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Abstract. This paper is devoted to the determination of the equivalent anisotropy
properties of polycrystalline magnetic materials, modelled by an assembly of monocrys-
talline grains with a stochastic spatial distribution of easy axes. The mathematical
theory of Γ-convergence is applied to homogenize the anisotropic term in the Gibbs
free energy. The procedure is validated focusing on the micromagnetic computation
of reversal processes in polycrystalline magnetic thin films.

2010 Mathematics Subject Classification: 49J45, 60H07.
Keywords: Micromagnetics, Polycrystalline magnetic materials, Random anisotropy,
Homogenization.

1. Introduction

In the last years, much effort has been devoted to the development of theoretical mod-
els and advanced micromagnetic computational codes to study magnetization processes at
micrometric and submicrometric scale [1, 2]. Criticalities can appear in the treatment of
the spatial distribution of heterogeneous physical parameters when polycrystalline magnetic
materials are modelled. Usually, they are described as an array of grains, geometrically con-
structed using Voronoi diagrams [3]. We employ an alternative approach, where the sample is
modelled by an assembly of monocrystalline grains, assuming a stochastic spatial distribution
of easy axes, and the mathematical theory of Γ-convergence (for multiple-scale problems in
micromagnetism, see for instance [4]) is applied to homogenize the anisotropic term in the
Gibbs free energy. The proof of convergence is detailed in [5]. Here, the homogenization result
is used to study precessional switching in polycrystalline magnetic thin films, comparing the
results obtained by considering heterogeneous and homogenized media.

2. Setting of the problem and homogenization result

We deal with a polycrystalline magnetic sample, which occupies a bounded region D in
R3. We introduce the magnetic spatial distribution M : R3 → R3, with |M| = MSχD, where
MS > 0 is a fixed constant (saturation magnetization), and the rescaled magnetization m :=
M/MS.

The total energy associated to the system is the sum of the exchange energy Eexc(m), the
anisotropy energy Ean(m, ω), the magnetostatic energy Emagn(m) and the Zeeman energy
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Eext(m), namely

E(m, ω) :=

∫
D
A|∇m|2 dx +

∫
D
fan(m,x, ω) dx (2.1)

−µ0

2

∫
D
MSHm ·m dx− µ0

∫
D
MSHa ·m dx.

In (2.1) A > 0 is the exchange constant; fan represents the anisotropy energy density given by
fan(m,x, ω) := kan[1− (m · uan(Txω))2], where kan > 0 is the magnetocrystalline anisotropy
constant and uan : Ω→ {|x| = 1} is a random distribution of easy axes: (Ω, µ) is a probability
space and T is a 3-dimensional ergodic dynamical system on Ω. Moreover, µ0 is the magnetic
permeability of vacuum; Hm := ∇u is the magnetostatic field, and the scalar potential u is
the solution of the Poisson equation ∇2u+∇ ·M = 0.

In [5] the spatial homogenization of the anisotropy energy Ean is investigated. More
precisely, if Eεan(m, ω) :=

∫
D fan

(
m, xε , ω

)
dx, then the family Eε(m, ω) := Eexc(m) +

Eεan(m, ω) + Emagn(m) + Eext(m) Γ-converges, as ε→ 0+, a.s. in Ω, to

Ē(m) = Eexc(m) + kan

∫
D

∫
Ω

[1− (m · uan(ω))2] dµ dx + Emagn(m) + Eext(m). (2.2)

The homogenization result, defined by Eq. (2.2), is applied to determine the equivalent anisotropy
properties of a polycrystalline magnetic medium. By considering a spherical coordinate
system with angular coordinates θ (0 ≤ θ ≤ π) and φ (0 ≤ φ ≤ 2π), uan is assumed
to be a Gaussian random variable uan : Ω → R3, with a probability density function

