to 〈Th, π, r〉 {u < s} for L 1-a.e. s ∈ R, again by Proposition 2.3
and equation (2.6). Therefore, passing to the limit as h → ∞ in (2.10), using Fubini's
theorem, we conclude. �

Lemma 2.5 (Set additivity of restrictions). Let T ∈ Fk(E), π1, π2 ∈ Lip(E) and t̄ ∈ R
such that the sets {π1 < t̄} and {π2 < t̄} have positive distance. Let π := min{π1, π2}.
Then

T {π < t} = T {π1 < t}+ T {π2 < t} for a.e. t < t̄. (2.11)

Proof. Let t < t̄. Since {π1 < t} and {π2 < t} are distant the function

ψ(x) =
d(x, {π1 < t})

d(x, {π1 < t}) + d(x, {π2 < t})
is Lipschitz and equals 0 in {π1 < t} and 1 in {π2 < t}. Let (Th) be a sequence of normal
currents rapidly converging to T such that∑

h

F (Th+1 {π < t} − Th {π < t}) <∞.

Then the sequence Sh = ψTh {π < t} = Th {π2 < t} satis�es
F(Sh+1 − Sh) ≤ max{‖ψ‖∞,Lip(ψ)}F(Th+1 {π < t} − Th {π < t}),
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hence Sh converge to T {π2 < t} in the �at norm. Similarly for T {π1 < t}. Equation
(2.11) holds for normal currents, and since the same sequence (Th) is used to de�ne the
three restrictions, set additivity is straightforward by passing to the limit. �

2.3. Support and push forward. We adopt (see also [2]) as de�nition of support of a
�at current T the set:

spt(T ) = {x ∈ E : T Br(x) 6= 0 for L 1-a.e. r > 0}. (2.12)

Observe that the a.e. in the de�nition is motivated by the fact that slices exist only up
to L 1-negligible sets, and that spt(T ) = spt‖T‖ whenever T ∈Mk(E).

Proposition 2.6. spt(T ) is a closed set and x /∈ spt(T ) implies T Br(x) = 0 for a.e.

r ∈ (0, dist(x, spt(T )).

Proof. Let x 6∈ spt(T ): there must be a set A of radii of positive L 1-measure such that
T Br(x) = 0 for L 1-a.e. r ∈ A. If (Th) ⊂ Nk(E) is a sequence of normal currents
rapidly converging to T , by (2.6) we obtain that for almost every r ∈ A

Th Br(x)→ T Br(x) = 0. (2.13)

rapidly. Fix now r > 0 with this property, y ∈ Br(x) and ρ < r − d(x, y): we want to
prove that T Bρ(y) = 0 for a.e. ρ ∈ (0, r − d(x, y)). Since Th has �nite mass we have
(Th Br(x)) Bρ(y) = Th Bρ(y), and since the convergence in (2.13) is rapid, again for
almost every ρ in (0, r − d(x, y))

Th Bρ(y) = (Th Br(x)) Bρ(y)→ (T Br(x)) Bρ(y) = 0 Bρ(y) = 0.

Hence Br(x) ∩ spt(T ) = ∅. �

Proposition 2.7. For all T ∈ Fk(E) the following properties hold:

(i) If spt(f) is compact then

spt(f) ∩ spt(T ) = ∅ =⇒ T (f dπ) = 0 ∀π ∈ Lip(E,Rk). (2.14)

(ii) For all u ∈ Lip(E)

spt(T {u < t}) ⊂ spt(T ) ∩ {u ≤ t} for L 1-a.e. t ∈ R. (2.15)

Proof. (i) In this proof only, let us conventionally say that T Br(x0) = 0 if there exist
normal currents Tn such that F(Tn − T ) → 0 and F(Tn Br(x0)) → 0. In the proof of
(2.14), we assume �rst that spt(f) is contained in a ball Br(x) such that T Br(x) = 0.
By assumption Th Br(x0)(f)→ 0 for suitable approximating normal currents Th; on the
other hand, Th Br(x0)(f) = Th(f)→ T (f).
Now, let us consider the general case. Since the space is boundedly compact, we can �nd

an open bounded neighborhood U of spt(f) such that U∩spt(T ) = ∅. By Proposition 2.6,
any x ∈ U is the center of a ball Bx such that T Bx = 0: we can therefore extract a
�nite subcover {Bj} and build a partition of unity {χj} made of nonnegative Lipschitz
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functions such that
∑

j χj = 1 in spt(f) and spt(χj) ⊂ Bj. Hence f =
∑

j fχj and the
previous step yields

T (f dπ) =
∑
j

T (fχj dπ) = 0.

(ii) There exist (Th) ⊂ Nk(E) such that for almost every t∑
h

F(Th {u < t} − T {u < t}) <∞.

We �x t with these properties and x 6∈ spt(T )∩{u ≤ t}, so that spt(T )∩{u ≤ t}∩Br(x) =
∅ for r ∈ (0, r̄) for some r̄ > 0. We obtain that

0 = (Th {u < t}) Br(x)→ (T {u < t}) Br(x)

for a.e. r ∈ (0, r̄), hence x /∈ spt(T {u < t}). �

Given a Lipschitz map Φ : E → F between two metric spaces and given T ∈ Fk(E) we
let

(Φ#T )(fdπ) = T (f ◦ Φ d(π ◦ Φ))

be the push forward of T via the map Φ.

Proposition 2.8. For every T ∈ Fk(E) it holds Φ#T ∈ Fk(F ) and

FF (Φ#T ) ≤ [Lip(Φ)]kFE(T ).

In particular, Φ#T ∈ F(F ). Furthermore, the push forward and the boundary operator

commute.

Proof. Since FF (Φ#S) ≤ [Lip(Φ)]kFE(S) holds for S normal, the current Φ#T is �at and
the estimate holds also for �at currents. The relation ∂Φ#T = Φ#∂T simply comes from
the de�nition. �

Let us recall now the de�nition of supremum of a family of measures.

De�nition 2.9. Let {µi}i∈I be a family of Borel positive measures on E. Then, for every

Borel subset of E, we de�ne∨
i∈I

µi(B) = sup

{∑
i∈J

µi(Bi) : Bi pairwise disjoint and Borel,
⋃
i∈J

Bi = B

}
, (2.16)

where J runs through all countable subsets of I.

The set function
∨
i∈I µi is a Borel measure, and it is �nite if and only if there exists a

�nite Borel measure σ ≥ µi for any i. Notice that in (2.16) it would be equivalent to
consider �nite partitions of B into Borel sets B1, . . . , BN .
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3. Concentration measure for a flat chain

In this section we introduce the notion of concentration measure for a �at current, possibly
with in�nite mass.

De�nition 3.1 (Concentration measure). We say that a positive Borel measure µ is a

concentration measure for T ∈ Fk(E) if H 0 spt(T ) ≤ µ in the case k = 0, and if

µT,π :=

∫
Rk

H 0 spt〈T, π, x〉 dL k(x) ≤ µ ∀π ∈ Lip1(E,Rk) (3.1)

for k ≥ 1. The choice of µ can be optimized by choosing the least upper bound of the

family {µT,π} in the lattice of nonnegative measures:

µT :=
∨

π∈Lip1(E,Rk)

µT,π.

We shall call µT the concentration measure of µ.

