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Abstract. We introduce the space GBD of generalized functions of bounded defor-

mation and study the structure properties of these functions: the rectifiability and the
slicing properties of their jump sets, and the existence of their approximate symmetric

gradients. We conclude by proving a compactness results for GBD , which leads to a

compactness result for the space GSBD of generalized special functions of bounded de-
formation. The latter is connected to the existence of solutions to a weak formulation of

some variational problems arising in fracture mechanics in the framework of linearized

elasticity.
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1. Introduction

The space BD(Ω) of functions of bounded deformation was investigated in [25, 31, 32,
24, 30] to study mathematical models of small strain elasto-plasticity (see also [22, 29, 8, 7]).
If Ω ⊂ Rn is a bounded open set and Mn×n denotes the space of n×n -matrices, BD(Ω) is
the space of functions u ∈ L1(Ω; Rn) such that the Mn×n -valued distribution Eu , defined
by (Eu)ij := 1

2 (Diuj +Djui), is a bounded Radon measure.
The fine structure of the functions u ∈ BD(Ω) was investigated in [23, 5]. In particular it

can be proved that the jump set Ju of u is countably (Hn−1, n−1)-rectifiable, where Hn−1

is the (n− 1)-dimensional Hausdorff measure, and that the measure Eu can be written as
the sum of three measures:

Eu = Eau+ Ecu+ Eju ,

where Eau is absolutely continuous with respect to the Lebesgue measure Ln , Ecu is
singular with respect to Ln and satisfies |Ecu|(B) = 0 for every Borel set B ⊂ Ω with
Hn−1(B) < +∞ , while Eju is concentrated on the jump set Ju . Moreover, if Eu ∈
L1(Ω; Mn×n) is the density of Eau with respect to Ln , then for Ln -a.e x ∈ Ω we have (see
[5, Theorem 4.3])

lim
ρ→0+

1
ρn

∫
Bρ(x)

∣∣(u(y)− u(x)− Eu(x)(y − x)
)
· (y − x)

∣∣
|y − x|2

dy = 0 , (1.1)

where Bρ(x) denotes the open ball with centre x and radius ρ , while the dot denotes the
scalar product in Rn . Finally, Eu and Ju can be reconstructed from the derivatives and
the jump sets of the one-dimensional slices of the function u (see [5, Theorem 4.5]).

The space SBD(Ω) of special functions of bounded deformation was introduced in [5]
and is defined as the space of all functions u ∈ BD(Ω) with Ecu = 0. In the framework of
linearized elasticity the variational models for fracture mechanics originated by the seminal
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paper [20] have a sound mathematical formulation in the space SBD(Ω) (see, e.g., [27, 10,
13, 28, 12]). The common feature of these models is that the main energy term has the form

FQ(u) :=
∫

Ω

Q(Eu) dx+Hn−1(Ju) , (1.2)

where Q is a positive definite quadratic form, which gives the stored elastic energy density
as a function of the strain Eu .

To prove the existence of solutions to minimum problems related to (1.2) one can use a
compactness result proved in [9, Theorem 1.1]: if uk is a sequence in SBD(Ω) such that
‖uk‖L∞(Ω;Rn) and FQ(uk) are bounded uniformly with respect to k , then there exist a
subsequence, still denoted by uk , and a function u ∈ SBD(Ω), such that uk → u pointwise
Ln -a.e. on Ω, Euk ⇀ Eu weakly in L1(Ω; Mn×n), and Hn−1(Ju) ≤ lim infkHn−1(Juk).
The drawback of this result is that it is difficult to obtain a priori bounds of ‖uk‖L∞(Ω;Rn)

for a minimizing sequence, even if lower order terms are present.
A similar difficulty appears also in the study of variational models of fracture mechanics

in the framework of finite elasticity (see [16, 17]), whose mathematical formulation uses the
function space SBV (Ω; Rn), for which we refer to [6, Chapter 4]. In these models Eu is
replaced by ∇u ∈ L1(Ω; Mn×n), defined for every u ∈ SBV (Ω; Rn) as the density of the
absolutely continuous part of the measure Du with respect to Ln , and the main energy
term has the form

FW (u) :=
∫

Ω

W (∇u) dx+Hn−1(Ju) , (1.3)

where W is polyconvex and satisfies W (A) ≥ |A|2 for every A ∈ Mn×n . The basic com-
pactness theorem for SBV (see [2, 4] and [6, Theorem 4.8]) requires that ‖uk‖L∞(Ω;Rn) and
FW (uk) are bounded, and an L∞ bound for the minimizing sequences is problematic also
in this setting.

In the antiplane case (see [19]) u is a scalar function on Ω and the L∞ bound is obtained
by truncation, assuming that the prescribed boundary values are bounded in L∞ . In the
vector case, the solution adopted in [16, 17] is to formulate the problems in the larger space
GSBV (Ω; Rn), defined as the set of all Ln -measurable functions u : Ω → Rn such that
ψ(u) ∈ BVloc(Ω; Rn) for every ψ ∈ C1(Rn; Rn) such that ∇ψ has compact support. For
every u ∈ GSBV (Ω; Rn) one can define a unique Ln -measurable function ∇u : Ω→Mn×n

such that ∇
(
ψ(u)

)
= ∇ψ(u)∇u Ln -a.e. in Ω for every ψ considered above, so that the

functional FW can be defined on GSBV (Ω; Rn).
In this new setting one can rely on the compactness result for GSBV proved in [3] (see

also [6, Theorem 4.36]): if uk is a sequence in GSBV (Ω; Rn) such that ‖uk‖L1(Ω;Rn) and
FW (uk) are bounded uniformly with respect to k , then there exist a subsequence, still
denoted by uk , and a function u ∈ GSBV (Ω; Rn), such that uk → u pointwise Ln -a.e.
on Ω, ∇uk ⇀ ∇u weakly in L1(Ω; Mn×n), and Hn−1(Ju) ≤ lim infkHn−1(Juk). An L1

bound for a minimizing sequence can be easily obtained from the lower order terms that are
usually present in the minimum problems for (1.3).

One may think that the same strategy can be used to formulate and solve the minimum
problems for (1.2). The first difficulty in this approach comes from the fact that, if u ∈
SBD(Ω), then, in general, the composite function ψ(u) does not belong to SBD(Ω) (it
does not even belong to BD(Ω)), unless ψ(y) = y0 + λy for some y0 ∈ Rn and λ ∈ R .
Therefore a definition of GSBD(Ω) that mimics the definition of GSBV (Ω; Rn) is doomed
to failure, since it would not lead to a space containing SBD(Ω).

In this paper we propose a different definition of the space GSBD(Ω) of generalized
special functions of bounded deformation and of the larger space GBD(Ω) of generalized
functions of bounded deformation. The definition is given by slicing. For every ξ ∈ Sn−1 =
{ξ ∈ Rn : |ξ| = 1} let Πξ := {y ∈ Rn : y · ξ = 0} be the hyperplane orthogonal to ξ passing
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through the origin. For every set B ⊂ Rn and for every y ∈ Πξ we define

Bξy := {t ∈ R : y + tξ ∈ B} .

Moreover, for every function u : B → Rn we define the function ûξy : Bξy → R by

ûξy(t) := u(y + tξ) · ξ .

If u : B → Rn is Ln -measurable, for Hn−1 -a.e. y ∈ Πξ the jump set of ûξy is denoted by
Jûξy . Moreover we set

J1
ûξy

:= {t ∈ Jûξy : |(ûξy)+(t)− (ûξy)−(t)| ≥ 1} ,

where (ûξy)−(t) and (ûξy)+(t) are the approximate left and right limits of ûξy at t .
The space GBD(Ω) is defined (see Definition 4.1) as the space of all Ln -measurable

functions u : Ω → Rn such that there exists a bounded Radon measure λ on Ω with the
following property: for every ξ ∈ Sn−1 and for Hn−1 -a.e. y ∈ Πξ the function ûξy belongs
to BVloc(Ωξy) and∫

Πξ

(
|Dûξy|(Bξy \ J1

ûξy
) +H0(Bξy ∩ J1

ûξy
)
)
dHn−1(y) ≤ λ(B) (1.4)

for every Borel set B ⊂ Ω. If we replace BVloc(Ωξy) by SBVloc(Ωξy), we obtain the definition
of the space GSBD(Ω) (see Definition 4.2).

The inclusion BD(Ω) ⊂ GBD(Ω) follows from the structure theorem for BD functions
(see [5, Theorem 4.5]), while the inclusion SBD(Ω) ⊂ GSBD(Ω) follows from [5, Proposi-
tion 4.7]. Example 12.3 shows that these inclusions are strict.

We prove (see Theorem 6.2) that for every u ∈ GBD(Ω) the approximate jump set Ju
(see Definition 2.4) is countably (Hn−1, n−1)-rectifiable according to [21, Section 3.2.14] and
can be reconstructed from the jump sets of the one-dimensional slices ûξy (see Theorem 8.1).
More precisely, if [u] := u+ − u− is the jump of u on Ju (see Definition 2.4) and Jξu :=
{x ∈ Ju : [u](x) · ξ 6= 0} , then (Jξu)ξy = Jûξy for every ξ ∈ Sn−1 and for Hn−1 -a.e. y ∈ Πξ .

To prove these results we first study the traces of a function u ∈ GBD(Ω) on a C1

submanifold M of Ω of dimension n−1. In this analysis we use the fact that the directional
derivative Dξ

(
τ(u · ξ)

)
is a bounded Radon measure for every u ∈ GBD(Ω), for every

ξ ∈ Sn−1 , and for every τ ∈ C1(R) with − 1
2 < τ < 1

2 and 0 < τ ′ < 1 (see Theorem 3.5).
Then we can apply the result proved in [31, Lemma 1.1] on the traces on M of functions
v ∈ L1(Ω) such that a single directional derivative Dξv is a bounded Radon measure on Ω,
provided that ξ is transversal to M . Inverting τ we obtain that the trace of u · ξ is well
defined for a set of vectors ξ forming a basis of Rn , and this allows us to define the trace
of u (see Theorem 5.2).

In the proof of the rectifiability of Ju the measure |Eu| used in [5] is replaced by the
measure µ̂u defined for every Borel set B ⊂ Ω by

µ̂u(B) := sup
k

sup
k∑
i=1

µ̂ξiu (Bi) ,

where µ̂ξu(B) is defined as the left-hand side of (1.4) and the second supremum is over all
families ξ1, . . . , ξk of elements of Sn−1 and over all families B1, . . . , Bk of pairwise disjoint
Borel subsets of B . We first prove (see Theorem 6.1) that the set

Θu :=
{
x ∈ Ω : lim sup

ρ→0+

µ̂u(Bρ(x))
ρn−1

> 0
}

is countably (Hn−1, n − 1)-rectifiable, following an argument developed in [23]. Then we
prove (see Theorem 6.2) that Ju ⊂ Θu and Hn−1(Θu \ Ju) = 0, using the results on the
traces of GBD functions on C1 manifolds.
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A crucial step in the proof of the slicing result for Ju is a difficult technical result (see
Theorem 7.1) concerning the jump points of the restriction to hyperplanes of a GBD func-
tion. The proof of this result follows the lines of the analogous result for BD functions
proved in [5, Theorem 5.1], with |Eu| replaced again by µ̂u .

Another result of this paper is the existence, for every u ∈ GBD(Ω), of a symmetric
approximate gradient . This is a function Eu ∈ L1(Ω; Mn×n

sym ), where Mn×n
sym is the space of

symmetric n×n matrices, such that the following variant of (1.1) holds (see Theorem 9.1
and Remark 2.2):

lim
ρ→0+

1
ρn

∫
Bρ(x)

ψ
(∣∣(u(y)− u(x)− Eu(x)(y − x)

)
· (y − x)

∣∣
|y − x|2

)
dy = 0

for Ln -a.e x ∈ Ω and for every bounded increasing continuous function ψ : R→ R . More-
over we prove that Eu can be reconstructed from the approximate gradients ∇ûξy of the
one-dimensional slices ûξy (see Theorem 9.1): for every ξ ∈ Sn−1 and for Hn−1 -a.e. y ∈ Πξ

we have (Eu)ξy ξ · ξ = ∇ûξy L1 -a.e. on Ωξy .
In the last section we prove the following analogue of the compact embedding of BD(Ω)

into L1(Ω; Rn) (see Theorem 11.1): every sequence uk in GBD(Ω) satisfying uniform
bounds for ‖uk‖L1(Ω;Rn) and for the measures µ̂ξuk has a subsequence that converges point-
wise Ln -a.e. on Ω. A slightly stronger bound implies that the limit function belongs to
GBD(Ω) (see Corollary 11.2).

For the proof we have to modify the well-known Fréchet-Kolmogorov compactness crite-
rion in L1 and to find a new version, based on the behaviour of the one-dimensional slices
(see Lemma 10.7). The proof follows the lines of [1, Theorem 6.6]. The main difference is
that our assumptions concern only the components u · ξ of u and the corresponding slices
in the same direction ξ .

Arguing as in the proof of [9, Theorem 1.1], we deduce from these results on GBD(Ω)
the following compactness property for GSBD(Ω) (see Theorem 11.3): if uk is a sequence
in GSBD(Ω) such that ‖uk‖L1(Ω;Rn) , ‖Euk‖L2(Ω;Mn×n

sym ) , and Hn−1(Juk) are bounded uni-
formly with respect to k , then there exist a subsequence, still denoted by uk , and a func-
tion u ∈ GSBD(Ω), such that uk → u pointwise Ln -a.e. on Ω, Euk ⇀ Eu weakly in
L1(Ω; Mn×n

sym ), and Hn−1(Ju) ≤ lim infkHn−1(Juk).
Finally, Example 12.3 shows that there exists a sequence in SBD(Ω), satisfying the

hypotheses of the compactness theorem for GSBD(Ω), such that the limit function, which
necessarily belongs to GSBD(Ω), does not belong to BD(Ω).

2. Notation and preliminary results

For every x ∈ Rn the open ball of centre x and radius ρ is denoted by Bρ(x). For
every x, y ∈ Rn , we use the notation x · y for the scalar product and |x| for the norm. The
n -dimensional Lebesgue measure on Rn is denoted by Ln , while Hk is the k -dimensional
Hausdorff measure. We use the standard notation Sn−1 := {ξ ∈ Rn : |ξ| = 1} and ωn :=
Ln(B1(0)), so that Hn−1(Sn−1) = nωn .

If µ is a Borel measure on a Borel set E ⊂ Rn , its total variation is denoted by |µ| . If
A ⊂ E is a Borel set, the Borel measure µ A is defined by (µ A)(B) := µ(A ∩ B) for
every Borel set B ⊂ E . If U ⊂ Rn is an open set, M(U) is the space of all Radon measures
on U , Mb(U) := {µ ∈ M(U) : |µ|(U) < +∞} is the space of all bounded Radon measures
on U , and M+

b (U) := {µ ∈ Mb(U) : µ(B) ≥ 0 for every Borel set B ⊂ U} is the space of
all nonnegative bounded Radon measures on U .

Definition 2.1. Let A be a subset of Rn , let v : A→ Rm be an Ln -measurable function,
let x ∈ Rn be such that

lim sup
ρ→0+

Ln
(
A ∩Bρ(x)

)
ρn

> 0 ,
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and let a ∈ Rm . We say that a is the approximate limit of v as y tends to x , and write

ap lim
y→x

v(y) = a (2.1)

if

lim
ρ→0+

Ln({y ∈ A ∩Bρ(x) : |v(y)− a| > ε})
ρn

= 0

for every ε > 0.

Remark 2.2. Let A , v , x , and a be as in Definition 2.1 and let ψ be a homeomorphism
between Rm and a bounded open subset of Rm . It is easy to prove that (2.1) holds if and
only if

lim
ρ→0+

1
ρn

∫
A∩Bρ(x)

|ψ(v(y))− ψ(a)| dy = 0 .

Definition 2.3. Let U be an open subset of Rn . For every Ln -measurable function v : U →
Rm we define the approximate continuity set as the set of points x ∈ U for which there
exists a ∈ Rm such that

ap lim
y→x

v(y) = a .

The vector a is uniquely determined and is denoted by ṽ(x). The approximate discontinuity
set Sv is defined as the complement in U of the approximate continuity set.

Definition 2.4. Let U be an open subset of Rn . For every Ln -measurable function v : U →
Rm we define the approximate jump set Jv as the set of points x ∈ U for which there exist
a , b ∈ Rm , with a 6= b , and ν ∈ Sn−1 such that

ap lim
(y−x) · ν>0

y→x

v(y) = a and ap lim
(y−x) · ν<0

y→x

v(y) = b . (2.2)

The triplet (a, b, ν) is uniquely determined up to a permutation of (a, b) and a change of sign
of ν , and is denoted by (v+(x), v−(x), νv(x)). The jump of v is the function [v] : Jv → Rm
defined by [v](x) := v+(x)− v−(x) for every x ∈ Jv . Finally, we define

J1
v := {x ∈ Jv : |[v](x)| ≥ 1} . (2.3)

Remark 2.5. It follows easily from the definitions that Jv ⊂ Sv for every Ln -measurable
function v : U → Rm . Moreover, Ln(Sv) = 0 and v = ṽ Ln -a.e. in U by Remark 2.2 and
by Lebesgue’s differentiation theorem.

Thanks to Remark 2.2 the next proposition follows from [6, Proposition 3.69].

Proposition 2.6. Let U be an open subset of Rn and let v : U → Rm be an Ln -measurable
function. Then Sv , Jv , and J1

v are Borel sets and ṽ : U \ Su → Rm is a Borel function.
Moreover, for every x ∈ Jv we can choose the sign of νv(x) so that v+ : Jv → Rm , v− : Jv →
Rm , and νv : Jv → Sn−1 are Borel functions.

If U ⊂ Rn is an open set and v ∈ L1
loc(U), the gradient Dv of v in the sense of

distributions is the Rn -valued distribution defined by Dv = (D1v, . . . , Dnv). For every
ξ ∈ Rn the directional derivative Dξv is the distribution Dξv := Dv · ξ =

∑
i ξiDiv .

The space BV (U) of functions of bounded variation is defined as the space of functions
v ∈ L1(U) such that Div ∈ Mb(U) for i = 1, . . . , n , while BVloc(U) is the space of
functions v ∈ L1

loc(U) such that Div ∈ M(U) for i = 1, . . . , n . For the properties of BV
functions we refer to [18] and [6].
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3. Slicing of directional derivatives

For every ξ ∈ Rn \ {0} , for every y ∈ Rn , and for every set B ⊂ Rn and we define

Bξy := {t ∈ R : y + tξ ∈ B} .

Moreover, for every function v : B → Rm we define the function vξy : Bξy → Rm by

vξy(t) := v(y + tξ) .

When m = n , we consider also the function v̂ξy : Bξy → R defined by

v̂ξy(t) := v(y + tξ) · ξ = vξy(t) · ξ .

The hyperplane orthogonal to ξ passing through the origin is denoted by Πξ := {y ∈ Rn :
y · ξ = 0} and the orthogonal projection from Rn onto Πξ is denoted by πξ : Rn → Πξ .

Throughout the paper Ω is a fixed bounded open subset of Rn . The following proposition
is proved in [6, Theorem 3.103] (see also [26]).