P (θ, φ) = ρ(θ)ρ(φ) where ρ(ν) = 1
sν
√

2π
e
− |ν−ην |

2

2s2ν , being ν = θ (or ν = φ), sν the standard

deviation and ην the expected value. In order to derive equivalent anisotropy parameters,
f̄an(m) is numerically interpolated by an equivalent anisotropy function having the expres-
sion: f∗an(m) = k∗an[1 − γ(m · uan(ηθ, ηφ))2], where k∗an is the equivalent anisotropy constant
and γ is a dimensionless interpolating coefficient. As an example, the plots of the equivalent
anisotropy functions and the corresponding energy surfaces are shown in Fig. 1 for two values
of the standard deviation s (having assumed s = sθ = sφ), with ηθ = π/2 and ηφ = π. At
the increase of s, the equivalent anisotropy energy surface tends to a sphere, since there is an
asymptotic behaviour towards isotropy.

3. Numerical analysis

The homogenization procedure has been validated by simulating the precessional switching
of a 4µm ×4µm polycrystalline magnetic film, with thickness equal to 20 nm. In the film
plane the grains are assumed to have a square shape with size of 20 nm; in each grain a
given anisotropy direction uan is assumed. The micromagnetic simulations are performed by
integrating the Landau-Lifshitz-Gilbert (LLG) equation:

∂M

∂t
= − γG

(1 + α2)

[(
(M×Heff) +

α

MS
M× (M×Heff)

)]
, with |M| = MS (3.1)

where γG = 2.21 · 105 mA−1s−1 is the absolute value of the gyromagnetic ratio and α is the
damping constant [1]. The effective field Heff is the sum of applied field Ha, anisotropy
field Han, exchange field Hex and magnetostatic field Hm. In particular, Han is deduced by

the anisotropy energy function fan as Han = − 1
µ0

∂fan(M)
∂M . The spatial discretization of the

LLG equation is performed by using the finite element method with linear basis functions,
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Figure 1. Equivalent anisotropy function f̄an(m) and corresponding energy
surfaces, for s = π/20 (a) and s = π/5 (b), having assumed ηθ = π/2 and
ηφ = π.

assuming the components of Heff as nodal unknowns [6]. Then, the magnetization update is
performed via a norm-conserving scheme based on the Cayley transform [7]. To accelerate
the computation, the magnetostatic field due to “far” dipoles is evaluated by a multipole
expansion technique [8].

In the simulations the following physical parameters have been considered: MS = 800 kA/m,
A = 15 pJ/m and α = 0.02. The thin film is discretized into volume elements with size
∼ 6.6 nm. We assume that kan = 50 kJ/m3 and vector uan is randomly distributed over
the film plane (i.e. angle θ is fixed to π/2), while angle φ has a Gaussian distribution with
standard deviation sφ and expected value ηφ. The precessional switching is simulated start-
ing from a uniform spatial distribution of the magnetization along the x1-axis and applying
a constant field Ha, with amplitude equal to 100 kA/m, along the x2-axis (see Fig. 2a). In
particular, Figs. 2b and 2c show the results obtained for a standard deviation sφ of π/6 and π,
respectively. The fitting parameters k∗an/kan and γ are equal to 0.977 and 0.921 for s = π/6,
while they are equal to 0.88 and 0.567 for sφ = π. The results are validated by comparison
to the ones obtained for the heterogeneous structure, putting in evidence a good agreement,
also when considering grains having bigger size. Some discrepancies arise at the increase of
the standard deviation, since the heterogeneities in the anisotropy term become more impor-
tant. To highlight the effect of grains on anisotropy properties, we have also computed the
magnetization time evolutions obtained in the absence of anisotropy (kan = 0) or assuming a
uniform uniaxial anisotropy along x1-axis (see Fig. 2d).
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Figure 2. (a) Scheme of the precessional switching. Time evolution of the
magnetization components assuming an anisotropy constant kan equal to 50
kJ/m3 and a variable standard deviation sφ: (b) sφ = π/6 and (c) sφ =
π. The results obtained with the heterogeneous structure are compared with
those given by considering homogenized parameters. (d) Time evolution of
the magnetization components disregarding anisotropy or assuming a uniform
uniaxial anisotropy along x1-axis with kan equal to 50 kJ/m.
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