Notice that this de�nition has been given in term of the supports of the slices of T ,
rather than the whole support of T . This choice is motivated by the special behavior of
0-dimensional �at chains illustrated in Section 3.1.

De�nition 3.2 (Size). We say that T ∈ Fk(E) has �nite size if µT has �nite mass. In

this case we de�ne

S(T ) := µT (E).

3.1. Zero dimensional �at currents. For zero dimensional �at currents some special
properties hold: it is a well-known result in the theory of distributions that any distri-
bution supported in a �nite set is a �nite sum of derivatives of Dirac masses. Here we
present an analogous result for �at currents of �nite size, which is also similar to the
representation theorem for zero dimensional �at G-chains of �nite mass obtained in [33].

Theorem 3.3. Every T ∈ F0(E) with �nite size can be represented as

T =

S(T )∑
i=1

aiJxiK (3.2)

where spt(T ) = {xi : i = 1, . . . ,S(T )} and ai ∈ R. In particular T has �nite mass.

Proof. We will prove the theorem through several steps.
Step 1. First of all we claim that it is su�cient to prove the representation formula
T (f) =

∑
i aif(xi) for functions f ∈ Lipb(E) such that

(1) f has compact support,
(2) f is locally constant in a neighborhood of spt(T ).

In fact, since bounded closed sets of E are compact and spt(T ) is �nite, we can easily
approximate any f ∈ Lipb(E) by functions fn with uniformly bounded Lipschitz functions
satisfying (a), (b) and pointwise convergent to f . We can then use the continuity axiom
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of currents to pass to the limit.
Step 2. Let us �x f ∈ Lipb(E) satisfying conditions (1) and (2) above. Set γ(x) =
min{d(x, xi), xi ∈ spt(T )}: for almost every r < r0 := 1

2
mini 6=j{d(xi, xj)} the current

T {γ < r} is well-de�ned, and by Lemma 2.5 it equals the sum of the T Br(xi)'s:

T = T {γ ≥ r}+
N∑
i=1

T Br(xi).

The �rst term is null on f : in fact, by equation (2.15)

spt(T {γ ≥ r}) ⊂ spt(T ) ∩ {γ ≥ r} = ∅,

hence by (2.14) T {γ ≥ r}(f) = 0. As a result T (f) =
∑

i T Br(xi)(f), independently
of r.
Step 3. We reduced our problem to the characterization of T Br(xi)(f), whose support
is {xi} by (2.15). For each j we let gj be a Lipschitz function equal to 1 on Br0/2(xi) and
equal to 0 on E \ Br0(xi): if 0 < s < r are radii such that the restrictions of T to Br(xi)
and Bs(xi) exist, the di�erence T Br(xi)− T Bs(xi) satis�es

spt(T Br(xi)− T Bs(xi))
(2.15)
⊂ Br(xi)\Bs(xi) ∩ {xi} = ∅.

Therefore again by (2.14) T Br(xi)(h) is (essentially) constant in r for any bounded
Lipschitz function h. In particular (2.14) implies that:

• T Br(xi)(gj) does not depend on r < r0, and actually (2.14) gives T Br(xi)(gj) =
0 for i 6= j;
• since f =

∑
j f(xj)gj in a neighborhood of spt(T ),

T Br(xi)(f) = f(xi)T Br(xi)(gi).

Letting ai = T Br(xi)(gi) we obtain the thesis. �

As a consequence of Proposition 3.3 we obtain a closure theorem for sequences of �at
currents with equibounded sizes:

Theorem 3.4 (Lower semicontinuity of size). Let (Th) ⊂ Fk(E) be a sequence of currents

with equibounded sizes and converging to T in the �at norm:

S(Th) ≤ C <∞, lim
h

F(Th − T ) = 0.

Then T has �nite size and

S(T ) ≤ lim inf
h

S(Th). (3.3)

Proof. Possibly extracting a subsequence we can assume that∑
h

F(Th − T ) <∞ and lim
h

S(Th) = lim inf
h

S(Th). (3.4)
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If k = 0 we prove a slightly more general implication: for any open set A ⊂ E, F(Th−T )→
0 and lim infh H 0(A ∩ sptTh) <∞ implies

H 0(A ∩ spt(T )) ≤ lim inf
h

H 0(A ∩ spt(Th)). (3.5)

Indeed, consider x ∈ spt(T ) ∩ A. Then by De�nition 2.12 and inequality (2.6) for every
ε > 0 there exists r < ε such that

(i) B(x, r) ⊂ A,
(ii) limhF(Th B(x, r)− T B(x, r)) = 0,
(iii) T B(x, r) 6= 0.

Point (ii) implies that for h ≥ h(x, ε) Th B(x, r) 6= 0, and since by Proposition 3.3 Th is
a �nite sum of Dirac deltas

Th =

S(Th)∑
j=1

aj,hJyj,hK

at least one of the points yj,h must belong to B(x, r). If A ∩ spt(T ) contains m distinct
points {x1, . . . , xm}, we can take ε su�ciently small such that the family of balls {B(xi, ε) :
i = 1, . . . ,m} is disjoint. Therefore there exist radii ri as above such that for every
h ≥ maxi h(xi, ε) each ball B(xi, ri) contains at least one point yj,h′ . Hence m ≤ µTh(A)
and (3.5) follows.
In the case k ≥ 1 we �x a projection π ∈ Lip1(E,Rk). Thanks to (3.4) we know that for
L k-almost every x ∈ Rk the slices Th,x converge to Tx; moreover Fatou's lemma implies
that∫

Rk

lim inf
h

S(Th,x) dx ≤ lim inf
h

∫
Rk

S(Th,x) dx = lim inf
h

µTh,π(E) ≤ lim
h

S(Th) ≤ C <∞.

The same argument can be applied for an open set A ⊂ E and using (3.5) we get

µT,π(A) =

∫
Rk

H 0(A ∩ sptTx) dx ≤
∫
Rk

lim inf
h

H 0(A ∩ sptTh,x) dx

≤ lim inf
h

∫
Rk

H 0(A ∩ sptTh,x) dx = lim inf
h

µTh,π(A). (3.6)

The map A 7→ ν(A) = lim infh µTh(A) is a �nitely superadditive set-function, with ν(E)
bounded from above by lim infh S(Th); the chain of inequalities (3.6) simply expresses that
µT,π(A) ≤ ν(A) on open sets A.
If B1, . . . , BN are pairwise disjoint Borel sets and Ki ⊂ Bi are compact, we can �nd

pairwise disjoint open sets Ai containing Ki and apply the superadditivity to get

N∑
i=1

µT,πi(Ki) ≤
N∑
i=1

ν(Ai) ≤ ν(E).

Since Ki are arbitrary, the same inequality holds with Bi in place of Ki. Since Bi, πi and
N are arbitrary, it follows that µT is a �nite Borel measure and µT (E) ≤ ν(E). �
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4. A hybrid distance on zero dimensional flat boundaries

We let B0(E) = M0(E)∩ ∂F1(E) be the space of �nite mass boundaries of �at chains.
We endow B0(E) with the following distance of interpolation type:

De�nition 4.1 (Hybrid distance). For every Q, Q′ ∈ B0(E) we set

G(Q,Q′) = inf{S(R) + M(S) : Q−Q′ = ∂(R + S), R, S ∈ F1(E)}.