Proposition 3.1. Let v ∈ L1(Ω) and let ξ ∈ Rn \ {0} . The following conditions are
equivalent:

(a) Dξv ∈Mb(Ω) ;
(b) For Hn−1 -a.e. y ∈ Πξ the function vξy belongs to BV (Ωξy) and∫

Πξ
|Dvξy|(Ωξy) dHn−1(y) < +∞ . (3.1)

If these conditions are satisfied, then for every Borel function g : Ω→ R+ the function

y 7→
∫

Ωξy

gξy d|Dvξy| (3.2)

is Hn−1 -measurable on Πξ and∫
Ω

g d|Dξv| =
∫

Πξ

(∫
Ωξy

gξy d|Dvξy|
)
dHn−1(y) . (3.3)

Given an open set U ⊂ R , let E ⊂ U be L1 -measurable with L1(U \ E) = 0, and let
v : E → Rm be an integrable function. As v is defined L1 -a.e. in U , it can be considered as
a distribution on U , whose derivative is denoted by Dv . The pointwise variation (V v)(I)
of v on an open interval I ⊂ U is defined by

(V v)(I) := sup
{ k∑
i=1

|v(ti)− v(ti−1)| : t0 < t1 < · · · < tk, ti ∈ E ∩ I
}
. (3.4)

We observe that V v , unlike Dv , is sensitive to changes of v (or of the domain of v ) on sets
of Lebesgue measure zero. If (V v)(I) is finite, then Dv can be represented by a bounded
measure on I with |Dv|(I) ≤ (V v)(I). Moreover, if (V v)(I) < +∞ for every open interval
I ⊂ U , then V v can be extended to a non-negative Radon measure, still denoted by V v ,
defined on all Borel subsets of U . Indeed, if A ⊂ U is open, we define (V v)(A) as the sum
of (V v)(I) over all connected components I of A . Then A 7→ (V v)(A), defined now for all
open subsets of U , is increasing, inner regular, subadditive and additive on disjoint open
sets. Therefore the set function defined for every Borel set B ⊂ U by

(V v)(B) := inf{(V v)(A) : A open, B ⊂ A ⊂ U}

is a Radon measure on U , which coincides with (3.4) on all open intervals I ⊂ U (see, e.g.,
[15, Theorem 14.23]).

Let v : Ω → R be Ln -measurable. By Definition 2.3 for every ξ ∈ Rn \ {0} and every
y ∈ Πξ the function ṽξy is defined on Ωξy \ (Su)ξy .
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Proposition 3.2. Let v ∈ L1(Ω) and let ξ ∈ Rn \ {0} . Assume that Dξv ∈Mb(Ω) . Then
the following conditions are satisfied for Hn−1 -a.e y ∈ Πξ :

(a) ṽξy is defined and coincides with vξy L1 -a.e. on Ωξy ;

(b) vξy ∈ BV (Ωξy) and |Dvξy|(B) = (V ṽξy)(B) for every Borel set B ⊂ Ωξy .

Proof. It is enough to repeat the proof of [5, Proposition 3.2]. �

We now investigate the behaviour of truncations of scalar functions, and the combined
effect of truncation and slicing. The following definition introduces the relevant truncation
functions.

Definition 3.3. Let T be the set of all functions τ ∈ C1(R) with − 1
2 ≤ τ ≤ 1

2 and
0 ≤ τ ′ ≤ 1.

The following proposition deals with the one-dimensional case. It provides a bound on
the distributional derivative of a function starting from a uniform bound of its truncations.

Proposition 3.4. Let U be a bounded open subset of R , let v : U → R be L1 -measurable,
and let λ ∈M+

b (U) . Suppose that for every τ ∈ T we have τ(v) ∈ BV (U) and∣∣D(τ(v)
)∣∣(B) ≤ λ(B) (3.5)

for every Borel set B ⊂ U . Then v ∈ BVloc(U) and

|Dv|(B \ J1
v ) +H0(B ∩ J1

v ) ≤ λ(B) (3.6)

for every Borel set B ⊂ U . If U has a finite number of connected components, then
v ∈ BV (U) .

Proof. It is enough to prove the result when U is a bounded open interval. In this case we
have to prove that v ∈ BV (U) and that (3.6) holds. Let us fix τ0 ∈ T with τ ′0(t) > 0 and
τ0(−t) = −τ0(t) for every t ∈ R . Then the function v0 := τ0(v) belongs to BV (U). Since
τ−1
0 is continuous, we have Jv = Jv0 .

For every a > 0 let σa be the truncation function defined by σa(t) = −a for t ≤ −a ,
σa(t) = t for −a ≤ t ≤ a , and σa(t) = a for t ≥ a . Let us fix an integer m > 0 and let
vm := σm(v). We claim that vm ∈ BV (U) and

|Dvm|(B \ J1
vm) +H0(B ∩ J1

vm) ≤ λ(B) (3.7)

for every Borel set B ⊂ U . Indeed, since v0 ∈ BV (U), vm = σm(τ−1
0 (v0)), and σm(τ−1

0 ) =
τ−1
0 (ττ0(m)) is Lipschitz continuous on R , we deduce that vm ∈ BV (U). By (3.5) and by

Vol’pert’s chain rule in BV (see [33] and [6, Theorem 3.96]) for every τ ∈ T and for every
Borel set B ⊂ U we have∫

B\Jvm
τ ′(ṽm) d|Dvm| =

∣∣D(τ(vm)
)∣∣(B \ Jvm) ≤

∣∣D(τ(v)
)∣∣(B \ Jvm) ≤ λ(B \ Jvm) , (3.8)

where ṽm is the precise representative introduced in Definition 2.3. Note that ṽm(t) is
defined for every t ∈ U \ Jvm by well known properties of BV functions in dimension one.

For every integer k there exists a function τk ∈ T such that τk(t) = t− k
2 for k

2 −
1
4 ≤

t ≤ k
2 + 1

4 . Thus (3.8) gives
|Dvm|(Bk) ≤ λ(Bk) ,

where Bk := {t ∈ B \ Jvm : k2 −
1
4 < ṽm(t) ≤ k

2 + 1
4} . Summing over k we obtain

|Dvm|(B \ Jvm) ≤ λ(B \ Jvm) . (3.9)

Let us fix t ∈ Jvm ⊂ Jv . By (3.5) for every τ ∈ T we have

|τ(v+(t))− τ(v−(t))| ≤ λ({t}) .
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If t ∈ Jvm \J1
vm , there exists τ ∈ T such that |[vm](t)| = |τ(v+

m(t))−τ(v−m(t))| ≤ |τ(v+(t))−
τ(v−(t))| . This implies |[vm](t)| ≤ λ({t}), hence

|Dvm|({t}) ≤ λ({t}) (3.10)

for every t ∈ Jvm \ J1
vm . If t ∈ J1

vm , for every ε > 0 there exists τ ∈ T such that
1− ε ≤ |τ(v+

m(t))− τ(v−m(t))| ≤ |τ(v+(t))− τ(v−(t))| , which gives

1 ≤ λ({t}) (3.11)

for every t ∈ J1
vm . Inequality (3.7) follows now from (3.9), (3.10), and (3.11).

Let J
1/2
vm := {t ∈ Jvm : |[vm](t)| ≥ 1

2} . By (3.10) and (3.11) we have H0(J1/2
vm ) ≤

2λ(J1/2
vm ) ≤ 2λ(U) < +∞ . Since J1

v is contained in the union of the increasing sequence
J

1/2
vm , we obtain H0(J1

v ) ≤ 2λ(U) < +∞ . Using (3.7) we obtain

|Dvm|(U) ≤ λ(U) +
∫
J1
vm

|[vm]| dH0 ≤ λ(U) +
∫
J1
v

|[v]| dH0 < +∞ . (3.12)

Let us fix t0 ∈ U \ Jv ⊂ U \ Jvm . Since U is an interval, we have

|ṽm(t)| ≤ |ṽm(t)− ṽm(t0)|+ |ṽm(t0)| ≤ |Dvm|(U) + |ṽ(t0)|

for every m and for every t ∈ U \ Jv ⊂ U \ Jvm . By (3.12) this inequality implies

‖vm‖L∞(U) ≤ λ(U) +
∫
J1
v

|[v]| dH0 + |ṽ(t0)| < +∞ .

Since the right-hand side does not depend on m , there exists m0 such that ‖vm0‖L∞(U) <
m0 . This implies that v = vm0 , hence v ∈ BV (U) and (3.6) follows from (3.7). �

The following theorem is the main result of this section. It connects a uniform estimate
on the directional derivatives of the truncations with an estimate on the one-dimensional
slices. The equivalence proved in the theorem will be used in the definition of the space
GBD(Ω).

Theorem 3.5. Let v : Ω → R be Ln -measurable, let ξ ∈ Rn \ {0} , and let λ ∈ M+
b (Ω) .

The following conditions are equivalent:

(a) for every τ ∈ T the partial derivative Dξ

(
τ(v)

)
belongs to Mb(Ω) and its total

variation satisfies ∣∣Dξ

(
τ(v)

)∣∣(B) ≤ λ(B) (3.13)

for every Borel set B ⊂ Ω ;

(b) for Hn−1 -a.e. y ∈ Πξ the function vξy belongs to BVloc(Ωξy) and∫
Πξ

(
|Dvξy|(Bξy \ J1

vξy
) +H0(Bξy ∩ J1

vξy
)
)
dHn−1(y) ≤ λ(B) (3.14)

for every Borel set B ⊂ Ω .

The following lemma justifies the integral in (3.14).

Lemma 3.6. Let v : Ω → R be Ln -measurable and let ξ ∈ Rn \ {0} . Assume that for
Hn−1 -a.e. y ∈ Πξ the function vξy belongs to BVloc(Ωξy) . Then for every Borel set B ⊂ Ω
the function

y 7→ |Dvξy|(Bξy \ J1
vξy

) +H0(Bξy ∩ J1
vξy

) (3.15)

is Hn−1 -measurable on Πξ .
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Proof. By modifying v on a set of Lebesgue measure zero, we may assume that v is a Borel
function on Ω and that vξy ∈ BVloc(Ωξy) for every y ∈ Πξ . For every x ∈ Ω we define

vξ+(x) := lim sup
ρ→0+

1
ρ

∫ ρ

0

v(x+ sξ) ds and vξ−(x) := lim sup
ρ→0+

1
ρ

∫ 0

−ρ
v(x+ sξ) ds. (3.16)

By Fubini’s theorem vξ+ and vξ− are Borel functions on Ω. Therefore F := {x ∈ Ω :
|vξ+(x) − vξ−(x)| ≥ 1} is a Borel set. For every y ∈ Πξ we have (vξ+)ξy = (vξ−)ξy = vξy L1 -
a.e. in Ωξy thanks to Lebesgue’s differentiation theorem. By elementary properties of BV
functions in dimension one, this implies J1

vξy
= F ξy for every y ∈ Πξ . Therefore

|Dvξy|(Bξy \ J1
vξy

) +H0(Bξy ∩ J1
vξy

) = |Dvξy|(Bξy \ F ξy ) +H0(Bξy ∩ F ξy )

for every Borel set B ⊂ Ω and for every y ∈ Πξ . The measurability of (3.15) follows now
from (3.2) and from the measurable projection theorem (see, e.g., [14, Proposition 8.4.4]).

�

Definition 3.7. If Condition (b) of Theorem 3.5 is satisfied, for Hn−1 -a.e. y ∈ Πξ we can
define a measure µξy ∈M+

b (Ωξy) by setting

µξy(B) := |Dvξy|(B \ J1
vξy

) +H0(B ∩ J1
vξy

) (3.17)

for every Borel set B ⊂ Ωξy . Moreover, by Lemma 3.6 and by (3.14) we can define a measure
µξ ∈M+

b (Ω) by setting

µξ(B) :=
∫

Πξ
µξy(Bξy) dHn−1(y) (3.18)

for every Borel set B ⊂ Ω.

It follows from Condition (b) of Theorem 3.5 that

µξ(B) ≤ λ(B) (3.19)

for every Borel set B ⊂ Ω.

Proof of Theorem 3.5. Assume (a). Let T̂ be a countable subset of T such that for every
τ ∈ T there exists a sequence τk in T̂ converging to τ pointwise on R . Let us fix τ ∈ T̂
and let w := τ(v) and ω := πξ(λ), where πξ is the orthogonal projection onto Πξ . Let N
be a Borel subset of Πξ , with Hn−1(N) = 0, such that the singular part of ω with respect
to Hn−1 Πξ is concentrated on N , and let g : Πξ → R+ be the density of the absolutely
continuous part of ω with respect to Hn−1 Πξ . By the disintegration theorem (see, e.g.,
[6, Theorem 2.28]) there exists a Borel measurable family (λξy)y∈Πξ of Radon measures, with
λξy ∈M+

b (Ωξy), such that

λ(B) =
∫

Πξ
λξy(Bξy) dω(y) (3.20)

for every Borel set B ⊂ Ω.
By (a) and by Proposition 3.1 the function wξy belongs to BV (Ωξy) for Hn−1 -a.e. y ∈ Πξ .

Given a Borel set A ⊂ Πξ and an interval I ⊂ R , by (3.3), (3.13), and (3.20), applied to
the set {y + tξ : y ∈ A, t ∈ I ∩ Ωξy} , we have∫
A

|Dwξy|(I∩Ωξy) dHn−1(y) =
∫
A\N
|Dwξy|(I∩Ωξy) dHn−1(y) ≤

∫
A

λξy(I∩Ωξy) g(y) dHn−1(y) .

It follows that for Hn−1 -a.e. y ∈ Πξ
y we have

|Dwξy|(B) ≤ g(y)λξy(B) (3.21)

for every Borel set B ⊂ Ωξy .
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Since wξy = τ(vξy), from (3.21) we deduce that∣∣D(τ(vξy)
)∣∣(B) ≤ g(y)λξy(B) (3.22)

for every Borel set B ⊂ Ωξy , hence∫
Ωξy

τ(vξy)Dϕdt ≤ g(y)λξy(suppϕ) (3.23)

for every ϕ ∈ C1
c (Ωξy) with |ϕ| ≤ 1 on Ωξy . Since T̂ is countable, for Hn−1 -a.e. y ∈ Πξ

y

inequality (3.23) holds for all τ ∈ T̂ . From the density property of T̂ we conclude that for
Hn−1 -a.e. y ∈ Πξ

y inequality (3.23), and hence (3.22), holds for every τ ∈ T . Therefore
Proposition 3.4 implies that vξy ∈ BVloc(Ωξy) and

|Dvξy|(B \ J1
vξy

) +H0(B ∩ J1
vξy

) ≤ g(y)λξy(B) (3.24)

for Hn−1 -a.e. y ∈ Πξ and for every Borel set B ⊂ Ωξy .
Integrating (3.24) over Πξ we obtain∫

Πξ

(
|Dvξy|(Bξy \ J1

vξy
) +H0(Bξy ∩ J1

vξy
)
)
dHn−1(y) ≤

≤
∫

Πξ
g(y)λξy(Bξy) dHn−1(y) ≤ λ(B) ,

where we have used (3.20) in the last line. This concludes the proof of (3.14) and of the
implication (a) ⇒ (b).

Assume now (b) and let µξy and µξ be the measures introduced in Definition 3.7. We
fix τ ∈ T and we set w := τ(v). Then for Hn−1 -a.e. y ∈ Πξ the function wξy belongs to
BV (Ωξy). Since 0 ≤ τ ′ ≤ 1 we have |Dwξy|(B) ≤ |Dvξy|(B) for every Borel set B ⊂ Ωξy . Since
|τ
(
(vξy)+

)
− τ
(
(vξy)−

)
| ≤ 1 we have also |Dwξy|(B) ≤ H0(B) for every Borel set B ⊂ Jvξy .

Using (3.17) we obtain that

|Dwξy|(B \ J1
vξy

) ≤ |Dvξy|(B \ J1
vξy

) = µξy(B \ J1
vξy

) ,

|Dwξy|(B ∩ J1
vξy

) ≤ H0(B ∩ J1
vξy

) = µξy(B ∩ J1
vξy

)

for every Borel set B ⊂ Ωξy . It follows that |Dwξy|(B) ≤ µξy(B) < +∞ for Hn−1 -a.e. y ∈ Πξ

and for every Borel set B ⊂ Ωξy . By Proposition 3.1 and by (3.18) and (3.19) we have
Dξw ∈ Mb(Ω) and |Dξw|(B) ≤ µξ(B) ≤ λ(B) for every Borel set B ⊂ Ω. This proves
(3.13) and concludes the proof of the implication (b) ⇒ (a). �

The following theorem shows that the measure µξ , which was defined by slicing, can also
be obtained from the measures Dξ

(
τ(v)

)
with τ ∈ T .

Theorem 3.8. Let v : Ω → R be Ln -measurable and let ξ ∈ Rn \ {0} . Assume that
Conditions (a) and (b) of Theorem 3.5 are satisfied, and let µξ be the measure introduced
in Definition 3.7. Then for every open set U ⊂ Ω we have

µξ(U) := sup
k

sup
k∑
i=1

|Dξ

(
τi(v)

)
|(Ui) , (3.25)

where the second supremum is over all families τ1, . . . , τk of elements of T and all families
U1, . . . , Uk of pairwise disjoint open subsets of U . In other words, µξ coincides with the
smallest measure λ such that (3.13) holds for every τ ∈ T and for every Borel set B ⊂ Ω .

Proof. In the proof of the implication (b) ⇒ (a) in Theorem 3.5 we have already shown
that |Dξ

(
τ(v)

)
|(B) ≤ µξ(B) for every Borel set B ⊂ Ω. This implies that the right-hand

side of (3.25) is less than or equal to µξ(U).
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To prove the opposite inequality we fix an open set U ⊂ Ω. By modifying v on a
set of Lebesgue measure zero, we may assume that v is a Borel function on Ω and that
vξy ∈ BVloc(Ωξy) for every y ∈ Πξ . Let vξ+ and vξ− be the Borel functions defined by (3.16)
and let E := {x ∈ Ω : vξ+(x) 6= vξ−(x)} and F := {x ∈ E : |vξ+(x)− vξ−(x)| ≥ 1} . For every
y ∈ Πξ we have (vξ+)ξy = (vξ−)ξy = vξy L1 -a.e. in Ωξy by Lebesgue’s differentiation theorem.
By elementary properties of BV functions in dimension one, for every y ∈ Πξ this implies

lim
ρ→0+

1
2ρ

∫ t+ρ

t−ρ
|vξy(s)− (vξ+)ξy(t)| ds = 0 , (3.26)

(vξy)+(t) = (vξ+)ξy(t) and (vξy)−(t) = (vξ−)ξy(t) (3.27)

for every t ∈ Ωξy \ Eξy . This implies that Jvξy = Eξy and J1
vξy

= F ξy for every y ∈ Πξ .
For every 0 < ε < 1 we can find three sequences of pairwise disjoint Borel sets Ai , Bi ,

Ci and six sequences of real numbers a1
i , a2

i , b1i , b2i , c1i , c2i such that

U \ E =
⋃
iAi , U ∩ E \ F =

⋃
iBi , U ∩ F =

⋃
i Ci (3.28)

a1
i < vξ+(x) < a2

i for every x ∈ Ai , (3.29)

b1i < min{vξ+(x), vξ−(x)} < max{vξ+(x), vξ−(x)} < b2i for every x ∈ Bi , (3.30)

min{vξ+(x), vξ−(x)} < c1i < c2i < max{vξ+(x), vξ−(x)} for every x ∈ Ci , (3.31)

a1
i < a2

i < a1
i + 1 , b1i < b2i < b1i + 1 , c1i + 1 < c2i + ε . (3.32)

By (3.28) we have

µξ(U) =
∞∑
i=1

µξ(Ai) +
∞∑
i=1

µξ(Bi) +
∞∑
i=1

µξ(Ci) .

Let us fix a constant α < µξ(U). Then there exists an integer k > 0 such that

α <

k∑
i=1

µξ(Ai) +
k∑
i=1

µξ(Bi) +
k∑
i=1

µξ(Ci) .

By standard approximation properties there exist pairwise disjoint compact sets Â1, . . . , Âk,
B̂1, . . . , B̂k, Ĉ1, . . . , Ĉk , with Âi ⊂ Ai , B̂i ⊂ Bi , and Ĉi ⊂ Ci , such that

α <

k∑
i=1

µξ(Âi) +
k∑
i=1

µξ(B̂i) +
k∑
i=1

µξ(Ĉi) . (3.33)

Let Ã1, . . . , Ãk, B̃1, . . . , B̃k, C̃1, . . . , C̃k be pairwise disjoint open subsets of U with Âi ⊂
Ãi , B̂i ⊂ B̃i , and Ĉi ⊂ C̃i .

By (3.32) for every i there exists ρi ∈ T such that ρ′i(s) = 1 for every s ∈ [a1
i , a

2
i ] . Since

Âi ⊂ Ai and (Ai)ξy ∩ Jvξy = Ø, from (3.17) and (3.29) we obtain, using Vol’pert’s chain rule
in BV (see [6, Theorem 3.96]) and (3.26),

µξy
(
(Âi)ξy

)
= |Dvξy|

(
(Âi)ξy

)
=
∫

(Âi)
ξ
y

ρ′i
(
(vξ+)ξy

)
d|Dvξy| =

∣∣D(ρi(vξy)
)∣∣((Âi)ξy)

for every i and for every y ∈ Πξ . Integrating over Πξ and using Proposition 3.1 and (3.18)
we obtain

µξ(Âi) =
∣∣Dξ

(
ρi(v)

)∣∣(Âi) ≤ ∣∣Dξ

(
ρi(v)

)∣∣(Ãi) . (3.34)

By (3.32) for every i there exists σi ∈ T such that |σi(s2)− σi(s1)| = |s2 − s1| for every
s1 , s2 ∈ [b1i , b

2
i ] . Since B̂i ⊂ Bi and (Bi)ξy ⊂ Jvξy \ J

1
vξy

, from (3.17) and (3.30) we obtain,
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using Vol’pert’s chain rule in BV (see [6, Theorem 3.96]) and (3.27),

µξy
(
(B̂i)ξy

)
=
∫

(B̂i)
ξ
y

∣∣(vξy)+ − (vξy)−
∣∣ dH0 =

=
∫

(B̂i)
ξ
y

∣∣σi((vξy)+
)
− σi

(
(vξy)−

)∣∣ dH0 =
∣∣D(σi(vξy)

)∣∣((B̂i)ξy)
for every i and for every y ∈ Πξ . Integrating over Πξ and using Proposition 3.1 and (3.18)
we obtain

µξ(B̂i) =
∣∣Dξ

(
σi(v)

)∣∣(B̂i) ≤ ∣∣Dξ

(
σi(v)

)∣∣(B̃i) . (3.35)
By (3.32) for every i there exists τi ∈ T such that τi(s2) − τi(s1) ≥ 1 − ε for every

s1 < c1i < c2i < s2 . Since Ĉi ⊂ Ci and (Ci)ξy ⊂ J1
vξy

, from (3.17) and (3.31) we obtain, using

Vol’pert’s chain rule in BV (see [6, Theorem 3.96]) and (3.27),

(1− ε)µξy
(
(Ĉi)ξy

)
= (1− ε)H0

(
(Ĉi)ξy

)
≤

≤
∫

(Ĉi)
ξ
y

∣∣τi((vξy)+
)
− τi

(
(vξy)−

)∣∣ dH0 =
∣∣D(τi(vξy)

)∣∣((Ĉi)ξy)
for every i and for every y ∈ Πξ . Integrating over Πξ and using Proposition 3.1 and (3.18)
we obtain

(1− ε)µξ(Ĉi) =
∣∣Dξ

(
τi(v)

)∣∣(Ĉi) ≤ ∣∣Dξ

(
τi(v)

)∣∣(C̃i) . (3.36)
By (3.33) and (3.34)-(3.36) we obtain

(1− ε)α <
k∑
i=1

∣∣Dξ

(
ρi(v)

)∣∣(Ãi) +
k∑
i=1

∣∣Dξ

(
σi(v)

)∣∣(B̃i) +
k∑
i=1

∣∣Dξ

(
τi(v)

)∣∣(C̃i) .
This concludes the proof of (3.28), since α < µξ(U) and 0 < ε < 1 are arbitrary. �

4. Definition and first properties

In this section we define the space GBD(Ω) of generalised functions of bounded defor-
mation and the space GSBD(Ω) of generalised special functions of bounded deformation.

Definition 4.1. The space GBD(Ω) of generalised functions of bounded deformation is the
space of all Ln -measurable functions u : Ω → Rn with the following property: there exists
λ ∈ M+

b (Ω) such that the following equivalent (see Theorem 3.5) conditions hold for every
ξ ∈ Sn−1 :

(a) for every τ ∈ T the partial derivative Dξ

(
τ(u · ξ)

)
belongs to Mb(Ω) and its total

variation satisfies ∣∣Dξ

(
τ(u · ξ)

)∣∣(B) ≤ λ(B) (4.1)
for every Borel set B ⊂ Ω;

(b) for Hn−1 -a.e. y ∈ Πξ the function ûξy := uξy · ξ belongs to BVloc(Ωξy) and∫
Πξ

(
|Dûξy|(Bξy \ J1

ûξy
) +H0(Bξy ∩ J1

ûξy
)
)
dHn−1(y) ≤ λ(B) (4.2)

for every Borel set B ⊂ Ω.

Definition 4.2. The space GSBD(Ω) of generalised special functions of bounded deforma-
tion is the set of all functions u ∈ GBD(Ω) such that for every ξ ∈ Sn−1 and for Hn−1 -a.e.
y ∈ Πξ the function ûξy := uξy · ξ belongs to SBVloc(Ωξy) (see [6, Section 4.1] for the definition
of this space).

Remark 4.3. Arguing as in the proof of Proposition 3.4 we can prove that Condition (b)
of Definition 4.1 is equivalent to
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(b′) for Hn−1 -a.e. y ∈ Πξ the function ûξy := uξy · ξ belongs to GBV (Ωξy) and∫
Πξ

(
|D
(
σa(ûξy)

)
|(Bξy \ J1

σa(ûξy)
) +H0(Bξy ∩ J1

σa(ûξy)
)
)
dHn−1(y) ≤ λ(B)

for every Borel set B ⊂ Ω and for every a > 0,
where σa be the truncation function defined by σa(t) = −a for t ≤ −a , σa(t) = t for
−a ≤ t ≤ a , and σa(t) = a for t ≥ a . For the same reason, Definition 4.2 does not change
if ûξy ∈ SBVloc(Ωξy) is replaced by ûξy ∈ GSBV (Ωξy) (see [6, Section ??] for the definition of
this space).

Remark 4.4. When n = 1 the space GBD(Ω) reduces to {u ∈ BVloc(Ω) : |Du|(Ω) < +∞}
and GSBD(Ω) reduces to {u ∈ SBVloc(Ω) : |Du|(Ω) < +∞} . In the case n > 1, using
the slicing theory for BV functions developed in [6, Section 3.11], we can prove that if
u ∈ [GBV (Ω)]n (see [6, Definition 4.26]) and u satisfies the natural estimate considered
in [6, Theorem 4.40], then u ∈ GBD(Ω). A similar result holds for [GSBV (Ω)]n and
GSBD(Ω).

Remark 4.5. Let u ∈ BD(Ω). By the structure theorem for BD functions (see [5, Theo-
rem 4.5]) for every ξ ∈ Sn−1 and for Hn−1 -a.e. y ∈ Πξ we have ûξy ∈ BV (Ωξy) and∫

Πξ

(
|Dûξy|(Bξy \ J1

ûξy
) +H0(Bξy ∩ J1

ûξy
)
)
dHn−1(y) ≤ |Eu|(B) ,

where Eu is the matrix-valued Radon measure defined by (Eu)ij := 1
2 (Diuj + Djui).

It follows that BD(Ω) ⊂ GBD(Ω). Using [5, Proposition 4.7] we can also prove that
SBD(Ω) ⊂ GSBD(Ω). These inclusions are strict, as shown in Example 12.3.

Remark 4.6. Let σ : R → R be the truncation function defined by σ(s) := min{|s|, 1} .
Since

|Dûξy|(B ∩ Jûξy ) =
∫
B∩J

û
ξ
y

|[ûξy]| dH0

for every Borel set B ⊂ Ωξy , inequality (4.2) is equivalent to∫
Πξ

(
|Dûξy|(Bξy \ Jûξy ) +

∫
Bξy∩J

û
ξ
y

σ
(
[ûξy]

)
dH0

)
dHn−1(y) ≤ λ(B)

for every Borel set B ⊂ Ω. Using the fact that |Dûξy|({t}) = 0 for every t ∈ Ωξy \ Jûξy , we
can write the previous inequality as∫

Πξ

(
|Dûξy|(Bξy \ Jξ,y) +

∫
Bξy∩Jξ,y

σ
(
[ûξy]

)
dH0

)
dHn−1(y) ≤ λ(B) , (4.3)

where Jξ,y is an arbitrary countable set containing Jûξy and [ûξy](t) := 0 for every t ∈
Ωξy \ Jûξy .

Since σ(s + t) ≤ σ(s) + σ(t) and σ(ρs) ≤ max{|ρ|, 1}σ(s) for every s , t , ρ ∈ R , we
deduce from Condition (b) of Definition 4.1 and from (4.3) that GBD(Ω) and GSBD(Ω)
are vector subspaces of the vector space of all Ln -measurable functions from Ω to Rn .

Remark 4.7. For every B ⊂ Ω, for every ρ ∈ R , and for every ξ ∈ Rn \ {0} we have
ρBρξy = Bξy . Moreover, for every u : Ω → Rn and for every t ∈ Ωρξy we have ûρξy (t) =
ρ ûξy(ρt). It follows that, if u ∈ GBD(Ω) and ξ ∈ Rn \ {0} , then uξy ∈ BVloc(Ωξy) for
Hn−1 -a.e. y ∈ Πξ and the left-hand side of (4.2) is finite.

Definition 4.8. Let u ∈ GBD(Ω), let ξ ∈ Sn−1 , and let y ∈ Rn with ûξy ∈ BV (Ωξy),
|Dûξy|(Ωξy) < +∞ , and H0(J1

ûξy
) < +∞ . The measure µ̂ξy ∈M+

b (Ωξy) is defined by

µ̂ξy(B) := |Dûξy|(B \ J1
ûξy

) +H0(B ∩ J1
ûξy

) (4.4)
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for every Borel set B ⊂ Ωξy .

Remark 4.9. By Condition (b) of Definition 4.1 the measure µ̂ξy is defined for Hn−1 -a.e.
y ∈ Πξ . More in general, an easy change of variables shows that µ̂ξy is defined for Hn−1 -a.e.
y ∈ Πη for every η ∈ Sn−1 with η · ξ 6= 0.

Definition 4.10. Let u ∈ GBD(Ω) and let ξ ∈ Sn−1 . The measure µ̂ξ ∈ M+
b (Ω) is

defined by

µ̂ξ(B) :=
∫

Πξ
µ̂ξy(Bξy) dHn−1(y) (4.5)

for every Borel set B ⊂ Ω. We use the notation (µ̂u)ξy and µ̂ξu when we want to underline
the dependence on u .

Remark 4.11. If η ∈ Sn−1 and η · ξ 6= 0, an obvious change of variables shows that

µ̂ξ(B) = |η · ξ|
∫

Πη
µ̂ξy(Bξy) dHn−1(y)

for every Borel set B ⊂ Ω.

Remark 4.12. The measures µ̂ξy and µ̂ξ corresponding to u ∈ GBD(Ω) coincide with the
measures µξy and µξ introduced in Definition 3.7 for the scalar function v := u · ξ . By (4.2),
(4.4), and (4.5) we have

µ̂ξ(B) ≤ λ(B) (4.6)
for every Borel set B ⊂ Ω.

Remark 4.13. Let u ∈ BD(Ω). By [5, Theorem 4.5] and by the area formula (see, e.g.,
[6, Theorem 2.71]) for every ξ ∈ Sn−1 and for every Borel set B ⊂ Ω we have

µ̂ξu(B) = |Eu ξ · ξ|(B \ Ju) +
∫
B∩Ju

σ([u] · ξ) |νu · ξ| dHn−1 ≤ |Eu ξ · ξ|(B)

where σ is the function introduced in Remark 4.6.

Remark 4.14. Let u ∈ GBD(Ω). For every τ ∈ T , for every open set U ⊂ Ω, and for
every ϕ ∈ C1

c (Ω) the function

ξ 7→
∫
U

τ(u · ξ)∇ϕ · ξ dx

is continuous on Sn−1 . Since

|Dξ

(
τ(u · ξ)

)
|(U) = sup

ϕ∈C1
c (Ω)

|ϕ|≤1

∫
U

τ(u · ξ)∇ϕ · ξ dx , (4.7)

the function ξ 7→ |Dξ

(
τ(u · ξ)

)
|(U) is lower semicontinuous on Sn−1 . By Theorem 3.8 and

Remark 4.12 it follows that ξ 7→ µ̂ξ(U) is lower semicontinuous on Sn−1 .

Remark 4.15. By standard properties of bounded measures, it is enough to check (4.1)
and (4.2) when B ∈ B , where B is a base for the topology of Ω and B is stable under finite
unions and intersections. By the lower semicontinuity of ξ 7→ |Dξ

(
τ(u · ξ)

)
|(U) when U is

open (Remark 4.14), it is enough to check (4.1) for every ξ in a dense subset Ξ of Sn−1 .
Since Conditions (a) and (b) of Definition 4.1 are equivalent for every ξ by Theorem 3.5, it
is enough that one of them is satisfied for every B ∈ B and every ξ ∈ Ξ.

Definition 4.16. For every u ∈ GBD(Ω) let µ̂u ∈ M+
b (Ω) be the measure defined by

setting, for every Borel set B ⊂ Ω,

µ̂u(B) := sup
k

sup
k∑
i=1

µ̂ξiu (Bi) , (4.8)



GENERALISED FUNCTIONS OF BOUNDED DEFORMATION 15

where the second supremum is over all families ξ1, . . . , ξk of elements of Sn−1 and over all
families B1, . . . , Bk of pairwise disjoint Borel subsets of B .

By (4.4) and (4.5) for every u ∈ GBD(Ω) the measure µ̂u is the smallest measure λ that
satisfies Condition (b) of Definition 4.1.

Proposition 4.17. Let u ∈ GBD(Ω) and let λ ∈ M+
b (Ω) be the measure considered in

Definition 4.1. Then for every Borel set B ⊂ Ω we have

µ̂u(B) ≤ λ(B) . (4.9)

Moreover, if Hn−1(πξ(B)) = 0 for Hn−1 -a.e. ξ ∈ Sn−1 , where πξ is the orthogonal projec-
tion onto Πξ , then µ̂u(B) = 0 .

Proof. Inequality (4.9) follows from (4.6). To prove the second statement, we fix a Borel set
B0 ⊂ Ω. We consider the set S0 := {ξ ∈ Sn−1 : Hn−1(πξ(B0)) = 0} and we assume that
Hn−1(Sn−1 \ S0) = 0. Let µ̃u be the measure defined as in (4.8), with the constraint that
ξ1, . . . , ξk are now elements of S0 . By (4.6) we have

µ̃u(B) ≤ λ(B) (4.10)

for every Borel set B ⊂ Ω.
Let λ̃ be the absolutely continuous part of λ with respect to µ̃u . From (4.10) we

deduce that µ̃u(B) ≤ λ̃(B) for every Borel set B ⊂ Ω. Therefore the definition of µ̃u
gives µξu(U) ≤ λ̃(U) for every ξ ∈ S0 and for every open set U ⊂ Ω. Since ξ 7→ µ̂ξu(U)
is lower semicontinuous on Sn−1 by Remark 4.14 and S0 is dense in Sn−1 , we conclude
that µξu(U) ≤ λ̃(U) for every ξ ∈ Sn−1 and for every open set U ⊂ Ω. It follows that
µξu(B) ≤ λ̃(B) for every ξ ∈ Sn−1 and for every Borel set B ⊂ Ω, which implies

µ̂u(B) ≤ λ̃(B) (4.11)

for every Borel set B ⊂ Ω.
Since by (4.5)

µ̂ξ(B) :=
∫
πξ(B)

µ̂ξy(Bξy) dHn−1(y) ,

we have µ̂ξ(B0) = 0 for every ξ ∈ S0 . It follows that µ̃u(B0) = 0. As λ̃ is absolutely
continuous with respect to µ̃u , we have also λ̃(B0) = 0. By (4.11) this gives µ̂u(B0) = 0,
which concludes the proof. �

In the proof of the rectifiability of Ju we need the following semicontinuity result.

Lemma 4.18. Let uk be a sequence in GBD(Ω) converging in Ln -measure to a function
u ∈ GBD(Ω) . Then

µ̂ξu(U) ≤ lim inf
k→∞

µ̂ξuk(U) (4.12)

for every ξ ∈ Sn−1 and for every open set U ⊂ Ω .

Proof. For every ϕ ∈ C1
c (Ω) the function

u 7→
∫
U

τ(u · ξ)∇ϕ · ξ dx

is lower semicontinuous with respect to convergence in Ln -measure. By (4.7) the function
u 7→ |Dξ

(
τ(u · ξ)

)
|(U) is lower semicontinuous. The conclusion follows now from Theo-

rem 3.8 and Remark 4.12. �

The following theorem concerns k -dimensional slices. For every linear subspace V of Rn
of dimension k > 0 and for every bounded open set ΩV in the relative topology of V , the
space GBD(ΩV ) is defined as in Definition 4.1, with Ω replaced by ΩV , Rn replaced by
V , Sn−1 replaced by Sk−1

V := Sn−1 ∩ V , Πξ replaced by Πξ
V := Πξ ∩ V , Ln replaced by

Hk V , and Hn−1 replaced by Hk−1 .
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Theorem 4.19. Let V be a linear subspace of Rn of dimension k > 0 , let V ⊥ be its
orthogonal subspace, and let πV be the orthogonal projection from Rn onto V . Given
a function u ∈ GBD(Ω) , for every y ∈ V ⊥ let Ωy := {z ∈ V : y + z ∈ Ω} and let
uy : Ωy → V be the function defined by uy(z) := πV (u(y + z)) . Then uy ∈ GBD(Ωy) for
Hn−k -a.e. y ∈ V ⊥ .

Proof. By Fubini’s theorem the function uy : Ωy → V is Hk -measurable on Ωy for Hn−k -
a.e. y ∈ V ⊥ . Let us prove that for Hn−k -a.e. y ∈ V ⊥ there exists λ̂y ∈M+

b (Ωy) such that
uy satisfies Condition (b) of Definition 4.1 on Ωy ⊂ V for every ξ ∈ V .

We begin by observing that, if ξ ∈ V , then the hyperplane Πξ is the sum of the orthogonal
subspaces V ⊥ and Πξ

V := Πξ ∩V , of dimension n−k and k−1, respectively. Since ξ ∈ V ,
we have u · ξ = πV (u) · ξ . This implies that ûξy+z = (̂uy)ξz on Ωξy+z = (Ωy)ξz for every
y ∈ V ⊥ and for every z ∈ Πξ

V .
For every Borel set B ⊂ Ω and for every y ∈ V ⊥ we define By := {z ∈ V : y+z ∈ B} , so

that Bξy+z = (By)ξz for every z ∈ V . Let ω = πV (λ), let N be a Borel subset of V ⊥ , with
Hn−k(N) = 0, such that the singular part of ω with respect to Hn−k V ⊥ is concentrated
on N , and let g : V ⊥ → R+ be the density of the absolutely continuous part of ω with
respect to Hn−k V ⊥ . By the disintegration theorem (see, e.g., [6, Theorem 2.28]) there
exists a Borel measurable family (λy)y∈V ⊥ of Radon measures, with λy ∈ M+

b (Ωy), such
that

λ(B) =
∫
V ⊥

λy(By) dω(y) . (4.13)

for every Borel set B ⊂ Ω.
Let us fix a countable dense subset Ξ of Sk−1

V := Sn−1 ∩ V . By Condition (b) of Defini-
tion 4.1 and by Fubini’s theorem for Hn−k -a.e. y ∈ V ⊥ the functions ûξy+z = (ûy)ξz belong
to BVloc(Ω

ξ
y+z) = BVloc

(
(Ωy)ξz

)
for every ξ ∈ Ξ and for Hk−1 -a.e. z ∈ Πξ

V .
Let B be a countable base for the topology of V such that U1 ∩ U2 ∈ B for every

U1 , U2 ∈ B . By Remark 4.15 to conclude the proof it is enough to show that for Hn−k -
a.e. y ∈ V ⊥ the function uy satisfies the analogue of (4.2) in V , with λ replaced by
λ̂y := g(y)λy .