It is plain that the triangle inequality holds, by the subadditivity of mass and size. It is
also immediate to check that G is �nite: indeed, since Q = ∂T with T ∈ F1(E), we may
write T = X + ∂Y with X, Y �at and M(X) + M(Y ) < ∞. Therefore Q = ∂X and so
G(0, Q) ≤M(X) <∞. Occasionally we shall abbreviate G(Q) = G(0, Q).
The proof of nondegeneracy of G, is based on a �elimination argument�.

Proposition 4.2. Let Q ∈ B0(E) satisfy G(Q) = 0. Then Q = 0.

Proof. Suppose Q is not null and take an open set A such that |Q(A)| > 0. Since Q is a
�nite measure, by monotone approximation from the interior we can guarantee that the
open set satis�es ‖Q‖(∂A) = 0. Therefore we can choose a small δ > 0 such that

|Q(A)| > 4‖Q‖(Aδ \ A), (4.1)

where Aδ is the δ-neighborhood of A. Let ε > 0: by hypothesis we can �nd �at currents
R, S with Q = ∂(R + S) satisfying

S(R) <
δ

6
and M(S) <

εδ

6
.

If ρ1 and ρ2 are two positive numbers in (0, δ) with ρ1 < ρ2, we let π(x) = dist(x,A) and
Σρ1,ρ2 = {ρ1 ≤ dist(·, A) < ρ2}. Using π we can formally set the currents R and S to be
zero within the ring Σρ1,ρ2 through the following relation:

Q (E \ Σρ1,ρ2) = (∂R) (E\Σρ1,ρ2) + (∂S) (E \ Σρ1,ρ2)

= ∂(R (E \ Σρ1,ρ2)) + ∂(S (E \ Σρ1,ρ2)) + Sρ2 − Sρ1 +Rρ2 −Rρ1 . (4.2)

Note that (4.2) actually holds if ρ1 and ρ2 belong to a subset of (0, δ) of full measure, since
slices and restrictions of the currents R and S exist only almost everywhere. Inequality
(3.1) gives ∫ δ

3

0

H 0(sptRρ) dρ ≤ µR,π(E) ≤ S(R) <
δ

6

and since H 0(sptRρ) is an integer, there must be a set of radii ρ in (0, δ
3
) of length strictly

greater than δ
6
such that Rρ = 0. Moreover∫ δ

3

0

M(Sρ) dρ ≤M(S) <
εδ

6

and therefore M(Sρ) < ε in a subset of (0, δ
3
) of measure strictly greater than δ

6
. For the

same reason we can �nd another set of positive measure contained in (2δ
3
, δ) where the same
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requirements hold. Putting together these two results we can pick two radii ρ1 ∈ (0, δ
3
)

and ρ2 ∈ (2δ
3
, δ) such that equation (4.2) holds, Rρ1 = Rρ2 = 0 andM(Sρ1)+M(Sρ2) < 2ε.

Take now a Lipschitz function ψ such that:

• 0 ≤ ψ ≤ 1,

• ψ = 1 in A
δ
3 and ψ = 0 outside A2δ/3,

• Lip(ψ) ≤ 3
δ

and test it on the current Q′ = Q+Sρ1−Sρ2 . Since (4.1) gives Q′ = Q Σρ1,ρ2 +∂Y , with
Y supported in the complement of Σρ1,ρ2 , and since ψ is constant inside the ring Σρ1,ρ2 ,
by (4.1) we have |Q′(ψ)| < |Q(A)|/4. Hence

|Q(ψ)| ≤ 1

4
|Q(A)|+ M(Sρ1) + M(Sρ2) <

1

4
|Q(A)|+ 2ε.

On the other hand equation (4.1) yields

|Q(A)| − |Q(ψ)| ≤ |Q(A)−Q(ψ)| ≤ ‖Q‖(Aδ \ A) <
|Q(A)|

4

and so |Q(A)| < 4
3
|Q(ψ)| ≤ 1

3
|Q(A)| + 8

3
ε. Since |Q(A)| > 0, by choosing ε su�ciently

small we have a contradiction. So Q+(A) = Q−(A) on every open set A. Since the family
of open sets is stable by intersection and generates the σ-algebra of Borel sets, we get
Q+ ≡ Q−, hence Q = 0. �

In order to apply the theory of functions of metric bounded variation developed in [5, 7],
we need to ensure that the space (B0(E),G) is separable. Let us �rst relate the space
of 0-currents to the theory of Optimal Transportation. Recall that a �nite nonnegative
Borel measure µ has �nite �rst moments if d(·, x0) belongs to L1(µ) for some, and thus
all, x0 ∈ X. Given two such measures µ and ν with �nite �rst moments and equal total
mass (µ(E) = ν(E)) we let

W1(µ, ν) = inf

{∫
E×E

d(x, y)dσ(x, y) : σ ∈M+(E × E), π1#σ = µ, π2#σ = ν

}
(4.3)

be their 1-Wasserstein distance, where π1 is the projection on the �rst coordinate and
π2 is the projection on the second one. For the many properties and applications of this
distance we refer to the monograph [27]. Among them, we recall that the in�mum (4.3) is
attained by at least one nonnegative Borel measure σ, which we call optimal plan. Since
E is a geodesic space the Wasserstein distance can be lifted to the space of geodesics
Geo(E) of constant speed geodesics parametrized on [0, 1]:

W1(µ, ν) = inf

{∫
Geo(E)

d(γ(0), γ(1)) dλ(γ), λ ∈M+(Geo(E)), (e0, e1)#λ = (µ, ν)

}
.

(4.4)
Here et(γ) = γ(t) denoted the evaluation map at time t. This allows us to make the
following observation:
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Lemma 4.3. Let Q ∈ M0(E) be such that Q(1) = 0 and the total variation measure

‖Q‖ has �nite �rst moment. Then Q is representable as ∂Y for some Y ∈ F1(E) with

M(Y ) ≤ W1(Q+, Q−). In particular G(Q) ≤ W1(Q+, Q−).

Proof. The two measures Q+ and Q− given by Hahn decomposition theorem have �nite
�rst moments and have the same mass. We let λ ∈M+(Geo(E)) be an optimal measure
in problem (4.4) and we build

Y =

∫
Geo(E)

γ#J0, 1K dλ(γ).

Since ∂γ#J0, 1K = δγ(1)− δγ(0), it is easily proved that Y is actually a normal current with
Q = ∂Y and that

M(Y ) ≤
∫
Geo(E)

M(γ#J0, 1K) dλ(γ) =

∫
Geo(E)

d(x, y) dλ(x, y) = W1(Q+, Q−).

�

Proposition 4.4. The metric space (B0(E),G) is separable.

Proof. We �rst show that the class of currents with bounded support is dense. In fact,
let us �x a basepoint x0 ∈ E and Q = ∂(R + S) with S(R) < ∞ and M(S) < ∞: as
in Proposition 4.2, there are arbitrarily big radii r such that Rr = 0, M(Sr) is �nite and
spt(Sr) ⊂ ∂Br(x0). As in (4.2), for a.e. r > 0 we obtain

Q (E \Br(x0)) = ∂(R (E \Br(x0))) + ∂(S (E \Br(x0))) + Sr,

so that Q Br(x0)+Sr belongs to B0(E). Clearly Q Br(x0)+Sr is supported in Br(x0),
and its G-distance from Q can be estimated by

G(Q,Q Br(x0) + Sr) = G(Q (E \Br(x0))− Sr) ≤ ‖S‖(E \Br(x0)) + S(E \Br(x0))

which is arbitrarily small provided we take r su�ciently large.
Now, if Q ∈ B0(E) has bounded support we may represent Q = ∂Y for some normal

current Y , so that
G(Q, aQ) ≤ |1− a|M(Y ).