Given a Borel set A ⊂ V ⊥ and a open set U ∈ B , we consider the Borel set B ⊂ Ω defined
by B := {y+ z : y ∈ A, z ∈ U ∩Ωy} . Let Ã := A\N and B̃ := {y+ z : y ∈ Ã, z ∈ U ∩Ωy}
By Fubini’s theorem and by (4.4)-(4.6) and (4.13) we have∫

A

(∫
ΠξV

µ̂ξy+z

(
Uξz ∩ (Ωy)ξz

)
dHk−1(z)

)
dHn−k(y) =

=
∫
Ã

(∫
ΠξV

µ̂ξy+z

(
Uξz ∩ (Ωy)ξz

)
dHk−1(z)

)
dHn−k(y) =

=
∫

Πξ
µ̂ξx(B̃ξx) dHn−1(x) = µ̂ξ(B̃) ≤ λ(B̃) =

=
∫
Ã

λy(U ∩ Ωy) dω(y) =
∫
A

λy(U ∩ Ωy) g(y)Hn−k(y) .

Since this inequality holds for every Borel set A ⊂ V ⊥ we conclude that for every U ∈ B
we have ∫

ΠξV

µ̂ξy+z

(
Uξz ∩ (Ωy)ξz

)
dHk−1(z) ≤ g(y)λy(U ∩ Ωy) (4.14)

for Hn−k -a.e. y ∈ V ⊥ . Since B is countable, we conclude that for Hn−k -a.e. y ∈ V ⊥

inequality (4.14) holds for every U ∈ B . This shows that for Hn−k -a.e. y ∈ V ⊥ the
function uy satisfies Condition (b) of Definition 4.1 on V for every ξ ∈ Ξ and for every
B = U ∈ B , hence uy ∈ GBD(ΩV ) by Remark 4.15. �
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5. Traces on regular submanifolds and on the boundary

The following theorem summarizes the known results on the traces of functions v ∈ L1(Ω)
satisfying Dξv ∈Mb(Ω) for some vector ξ ∈ Sn−1 .

Theorem 5.1. Let U and V be open subsets of Rn of the form

U := {y + tξ : y ∈ B, a < t < ψ(y)} and V := {y + tξ : y ∈ B, a < t < b} , (5.1)

where ξ ∈ Sn−1 , B is a relatively open ball in Πξ , a , b ∈ R , with a < b , and ψ : B → (a, b)
is Lipschitz continuous. Let v ∈ L1(Ω) with Dξv ∈Mb(Ω) , let

M := {y + ψ(y)ξ : y ∈ B} , (5.2)

and let ν be the outer unit normal to M . Then there exists a functions vM ∈ L1
Hn−1(M)

such that ∫
U

v Dξϕdx+
∫
U

ϕd(Dξv) =
∫
M

ϕvM ξ · ν dHn−1 (5.3)

for every ϕ ∈ C1
c (V ) . Moreover

lim
ρ→0+

1
ρn

∫
Bρ(x)∩U

|v(z)− vM (x)| dz = 0 (5.4)

for Hn−1 -a.e. x ∈M . Finally for Hn−1 -a.e. y ∈ Πξ we have

vM (y + ψ(y)ξ) = ap lim
t→ψ(y)−

vξy(t) . (5.5)

Proof. The existence of vM ∈ L1
Hn−1(M) satisfying (5.3) follows from [31, Lemma 1.1]. The

proof of (5.4) can be obtained by slight modifications of the arguments of [18, Theorem 5.3.2],
where the use of the coarea formula can be avoided. Equality (5.5) can be easily deduced
from [31, formula (1.17)]. �

We are now in a position to prove the main result about traces of functions u ∈ GBD(Ω)
on a regular submanifold.

Theorem 5.2. Let u ∈ GBD(Ω) and let M ⊂ Ω be a C1 submanifold of dimension n− 1
with unit normal ν . Then for Hn−1 -a.e. x ∈M there exist u+

M (x) , u−M (x) ∈ Rn such that

ap lim
±(y−x)·ν(x)>0

y→x

u(y) = u±M (x) . (5.6)

Moreover for every ξ ∈ Sn−1 and for Hn−1 -a.e. y ∈ Πξ we have

u±M (y + tξ) · ξ = ap lim
σξy(t)(s−t)>0

s→t

ûξy(s) for every t ∈Mξ
y , (5.7)

where σ : M → {−1, 1} is defined by σ(x) := sign(ξ · ν(x)) . Finally, the functions u±M : M →
Rn are Hn−1 -measurable.

Proof. It is enough to prove (5.6) in a neighbourhood of each point. For every x0 ∈M there
exist an open neighbourhood A of x0 , a vector ξ0 ∈ Sn−1 , and a constant 0 < ε < 1 such
that for every ξ ∈ Sn−1 with |ξ − ξ0| < ε we can represent M ∩ A as a Lipschitz graph in
the direction determined by ξ :

M ∩A ⊂ {y + ψ(y)ξ : y ∈ B} ⊂M ,

where ψ , B , a , and b are as in Theorem 5.1. We may also assume that the set V defined
by (5.1) is contained in Ω and that ν(x) · ξ > 0 for every x ∈M ∩ V . We set

A− := A ∩ U and A+ := A \ (M ∪A−) ,

where U is defined in (5.1).
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Given τ ∈ T with τ ′(t) > 0 for every t ∈ R , we define v := τ(u · ξ). By Condition (a) of
Definition 4.1 and by Theorem 5.1 for Hn−1 -a.e. x ∈ M ∩ A there exist two real numbers
v+
M (x) and v−M (x) such that (5.4) holds with vM (x) replaced by v±M (x) and U replaced by
A± . This implies that

ap lim
±(y−x)·ν(x)>0

y→x

τ(u(y) · ξ) = v±M (x) . (5.8)

Moreover, by Theorem 5.1 the functions v±M : M ∩A→ R are Hn−1 -measurable.
By (5.5) for Hn−1 -a.e. y ∈ Πξ and for every t ∈Mξ

y ∩Aξy we have

v±M (y + tξ) = ap lim
s→t±

vξy(s) = τ
(

ap lim
s→t±

ûξy(s)
)
, (5.9)

where the existence of the approximate limit of ûξy follows from the fact that ûξy ∈ BVloc(Ωξy)
by Condition (b) of Definition 4.1. By (5.9) we have v±M (x) ∈ τ(R) for Hn−1 -a.e. x ∈M∩A .
By inverting the function τ we obtain from (5.8) that for Hn−1 -a.e. x ∈M ∩A there exist
two real numbers u+

ξ,M (x) and u−ξ,M (x) such that

ap lim
±(y−x)·ν(x)>0

y→x

u(y) · ξ = u±ξ,M (x) . (5.10)

Moreover, the functions u±ξ,M : M ∩A→ R are Hn−1 -measurable. Since there exists a basis
of Rn composed of vectors ξ ∈ Sn−1 with |ξ − ξ0| < ε , equality (5.10) implies that for
Hn−1 -a.e. x ∈M ∩A there exist two vectors u+

M (x) and u−M (x) ∈ Rn satisfying (5.6) and
that the functions u±M : M ∩A→ Rn are Hn−1 -measurable.

Let us prove (5.7) for an arbitrary ξ ∈ Sn−1 . Since Hn−1
(
πξ({x ∈M : ξ · ν(x) = 0})

)
= 0

by the area formula (see, e.g., [6, Theorem 2.91]), by localization we may assume that M
can be represented as in (5.2) and that ξ · ν(x) > 0 for every x ∈ M . Let τ be as in the
first part of the proof and let U± := {y+ tξ : y ∈ B, a < t < b, ±(t−ψ(y)) > 0} . By (5.6)
we have

ap lim
y∈U±
y→x

τ(u(y) · ξ) = τ(u±M (x) · ξ)

for Hn−1 -a.e. x ∈M . Since τ(u · ξ) is bounded, this implies that

lim
ρ→0+

1
ρn

∫
Bρ(x)∩U±

|τ(u(y) · ξ)− τ(u±M (x) · ξ)| dy = 0

By Theorem 5.1, applied to v := τ(u · ξ), for Hn−1 -a.e. y ∈ Πξ we have

τ
(
u±M (y + tξ) · ξ

)
= ap lim

s→t±
τ
(
ûξy(s)

)
for every t ∈Mξ

y .

By inverting the function τ we obtain that (5.7) holds for Hn−1 -a.e. x ∈M . �

Definition 5.3. Let u ∈ GBD(Ω) and let M ⊂ Ω be a C1 submanifold of dimension
n − 1 with normal ν . The Rn -valued Hn−1 -measurable functions u+

M and u−M , defined
Hn−1 -a.e. on M and satisfying (5.6), are called the traces of u on the two sides of M .

Remark 5.4. Let u ∈ GBD(Ω) and let M ⊂ Ω be a C1 -manifold of dimension n−1 with
normal ν . By (5.6) we have {x ∈M : u+

M (x) 6= u−M (x)} ⊂ Ju ∩M and

Hn−1
(
Ju ∩M \ {x ∈M : u+

M (x) 6= u−M (x)}
)

= 0 .

Moreover

(u+(x), u−(x), νu(x)) = (u+
M (x), u−M (x), ν(x)) or = (u−M (x), u+

M (x),−ν(x))

for Hn−1 -a.e. x ∈ Ju ∩M .

When Ω has a Lipschitz boundary we can consider also traces on the boundary.
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Theorem 5.5. Assume that Ω has a Lipschitz boundary and let ν be the outward unit
normal. Then for every u ∈ GBD(Ω) and for Hn−1 -a.e. x ∈ ∂Ω there exist u∂Ω(x) ∈ Rn
such that

ap lim
y→x
y∈Ω

u(y) = u∂Ω(x) . (5.11)

Moreover for every ξ ∈ Sn−1 and for Hn−1 -a.e. y ∈ Πξ we have

u∂Ω(y + tξ) · ξ = ap lim
σξy(t)(s−t)>0

s→t

ûξy(s) for every t ∈ (∂Ω)ξy , (5.12)

where σ : ∂Ω→ {−1, 1} is given by σ(x) := sign(ξ · ν(x)) . Finally, the function u∂Ω : ∂Ω→
Rn is Hn−1 -measurable.

Proof. The proof is similar to the proof of Theorem 5.2, and therefore is omitted. �

Definition 5.6. Assume that Ω has a Lipschitz boundary. For every u ∈ GBD(Ω) the
Rn -valued Hn−1 -measurable function u∂Ω , defined Hn−1 -a.e. on ∂Ω and satisfying (5.11),
is called the trace of u on ∂Ω.

6. Rectifiability of the jump set

In this section we prove that for every u ∈ GBD(Ω) the jump set Ju introduced in
Definition 2.4 is countably (Hn−1, n − 1)-rectifiable according to [21, Section 3.2.14]. We
recall that, by [21, Theorem 3.2.29], a set E ⊂ Rn is countably (Hn−1, n − 1)-rectifiable
if and only if Hn−1 -almost all of E is contained in the union of a countable family of
(n− 1)-dimensional submanifolds of Rn of class C1 .

To prove the rectifiability of Ju , for every u ∈ GBD(Ω) we consider the set

Θu :=
{
x ∈ Ω : lim sup

ρ→0+

µ̂u(Bρ(x))
ρn−1

> 0
}
, (6.1)

where µ̂u is the measure introduced in Definition 4.16.

Proposition 6.1. Let u ∈ GBD(Ω) . Then Θu is a countably (Hn−1, n − 1)-rectifiable
Borel set.

Proof. The proof is a variant of the proof of [23, Part II, Theorem 4.18]. By Fatou’s lemma
for every ρ > 0 the function x 7→ µ̂u(Bρ(x) ∩ Ω) is lower semicontinuous on Ω. Since the
limsup can be computed by considering only rational numbers ρ > 0, we deduce that Θu is
a Borel set.

To prove the rectifiability, for every ε > 0 we consider the Borel set

Θε
u :=

{
x ∈ Ω : lim sup

ρ→0+

µ̂u(Bρ(x))
ρn−1

> ε
}
. (6.2)

It is enough to show that Θε
u is countably (Hn−1, n−1)-rectifiable. By [21, Theorem 2.10.19]

we have that
εHn−1(B) ≤ ωn µ̂u(B) (6.3)

for every Borel set B ⊂ Θε
u . In particular Hn−1(Θε

u) < +∞ and we can apply Federer’s
structure theorem [21, Theorems 3.3.13 and 2.10.15] to obtain a countably (Hn−1, n − 1)-
rectifiable Borel set R ⊂ Θε

u such that

Hn−1(πξ
(
Θε
u \R)

)
= 0 for Hn−1-a.e. ξ ∈ Sn−1 .

By Proposition 4.17 we have µ̂u(Θε
u \ R) = 0. Choosing B = Θε

u \ R in (6.3) we obtain
Hn−1(Θε

u\R) = 0. This proves that Θε
u is countably (Hn−1, n−1)-rectifiable and concludes

the proof of the proposition. �

We are now in a position to prove that the jump set of a function of GBD(Ω) is countably
(Hn−1, n− 1)-rectifiable.
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Theorem 6.2. Let u ∈ GBD(Ω) , let Ju be the jump set introduced in Definition 2.4, and
let Θu be the set defined in (6.1). Then Ju is countably (Hn−1, n−1)-rectifiable, Ju ⊂ Θu ,
and Hn−1(Θu \ Ju) = 0 .

Proof. To prove that Ju ⊂ Θu , let us fix x0 ∈ Ju . Up to a translation, we may assume
that x0 = 0 and that u−(0) = 0. By Definition 2.4 there exist a ∈ Rn , with a 6= 0, and
ν ∈ Sn−1 such that

ap lim
x · ν>0
x→0

u(x) = a and ap lim
x · ν<0
x→0

u(x) = 0 . (6.4)

Let r > 0 such that Br(0) ⊂ Ω. For every 0 < ρ < r we define uρ : B1(0) → Rn by
setting uρ(y) := u(ρy) for every y ∈ B1(0). By a change of variables is easy to see that
uρ ∈ GBD(B1(0)) and that

µ̂ξuρ(B1(0)) =
µ̂ξu(Bρ(0))
ρn−1

(6.5)

for every ξ ∈ Sn−1 and for every 0 < ρ < r . By (6.4) uρ → u0 in Ln -measure on B1(0),
where u0(x) = a for x · ν > 0 and u0(x) = 0 for x · ν < 0. Let us fix ξ ∈ Sn−1 such
that ν · ξ 6= 0 and 0 < |a · ξ| < 1. By Remark 4.13 we have µ̂ξu0

(B1(0)) = ωn−1|ν · ξ| |a · ξ| .
Therefore (4.8) and (6.5), together with Lemma 4.18, give that

0 < ωn−1|ν · ξ| |a · ξ| ≤ lim inf
ρ→0+

µ̂ξu(Bρ(0))
ρn−1

≤ lim inf
ρ→0+

µ̂u(Bρ(0))
ρn−1

.

This implies that 0 ∈ Θu by (6.1), and concludes the proof of the inclusion Ju ⊂ Θu .
Since Θu is countably (Hn−1, n − 1)-rectifiable by Proposition 6.1, the rectifiability of

Ju follows from the inclusion Ju ⊂ Θu .
Let us prove that Hn−1(Θu \ Ju) = 0. It suffices to show that Hn−1(Θε

u \ Ju) = 0 for
every ε > 0, where Θε

u is the set defined in (6.2). By (6.3) it is enough to prove that
µ̂u(Θε

u \ Ju) = 0, and by (4.8) we have to show that

µ̂ξu(Θε
u \ Ju) = 0 (6.6)

for every ξ ∈ Sn−1 .
Let us fix ξ ∈ Sn−1 . Since Θε

u is countably (Hn−1, n− 1)-rectifiable, we can write

Θε
u \ Ju = N0 ∪

∞⋃
i=1

Ni , (6.7)

with Hn−1(N0) = 0 and Ni ⊂ Mi for every i ≥ 1, where each Mi is a C1 manifold of
dimension n− 1 with normal unit vector νi . We define

M±i := {x ∈Mi : ±ξ · νi(x) > 0} and M0
i := {x ∈Mi : ξ · νi(x) = 0} . (6.8)

Therefore Ni = N+
i ∪ N

−
i ∪ N0

i , where N±i := Ni ∩ M±i and N0
i := Ni ∩ M0

i . Since
Hn−1(N0) = 0 we have Hn−1(πξ(N0)) = 0. By the area formula (see, e.g., [6, Theo-
rem 2.91]) and by (6.8) we have that Hn−1(πξ(N0

i )) = 0 for every i . Therefore (4.5)
implies that µ̂ξu(N0) = 0 and µ̂ξu(N0

i ) = 0 for every i . It follows from (6.7) that

µ̂ξu(Θε
u \ Ju) ≤

∞∑
i=1

µ̂ξ(N+
i ) +

∞∑
i=1

µ̂ξ(N−i ) . (6.9)

To prove (6.6) it is enough to show that for every i we have

µ̂ξu(N+
i ) = 0 and µ̂ξu(N−i ) = 0 . (6.10)

Let us fix i and let u+
i and u−i be the traces of u on Mi , oriented by νi . Splitting M+

i

into a countable number of pieces, we may assume that there exist an open set A in the
relative topology of Πξ and a function ψ ∈ C1(A) such that M+

i = {y + ψ(y)ξ : y ∈ A} .
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By (6.8) we have ξ · νi(x) > 0 for every x ∈M+
i . By Theorem 5.2 for Hn−1 -a.e. y ∈ A we

have

u−i (y + ψ(y)ξ) · ξ = ap lim
t→ψ(y)
t<ψ(y)

ûξy(t) and u+
i (y + ψ(y)ξ) · ξ = ap lim

t→ψ(y)
t>ψ(y)

ûξy(t) . (6.11)

Since N+
i ∩ Ju = Ø, we have u+

i (x) = u−i (x) for every x ∈ N+
i by Remark 5.4. By (6.11)

we have
ap lim
t→ψ(y)
t<ψ(y)

ûξy(t) = ap lim
t→ψ(y)
t>ψ(y)

ûξy(t)

for Hn−1 -a.e. y ∈ B := πξ(N+
i ), hence ψ(y) /∈ Jûξy · ξ for Hn−1 -a.e. y ∈ B . Since N+

i =
{y + ψ(y)ξ : y ∈ B} we have (N+

i )ξy = {ψ(y)} for y ∈ B and (N+
i )ξy = Ø for y ∈ Πξ \ B .

Therefore (4.4) and (4.5) give

µ̂ξu(N+
i ) =

∫
B

|Dûξy|({ψ(y)}) dHn−1(y) = 0 ,

since ψ(y) /∈ Jûξy for Hn−1 -a.e. y ∈ B . A similar argument shows that µ̂ξu(N−i ) = 0. This
proves (6.10) and concludes the proof of the equality Hn−1(Θu \ Ju) = 0. �

7. The jump points of the restriction to hyperplanes

In this section we prove a technical result that will play a crucial role in the proof of the
slicing theorem for the jump set of a GBD function u : all jump points of the restriction
of the function πη(u) to the hyperplane x0 + Πη belong to the set Θu introduced in (6.1),
provided that Hn−1

(
Su ∩ (x0 + Πη)

)
= 0.

A key tool in the proof is the following parallelogram identity, which holds for every
function v : Ω→ Rn :

v(x+ hξ) · (ξ + η)− v(x− hη) · (ξ + η) +
+ v(x+ hη) · (ξ + η)− v(x− hξ) · (ξ + η) +
+ v(x+ hξ) · (ξ − η)− v(x+ hη) · (ξ − η) +
+ v(x− hη) · (ξ − η)− v(x− hξ) · (ξ − η) =

= 2v(x+ hξ) · ξ − 2v(x− hξ) · ξ +
+ 2v(x+ hη) · η − 2v(x− hη) · η

(7.1)

for every x ∈ Ω, for every ξ , η ∈ Rn , and for every h > 0 such that x± hξ , x± hη ∈ Ω.

Theorem 7.1. Let u ∈ GBD(Ω) , let x0 ∈ Ω , and let η ∈ Sn−1 . Assume that

Hn−1
(
Su ∩ (x0 + Πη)

)
= 0 . (7.2)

Let v : (−x0 +Ω)∩Πη → Πη be the function defined by v(y) := πη(ũ(x0 +y)) for Hn−1 -a.e.
y ∈ (−x0 + Ω) ∩Πη . Suppose that there exists ν ∈ Sn−1 ∩Πη and b+ , b− ∈ Πη such that

lim
ρ→0

Hn−1
(
{y ∈ Bρ(0) ∩Πη : ±y · ν > 0, |v(y)− b±| > ε}

)
ρn−1

. (7.3)

If b+ 6= b− , then x0 ∈ Θu .

Proof. It is not restrictive to consider only the case x0 = 0. We assume, by contradiction,
that b+ 6= b− and 0 /∈ Θu , and we fix ξ ∈ Sn−1 ∩Πη such that

|(b+ − b−) · ξ| ≥ 1
2 |b

+ − b−| and ν · ξ > 0 . (7.4)

Let S be the set of all s ∈ R+ such that y+sη /∈ Su and y−sη /∈ Su for Hn−1 -a.e. y ∈ Πη .
Then 0 ∈ S and L1(R+ \ S) = 0 by Fubini’s theorem, since Ln(Su) = 0 by Remark 2.5.
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For every ρ > 0 we set Bρ := Bρ(0), B0
ρ := Bρ ∩Πη , B0±

ρ := {y ∈ B0
ρ : ±y · ν > 0} , and

Aρ := B0
cρ = Bcρ ∩Πη , with 0 < c < ν · ξ ≤ 1. It follows that

ρξ +Aρ ⊂ B0+
2ρ and − ρξ +Aρ ⊂ B0−

2ρ . (7.5)

Since 0 /∈ Θu , by (6.1) we have

lim
ρ→0+

µ̂u(Bρ)
ρn−1

= 0 . (7.6)

Let us fix ε > 0 such that 3ε < 1
2 |b

+ − b−| . By (7.4) for every ρ > 0 and for every
y ∈ Aρ we have

3ε < |(b+ − b−) · ξ| ≤
≤ |b+ · ξ − v(y + ρξ) · ξ|+ |(v(y + ρξ)− v(y − ρξ)) · ξ|+ |v(y − ρξ) · ξ − b− · ξ| ≤
≤ |b+ − v(y + ρξ)|+ |(v(y + ρξ)− v(y − ρξ)) · ξ|+ |v(y − ρξ)− b−| .

It follows that

Hn−1(Aρ) ≤ Hn−1
(
{y ∈ Aρ : |b+ − v(y + ρξ)| > ε}

)
+

+ Hn−1
(
{y ∈ Aρ : |(v(y + ρξ)− v(y − ρξ)) · ξ| > ε}

)
+ (7.7)

+ Hn−1
(
{y ∈ Aρ : |v(y − ρξ)− b−| > ε}

)
.

To conclude the proof of the theorem it is enough to show that

Hn−1(Aρ) = o(ρn−1) (7.8)

along a sequence converging to zero. Indeed, the definition of Aρ gives Hn−1(Aρ) =
ωn−1c

n−1ρn−1 , which contradicts (7.8) and shows that the relations b+ 6= b− and 0 /∈ Θu

cannot be true simultaneously.
To estimate the first term of the right-hand side of (7.7), we use (7.5) and we obtain

Hn−1
(
{y ∈ Aρ : |b+ − v(y + ρξ)| > ε}

)
=

= Hn−1
(
{x ∈ ρξ +Aρ : |b+ − v(x)| > ε}

)
≤

≤ Hn−1
(
{x ∈ B0+

2ρ : |b+ − v(x)| > ε}
)
.

By (7.3) the last term is o(ρn−1), so that

Hn−1
(
{y ∈ Aρ : |b+ − v(y + ρξ)| > ε}

)
= o(ρn−1) . (7.9)

In the same way we prove that

Hn−1
(
{y ∈ Aρ : |v(y − ρξ)− b−| > ε}

)
= o(ρn−1) . (7.10)

It remains to estimate Hn−1
(
{y ∈ Aρ : |(v(y + ρξ)− v(y − ρξ)) · ξ| > ε}

)
. Since ξ ∈ Πη ,

we have v(y) · ξ = ũ(y) · ξ for Hn−1 -a.e. y ∈ Πη , hence

Hn−1
(
{y ∈ Aρ : |(v(y + ρξ)− v(y − ρξ)) · ξ| > ε}

)
=

= Hn−1
(
{y ∈ Aρ : |(ũ(y + ρξ)− ũ(y − ρξ)) · ξ| > ε}

)
.

(7.11)

By the parallelogram identity (7.1) we have

Hn−1
(
{y ∈ Aρ : |(ũ(y + ρξ)− ũ(y − ρξ)) · ξ| > ε}

)
≤

≤ Hn−1
(
{y ∈ Aρ : |ũ(y + ρη) · η − ũ(y − ρη) · η| > ε

5}
)

+

+Hn−1
(
{y ∈ Aρ : |ũ(y + ρξ) · (ξ + η)− ũ(y − ρη) · (ξ + η)| > 2ε

5 }
)

+

+Hn−1
(
{y ∈ Aρ : |ũ(y + ρη) · (ξ + η)− ũ(y − ρξ) · (ξ + η)| > 2ε

5 }
)

+

+Hn−1
(
{y ∈ Aρ : |ũ(y + ρξ) · (ξ − η)− ũ(y + ρη) · (ξ − η)| > 2ε

5 }
)

+

+Hn−1
(
{y ∈ Aρ : |ũ(y − ρη) · (ξ − η)− ũ(y − ρξ) · (ξ − η)| > 2ε

5 }
)
.

(7.12)
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To estimate the first term in the right-hand side we fix τ ∈ C1(R) with − 1
2 < τ(t) < 1

2 ,
0 < τ ′(t) < 1, and τ(−t) = −τ(t) for every t ∈ R . Since τ is increasing, we have

Hn−1
(
{y ∈ Aρ : |ũ(y + ρη) · η − ũ(y − ρη) · η| > ε

5}
)

=

= Hn−1
(
{y ∈ Aρ :

∣∣τ(ũ(y + ρη) · η − ũ(y − ρη) · η
)∣∣ > τ( ε5 )}

)
.

(7.13)

Let r : Rn → Rn be the reflection about Πη :

r(x) := x− 2 (x · η) η

for every x ∈ Rn . Let Ω̂ := Ω ∩ r(Ω) and let ϕ ∈ L∞(Ω̂) be the function defined by

ϕ(x) := τ
(
u(x) · η − u(r(x)) · η

)
.

If x ∈ Ω̂ \ Su and r(x) /∈ Su , then x /∈ Sϕ and

ϕ̃(x) = τ
(
ũ(x) · η − ũ(r(x)) · η

)
. (7.14)

For every y ∈ Πη we have
ϕηy = τ

(
ûηy − ǔηy

)
on Ω̂ηy , (7.15)

where ǔηy(t) := ûηy(−t) = u(y − tη) · η .
By Condition (b) of Definition 4.1 we have that ûηy ∈ BVloc

(
Ω̂ηy
)

and ǔηy ∈ BVloc
(
Ω̂ηy
)

for Hn−1 -a.e. y ∈ Πη . By (7.15) this implies that ϕηy ∈ BVloc
(
Ω̂ηy
)

for Hn−1 -a.e. y ∈ Πη .
Since 0 < τ ′ < 1 and − 1

2 < τ < 1
2 , arguing as in the proof of Proposition 3.4 we obtain

from Vol’pert’s chain rule in BV (see [6, Theorem 3.96]) that

|Dϕηy|(B \ Jϕηy ) ≤ |Dûηy|(B \ Jûηy ) + |Dǔηy|(B \ Jǔηy ) ,

|Dϕηy|(B ∩ Jϕηy ) ≤ |Dûηy|(B ∩ Jûηy \ J
1
ûηy

) +H0(B ∩ J1
ûηy

) +

+ |Dûηy|(B ∩ Jǔηy \ J
1
ǔηy

) +H0(B ∩ J1
ǔηy

)

for Hn−1 -a.e. y ∈ Πη and for every Borel set B ⊂ Ω̂ηy . By an easy change of variables we
obtain from the previous inequalities and from (4.4)

|Dϕηy|(B) ≤ |Dûηy|(B \ J1
ûηy

) +H0(B ∩ Jûηy ) +

+ |Dûηy|((−B) \ J1
ûηy

) +H0((−B) ∩ Jûηy ) ≤ 2µηy(B ∪ (−B)) .
(7.16)

Integrating on Πη we get∫
Πη
|Dϕηy|(Ω̂ηy) dHn−1(y) ≤ 2

∫
Πη
µηy(Ω̂ηy) dHn−1(y) = 2µη(Ω̂) < +∞ ,

so that Dηϕ ∈Mb(Ω̂) by Proposition 3.1.
Let us fix ρ ∈ S with B2ρ ⊂ Ω. Since y /∈ Su and y ± ρη /∈ Su for Hn−1 -a.e. y ∈ Πη ,

while y ± ρη ∈ B2ρ ⊂ Ω for every y ∈ Aρ , we have y ∈ Ω̂ \ Sϕ and y ± ρη ∈ Ω̂ \ Sϕ for
Hn−1 -a.e. y ∈ Aρ . Moreover ϕ̃(y) = 0 for Hn−1 -a.e. y ∈ Ω ∩ Πη by (7.14). We can now
apply Proposition 3.2 and we obtain

|ϕ̃(y + ρη)| = |ϕ̃(y + ρη)− ϕ̃(y)| ≤ (V ϕ̃ηy)([0, ρ]) = |Dϕηy|([0, ρ])

for Hn−1 -a.e. y ∈ Aρ . Therefore (7.16) yields

|ϕ̃(y + ρη)| ≤ 2µηy([−ρ, ρ]) (7.17)

Integrating over Aρ we get∫
Aρ

|ϕ̃(y + ρη)| dHn−1(y) ≤ 2
∫
Aρ

µηy([−ρ, ρ]) dHn−1(y) . (7.18)

Since y + tη ∈ B2ρ for every y ∈ Aρ and for every t ∈ [−ρ, ρ] , by (4.5) we get∫
Aρ

µηy([−ρ, ρ]) dHn−1(y) ≤ µη(B2ρ) . (7.19)
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From (4.8), (7.18), and (7.19) we deduce that∫
Aρ

|ϕ̃(y + ρη)| dHn−1(y) ≤ 2µη(B2ρ) ≤ 2µu(B2ρ) . (7.20)

Since y ± ρη ∈ Ω \ Su for Hn−1 -a.e. y ∈ Aρ , by (7.14) we have τ
(
ũ(y + ρη) · η − ũ(y −

ρη) · η
)

= ϕ̃(y + ρη) for Hn−1 -a.e. y ∈ Aρ . Therefore (7.13), (7.20), and Chebyshev’s
inequality give

Hn−1
(
{y ∈ Aρ : |ũ(y + ρη) · η − ũ(y − ρη) · η| > ε

5}
)

=

= Hn−1
(
{y ∈ Aρ : |ϕ̃(y + ρη)| > τ( ε5 )}

)
≤

≤ 1
τ( ε5 )

∫
Aρ

|ϕ̃(y + ρη)| dHn−1(y) ≤ 2
τ( ε5 )

µu(B2ρ) .

By (7.6) this implies that

Hn−1
(
{y ∈ Aρ : |ũ(y + ρη) · η − ũ(y − ρη) · η| > ε

5}
)

= o(ρn−1) for ρ ∈ S .

To estimate the second term in the right-hand side of (7.12) we set ω := (ξ+ η)/
√

2 and
we replace the reflection r by the involution

q(x) := x− 2
√

2 (x · η)ω −
√

2 ρω = x− 2 (x · η) (ξ + η)− ρ (ξ + η) ,

which leaves the hyperplane −ρ2η+Πη fixed and moves all points in the direction determined
by ω . We now define Ω̃ := Ω ∩ q(Ω) and ψ ∈ L∞(Ω̃) by

ψ(x) := τ
(
u(x) · (ξ + η)− u(q(x)) · (ξ + η)

)
.

If x ∈ Ω̃ \ Su and q(x) /∈ Su , then x /∈ Sψ and

ψ̃(x) = τ
(
ũ(x) · (ξ + η)− ũ(q(x)) · (ξ + η)

)
. (7.21)

For every y ∈ −ρ2η+Πη we have ψωy = τ
(√

2 ûωy −
√

2 ǔωy
)

on Ω̃ωy , where ǔωy (t) := ûωy (−t) =
u(y − tω) ·ω .

Arguing as in the previous step we obtain now

|Dψωy |(B) ≤ 2
√

2µωy (B ∪ (−B)) (7.22)

for Hn−1 -a.e. y ∈ −ρ2η + Πη and for every Borel set B ⊂ Ω̃ωy . Integrating on Πω and
−ρ2η + Πη we obtain, thanks to Remark 4.11,∫

Πω
|Dψωy |(Ω̃ωy ) dHn−1(y) =

1√
2

∫
− ρ2 η+Πη

|Dψωy |(Ω̃ωy ) dHn−1(y) ≤

≤ 2
∫
− ρ2 η+Πη

µωy (Ω̃ωy ) dHn−1(y) = 2
√

2µω(Ω̃) < +∞ ,

which gives Dωψ ∈Mb(Ω̃) thanks to Proposition 3.1.
Let us fix ρ ∈ S with ρ

2 ∈ S and B2ρ ⊂ Ω. For every y ∈ Πη we define a(y) :=
y + ρ

2 (ξ − η) ∈ −ρ2η + Πη , so that y + ρξ = a(y) + ρ
2 (ξ + η) = a(y) + ρ√

2
ω and y − ρη =

a(y)− ρ
2 (ξ+η) = a(y)− ρ√

2
ω . Since y+ρξ /∈ Su , y−ρη /∈ Su , and a(y) /∈ Su for Hn−1 -a.e.

y ∈ Πη , while y+ ρξ ∈ B2ρ ⊂ Ω, y− ρη ∈ B2ρ ⊂ Ω, and a(y) ∈ B2ρ ⊂ Ω for every y ∈ Aρ ,
we have y+ρξ ∈ Ω̃\Sψ , y−ρη ∈ Ω̃\Sψ , and a(y) ∈ Ω̃\Sψ for Hn−1 -a.e. y ∈ Aρ . Moreover
ψ̃(a(y)) = 0 for Hn−1 -a.e. y ∈ Aρ by (7.21), since q(a(y)) = a(y) for every y ∈ Πη . We
can now apply Proposition 3.2 and we obtain

|ψ̃(y + ρξ)| = |ψ̃(a(y) + ρ√
2
ω)− ψ̃(a(y))| ≤ (V ψ̃ωa(y))([0,

ρ√
2
]) = |Dψωa(y)|([0,

ρ√
2
])

for Hn−1 -a.e. y ∈ Aρ . Therefore (7.22) yields

|ψ̃(y + ρξ)| ≤ 2
√

2µωa(y)([−
ρ√
2
, ρ√

2
]) (7.23)
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Integrating over Aρ we get∫
Aρ

|ψ̃(y + ρξ))| dHn−1(y) ≤ 2
√

2
∫
Aρ

µωa(y)([−
ρ√
2
, ρ√

2
]) dHn−1(y) . (7.24)

Since a(y) + tω ∈ B2ρ for every y ∈ Aρ and for every t ∈ [− ρ√
2
, ρ√

2
] , by Remark 4.11 we

get ∫
Aρ

µωa(y)([−
ρ√
2
, ρ√

2
])| dHn−1(y) ≤

√
2µω(B2ρ) . (7.25)

From (4.8), (7.24), and (7.25) we deduce that∫
Aρ

|ψ̃(y + ρξ)| dHn−1(y) ≤ 4µω(B2ρ) ≤ 4µu(B2ρ) . (7.26)

Since y+ρξ ∈ Ω\Su and q(y+ρξ) = y−ρη ∈ Ω\Su for Hn−1 -a.e. y ∈ Aρ , by (7.21) we
have τ

(
ũ(y+ρξ) · (ξ+η)− ũ(y−ρη) · (ξ+η)

)
= ψ̃(y+ρξ) for Hn−1 -a.e. y ∈ Aρ . Therefore

(7.26) and Chebyshev’s inequality give

Hn−1
(
{y ∈ Aρ : |ũ(y + ρξ) · (ξ + η)− ũ(y − ρη) · (ξ + η)| > 2ε

5 }
)

=

= Hn−1
(
{y ∈ Aρ :

∣∣τ(ũ(y + ρξ) · (ξ + η)− ũ(y − ρη) · (ξ + η)
)∣∣ > τ( 2ε

5 })
)

=

= Hn−1
(
{y ∈ Aρ : |ψ̃(y + ρξ)| > τ( 2ε

5 )}
)
≤

≤ 1
τ( 2ε

5 )

∫
Aρ

|ψ̃(y + ρξ)| dHn−1(y) ≤ 4
τ( ε5 )

µu(B2ρ) .

By (7.6) this impies that

Hn−1
(
{y ∈ Aρ : |ũ(y + ρξ) · (ξ + η)− ũ(y − ρη) · (ξ + η)| > ε

5}
)

= o(ρn−1)

for ρ ∈ S with ρ
2 ∈ S .

The other terms in the right-hand side of (7.12) can be estimated in a similar way. This
proves (7.8) and concludes the proof of the theorem. �

8. Slicing of the jump set

In this section we prove that for every u ∈ GBD(Ω) the jump set Ju introduced in
Definition 2.4 can be reconstructed from the jump sets of the one-dimensional slices ûξy .

Theorem 8.1. Let u ∈ GBD(Ω) , let ξ ∈ Sn−1 , and let

Jξu := {x ∈ Ju : [u](x) · ξ 6= 0} . (8.1)

Then for Hn−1 -a.e. y ∈ Πξ we have

(Jξu)ξy = Jûξy , (8.2)

u±(y + tξ) · ξ = (ûξy)±(t) for every t ∈ (Ju)ξy , (8.3)

where the normals to Ju and Jûξy are oriented so that ξ · νu ≥ 0 and νûξy = 1 .

Proof. Let us prove that for Hn−1 -a.e. y ∈ Πξ we have

(Jξu)ξy ⊂ Jûξy . (8.4)

Since Ju is countably (Hn−1, n− 1)-rectifiable by Theorem 6.2, we can write

Ju = N0 ∪
∞⋃
i=1

Ni , (8.5)

with Hn−1(N0) = 0 and Ni ⊂ Mi for every i ≥ 1, where each Mi is a C1 manifold of
dimension n−1 with normal unit vector νi . By Remark 5.4 we have νu = ±νi Hn−1 -a.e. on
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Ni for every i ≥ 1. Removing an Hn−1 -negligible set, we may assume that these equalities
hold everywhere on Ni . Splitting, if needed, each Ni into two parts, we may also assume
that the sign is constant in each Ni , and we may reorient the manifold Mi so that νu = νi
on Ni for every i ≥ 1.