This inequality can be used to show that the class of Q's with bounded support such that
c(Q) = Q+(E) = Q−(E) is a rational number is dense.
Now, recall that the space of Borel probability measures in E endowed with the W1

distance is separable (see for instance [4, Proposition 7.1.5]) and let us denote by D a
countable dense subset. If Q ∈ B0(E) and c = Q+(E) = Q−(E) ∈ Q, we may consider
families νn, µn contained in D converging respectively to Q+/c and Q−/c in Wasserstein
distance and use the inequality

G(Q, cµn − cνn) ≤ G(Q+, cµn) + G(Q−, cνn) ≤ W1(Q+, cµn) +W1(Q−, cνn)

to get G(Q, cµn − cνn)→ 0. This proves the separability of (B0(E),G).
�
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5. Rectifiable sets and functions of metric bounded variation

This section is devoted to the presentation of some technical tools that allow to study
the recti�ability of certain subsets of a metric space.

5.1. Recti�able sets. We begin by recalling the de�nition of countably H k-recti�able
set:

De�nition 5.1. [17] A H k-measurable set Σ ⊂ E is called countably H k-recti�able if

there exist countably many sets Aj ⊂ Rk and Lipschitz maps fj : Aj → E such that

H k

(
Σ \

⋃
j

fj(Aj)

)
= 0. (5.1)

For k = 0 we de�ne a countably H 0-recti�able set to be a �nite or countable set.

We recall that since E is complete and boundedly compact, the sets Ai can be assumed
to be closed or compact; moreover one can suppose that the images fj(Aj) are pairwise
disjoint (see [22, Lemma 4]).
In order to prove a recti�ability result it is often necessary to prove that a certain

parameterization function is Lipschitz. Among the many ways to measure the slope of
a function, the following notion is quite �exible, since it is local and behaves well under
slicing:

De�nition 5.2. Let A ⊂ Rk Borel and f : A → E a Borel map. For x ∈ A we de�ne

δxf as the smallest N ≥ 0 such that

lim
r↓0

r−kL k
(
{y ∈ A ∩Br(x) :

d(f(y), f(x))

r
> N}

)
= 0.

This de�nition is a simpli�ed version of Federer's de�nition of approximate upper limit of
the di�erence quotients (we replaced |y−x| by r in the denominator). The next theorem,
proved in [9, Theorem 5.1] (actually a simpli�ed version of [17, Theorem 3.1.4]), is the
weak version of the total di�erential theorem that implements the local slope δxf de�ned
above instead of the classical di�erential:

Theorem 5.3. Let A ⊂ Rk Borel and f : Rk → E be Borel.

(i) Let k = n + m, x = (z, y), and assume that there exist Borel subsets A1, A2 of A
such that δz(f(·, y)) <∞ for all (z, y) ∈ A1 and δy(f(z, ·)) <∞ for all (z, y) ∈ A2.

Then δxf <∞ for L k-a.e. x ∈ A1 ∩ A2;

(ii) if δxf < ∞ for L k-a.e. x ∈ A there exists a sequence of Borel sets Bn ⊂ A such

that L k(A \ ∪nBn) = 0 and the restriction of f to Bn is Lipschitz for all n.

The following simple proposition, proved in [9, Proposition 5.2], relates 1-dimensional
recti�able sets and projections:

Proposition 5.4. Let K ⊂ Γ ⊂ E, with K countably H 1-recti�able, and let π ∈ Lip(E)
be injective on Γ. Then δ(π|Γ)−1 is �nite L 1-a.e. on π(K).
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5.2. Functions of metric bounded variation. It is a well-known fact that, in absence
of a linear structure, as in a generic metric space (M,dM), Lipschitz functions play the
role of coordinates. Bearing in mind this idea we begin with a de�nition:

De�nition 5.5. A metric space (M,dM) is called weakly separable if there exists a count-

able family (ϕh)h∈N ⊂ Lip1(M) ∩ Lipb(M) such that

dM(x, y) = sup
h
|ϕh(x)− ϕh(y)| ∀x, y ∈M. (WS)

Notice that separable metric spaces are particular cases of the class de�ned above, as
it is su�cient to take as ϕh truncations of the functions dM(·, xh) where xh run in a dense
subset of M . In particular, Proposition 4.4 ensures that (B0(E),G) is a weakly separable
metric space. Observe also that given a Borel function u : Rk →M we have that L k-a.e.
x ∈ Rk is an approximate continuity point, namely

{y : dM(u(y), z) > ε}
has 0-density at x for all ε > 0, for some z ∈M . The point z is unique and we will denote
it by ũ(x). We shall denote, as in [3, 5], by Su the set of approximate discontinuity points:
it is a Lebesgue negligible Borel set and ũ = u L n-a.e. in Rk.
The oscillations of a function u : Rk → M are detected through the composition

with each ϕh. In analogy with the case where M = RN is a Euclidean space, a natural
de�nition of metric space valued BVloc function would require that

the distribution D(ϕh ◦ u) is a locally �nite measure for every h. (D)

Although this conditions easily characterizes the space BVloc(R
k,RN) if we take among

the functions ϕh (truncates of) coordinate projections, in the general context of metric
spaces a uniformity among the measures {|D(ϕh◦u)|}h is not a byproduct of condition (D).
Therefore, as in [5, De�nition 2.1], we de�ne:

De�nition 5.1 (Metric bounded variation). Let (M,dM) be a weakly separable metric

space and let u : Rk → M be a Borel function. We say that u has metric bounded

variation if there exists a �nite measure σ in Rk such that

|D(ϕh ◦ u)| ≤ σ for every h. (5.2)

where the set (ϕh) satis�es (WS). We denote by with MBV (Rk,M) the space of such

functions and by |Du| the least possible measure σ in (5.2).

For our purposes, it is also necessary to work with the classical de�nition of function of
bounded variation de�ned on intervals of the real line (see [17, 4.5.10]): if u : (a, b)→M
is a Borel function we let

ess-Varbau = sup

{
N∑
k=1

dM(ũ(xk−1), ũ(xk)), a < x0 < . . . < xN < b, xk ∈ D

}
(5.3)

where D is any countable dense set in (a, b) \ Su. As it is proved in [17, 4.5.10] and in [5,
Remark 2.2], u ∈ BV ((a, b)) if and only if ess-Varbau is �nite and ess-Varbau = |Du|((a, b)).
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Hypothesis (WS) comes into play when dealing with many measure theoretic properties
of the space MBV . For instance:

Lemma 5.6. If u ∈ MBV ((a, b),M) then the approximate upper limit of incremental

quotient δxu is �nite L 1-almost everywhere in (a, b).

Proof. We can assume with no loss of generality that b− a <∞. Then, the composition
uh := ϕh ◦ u belongs to BV ((a, b)): hence there exists a L 1-negligible set Nh ⊂ (a, b)
such that

uh(x)− uh(y) = Duh((x, y)) ∀x, y 6∈ Nh.