Let M±i and M0
i be the sets defined in (6.8). Since ξ · νi = ξ · νu ≥ 0 on Ni , we have

Ni = N+
i ∪N0

i , where N+
i := Ni∩M+

i and N0
i . := Ni∩M0

i . Since Hn−1(N0) = 0 we have
Hn−1

(
πξ(N0)

)
= 0. By the area formula (see, e.g., [6, Theorem 2.91]) and by (6.8) we have

that Hn−1
(
πξ(N0

i )
)

= 0 for every i . Let E0 be the union of the sets πξ(N0) and πξ(N0
i )

for i ≥ 1. Then Hn−1(E0) = 0 and it is enough to prove (8.4) for Hn−1 -a.e. y ∈ Πξ \ E0 .
To obtain this result it suffices to show that for every i ≥ 1 we have

(N+
i )ξy ∩ (Jξu)ξy ⊂ Jûξy (8.6)

for Hn−1 -a.e. y ∈ Πξ . Let us fix i ≥ 1 and let u+
i and u−i be the traces of u on Mi ,

oriented by νi . Splitting M+
i into a countable number of pieces, we may assume that

there exist an open set A in the relative topology of Πξ and a function ψ ∈ C1(A) such
that M+

i = {y + ψ(y)ξ : y ∈ A} . By (6.8) we have ξ · νi(x) > 0 for every x ∈ M+
i . By

Theorem 5.2 for Hn−1 -a.e. y ∈ A we have

u−i (y + ψ(y)ξ) · ξ = ap lim
t→ψ(y)
t<ψ(y)

ûξy(t) and u+
i (y + ψ(y)ξ) · ξ = ap lim

t→ψ(y)
t>ψ(y)

ûξy(t) . (8.7)

By Remark 5.4 we have u+
i (x) · ξ = u+(x) · ξ 6= u−(x) · ξ = u−i (x) · ξ for Hn−1 -a.e. x ∈

N+
i ∩ Jξu . This inequality, together with (8.7), gives

ap lim
t→ψ(y)
t<ψ(y)

ûξy(t) 6= ap lim
t→ψ(y)
t>ψ(y)

ûξy(t)

for Hn−1 -a.e. y ∈ B := πξ(N+
i ∩ Jξu), hence ψ(y) ∈ Jûξy for Hn−1 -a.e. y ∈ B . Since

N+
i ∩ Jξu = {y + ψ(y)ξ : y ∈ B} we have (N+

i )ξy ∩ (Jξu)ξy = {ψ(y)} for y ∈ B and (N+
i )ξy ∩

(Jξu)ξy = Ø for y ∈ Πξ \B . Therefore we have (N+
i )ξy ∩ (Jξu)ξy ⊂ Jûξy for Hn−1 -a.e. y ∈ Πξ .

This proves (8.6) and concludes the proof of (8.4). Moreover (8.7), together with the equality
u+
i (x) = u+(x) and u−i (x) = u−(x) for Hn−1 -a.e. x ∈ N+

i (see Remark 5.4), proves (8.3)
for Hn−1 -a.e. y ∈ Πξ .

Let us prove that
Jûξy ⊂ (Ju)ξy for Hn−1-a.e. y ∈ Πξ . (8.8)

This inclusion is trivial for n = 1. We prove it by induction on the dimension n . By
changing u on a set of Lebesgue measure zero, we may assume that u is a Borel function
and that ûξy ∈ BVloc(Ωξy) for every y ∈ Πξ . Since Hn−1(Θu \ Ju) = 0 by Theorem 6.2, to
prove (8.8) it is enough to show that

Jûξy ⊂ (Θu)ξy for Hn−1-a.e. y ∈ Πξ . (8.9)

Let n ≥ 2 and assume that (8.8) is true in dimension n−1. We fix η ∈ Sn−1 with η · ξ = 0.
For every s ∈ R and for every B ⊂ Ω let Bs := {z ∈ Πη : z+ sη ∈ B} and let us : Ωs → Πη

be the function defined by us(z) := πη
(
u(z + sη)

)
. Then (s, z) 7→ us(z) is a Borel function

on the open set Ω̃ := {(s, z) : s ∈ R, z ∈ Ωs} ⊂ R×Πη .
Let F̃ := {(s, z) : s ∈ R, z ∈ Jus} ⊂ Ω̃ and let F := {z+ sη : s ∈ R, z ∈ Jus} = {z+ sη :

(s, z) ∈ F̃} ⊂ Ω, so that

Jus = Fs := {z ∈ Πη : z + sη ∈ F} . (8.10)

Arguing as in the proof of [6, Proposition 3.69] and using Remark 2.2 we find that F̃ is a
Borel subset of Ω̃ , hence F is a Borel subset of Ω.
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Let Πηξ := Πη ∩Πξ . Since η · ξ = 0, we have that

Πξ = {a+ sη : a ∈ Πηξ, s ∈ R} (8.11)

and
Bξa+sη = (Bs)ξa (8.12)

for every a ∈ Πηξ , for every s ∈ R , and for every B ⊂ Ω. Since u · ξ = πη(u) · ξ , we have
that

ûξa+sη = (ûs)ξa on Ωξa+sη = (Ωs)ξa (8.13)

for every a ∈ Πηξ and for every s ∈ R .
For every x ∈ Ω we can define

ûξ+(x) := lim sup
ρ→0+

1
ρ

∫ ρ

0

u(x+ sξ) · ξ ds and ûξ−(x) := lim sup
ρ→0+

1
ρ

∫ 0

−ρ
u(x+ sξ) · ξ ds .

Since we are assuming that u is a Borel function, by Fubini’s theorem ûξ+ and ûξ− are Borel
functions on Ω. Therefore E := {x ∈ Ω : ûξ+(x) 6= ûξ−(x)} is a Borel set. For every y ∈ Πξ

we have (ûξ+)ξy = (ûξ−)ξy = ûξy L1 -a.e. in Ωξy thanks to Lebesgue’s differentiation theorem.
By elementary properties of BV functions in dimension one, this implies that

Jûξy = Eξy (8.14)

for every y ∈ Πξ .
By Theorem 4.19 there exists a Borel set N1 ⊂ R such that for every s ∈ R \ N1 the

function us belongs to GBD(Ωs). Moreover, since Ln(Su) = 0 and u = ũ Ln -a.e. in Ω
by Remark 2.5, using Fubini’s theorem we find a Borel set N2 ⊂ R , with L1(N2) = 0, such
that for every s ∈ R \ N2 we have Hn−1

(
Su ∩ (sη + Πη)

)
= 0 and u = ũ Hn−1 -a.e. in

sη + Πη . Let N0 := N1 ∪N2 .
By the inductive hypothesis for every s ∈ R \N0 we have J(cus)ξa ⊂ (Jus)

ξ
a for Hn−2 -a.e.

a ∈ Πηξ := Πη ∩Πξ . By (8.10) and (8.12)-(8.14) we have

Eξa+sη = Jûξa+sη
= J(cus)ξa ⊂ (Jus)

ξ
a = (Fs)ξa = F ξa+sη

for every s ∈ R \N0 and for Hn−2 -a.e. a ∈ Πηξ . By (8.11) and by Fubini’s theorem there
exists a Borel set N ⊂ Πξ , with Hn−1(N) = 0, such that for every y ∈ Πξ \ N we have
Eξy ⊂ F ξy and y · η /∈ N0 .

Let us fix y ∈ Πξ \N and let t ∈ Jûξy . Then y = a+ sη with a ∈ Πη,ξ and s ∈ R \N0 .
Therefore

Jûξy = Eξy ⊂ F
ξ
a+sη = (Fs)ξa = (Jus)

ξ
a

by (8.10), (8.12), and (8.14), so that t ∈ (Jus)
ξ
a , hence a + tξ ∈ Jus . Let x0 := y + tξ =

a+ sη+ tξ . Since x0 + Πη = sη+ Πη and s /∈ N2 , we have Hn−1
(
Su ∩ (sη+ Πη)

)
= 0 and

u = ũ Hn−1 -a.e. in sη + Πη . Therefore the function v considered in Theorem 7.1 satisfies
v(z) = us(z+ a+ tξ) for Hn−1 -a.e. z ∈ Πη . Since a+ tξ ∈ Jus , hypothesis (7.3) is satisfied
with b+ 6= b− . Therefore Theorem 7.1 implies that x0 ∈ Θu . Since x0 := y + tξ we have
t ∈ (Θu)ξy . This proves (8.9) and concludes the proof of (8.8).

Let us prove that for Hn−1 -a.e. y ∈ Πξ we have

Jûξy ⊂ (Jξu)ξy . (8.15)

By (8.3) and (8.8) for Hn−1 -a.e. y ∈ Πξ and for every t ∈ Jûξy we have that y + tξ ∈ Ju
and

(u+(y + tξ)− u−(y + tξ)) · ξ = [ûξy](t) 6= 0 ,

hence y + tξ ∈ Jξu by (8.1). This proves (8.15) and concludes the proof of the theorem. �
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9. Approximate symmetric differentiability

In this section we prove that every u ∈ GBD(Ω) has an approximate symmetric gradient
Ln -a.e. in Ω. This means that for Ln -a.e. x ∈ Ω there exists a symmetric matrix, denoted
by Eu(x), such that

ap lim
y→x

(
u(y)− u(x)− Eu(x)(y − x)

)
· (y − x)

|y − x|2
= 0 . (9.1)

We also prove that the function x 7→ Eu(x), defined Ln -a.e. in Ω, belongs to L1(Ω; Mn×n
sym ),

where Mn×n
sym is the space of symmetric n×n matrices. We also show that the one-dimen-

sional slices of Eu are related with the density ∇ûξy of the absolutely continuous part Daûξy
of the measure Dûξy with respect to L1 .

Theorem 9.1. Let u ∈ GBD(Ω) . Then there exists a function Eu ∈ L1(Ω; Mn×n
sym ) such

that (9.1) holds for Ln -a.e. x ∈ Ω . Moreover for every ξ ∈ Rn \ {0} and for Hn−1 -a.e.
y ∈ Πξ we have

(Eu)ξy ξ · ξ = ∇ûξy (9.2)

L1 -a.e. on Ωξy .

Proof. Since the problem is local, we may assume that u has compact support in Ω. Let
us fix ξ ∈ Rn \ {0} . By modifying u on a set of Lebesgue measure zero, we may assume
that u is a Borel function on Ω and ûξy ∈ BVloc(Ωξy) for every y ∈ Πξ . For every x ∈ Ω we
define

ûξ(x) := lim sup
ρ→0+

1
2ρ

∫ ρ

−ρ
u(x+ sξ) · ξ ds , (9.3)

eξ(x) := lim sup
ρ→0+

1
ρ

∫ ρ

0

ûξ(x+ sξ)− ûξ(x)
s

ds . (9.4)

Then uξ and eξ are Borel functions and have compact support on Ω. By an easy change
of variables we can prove that

eρξ(x) = ρ2eξ(x) (9.5)
for every ρ > 0 and for every x ∈ Ω

By the Lebesgue Differentiation Theorem for every y ∈ Πξ we have

(ûξ)ξy = ûξy L1-a.e. in Ωξy . (9.6)

Since ûξy ∈ BV (Ωξy) and (ûξ)ξy is a good representative of ûξy by (9.3), using well known
properties of BV functions in dimension one (see, e.g., [6, Section 3.2]) we deduce that

(∇ûξy)(t) = lim
s→0

(ûξ)ξy(t+ s)− (ûξ)ξy(t)
s

= (eξ)ξy(t) (9.7)

for every y ∈ Πξ and for L1 -a.e. t ∈ Ωξy .
Let g : R→ [0, 1) be an even continuous function, with g(0) = 0, such that g is strictly

increasing and concave on R+ . It is easy to prove that g satisfies the triangle inequality

g(s+ t) ≤ g(s) + g(t) (9.8)

for every s , t ∈ R . By (9.6) and (9.7) we have

lim
ρ→0+

1
ρ

∫ ρ

0

g
( ûξy(t+ s)− ûξy(t)

s
− (eξ)ξy(t)

)
ds = 0

for every y ∈ Πξ and for L1 -a.e. t ∈ Ωξy . By Fubini’s theorem this implies that

lim
ρ→0+

1
ρ

∫ ρ

0

g
(u(x+ sξ) · ξ − u(x) · ξ

s
− eξ(x)

)
ds = 0 (9.9)
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for Ln -a.e. x ∈ Ω. Integrating over Ω and exchanging the order of integration we obtain

lim
ρ→0+

1
ρ

∫ ρ

0

[ ∫
Ω

g
(u(x+ sξ) · ξ − u(x) · ξ

s
− eξ(x)

)
dx
]
ds = 0 (9.10)

for every ξ ∈ Rn \ {0} . We define eξ(x) = 0 for ξ = 0. Note that (9.10) holds also in this
case.

Let us fix η ∈ Rn . By the triangle inequality (9.8) for every s > 0 small enough we have∫
Ω

g
(u(x+ sη + sξ) · ξ − u(x+ sη) · ξ

s
− eξ(x)

)
dx ≤

≤
∫

Ω

g
(u(x+sη+sξ) · ξ − u(x+sη) · ξ

s
− eξ(x+sη)

)
dx+

∫
Ω

g
(
eξ(x+sη)− eξ(x)

)
dx =

=
∫

Ω

g
(u(x+ sξ) · ξ − u(x) · ξ

s
− eξ(x)

)
dx+

∫
Ω

g
(
eξ(x+ sη)− eξ(x)

)
dx , (9.11)

where, in the last equality, we have used the fact that u and eξ have compact support in Ω.
Let us prove that

lim
s→0+

∫
Ω

g
(
eξ(x+ sη)− eξ(x)

)
dx = 0 . (9.12)

Let us fix τ ∈ T with τ ′(t) > 0 for every t ∈ R . By the continuity of translations in L1(Ω)
we have

lim
s→0+

∫
Ω

∣∣τ(eξ(x+ sη)
)
− τ
(
eξ(x)

)∣∣ dx = 0 .

This implies that for every sequence sk → 0 there exists a subsequence skj such that
τ
(
eξ(x+ skjη)

)
→ τ

(
eξ(x)

)
for Ln -a.e. x ∈ Ω. Since τ is invertible and the inverse

function is continuous, we deduce that eξ(x + skjη) → eξ(x) for Ln -a.e. x ∈ Ω. This
implies that

lim
j→∞

∫
Ω

g
(
eξ(x+ skjη)− eξ(x)

)
dx = 0 ,

by the Dominated Convergence Theorem. Since the sequence sk → 0 is arbitrary, we obtain
(9.12). That equality, together with (9.10) and (9.11), gives

lim
ρ→0+

1
ρ

∫ ρ

0

[ ∫
Ω

g
(u(x+ sη + sξ) · ξ − u(x+ sη) · ξ

s
− eξ(x)

)
dx
]
ds = 0 . (9.13)

Let us fix ξ , η ∈ Rn . We want to prove that the following parallelogram identity holds:

eξ+η(x) + eξ−η(x) = 2eξ(x) + 2eξ(x) (9.14)

for Ln -a.e. x ∈ Ω. By the parallelogram identity (7.1), by the homogeneity condition (9.5),
and by the triangle inequality (9.10) for every s > 0 small enough we have

g(2eξ+η(x) + 2eξ−η(x)− 4eξ(x)− 4eξ(x)) ≤

≤ g
(
eξ+η(x)− u(x+ sξ) · (ξ + η)− u(x− sη) · (ξ + η)

s

)
+

+ g
(
eξ+η(x)− u(x+ sη) · (ξ + η)− u(x− sξ) · (ξ + η)

s

)
+

+ g
(
eξ−η(x)− u(x+ sξ) · (ξ − η)− u(x+ sη) · (ξ − η)

s

)
+

+ g
(
eξ−η(x)− u(x− sη) · (ξ − η)− u(x− sξ) · (ξ − η)

s

)
+

+ g
(
e2ξ(x)− u(x+ sξ) · (2ξ)− u(x− sξ) · (2ξ)

s

)
+

+ g
(
e2η(x)− u(x+ sη) · (2η)− u(x− sη) · (2η)

s

)
.
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Using (9.13) we obtain

lim
ρ→0+

1
ρ

∫ ρ

0

[ ∫
Ω

g(2eξ+η(x) + 2eξ−η(x)− 4eξ(x)− 4eξ(x)) dx
]
ds = 0 ,

which implies ∫
Ω

g(2eξ+η(x) + 2eξ−η(x)− 4eξ(x)− 4eξ(x)) dx = 0 .

Since g(s) = 0 if and only if s = 0, we obtain (9.14).
Let Q be the field of rational numbers. By (9.14) there exists a Borel set N ⊂ Ω, with

Ln(N) = 0, such that for every x ∈ Ω \N the paralleogram identity

eξ+η(x) + eξ−η(x) = 2eξ(x) + 2eξ(x) (9.15)

holds for every ξ , η ∈ Qn . Since eξ(x) is also positively homogeneous of degree 2 by (9.5),
arguing as in the proof of [15, Proposition 11.9] we deduce that for every x ∈ Ω \N there
exists a symmetric Q-bilinear form Bx : Qn×Qn → R such that

eξ(x) = Bx(ξ, ξ)

for every ξ ∈ Qn . This implies that for every x ∈ Ω \ N there exists a symmetric matrix
Eu(x) ∈Mn×n

sym such that
eξ(x) = Eu(x) ξ · ξ (9.16)

for every ξ ∈ Qn .
Let us fix ξ0 ∈ Rn . We want to prove that (9.16) holds for ξ = ξ0 and for Ln -a.e. x ∈ Ω.

Let Ξ be the vector subspace over Q generated by Qn ∪ {ξ0} . Since Ξ is countable, there
exists a Borel set N0 ⊂ Rn , with N0 ⊃ N and Ln(N0) = 0, such that (9.15) holds for every
x ∈ Ω \N0 and for every ξ , η ∈ Ξ. Arguing as before we prove that for every x ∈ Ω \N0

there exists a symmetric matrix A(x) ∈Mn×n
sym such that

eξ(x) = A(x) ξ · ξ (9.17)

for every ξ ∈ Ξ. Since Qn ⊂ Ξ and N ⊂ N0 , equalities (9.16) and (9.17) hold for every
x ∈ Ω \ N0 and for every ξ ∈ Qn . This implies that A(x) = Eu(x) for every x ∈ Ω \ N0 .
Since (9.17) holds for every x ∈ Ω\N0 and for every ξ ∈ Ξ, we deduce that the same is true
for (9.16). Since ξ0 ∈ Ξ, we conclude that (9.16) holds for ξ = ξ0 and for every x ∈ Ω \N0 .

Since ξ0 is arbitrary, we have shown that for every ξ ∈ Rn we have

eξ(x) = Eu(x) ξ · ξ Ln-a.e. in Ω . (9.18)

By Fubini’s theorem (9.18) gives

(eξ)ξy(t) = (Eu)ξy(t) ξ · ξ

for every ξ ∈ Rn \ {0} , for Hn−1 -a.e. y ∈ Πξ , and for L1 -a.e. t ∈ Ωξy . Together with (9.7),
this property implies (9.2) for every ξ ∈ Rn \ {0} and for Hn−1 -a.e. y ∈ Πξ .

By (9.9) and (9.18) for every ξ ∈ Sn−1 and for Ln -a.e. x ∈ Ω we have

lim
ρ→0+

1
ρ

∫ ρ

0

g
(u(x+ sξ) · (sξ)− u(x) · (sξ)− Eu(x) (sξ) · (sξ)

s2

)
ds = 0 .

This implies

lim
ρ→0+

1
ρn

∫ ρ

0

g
(u(x+ sξ) · (sξ)− u(x) · (sξ)− Eu(x) (sξ) · (sξ)

s2

)
sn−1 ds = 0 .