Moreover by Vitali's covering theorem the set

N ′ =
{
x ∈ (a, b) : lim sup

r↓0

|Du|(Br(x))

2r
=∞

}
where the upper density Θ∗1(|Du|, ·) is in�nite is Lebesgue negligible; since

|u(x)− u(y)| ≤ |Du|((x, y)) ∀x, y ∈ (a, b) \
⋃
h

Nh,

therefore δxu ≤ Θ∗1(|Du|, x) <∞ for x /∈ N ′ ∪ ∪hNh. �

In particular, by Theorem 5.3(ii), for all u ∈ MBV (Rk, (B0(E),G)) there exist Borel
sets Bn and constants Ln such that

G(u(x1), u(x2)) ≤ Ln|x1 − x2| ∀x1, x2 ∈ Bn and L k
(
Rk \

⋃
n

Bn

)
= 0. (5.4)

6. Rectifiability of flat currents with finite size

This section contains the main recti�ability result of this paper.

Theorem 6.1 (Recti�ability of currents of �nite size). For every �at current T ∈ Fk(E)
with �nite size the measure µT is concentrated on a countably H k-recti�able set. The

least one, up to H k-recti�able sets, is given by

set(T ) :=

{
x ∈ E : lim sup

r↓0

µT (Br(x))

rk
> 0

}
. (6.1)

Notice that, even for �at chains for �nite mass, the theorem provides no information on
the recti�ability of the measure ‖T‖, which fails to be true in general. So, our goal is to
�nd a countably H k-recti�able set Σ such that µT (E \ Σ) = 0. We start by proving the
existence of a countably H k-recti�able set Σ = Σπ satisfying

µT,π(E \ Σπ) = 0 (6.2)

for a �xed π ∈ Lip1(E,Rk): since S(T ) is �nite, for L k-almost every x ∈ Rk the slice
Tx = 〈T, π, x〉 has �nite size, hence by Theorem 3.3 it is a �nite sum of Dirac's masses.
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Therefore spt(Tx) = {y ∈ E : ‖Tx‖({y}) > 0}, moreover Tx = Xx + (∂Y )x which entails
‖Tx‖ ≤ ‖Xx‖+ ‖(∂Y )x‖ again almost everywhere. This implies that

spt(Tx) ⊂ {y ∈ E : ‖Xx‖({y}) > 0} ∪ {y ∈ E : ‖(∂Y )x‖({y}) > 0}. (6.3)

So, in order to investigate the recti�ability of the measure µT,π =
∫
Rk H 0 spt(Tx)dx we

will prove that there are countably many Lipschitz graphs that contain the right hand side
of (6.3), for L k-almost every x. Since X ∈ Fk(E) is a �at current with �nite mass, the
statement regarding its atoms has already been obtained in the proof of [12, Theorem 3.2].
The result reads:

Theorem 6.2. Let X ∈ Fk(E) be a �at current of �nite mass. Then, for all π ∈
Lip(E,Rk) there exists a countably H k-recti�able set ΣX,π such that, for L k-a.e. x ∈ Rk,

the atoms of the measure 〈X, π, x〉 are contained in ΣX,π.

The strategy of the proof is to use the fact that �at currents T with �nite mass can
be approximated in the stronger mass norm by normal currents Th; the approximation
in mass norm is inherited by the slices and implies that, up to a Lebesgue negligible set
of points x, the atoms of Tx are atoms of one of the measures (Th)x. The validity of the
result for normal currents goes back to [7]. Actually one can even prove, arguing as in
Section 6.3, that a countably H k-recti�able set can be chosen independently of π, but
we shall not need this fact.
Our new contribution is the analogous statement for ∂Y , which need not have �nite mass.
Recall that the mail idea of the classical proof for normal currents in [7] is that the slicing
map of a normal current has bounded variation, if we measure the distance between slices
using the �at norm. This property uses in a crucial way the duality property of the �at
norm F:

F(T ) = sup
‖φ‖∞≤1, ‖dφ‖∞≤1

T (φ).

Unfortunately our hybrid distance G does not seem to have a similar duality property.
Instead, we consider the classical de�nition of function of bounded variation recalled
in Section 5 to prove the theorem in dimension k = 1. Then, the total di�erential
Theorem 5.3 and Proposition 5.4 will allow us to pass to the general dimension.

6.1. The 1-dimensional case. First of all we �x a map π ∈ Lip1(E).

Proposition 6.3. Let T ∈ F1(E) be a �at 1-current with �nite size, let us write T =
X + ∂Y with M(X) + M(Y ) <∞ and denote by Qx the slicing map

Qx : R → B0(E), Qx = 〈T −X, π, x〉 = 〈∂Y, π, x〉.
Then Qx ∈MBV (R, (B0,G)) and |DQx|(R) ≤M(X) + S(T ).

Proof. Since µπ is a �nite measure, for almost every x the support of 〈T, π, x〉 is �nite. By
Proposition 3.3 we know that 〈T, π, x〉 must have �nite mass. Therefore Qx = 〈T, π, x〉 −
〈X, π, x〉 belongs to M0(E). Moreover Qx is a boundary

Qx = 〈T −X, π, x〉 = ∂(∂Y {π < x})− ∂2Y {π < x} = ∂((T −X) {π < x}),
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which proves that the map Q takes values in B0(E). These properties hold whenever the
slices exist and restrictions can be made: as explained in Section 2.2 these operations are
meaningful in a set of full measure. Therefore for every x1 < x2 both outside a set of
measure zero we can perform the following computation:

Qx2 −Qx1 = 〈T −X, π, x2〉 − 〈T −X, π, x1〉 = ∂((T −X) {x1 ≤ π < x2}),
hence

G(Qx2 , Qx1) ≤M(X {x1 ≤ π < x2}) + S(T {x1 ≤ π < x2}).
Therefore choosing x0 < x1 < . . . < xN , from (5.3), we obtain that |DQx|(R) =
ess-Var+∞

−∞Qx ≤M(X) + S(T ), which is the thesis. �

Theorem 6.4. Let Q ∈MBV (R, (B0,G)). There exists a L 1-negligible set Λ ⊂ R such

that the set of atoms

ΣQ = {y ∈ E : there exists x ∈ R \ Λ such that ‖Qx‖({y}) > 0}
is countably H 1-recti�able. In particular, for all T ∈ F1(E) with �nite size and all

π ∈ Lip(E) this property holds for the map Qx = 〈T, π, x〉.

Proof. Fix ε, δ > 0 and let Λ = R \
⋃
nBn be the Lebesgue negligible set, where Bn are

the Borel sets given by Theorem 5.3(ii) in which the estimate (5.4) holds:

G(Qx1 , Qx2) ≤ Ln|x1 − x2| ∀x1, x2 ∈ Bn, (6.4)

for suitable constants Ln. We then take the set Σε,δ,n of points y ∈ E such that for some
x ∈ Bn:

(a) ‖Qx‖({y}) ≥ ε,
(b) ‖Qx‖(B2δ(y) \ {y}) ≤ ε

8
.

It is easy to notice that with this choice of Λ the set ΣQx is the union of Σε,δ,n for a
countable set of parameters ε and δ, therefore it is su�cient to our purpose to prove the
recti�ability of the latter sets. In addition the hypothesis of separability allows us to write
E as a countable union of disjoint Borel sets Eδ

k of diameter at most δ, and again it is
su�cient to prove the recti�ability of Σε,δ,n,k := Σε,δ,n∩Eδ

k. Let us take two points y1 and
y2 in Σε,δ,n,k and let x1 ≤ x2 be their basepoints in Bn: we know that d = d(y1, y2) ≤ δ.
Take T, X ∈ F1(E) such that

Qx1 −Qx2 = ∂(X + T ) and M(X) + S(T ) ≤ 2G(Qx1 , Qx2). (6.5)

Then either S(T ) ≥ d
9
or not. In the �rst case

d(y1, y2) ≤ 9S(T ) ≤ 18G(Qx1 , Qx2),

and since x1, x2 ∈ Bn, we obtain by (6.4)

d(y1, y2) ≤ 18Ln|x1 − x2|. (6.6)

In the latter case S(T ) < d
9
, hence by de�nition of size, slicing T with the distance function

from y1, we infer that
Tr = 〈T, d(y1, ·), r〉 = 0
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for radii r in at least 8
9
of the segment [0, d]. Therefore we can �nd radii ρ1 ∈ (0, d/3), ρ2 ∈

(2d/3, d) satisfying

Tρ1 = Tρ2 = 0 and M(Xρ1) + M(Xρ2) ≤
9

d
M(X). (6.7)

In order to remove the ring R = {ρ1 ≤ d(y1, ·) < ρ2} from T and X we set T ′ = T (E\R)
and X ′ = X (E\R). We obtain, as in (4.2),

∂(T ′+X ′) = [∂(T +X)] (E\R) +Xρ1 −Xρ2 = (Qx1 −Qx2) (E\R) +Xρ1 −Xρ2 . (6.8)

Take now a Lipschitz function φ such that 0 ≤ φ ≤ 1, φ = 1 in Bd/3(y1), φ = 0 in
E \B2d/3(y1), and Lip(φ) ≤ 3/d. By hypothesis (b) above

|(Qx1 −Qx2) R(φ)| ≤ ‖Qx1‖(χRφ) + ‖Qx2‖(χRφ)

≤ ‖Qx1‖(B2δ(y1)\{y1}) + ‖Qx2‖(B2δ(y2)\{y2}) ≤
ε

4
, (6.9)

since R ⊂ B2δ(yi)\{yi}. The �rst two assumptions on φ imply that

|(Qx1 −Qx2)(φ)−Qx1({y1})| ≤ ‖Qx1‖(B 2d
3

(y1)\{y1}) + ‖Qx2‖(B 2d
3

(y1)) ≤ ε

4
,

which gives

|(Qx1 −Qx2)(φ)| ≥ |Qx1({y1})| − |(Qx1 −Qx2)(φ)−Qx1({y1})| ≥
3

4
ε. (6.10)

Putting together (6.9) and (6.10) we obtain

|(Qx1 −Qx2) (E\R)(φ)| ≥ |(Qx1 −Qx2)(φ)| − |(Qx1 −Qx2) R(φ)| ≥ ε

2
. (6.11)

We can now test equation (6.8) with φ:

ε

2

(6.11)

≤ |(Qx1 −Qx2) (E\R)(φ)| = |(T ′ +X ′)(dφ) + (Xρ2 −Xρ1)(φ)|

≤ |(T ′ +X ′)(dφ)|+ M(Xρ1) + M(Xρ2)
(6.7)

≤ |(T ′ +X ′)(dφ)|+ 9

d
M(X). (6.12)

Since φ is constant in a neighborhood of Bρ1(y1) and in a neighbourhood of E \ Bρ2(y1),
we deduce from Lemma 6.5 (splitting T ′+X ′ in two parts) that (T ′+X ′)(dφ) = 0. Hence,
estimates (6.12) and (6.5) yield

ε

2
≤ 18

d
G(Qx1 , Qx2) ≤

18Ln
d
|x1 − x2|, (6.13)

since we took xi ∈ Bn. Hence putting together the two cases (6.6) and (6.13) we obtain

d(y1, y2) ≤ max{18Ln,
36Ln
ε
}|x1 − x2|. (6.14)

In particular for every x ∈ R \Λ there exists at most one atom y of Qx in the set Σε,δ,n,k,
denoted by f(x): let Dε,δ,n,k ⊂ R \ Λ denote the set of points x where this atom exists.
The estimate (6.14) implies that the map f : Dε,δ,n,k → E has a global Lipschitz extension.



FLAT CHAINS OF FINITE SIZE IN METRIC SPACES 21

Finally, the last part of the statement follows by Proposition 6.3. �

Lemma 6.5. Let T ∈ Fk(E) and u ∈ Lip(E). For L 1-almost every t ∈ R the following

property holds:

∂(T {u < t})(φ) = 0

for every φ ∈ Lipb(E) constant in a neighborhood of {u < t}.

Proof. By de�nition there exists a sequence of normal currents (Th) satisfying
∑

hF(Th−
T ) < ∞, so that that for almost every t it holds F(∂(Th {u < t}) − ∂(T {u < t})) →
0. Since Th has �nite mass, we can write ∂(Th {u < t})(φ) = Th(χ{u<t}dφ) and we
can use the locality property of �nite mass metric currents ([7, Theorem 3.5]) to get
Th(χ{u<t}dφ) = 0. Passing to the limit in h the statement follows. �

6.2. The general k-dimensional case. In this section we analyze the general case
k ≥ 1.
We shall need two technical lemmas. The �rst one provides a useful commutativity

property of the iterated slice operator, the second one provides a measurable selection,
see for instance [10, III.6, III.11].

Lemma 6.6 (Commutativity of slices). Let T ∈ Fk(E) and let π = (p, q) satisfy p ∈
Lip(E,Rm1), q ∈ Lip(E,Rm2), mi ≥ 1 and m1 +m2 ≤ k. Then

〈〈T, p, z〉, q, y〉 = (−1)m1m2〈〈T, q, y〉, p, z〉 for L m1+m2-a.e. (z, y) ∈ Rm1 ×Rm2.

(6.15)

Proof. If T ∈ Nk(E) it is immediate to check that 〈〈T, q, y〉, p, z〉 satisfy condition(a) of
Section 2.2 and∫

ψ(y, z)〈〈T, q, y〉, p, z〉 dydz = T ψ(p, q)dq ∧ dp = (−1)m1+m2T ψ(p, q)dp ∧ dq,

hence (6.15) holds. The general case can be achieved choosing a sequence (Th) ⊂ Nk(E)
with

∑
hF(Th − T ) <∞. �

Lemma 6.7. Let us assign for all x ∈ Rk a �nite set A(x) ⊂ E, and let us assume that

{x : A(x) ∩ C 6= ∅} is Lebesgue measurable for all closed sets C ⊂ E. Then the sets

Bn :=
{
x ∈ Rk : cardA(x) = n

}
n ≥ 1

are Lebesgue measurable and there exist Lebesgue measurable maps f1, . . . , fn : Bn → E
such that

A(x) = {f1(x), . . . , fn(x)} for L k-a.e. x ∈ Bn. (6.16)

We are ready prove the recti�ability of the atoms of 〈∂Y, π, x〉 for general k ≥ 1 and, as
a consequence, the recti�ability of µT,π.
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Theorem 6.8. Let π ∈ Lip(E,Rk) and suppose T = X + ∂Y ∈ Fk(E) has �nite size,

with M(X) + M(Y ) < ∞. Then there exists a Lebesgue negligible set Λ ⊂ Rk such that

the set of atoms

Σ∂Y,π =
{
y ∈ E : there exists x ∈ Rk \ Λ such that ‖(∂Y )x‖({y}) > 0

}
is a countably H k-recti�able set. In particular

µ∗∂Y,π =

∫
Rk

H 0 Atoms(〈∂Y, π, x〉) dx (6.17)

is concentrated on a countably H k-recti�able set.