Integrating over Sn−1 and using the formula for polar coordinates we obtain

0 = lim
ρ→0+

1
ρn

∫
Bρ(0)

g
(u(x+ y) · y − u(x) · y − Eu(x) y · y

|y|2
)
dy =

= lim
ρ→0+

1
ρn

∫
Bρ(x)

g
((u(y)− u(x)− Eu(x) (y − x)

)
· (y − x)

|y − x|2
)
dy ,
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which implies (9.1) by Chebyshev’s inequality and by the properties of g .
It remains to prove that Eu ∈ L1(Ω; Mn×n

sym ). Let µ̂ξy and µ̂ξ be the measures introduced
in Definitions 4.8 and 4.10. By (9.2) we have∫

Ωξy

|(Eu)ξy ξ · ξ| dt = |Daûξy|(Ωξy) ≤ µ̂ξy(Ωξy)

for every ξ ∈ Sn−1 and for Hn−1 -a.e. y ∈ Πξ . Integrating over Πξ and using Fubini’s
theorem and (4.6) for every ξ ∈ Sn−1 we obtain∫

Ω

|Eu ξ · ξ| dx ≤ µ̂ξ(Ω) ≤ µ̂u(Ω) < +∞ ,

where µ̂u is the measure introduced in Definition 4.16. This implies that Eu ∈ L1(Ω; Mn×n
sym )

and concludes the proof of the theorem. �

Remark 9.2. By the structure theorem for BD functions (see [5, Theorem 4.5]) and by
Theorem 9.1, for every u ∈ BD(Ω) the function Eu coincides with the density of the
absolutely continuous part of Eu with respect to Ln .

Remark 9.3. Let σ : R→ R be the truncation function defined by σ(s) := min{|s|, 1} . By
Theorems 8.1 and 9.1 for every u ∈ GBD(Ω) we have

|Daûξy|(Bξy) +
∫
Bξy∩J

û
ξ
y

σ
(
[ûξy]

)
dH0 =

∫
Bξy

|(Eu)ξy ξ · ξ| dt+
∫
Bξy∩(Jξu)ξy

σ
(
[u]ξy · ξ

)
dH0

for every ξ ∈ Sn−1 , for Hn−1 -a.e. y ∈ Πξ , and for every Borel set B ⊂ Ω. By the area
formula (see, e.g., [6, Theorem 2.71]) and by Fubini’s theorem it follows that for every
u ∈ GSBD(Ω) the measure µ̂ξu defined by (4.5) satisfies

µ̂ξu(B) =
∫
B

|Eu ξ · ξ| dx+
∫
B∩Ju

σ([u] · ξ) |νu · ξ| dHn−1 ≤
∫
B

|Eu| dx+Hn−1(B ∩ Ju)

for every ξ ∈ Sn−1 and for every Borel set B ⊂ Ω. Therefore for every u ∈ GSBD(Ω) the
measure µ̂u introduced in Definition 4.16 satisfies the estimate

µ̂u(B) ≤
∫
B

|Eu| dx+Hn−1(B ∩ Ju) (9.19)

for every Borel set B ⊂ Ω.

10. Compactness and slicing

In this section we prove some extensions of the well-known Fréchet-Kolmogorov compact-
ness criterion in L1 . In particular we are interested in some conditions that imply sequential
compactness with respect to Ln -a.e. pointwise convergence. The main result is obtained by
assuming suitable properties of the one-dimensional slices.

To simplify the exposition, in this section every function u defined on Ω is always ex-
tended to Rn by setting u(x) = 0 for every x ∈ Rn \ Ω. These results are based on the
notion of modulus of continuity, made precise by the following definition.

Definition 10.1. A modulus of continuity is an increasing continuous function ω : R+→ R+

such that ω(0) = 0.

The first lemma provides a compactness result with respect to pointwise Ln -a.e. conver-
gence. Note that the usual L1 bound is replaced by (10.3).

Lemma 10.2. Let U be a set of Ln -measurable functions from Ω into Rn , let g : R+ → R+

be a nondecreasing continuous function satisfying

g(0) = 0 and lim inf
s→0+

g(s)
s

> 0 , (10.1)
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and let ψ0 : R+ → R+ be an increasing continuous function with

lim
s→+∞

ψ0(s) = +∞ . (10.2)

Assume that there exist a constant M ∈ R+ and a modulus of continuity ω such that∫
Ω

ψ0(|u|) dx ≤M , (10.3)∫
Rn
g
(
|u(x+ hξ)− u(x)|

)
dx ≤ ω(h) (10.4)

for every u ∈ U , for every ξ ∈ Sn−1 , and for every 0 < h < 1 . Then every sequence in
U has a subsequence that converges pointwise Ln -a.e. on Ω to an Ln -measurable function
u : Ω→ Rn .

Proof. By (10.1) there exist a > 0 and r > 0 such that as ≤ g(s) for every 0 ≤ s ≤ 2r .
Let ϕ : Rn → Br(0) be the homeomorphism defined by

ϕ(z) =
rz√

r2 + |z|2
. (10.5)

There exists c ∈ R+ such that |ϕ(z2)−ϕ(z1)| ≤ c|z2 − z1| for every z1, z2 ∈ Rn . Therefore
we have

a

c

∫
Rn
|ϕ(u(x+ hξ))− ϕ(u(x))| dx ≤

∫
Rn
g
(
|ϕ(u(x+ hξ))− ϕ(u(x))|

)
dx ≤

≤
∫

Rn
g
(
c|u(x+ hξ)− u(x)|

)
dx ≤ ω(ch)

for every u ∈ U , for every ξ ∈ Sn−1 , and for every 0 < h < 1. By the Fréchet-Kolmogorov
compactness criterion every sequence uk in U has a subsequence, not relabelled, such that
vk := ϕ(uk) converges strongly in L1(Ω; Rn) to a function v : Ω → Br(0). Passing to a
further subsequence we may assume that vk converges to v pointwise Ln -a.e. on Ω.

Let us prove that |v(x)| < r for Ln -a.e. x ∈ Ω. Let A := {x ∈ Ω : |v(x)| = r} . By (10.5)
we have

uk =
rvk√
r2 − v2

k

, (10.6)

so that |uk(x)| → +∞ for Ln -a.e. x ∈ A . By (10.2) this implies ψ0(|uk(x)|) → +∞ for
Ln -a.e. x ∈ A . By (10.3) and by Fatou’s lemma we conclude that Ln(A) = 0, hence
|v(x)| < r for Ln -a.e. x ∈ Ω. By (10.6) we deduce that uk converges pointwise Ln -a.e. on
Ω to the function

u =
rv√
r2 − v2

.

This concludes the proof. �

The next lemma shows that in the Fréchet-Kolmogorov condition it is enough to consider
only the components of a vector function along the translation vectors.

Lemma 10.3. Let U be a set of Ln -measurable functions from Ω into Rn , let g : R+ → R+

be a nondecreasing continuous function such that

g(0) = 0 and g(s+ t) ≤ g(s) + g(t) (10.7)

for every s , t ∈ R+ , and let ψ0 : R+ → R+ be an increasing continuous function satisfying
(10.2). Assume that there exist a constant M ∈ R+ and two moduli of continuity ω and ω̂
such that (10.3) holds and∫

Rn
g
(
|u(x+ hξ) · ξ − u(x) · ξ|

)
dx ≤ ω(h) , (10.8)

g(hs) ≤ ω̂(h)ψ0(s) (10.9)
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for every u ∈ U , for every ξ ∈ Sn−1 , for every 0 < h < 1 , and for every s ∈ R+ . Then
there exists a modulus of continuity ω̃ such that∫

Rn
g
(
|u(x+ hξ)− u(x)|

)
dx ≤ ω̃(h) (10.10)

for every u ∈ U , for every ξ ∈ Sn−1 , and for every 0 < h < 1 .

Proof. Let us fix ξ ∈ Sn−1 and 0 < h < 1
2 . There exist η1, . . . , ηn−1 ∈ Sn−1 such that

ξ, η1, . . . , ηn−1 form an orthonormal basis. Then

|u(x+ hξ)− u(x)| ≤ |u(x+ hξ) · ξ − u(x) · ξ|+
n−1∑
i=1

|u(x+ hξ) · ηi − u(x) · ηi| (10.11)

for every x ∈ Rn . By the triangle inequality we have

|u(x+ hξ) · ηi − u(x) · ηi| ≤ |u(x+ hξ) · ηi − u(x+
√
hηi) · ηi|+ |u(x+

√
hηi) · ηi − u(x) · ηi| .

(10.12)
Let

ηih :=

√
h√

h+ h2
ηi − h√

h+ h2
ξ ,

so that
|ηih| = 1 , hξ −

√
hηi = −shηih , and |ηih − ηi| ≤

√
2
√
h , (10.13)

with sh :=
√
h+ h2 . By the triangle inequality and by (10.13) we have

|u(x+ hξ) · ηi − u(x+
√
hηi) · ηi| ≤ |u(x+ hξ)| |ηi − ηih|+

+ |u(x+ hξ) · ηih − u(x+
√
hηi) · ηih|+ |u(x+

√
hηih)| |ηih − ηi| ≤

≤ |u(x+
√
hηi − shηih) · ηih − u(x+

√
hηi) · ηih|+

+ |u(x+ hξ)|
√

2
√
h+ |u(x+

√
hηih)|

√
2
√
h .

(10.14)

From (10.7), (10.8), (10.11), (10.12), and (10.14) for every u ∈ U we obtain∫
Rn
g
(
|u(x+ hξ)− u(x)|

)
dx ≤

≤
∫

Rn
g
(
|u(x+ hξ) · ξ − u(x) · ξ|

)
dx+

n−1∑
i=1

∫
Rn
g
(
|u(x− shηih) · ηih − u(x) · ηih|

)
dx+

+ 2(n− 1)
∫

Rn
g
(
|u(x)|

√
2
√
h
)
dx+

n−1∑
i=1

∫
Rn
g
(
|u(x+

√
hηi) · ηi − u(x) · ηi|

)
dx ≤

≤ ω(h) + (n− 1)ω(
√
h+ h2) + 2(n− 1)

∫
Rn
g
(
|u(x)|

√
2
√
h
)
dx+ (n− 1)ω(

√
h) .

By (10.3) and (10.9) we have∫
Rn
g
(
|u(x)|

√
2
√
h
)
dx ≤ ω̂(

√
2
√
h)
∫

Rn
ψ0(|u(x)|) dx ≤M ω̂(

√
2
√
h) ,

which, together with the previous inequality, gives∫
Rn
g
(
|u(x+ hξ)− u(x)|

)
dx ≤

≤ ω(h) + (n− 1)ω(
√
h+ h2) + 2(n− 1)M ω̂(

√
2
√
h) + (n− 1)ω(

√
h) .

for every 0 < h < 1
2 . By the triangle inequality (10.7) this implies that (10.10) holds

for every 0 < h < 1 with ω̃(h) := 2ω(h/2) + 2(n − 1)ω(
√

2h+ h2/2) + 4(n− 1)M ω̂(
√
h)

+ 2(n− 1)ω(
√
h/
√

2). �
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Remark 10.4. Inequality (10.9) is satisfied if

g(s) ≤ ψ0(s) and ψ0(hs) ≤ ω̂(h)ψ0(s) (10.15)

for every s ∈ R+ and for every 0 < h < 1. Note that the second inequality in (10.15)
holds when ψ0(s) := sp with p > 0. In particular, Lemma 10.8 can be applied with
g(s) = ψ0(s) = s for every s ∈ R+ .

Remark 10.5. Inequality (10.9) is satisfied if

ψ0(0) > 0 and lim
s→+∞

ψ0(s)
g(s)

= +∞ . (10.16)

Indeed, (10.9) is equivalent to

lim
h→0+

sup
s∈R+

g(hs)
ψ0(s)

= 0 . (10.17)

By (10.16) the supremum is attained at a point sh . Let hj be a sequence in R+ converging
to 0. If shj is bounded, then g(hjshj )/ψ0(shj ) ≤ g(hjshj )/ψ0(0)→ 0 since g is continuous
and g(0) = 0 by (10.7). It shj → +∞ , then g(hjshj )/ψ0(shj ) ≤ g(shj )/ψ0(shj ) → 0
by (10.16). Since every sequence shj has either a bounded subsequence or a subsequence
diverging to +∞ , we obtain (10.17). Since (10.7) gives g(s) ≤ 2sg(1) for every s ≥ 1,
(10.16) is always satisfied if ψ0(0) > 0 and ψ0(s)/s→ +∞ as s→ +∞ .

Remark 10.6. When Ω has a Lipschitz boundary, Lemma 10.8 provides a quick proof of
the compactness of the embedding of BD(Ω) into L1(Ω; Rn). For every u ∈ C∞c (Rn; Rn),
for every ξ ∈ Sn−1 , and for every h > 0 we have

|u(x+ hξ) · ξ − u(x) · ξ| ≤
∫ h

0

|Du(x+ tξ)ξ · ξ| dt =
∫ h

0

|Eu(x+ tξ)ξ · ξ| dt

where (Eu)ij = 1
2 (Diuj +Djui). It follows that∫

Rn
|u(x+ hξ) · ξ − u(x) · ξ| dx ≤

∫ h

0

(∫
Rn
|Eu(x+ tξ)ξ · ξ| dx

)
dt ≤ h

∫
Rn
|Eu(x)| dx .

If u ∈ BD(Ω), we can approximate by convolutions its extension, which belongs to BD(Rn)
by the regularity of the boundary, and we get∫

Rn
|u(x+ hξ) · ξ − u(x) · ξ| dx ≤ h|Eu|(Rn) .

If U is a bounded subset of BD(Ω), we can apply Lemma 10.3 with g(s) = ψ0(s) = s (see
Remark 10.4) and we obtain that there exists a modulus of continuity ω̃ such that∫

Rn
|u(x+ hξ)− u(x)| dx ≤ ω̃(h)

for every u ∈ U and for every 0 < h < 1. By the Fréchet-Kolmogorov compactness criterion
U is relatively compact in L1(Ω; Rn).

In the next lemma we obtain the relative compactness with respect to pointwise Ln -a.e.
convergence from the behaviour of the one-dimensional slices. The proof follows the lines of
[1, Theorem 6.6]. The main difference is that our assumptions concern only the components
u · ξ of u and the corresponding slices in the same direction ξ . Moreover we cannot assume
L∞ bounds in view of the application to Theorem 11.1. This makes the statement of the
lemma quite involved.

Lemma 10.7. Let U be a set of Ln -measurable functions from Ω into Rn , let g : R+ → R+

be a nondecreasing continuous function satisfying (10.1), (10.7), and

g(s) ≤ s for every s ∈ R+ , (10.18)
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and let ψ0 : R+ → R+ be an increasing continuous function satisfying (10.2). Assume that
there exist M ∈ R+ such that (10.3) holds for every u ∈ U and a modulus of continuity ω̂
such that (10.9) holds for every 0 < h < 1 and for every s ∈ R+ . Assume also that for
every δ > 0 we can find a modulus of continuity ωδ such that for every ξ ∈ Sn−1 there
exists a set Vξδ of Ln -measurable functions from Ω into R with the following properties:

(a) for every u ∈ U there exists v ∈ Vξδ with∫
Rn
g(|u(x) · ξ − v(x)|) dx ≤ δ ; (10.19)

(b) for every v ∈ Vξδ and for Hn−1 -a.e. y ∈ Πξ we have∫
R
|vξy(t+ h)− vξy(t)| dt ≤ ωδ(h) (10.20)

for every 0 < h < 1 .
Then every sequence in U has a subsequence that converges pointwise Ln -a.e. on Ω to
an Ln -measurable function u : Ω→ Rn . If, in addition, g(s) = s for every s ∈ R+ ,
then U ⊂ L1(Ω; Rn) and every sequence in U has a subsequence that converges strongly
in L1(Ω; Rn) .

Note that the modulus of continuity in (10.20) does not depend on y , nor on ξ .

Proof of Lemma 10.7. Let us fix u ∈ U , δ > 0, and ξ ∈ Sn−1 . Then there exists v ∈ Vξδ
satisfying (10.19). By (10.7), (10.18), (10.20) for every 0 < h < 1 we have∫

Rn
g
(
|u(x+ hξ) · ξ − u(x) · ξ|

)
dx ≤ 2δ +

∫
Rn
|v(x+ hξ)− v(x)| dx =

= 2δ +
∫
πξ(Ω)

(∫
R
|vξy(t+ h)− vξy(t)| dt

)
dHn−1(y) ≤ 2δ + cΩ ωδ(h) ,

(10.21)

where cΩ := ωn−1diam(Ω)n−1 . Let

ω(h) := inf
δ>0

(
2δ + cΩ ωδ(h)

)
By (10.21) we have (10.8) for every u ∈ U , for every ξ ∈ Sn−1 , and for every 0 < h < 1.
Since ω(h) → 0 as h → 0+, by Lemma 10.3 there exists a modulus of continuity ω̃ such
that (10.10) holds. The main conclusion follows now from Lemma 10.2.

If g(s) = s , then s ≤ ω̂(1)ψ0(s) for every s ∈ R+ by (10.9). Therefore (10.3) implies
that U ⊂ L1(Ω; Rn) and that U is bounded in L1(Ω; Rn). The relative compactness in
L1(Ω; Rn) follows now from the Fréchet-Kolmogorov criterion. �

In the proof of the compactness theorem for GBD(Ω) we need the following estimate of
the modulus of continuity in L1 of the translations of BV functions of one real variable.

Lemma 10.8. Let z ∈ BV (R) . Assume that there exist two constants a > 0 and b > 0
such that

|Dz|(R \ J1
z ) +H0(J1

z ) ≤ a and ‖z‖L∞(R) ≤ b . (10.22)
Then ∫

R
|z(t+ h)− z(t)| dt ≤ (a+ 2ab)h (10.23)

for every h > 0 .

Proof. By (10.22) H0(J1
z ) ≤ a < +∞ and for every t ∈ J1

z we have |Dz|({t}) = |[z](t)| ≤ 2b ,
so that |Dz|(J1

z ) ≤ 2ab . Using (10.22) again, we obtain |Dz|(R) ≤ a+ 2ab . Regularizing z
by convolutions, we find a sequence zk in C∞(R) ∩BV (R) such that

zk → z strongly in L1(R) and
∫

R
|z′k| dt ≤ a+ 2ab for every k . (10.24)
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For every t ∈ R and for every h > 0 we have

|zk(t+ h)− zk(t)| ≤
∫ h

0

|z′k(t+ s)| ds .

By (10.24), integrating over R and interchanging the order of integration we get∫
R
|zk(t+ h)− zk(t)| dt ≤

∫
R

(∫ h

0

|z′k(t+ s)| ds
)
dt =

=
∫ h

0

(∫
R
|z′k(t+ s)| dt

)
ds = h

∫
R
|z′k(t)| dt ≤ (a+ 2ab)h .

Passing to the limit se k →∞ and using (10.24) we obtain (10.23). �

11. Two compactness results

In this section we prove the following analogue of the compact embedding of BD(Ω) into
L1(Ω; Rn): every subset of GBD(Ω) satisfying uniform bounds for the measures µ̂ξu and
for suitable integrals involving u has a subsequence that converges pointwise Ln -a.e. on Ω.
This allows us to obtain a compactness result for GSBD(Ω), following the proof of the
analogous result for SBD(Ω) developed in [9]. As in the previous section, every function u
defined on Ω is always extended to Rn by setting u(x) = 0 for every x ∈ Rn \ Ω.