Proof. First of all notice that the statement of the theorem allows us to ignore sets of
atoms whose projection under π is Lebesgue negligible. We will split the family of atoms
in countably many subfamilies (indexed by m and n), according to their weight and the
cardinality in each �ber.
Since T has �nite size andX has �nite mass, by Proposition 3.3 for almost every x ∈ Rk

the equality

Qx = 〈∂Y, π, x〉 = 〈T −X, π, x〉
implies that Qx has �nite mass, so for every m ≥ 1 the set of points y ∈ E such that
‖Qx‖({y}) ≥ 1/m is �nite almost everywhere. We �x a representative Qx of the slicing
map and denote by N the Lebesgue negligible set of points where Qx has in�nite mass.
Step 1. In this step we view the set of atoms with weight larger than 1/m as images of
suitable maps de�ned on subsets of Rk. To this aim, consider the set-valued function

Am(x) :=

{
{y ∈ π−1(x) : ‖Qx‖({y}) ≥ 1

m
} if x ∈ Rk \ N ,

∅ if x ∈ N
and notice that it ful�ls the measurability assumption of Lemma 6.7. Indeed, let C ⊂ E
be compact and let {yq} be dense in E, We claim that all x /∈ N it holds

∃y ∈ C : ‖Qx‖({y}) ≥
1

m
⇐⇒ ∀`∃q : ‖Qx‖(B 1

`
(yq) ∩ C) ≥ 1

m
.

The implication ⇒ is trivial by density; if on the other hand there is a sequence (yq(`))
such that ‖Qx‖(B 1

`
(yq(`)) ∩ C) ≥ 1

m
, any limit point ȳ must belong to C and satis�es

‖Qx‖(B 1
n
(ȳ) ∩ C) ≥ 1

m
for any given n, so that y ∈ Am(x). Hence {x : Am(x) ∩ C 6= ∅}

can be written as ⋂
`

⋃
q

{
x ∈ Rk\N : ‖Qx‖(B 1

`
(yq) ∩ C) ≥ 1

m

}
. (6.18)

The map x 7→ ‖Qx‖(B) is measurable for every Borel set B and for every T ∈ Fk(E) (see
[9, Section 3] for the proof of this result), hence the set in (6.18) is Lebesgue measurable.
Since any closed set C is a countable union of compact sets we obtain that Am satis�es
the measurability assumption of Lemma 6.7. As a consequence, for all n ≥ 1 we obtain
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disjoint measurable sets Bn = {x : H 0(Am(x)) = n} and measurable maps f1, . . . , fn
satisfying (6.16).
Step 2. In order to show that the collection of atoms is countably H k-recti�able, modulo
sets with Lebesgue negligible projection on Rk, we can use Lusin's theorem and the inner
regularity of the Lebesgue measure to restrict the domain of the functions f1, . . . , fn to a
compact set C ⊂ Bn and assume that these restrictions are continuous. Notice that since
fi(x) 6= fj(x) whenever x ∈ Bn and i 6= j we can also assume that the sets Ki := fi(C),
i = 1, . . . , n, are pairwise disjoint, by a further decomposition of C in countably many
pieces. Observe also that π : Ki → C is injective and its inverse is fi. In order to prove
the theorem it su�ces to show that the sets Ki \ π−1(Vi) for suitable Lebesgue negligible
sets Vi ⊂ Rk, are countably H k-recti�able: we �x an index i once and for all.
Writing x = (z, t) with z ∈ Rk−1 and t ∈ R, let us consider the sets

Cz := {t ∈ R : (z, t) ∈ C} , Kiz := {x ∈ Ki : (π1, . . . , πk−1)(x) = z}

and the maps giz(t) := fi(z, t) : Cz → Kiz. We claim that, for L k−1-a.e. z, δtgiz < ∞
L 1-a.e. in Cz. Indeed,

Qx = 〈Sz, πk, t〉 with Sz := 〈T −X, (π1, . . . , πk−1), z〉

we know that for L k−1-a.e. z the �at chain Sz ∈ F1(E) is the sum of a �at current with
�nite size and of a �at current with �nite mass and (thanks to Lemma 6.6) 〈Sz, πk, t〉 = Qx

for L 1-a.e. t ∈ R. It follows that 〈Sz, πk, t〉 Ki = Qx Ki is a Dirac mass concentrated
on giz(t) for L 1-a.e. t ∈ Cz.
We �x now a point z with these properties: combining Theorem 6.4 (applied to the

part with �ne size of Sz) and Theorem 6.2 (applied to the part with �nite mass of Sz)
we get a countably H 1-recti�able set Gz ⊂ E and a L 1-negligible set Nz ⊂ R such that
the atoms of 〈Sz, πk, t〉 lying in Ki are contained in Gz for all t ∈ R \Nz. We denote by
K̃iz ⊂ Gz the set

K̃iz := {giz(t) : t ∈ Cz \Nz}

which is countably H 1-recti�able as well and contained in Kiz. Also L 1(πk(Kiz \K̃iz)) =
0 because this set is contained in Nz. Since πk|Kiz is injective, we can now apply Proposi-
tion 5.4 with K = K̃iz and Γ = Kiz to obtain that δt((πk)|Kiz)−1 <∞ L 1-a.e. on πk(K̃iz)
and therefore L 1-a.e. on πk(Kiz). But, since the inverse of π|Ki is fji , the inverse of
(πk)|Kiz is giz. It follows that δtgiz <∞ L 1-a.e. on Cz. This proves the claim.
Using the commutativity of the slice operator, we see that a similar property is ful�lled

by fi with respect to the other (k − 1) variables, hence Theorem 5.3(i) ensures that
δxfi <∞ L k-a.e. on C. This ensures that Theorem 5.3(ii) is applicable to fi, so that we
can cover L k-almost all of C with Borel sets Ck such that the restriction of f to Ck is
Lipschitz. Since f(∪kCk) is countably H k-recti�able, we can can choose Vi = C \ ∪kCk
to conclude the proof. �
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6.3. Proof of the main result. In this section we prove Theorem 6.1. Let T = X+∂Y .
For a given π ∈ Lip1(E,Rk), Theorem 6.2 and Theorem 6.8 provide us two countably
H k-recti�able sets ΣX,π and Σ∂Y,π such that µX,π is concentrated on ΣX,π and µ∂Y,π is
concentrated on Σ∂Y,π. In particular µT,π is concentrated on the countably H k-recti�able
set ΣT,π = ΣX,π ∪ Σ∂Y,π. Consider for any n ∈ N a �nite set Jn ⊂ Lip1(E;Rk) of
projections such that

µT (E) ≤

( ∨
π∈Jn

µT,π

)
(E) + 2−n

(its existence is a direct consequence of (2.16)). Then, denoting by J the union of the
sets Jn, the measure

σ :=
∨
π∈J

µT,π

is smaller than µT and with the same total mass, hence it coincides with µT . Since J
is countable, a countably H k-recti�able concentration set Σ for µT can be obtained by
taking the union ∪π∈JΣT,π.
Finally, de�ning set(T ) as in (6.1), since µT is concentrated on Σ the spherical di�er-

entiation theory gives Θ∗k(µT , x) = 0 for H k-a.e. x ∈ E \ Σ, hence set(T ) ⊂ Σ up to
H k-negligible sets.