Theorem 11.1. Let U be a subset of GBD(Ω) . Suppose that there exist a constant M ∈ R+

and an increasing continuous function ψ0 : R+ → R+ , with

lim
s→+∞

ψ0(s) = +∞ , (11.1)

such that for every u ∈ U and for every ξ ∈ Sn−1 we have∫
Ω

ψ0(|u|) dx ≤M and µ̂ξu(Ω) ≤M , (11.2)

where µ̂ξu is the measure introduced in Definition 4.10. Then every sequence in U has a sub-
sequence that converges pointwise Ln -a.e. on Ω to an Ln -measurable function u : Ω→ Rn .
If, in addition

lim
s→+∞

ψ0(s)
s

= +∞ , (11.3)

then U ⊂ L1(Ω; Rn) and every sequence in U has a subsequence that converges strongly
in L1(Ω; Rn) .

Proof. It is enough to prove the result for every relatively compact open subset of Ω. There-
fore it is not restrictive to assume that Ω is the union of a finite number of open rectangles.
This implies, in particular, that H0

(
∂(Ωξy)

)
< +∞ for every ξ ∈ Sn−1 and for every y ∈ Πξ ,

so that for every u ∈ U the slice ûξy belongs to BV (Ωξy) (see Proposition 3.4), and hence
to BV (R).

To prove tha main assertion, it is enough to show that U satisfies the hypotheses of
Lemma 10.7. For every u ∈ U , ξ ∈ Sn−1 , and a > 0 we define

Âξ,au := {y ∈ Πξ : ûξy ∈ BV (R) , |Dûξy|(R \ J1
ûξy

) +H0(J1
ûξy

) ≤ a} . (11.4)

Moreover we set B̂ξ,au := Πξ \ Âξ,au and we define

Aξ,au := {x ∈ Ω : πξ(x) ∈ Âξ,au } and Bξ,au := {x ∈ Ω : πξ(x) ∈ B̂ξ,au } . (11.5)

Since for Hn−1 -a.e. y ∈ B̂ξ,au we have ûξy ∈ BV (R) and

|Dûξy|(Ωξy \ J1
ûξy

) +H0(Ωξy ∩ J1
ûξy

) +H0
(
∂(Ωξy)

)
> a,
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by Chebyshev’s inequality and by (4.4), (4.5), and (11.2) we have

Hn−1(B̂ξ,au ) ≤ M +Hn−1(∂Ω)
a

,

hence by Fubini’s theorem

Ln(Bξ,au ) ≤ M +Hn−1(∂Ω)
a

diam(Ω) . (11.6)

For every b > 0 let σb be the truncation function defined by σb(t) = −b for t ≤ −b ,
σb(t) = t for −b ≤ t ≤ b , and σb(t) = b for t ≥ b . We define vξ,au,b ∈ L1(Ω) by setting

vξ,au,b :=

{
σb(u · ξ) in Aξ,au ,

0 in Bξ,au .
(11.7)

Let g be a function satisfying all assumptions of Lemma 10.7 and such that

lim
s→+∞

ψ0(s)
g(s)

= +∞ .

For every δ > 0 there exists bδ > 0 such that g(s) ≤ δ
4Mψ0(s) for every s ≥ bδ . By (11.6)

there exists aδ > 0 such that g(b)Ln(Bξ,au ) ≤ δ
2 . Therefore (11.2) gives∫

Ω

g
(
|u · ξ − vξ,au,bδ |

)
dx =

∫
Aξ,au

g
(
|u · ξ − σbδ(u · ξ)|

)
dx+

∫
Bξ,au

g
(
|u · ξ|

)
dx ≤

≤ 2
∫
{|u·ξ|>b}

g(|u|) dx+ g(b)Ln(Bξ,au ) ≤ δ

2M

∫
Ω

ψ0(|u|) dx+ g(b)Ln(Bξ,au ) ≤ δ .
(11.8)

Then we define Vξδ := {vξ,aδu,bδ
: u ∈ U} , so that Condition (a) of Lemma 10.7 is satisfied.

As for Condition (b), we observe that, if v = vξ,aδu,bδ
∈ Vξδ , then by (11.7) the slices vξy

satisfy vξy = σbδ(û
ξ
y) for every y ∈ Âξ,aδu and vξy = 0 for every y ∈ B̂ξ,aδu . Since, by definition,

ûξy ∈ BV (R) for every y ∈ Âξ,au , it follows that vξy ∈ BV (R) and ‖vξy‖L∞(R) ≤ bδ for every
y ∈ Πξ . Moreover, |Dvξy|(B) ≤ |Dûξy|(B) for every Borel set B ⊂ R , Jvξy ⊂ Jûξy , and |[vξy]| ≤
|[ûξy]| on Jvξy , hence J1

vξy
⊂ J1

ûξy
. Therefore (11.4) implies that |Dvξy|(R \ J1

vξy
) +H0(J1

vξy
) =

|Dvξy|(R\J1
ûξy

)+|Dvξy|(J1
ûξy
\J1

vξy
)+H0(J1

vξy
) ≤ |Dûξy|(R\J1

ûξy
)+H0(J1

ûξy
\J1

vξy
)+H0(J1

vξy
) ≤ aδ for

every y ∈ Âξ,aδu . Since |Dvξy|(R\J1
vξy

)+H0(J1
vξy

) = 0 for every y ∈ B̂ξ,aδu , using Lemma 10.8

we obtain (10.20) with ωδ(h) := (aδ + 2aδbδ)h . Therefore Condition (b) of Lemma 10.7 is
satisfied and the proof of the main assertion is complete.

If (11.3) holds, the U ⊂ L1(Ω; Rn) by (11.2) and we can take g(s) = s in the proof,
thanks to Remark 10.5. The convergence in L1(Ω; Rn) follows now from the last part of
Lemma 10.7. �

The following corollary is an easy consequence of Theorem 11.1 and of the arguments
used in the proof of Lemma 4.18.

Corollary 11.2. Let uk be sequence in GBD(Ω) . Suppose that there exist an increasing
continuous function ψ0 : R+ → R+ satisfying (11.1) and a constant M ∈ R+ such that∫

Ω

ψ0(|uk|) dx ≤M and µ̂uk(Ω) ≤M (11.9)

for every k , where µ̂uk is the measure introduced in Definition 4.16. Then there exist a sub-
sequence, still denoted by uk , and a function u ∈ GBD(Ω) , such that uk → u pointwise Ln -
a.e. on Ω . If, in addition, (11.3) holds, then uk ∈ L1(Ω; Rn) for every k , u ∈ L1(Ω; Rn) ,
and the subsequence converges strongly in L1(Ω; Rn) .
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Proof. Since µ̂ξuk ≤ µ̂uk for every ξ ∈ Sn−1 and for every k , by Theorem 11.1 there exist
a subsequence, still denoted by uk , and an Ln -measurable function u : Ω→ Rn , such that
uk → u pointwise Ln -a.e. on Ω. We want to prove that u ∈ GBD(Ω).

By (11.9) there exist a subsequence, still denoted by µ̂uk , and a measure λ ∈ M+
b (Ω),

such that µ̂uk ⇀ λ weakly∗ in Mb(Ω). By Theorem 3.5 and Definitions 4.8, 4.10, and 4.16
for every τ ∈ T , for every ξ ∈ Sn−1 , and for every ϕ ∈ C1

c (Ω), with |ϕ| ≤ 1 in Ω, we have∫
Ω

τ(uk · ξ)∇ϕ · ξ dx ≤
∫

Ω

|ϕ| d|Dξ

(
τ(uk · ξ)

)
| ≤

∫
Ω

|ϕ| dµ̂ξuk ≤
∫

Ω

|ϕ| dµ̂uk .

Passing to the limit as k →∞ we get∫
Ω

τ(u · ξ)∇ϕ · ξ dx ≤
∫

Ω

|ϕ| dλ .

This implies that for every ξ ∈ Sn−1 and for every τ ∈ T the partial derivative Dξ

(
τ(u · ξ)

)
belongs to Mb(Ω) and its total variation satisfies∣∣Dξ

(
τ(u · ξ)

)∣∣(B) ≤ λ(B)

for every Borel set B ⊂ Ω. Therefore u satisfies Condition (a) of Definition 4.1 for every
ξ ∈ Sn−1 , hence u ∈ GBD(Ω).

If (11.3) holds, then uk ∈ L1(Ω; Rn) for every k by (11.9). The other assertions follow
from the last part of Theorem 11.1. �

We are now in a position to prove the compactness result for GSBD(Ω).

Theorem 11.3. Let uk be a sequence in GSBD(Ω) . Suppose that there exist a constant
M ∈ R+ and two increasing continuous functions ψ0 : R+ → R+ and ψ1 : R+ → R+ , with

lim
s→+∞

ψ0(s) = +∞ and lim
s→+∞

ψ1(s)
s

= +∞ , (11.10)

such that ∫
Ω

ψ0(|uk|) dx+
∫

Ω

ψ1(|Euk|) dx+Hn−1(Juk) ≤M (11.11)

for every k . Then there exist a subsequence, still denoted by uk , and a function u ∈
GSBD(Ω) , such that

uk → u pointwise Ln-a.e. on Ω , (11.12)

Euk ⇀ Eu weakly in L1(Ω; Mn×n
sym ) , (11.13)

Hn−1(Ju) ≤ lim inf
k→∞

Hn−1(Juk) . (11.14)

If, in addition, (11.3) holds, then uk ∈ L1(Ω; Rn) for every k , u ∈ L1(Ω; Rn) , and the
subsequence converges strongly in L1(Ω; Rn) .

Proof. By (11.10) and (11.11) there exists a constant M1 ∈ R+ such that∫
Ω

|Euk| dx+Hn−1(Juk) ≤M1

for every k . Therefore (9.19) implies that µ̂uk(Ω) ≤ M1 for every k . By Corollary 11.2
there exist a subsequence, still denoted by uk , and a function u ∈ GBD(Ω), such that
uk → u pointwise Ln -a.e. on Ω.

Taking into account Remark 4.3, to prove that u ∈ GSBD(Ω) it is enough to show that
for Hn−1 -a.e. y ∈ Πξ the function ûξy := uξy · ξ belongs to GSBV (Ωξy). This property, as
well as (11.12)-(11.14), can be obtained as in the proof of [9, Theorem 1.1]. We have just to
redefine the function IIy,ξ(uk) introduced on page 342 of that paper by

IIy,ξ(uk) :=
∫

Ωξy

ψ0

(
|(ûk)ξy|

)
dt ,
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and to modify the proof accordingly. In particular we cannot use the boundedness in BD(Ω)
and we apply the compactness theorem for GSBV (Ωξy) (see [6, ???]) to the one dimensional
slices in order to obtain (2.13) and the formula after (2.18) of [9].

If (11.3) holds, the assertions at the end of the theorem follow from the last part of
Corollary 11.2. �

12. Two examples

In this section we give two examples that show that the compactness result for GSBD(Ω)
(Theorem 11.3) cannot be easily improved. The first example shows that we cannot expect
convergence in L1(Ω; Rn) if we remove (11.3). More precisely, we show that, if we take
ψ0(s) = s for every s ∈ R+ , then, in general, we have only pointwise Ln -a.e. convergence.
Note that in this case (11.11) gives that uk is bounded in L1(Ω; Rn) and that the pointwise
limit u belongs to L1(Ω; Rn) by the Fatou lemma.

Example 12.1. Let x0 ∈ Ω, let ξ ∈ Sn−1 , and, for every k , let uk ∈ SBV (Ω; Rn) be
defined by uk(x) = knξ for |x − x0| < 1

k and uk(x) = 0 for |x − x0| ≥ 1
k . Then Euk = 0

Ln -a.e. on Ω, Hn−1(Juk) = nωn/k
n−1 , and

∫
Ω
|uk| dx = ωn for k large enough. Therefore

the hypotheses of Theorem 11.3 are satisfied with ψ0(s) := s and ψ1(s) := s2 for every
s ∈ R+ . The sequence uk converges to 0 pointwise Ln -a.e. on Ω, but uk does not converge
to 0 in L1(Ω; Rn).

In the rest of this section we construct a sequence uj in SBD(Ω) that satisfies all
hypotheses of the compactness result for GSBD(Ω) (Theorem 11.3), but the limit function u
does not belong to BD(Ω). Since u belongs to GSBD(Ω), this shows also that GSBD(Ω) 6=
SBD(Ω) and GBD(Ω) 6= BD(Ω). For the construction we need the elementary result
contained in the following lemma.

Lemma 12.2. Let ρk be a sequence in R+ such that
∞∑
k=1

ρnk < +∞ . (12.1)

Then there exists a sequence xk in Rn converging to 0 such that the balls Bρk(xk) are
pairwise disjoint.

Proof. It is not restrictive to assume that 0 < ρk+1 ≤ ρk ≤ 1
2 for every k . For every integer

i ≥ 1 let ki be the smallest index k such that ρk ≤ 2−i−1 . Then k1 = 1 and for every
ki ≤ k < ki+1 we have

2−i−1 < 2ρk ≤ 2−i , (12.2)

which, together with (12.1), gives
∞∑
i=1

(ki+1 − ki) 2−ni < +∞ . (12.3)

Since ρk > 0 for every k , we have

lim
i→∞

ki = +∞ (12.4)

Let ai be the largest integer such that (ki+1 − ki + 1) 2−ni ≤ 2−nai . By definition we have

ai ≤ i and 2−nai−n < (ki+1 − ki + 1) 2−ni ≤ 2−nai . (12.5)

By (12.3) and (12.5) we have
∞∑
i=1

2−nai < +∞ . (12.6)
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Let

βj :=
∞∑
i=j

2−nai . (12.7)

By (12.6) the sequence βj is decreasing and tends to 0 as j → ∞ . Let j0 be the largest
integer such that β1 ≤ 2−nj0 . For every integer j ≥ j0 let mj be the smallest integer i
such that βi ≤ 2−nj . Then mj0 = 1 and for every mj ≤ i < mj+1 we have

2−nj−n < βi ≤ 2−nj . (12.8)

Since βi > 0 for every i , we have

lim
j→∞

mj = +∞ . (12.9)

Moreover by (12.7) and (12.8) we have∑
mj≤i<mj+1

2−nai < βmj ≤ 2−nj , . (12.10)

If i ≥ mj , by (12.7) we have

2−nai < βi ≤ βmj ≤ 2−nj , (12.11)

so that by (12.5)
j < ai ≤ i . (12.12)

Let Q = [0, 1)n and let Qj := 2−jQ . By (12.12) for mj ≤ i < mj+1 the set Qj−1 \ Qj
is the union of disjoint cubes of the form z + Qi , where z ∈ 2−iZn and Z is the set of
integers. We start with i = mj and observe that (ki − ki+1) 2−ni < 2−nai < 2−nj ≤
2−n(j−1) − 2−nj = Ln(Qj−1 \ Qj) by (12.5) and (12.11). Therefore we can find a family
Q
j,mj
k , kmj ≤ k < kmj+1 , of pairwise disjoint cubes of the form described above and

contained in Qj−1 \Qj . Suppose now that i = mj +1 < mj+1 and let A be the union (with
respect to k ) of the cubes Qj,mjk , kmj ≤ k < kmj+1 . By (12.5) we have Ln(A) < 2−namj ,
so that Ln

(
(Qj−1 \ Qj) \ A

)
> 2−nj(2n − 1) − 2−namj ≥ 2−nai by (12.10). Since the set

(Qj−1 \ Qj) \ A is the union of disjoint cubes of the form z + Qi , where z ∈ 2−iZn and
i = mj + 1, there exists a family Qj,ik , ki ≤ k < ki+1 of pairwise disjoint cubes of this form
and contained in (Qj−1\Qj)\A . Continuing in the same way for every mj ≤ i < mj+1 , we
construct a family Qj,ik , ki ≤ k < ki+1 of pairwise disjoint cubes of side 2−i and contained
in Qj−1 \Qj , such that the cubes of two different families have empty intersection.

Let xj,ik , j ≥ j0 , mj ≤ i < mj+1 , ki ≤ k < ki+1 , be the centres of the cubes Qj,ik . By
(12.2) we have

Bρk(xj,ik ) ⊂ Qj,ik . (12.13)

Let xk be the sequence defined by xk := xj,ik for ki ≤ k < ki+1 , mj ≤ i < mj+1 , and
j ≥ j0 . By (12.4) and (12.9) we have xk → 0. Since the cubes Qj,ik are pairwise disjoint,
the balls Bρk(xk) are pairwise disjoint by (12.13). �

The following example shows that GSBD(Ω) 6= SBD(Ω) and GBD(Ω) 6= BD(Ω).
Moreover it shows that, if a sequence in SBD(Ω) satisfies the assumptions of Theorem 11.3,
but does not satisfy the assumptions of [9, Theorem 1.1], then the limit of a subsequence
may not belong to SBD(Ω).

Example 12.3. Assume that n ≥ 2. Let p > 1 and let ρk be a sequence of positive real
numbers such that

∞∑
k=1

ρn−1
k < +∞ and

∞∑
k=1

ρ
n−1− 1

p

k = +∞ , (12.14)
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for instance ρk := k−1/(n−1− 1
p ) . By Lemma 12.2 there exist a sequence xk and a point

x0 ∈ Ω such that the balls Bk := Bρk(xk) are pairwise disjoint and xk → x0 as k → ∞ .
Let Ak be a sequence of antisymmetric n×n matrices such that

|Ak| = ρ
−1− 1

p

k (12.15)

for every k . From (12.14) and (12.15) we obtain
∞∑
k=1

|Ak|pρp+nk < +∞ and
∞∑
k=1

|Ak| ρnk = +∞ . (12.16)

For every k let wk be the function defined by wk(x) = Ak(x−xk) if x ∈ Bk and wk(x) = 0
if x ∈ Ω \Bk . Finally, let

uj :=
j∑

k=1

wk and u :=
∞∑
k=1

wk .

For every j the function uj belongs to SBV (Ω; Rn) ⊂ SBD(Ω) ⊂ GSBD(Ω). Moreover
uj ∈ L∞(Ω; Rn) and Euj = 0 Ln -a.e. in Ω, since each matrix Ak is antisymmetric. As
|wk| ≤ |Ak| ρk , using the inequalities in (12.14) and (12.16) we find a constant M ∈ R+

such that (11.11) holds with ψ0(s) = ψ1(s) := sp . The inequality in (12.16) implies also
that u ∈ Lp(Ω; Rn) and uj → u strongly in Lp(Ω; Rn) as j → ∞ . By Theorem 11.3 we
have u ∈ GSBD(Ω). This follows also from Condition (b) of Definition 4.1, using the fact
that for every Borel set B ⊂ Ω, for every ξ ∈ Sn−1 , and for Hn−1 -a.e. y ∈ Πξ we have
|Dûξy|(Bξy \ Jûξy ) = 0 and∫

Πξ

(
|Dûξy|(Bξy ∩ Jûξy \J

1
ûξy

) +H0(Bξy ∩ J1
ûξy

)
)
dHn−1(y) ≤

∫
Πξ
H0(Bξy ∩ Jûξy ) dHn−1(y) ≤

≤
∞∑
k=1

∫
Πξ
H0(Bξy ∩ (∂Bk)ξy) dHn−1(y) ≤

∞∑
k=1

Hn−1(B ∩ ∂Bk) =: λ(B) < +∞ ,

where the last inequality follows from (12.14).
Let Eu be the matrix-valued Radon measure considered in Remark 4.5. For every ε > 0

we have

|Eu|(Ω \Bε(x0)) ≥ 1√
2

kε∑
k=1

∫
Bk

|Ak(x− xk)| dHn−1(x) ≥ cn
kε∑
k=1

|Ak| ρnk , (12.17)

where kε is the largest index such that Bk ∩ Bε(x0) = Ø for every k ≤ kε , and cn is a
constant depending only on the dimension n . If u ∈ BD(Ω), then |Eu|(Ω \ Bε(x0)) ≤
|Eu|(Ω) < +∞ for every ε > 0. By (12.17) this contradicts the equality in (12.16). There-
fore u /∈ BD(Ω).
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