7. Characterization of the size measure

In this section we improve the result of Theorem 6.1, showing a formula for the density
of µT with respect to H k set(T ) that involves only the local geometry of set(T ). We
start by stating some di�erentiability properties of Lipschitz maps and recti�able sets
contained in [6].

7.1. Dual of separable Banach spaces. It is helpful for our purposes to consider the
dual of a separable Banach space Y , like `∞, as an ambient space. There are mainly two
reasons for this. First, we can gain some linear structure by embedding E into the vector
space `∞. In fact, since E is separable, we let {xk}k∈N be a dense subset. The map
j : E → `∞ de�ned by

j(x) = (d(x, x0)− d(x0, x0), d(x, x1)− d(x1, x0), . . . )

provides an isometric embedding of E into `∞. We can therefore assume E ⊂ Y .
The second reason is related to the Rademacher-type theorem 3.5 of [6]: given f ∈

Lip(Rk, Y ), for L k-a.e. x ∈ Rk there exists a linear map wdxf : Rk → Y such that

w∗ − lim
y→x

f(y)− f(x)− wdxf(y − x)

|y − x|
= 0 and

lim
y→x

‖f(y)− f(x)‖ − ‖wdxf(y − x)‖
|y − x|

= 0.

The map wdxf is called the w∗-di�erential of f at x.
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7.2. Approximate tangent space and tangential di�erentiability. Let S ⊂ Y be
a countably H k-recti�able set. For H k-almost every x ∈ S there exists a vector space
Tan(k)(S, x) ⊂ Y of dimension k, called the approximate tangent space to S at x. This
space is de�ned by setting

Tan(k)(S, f(x)) = wdxfi(R
k) for L k-a.e. x ∈ Ai,

whenever fi satisfy (5.1). It can be proved that this de�nition does not depend on the
particular choice of parametrization fi; moreover this space is actually independent of the
chosen embedding j, since its norm (inherited by the inclusion in Z) depends only on the
distance d of space E.
If now π ∈ Lip(S,Z) and Z is the dual of a separable Banach space, for H k-almost

every x ∈ S there exists a linear map

dSxπ : Tan(k)(S, x)→ Z

called the tangential di�erential of π at x. As before such map can be characterized by
requiring that

wdx(π ◦ f) = dSf(x)π ◦ wdxf
for any parametrization f as in (5.1).

7.3. Jacobians and the area formula. Given a linear map L : V → W between two
Banach spaces V and W , with dim(V ) = k, we let

Jk(L) =
ωk

H k
V ({x : ‖L(x)‖ ≤ 1})

=
H k

W ({L(x) : ‖x‖ ≤ 1)}
ωk

, (7.1)

where ωk is the k-dimensional Hausdor� measure of the unit ball in Rk. We also recall
that ωk is actually the Hausdor� measure of the unit ball in any Banach space, see [22,
Lemma 6]. The importance of Jk relies on the following general area formula:∫

S

Jk(d
S
xπ) dH k(x) =

∫
Z

H 0(S ∩ π−1(y)) dH k(y). (7.2)

We restrict our attention to the Euclidean case Z = Rk. In order to relate µT to
H k set(T ) we need to calculate the supremum of the k-Jacobians Jk(d

Sπ) among all
possible functions π. As explained in the next two lemmas, it turns out that this quantity
depends only on the norm of tangent space Tan(k)(S, x).
Let V be a k-dimensional Banach space and denote by BV

1 its unit ball. We call ellipsoid
any set R = L(B), where L : Rk → V is a linear map and B is a ball in the Euclidean
space Rk. The supremum

λV := sup

{
H k(BV

1 )

H k(R)
: BV

1 ⊂ R, R ellipsoid

}
(7.3)

is called the area factor of V , and is clearly related to the problem of �nding the best
ellipsoid enclosing a convex set in Rk. For instance if V is a Hilbert space, then the
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spectral theorem implies λV = 1. The following lemma relates λV to the k-Jacobian of
linear maps ([7, Lemma 9.2]:

Lemma 7.1. Let V be a k-dimensional Banach space. Then

λV = sup{Jk(ζ) : ζ : V → Rk linear, Lip(ζ) ≤ 1}.

Proof. Without loss of generality we can assume that the map ζ is non singular. Then,
the ellipsoid {v ∈ V : |ζ(v)| ≤ 1} = ζ−1(B1) contains BV

1 if and only if Lip(ζ) ≤ 1. Hence
for such maps the area formula implies that

Jk(ζ) =
ωk

H k({v ∈ V : |ζ(v)| ≤ 1})
=

H k(BV
1 )

H k({v ∈ V : |ζ(v)| ≤ 1})
≤ λV .

On the other hand by de�nition any nontrivial ellipsoid R = L(B) can be written as
ζ−1(B), for some linear map ζ and some Euclidean ball B, just setting ζ = L−1, By
possibly rescaling one can assume that B has radius 1. At this point R = ζ−1(B1) = {v ∈
V : |ζ(v)| ≤ 1} and the same inequality as above completes the proof. �

Also, se shall need the following density result [7, Lemma 9.4]:

Lemma 7.2. Let Πk(Y ) be the collection of all w∗-continuous linear maps π : Y → Rk,

with dim(π(Y )) = k. There exists a countable set {πj} ⊂ Πk(Y ) such that Lip(πj) = 1
for every j ∈ N and

sup
j

Jk(π
j|V ) = sup{Jk(π|V ) : π ∈ Πk(Y ), Lip(π) ≤ 1}

for any k-dimensional subspace V ⊂ Y .

The proof of this lemma relies on the fact that the pseudodistance

γ(π, π′) := sup{
∣∣|π(x)| − |π′(x)|

∣∣ : ‖x‖ ≤ 1}

makes the space Πk(Y ) separable and that if γ(πh, π)→ 0 then

H k({v ∈ V : |π(v)| ≤ 1}) = lim
h

H k({v ∈ V : |πh(v)| ≤ 1}),

which, according to (7.1), makes the map π 7→ Jk(π|V ) γ-continuous.

Theorem 7.3 (Characterization of µT ). For any T ∈ Fk(E) with �nite size it holds

µT = λH k set(T ),

where λ(x) = λTan(k)(set(T ),x) is the function de�ned in (7.3).

Proof. The area formula (7.2) implies that if π ∈ Lip1(E,Rk) and A ⊂ E is a Borel set,
then

µT,π(A) =

∫
Rk

H 0(A ∩ set(T ) ∩ π−1(y)) dy =

∫
A∩set(T )

Jk(d
set(T )
x π) dH k(x),
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so that

µT =
∨

π∈Lip1(E,Rk)

Jk(d
set(T )π)H k set(T ). (7.4)

It is now immediately clear by Lemma 7.1 that µT ≥ λH k set(T ). On the other hand,
choosing π to be one element of the countable family of maps πj provided by Lemma 7.2,
µT can be bounded below by supj Jk(d

set(T )πj)H k set(T ). Lemma 7.1 and Lemma 7.2
give

sup
j

Jk(π
j|Tan(k)(set(T ),·)) = λTan(k)(set(T ),·)

and so µT = λH k set(T ). �
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