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Abstract. The limit behavior of a periodic assembly of a finite number of elasto-plastic
phases is investigated as the period becomes vanishingly small. A limit quasi-static evo-
lution is derived through two-scale convergence techniques. It can be thermodynamically
viewed as an elasto-plastic model, albeit with an infinite number of internal variables.
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1. Introduction

1.1. Introductory remarks. In a previous paper [11], we undertook what we believe to be a
thorough revamping of heterogeneous, small strain elasto-plastic evolutions, so as to account for
multi-phase composites with arbitrary yield surfaces and elasticities, provided only that the inter-
faces between the phases be piecewise C1. This laid the ground work for the present investigation
in which we propose to (re)visit periodic homogenization in the same context.

Elasto-plastic composites belong to the familiar of many engineering fields, and their behavior
has been meticulously investigated in a plethoric literature. When focussing on limit analysis, that
is on the prediction of the ultimate load that a composite elasto-plastic structure can withstand, the
engineering literature is extensive, while the mathematical analysis of the underlying variational
problem has been successfully undertaken in various works of G. Bouchitté and/or P.-M. Suquet
(see e.g. [5], [19], [6], [7]). However, when elasto-plastic evolutions are envisioned, both engineering
and mathematical literature fall short of any bona fide discussion of the interaction between the
evolution and the elasto-plastic microstructure. Rather, the default position is to rely on strain
hardening as a regularizing mechanism under which the homogenization procedure becomes much
simpler (see e.g. [21], [22], [17], [15] as far as the mathematical literature is concerned).

In this paper, we propose to confront the homogenization of the evolution of a periodic multi-
phase elasto-plastic composite without any regularizing effect. The periodicity restriction is unfor-
tunate, but, in all fairness, we are clueless if departing from the periodic framework, although we
suspect that ergodicity could easily replace periodicity. In turn, the periodicity assumption will
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allow us to resort to the very efficient method of two-scale convergence first proposed by [16], [1]
in a classical elliptic setting, then refined by many authors. As in our previous contribution [11],
we pay close attention to the issue of the duality between the stress fields which are essentially
square-integrable functions and the plastic strains which are bounded measures; we attempt to
clearly circumscribe those steps where duality is truly needed.

The paper is organised as follows.
In Section 2, we detail the structure of the envisioned periodic microstructures and apply the

existence results for a quasi-static evolution that were derived in [11] to the specific setting at hand.
It proves most convenient to view the periodic structure as that which is given on a N -dimensional
torus denoted henceforth by Y. In Section 3, we state the various consequences of the existence
result (maximal dissipation, flow rule, ...), this for an evolution that takes place exclusively on
Y. We do so because those results will then serve as the building block for the interpretation of
the obtained “homogenized evolution” (an evolution in both the macroscopic variable x and its
microscopic counterpart y), provided that the macroscopic dependence of all fields can be properly
localized.

Elasto-plasticity gives rise to plastic strains that are merely bounded measures, so that the
tools that will be used in the homogenization process have to account for weak-* convergences in
measure spaces. Since we have specialized the microstructures to the periodic setting, two-scale
convergence is a usual tool that we propose to extend to our specific setting. Of course, two-scale
convergence of bounded measures has already been extensively discussed, starting with [2] in a
BV -setting. However, our measures are born out of the complex kinematics of elasto-plasticity,
which is why we revisit the two-scale convergence process in this specific framework in Section 4.
In the first subsection, we reframe the general existence result for two-scale limits of sequences of
bounded measures, so as to prove in Lemma 4.6 a two-scale version of Reshetnyak’s lower semi-
continuity theorem (see e.g. [18, Theorem 1.7]); of course, we do not contend that Lemma 4.6
is new in and of itself. In Subsection 4.2, we characterize more specifically those measures that
arise out of symmetrized gradients of BD-functions (see Propositions 4.7 and 4.10), which in turn
allows us to define the proper two-scale kinematics in Definition 5.1. Even when restricted to
BV -functions our characterization is more elementary than that proposed in [2] because we avoid
the use of Banach space-valued measures (more specifically of measures with values in periodic
BV functions).

In Subsection 6.1, we address the homogenization process for the elasto-plastic evolution. To
this effect, we first have to prove a lower semi-continuity result for the dissipation in a two-scale
setting (see Theorem 5.7) which is reminiscent of an analogous result in the heterogeneous setting
[11, Proposition 2.3]. We then prove an inequality between two-scale dissipation and two-scale
plastic work (Remark 5.13) which heavily relies on the results of Section 3. Finally, we prove
that the heterogeneous elasto-plastic evolution of Section 2 two-scale converges at each time to a
two-scale evolution (Theorem 6.2). That evolution is an evolution on the two-scale limits at each
time, u(t, x), E(t, x, y), P (t, x, y), of the various kinematic fields, i.e., the displacement field uε(t),
the elastic strain eε(t), and the plastic strain pε(t). In the resulting evolution, the y-dependence
– that is the dependence upon the micro-structural variable – cannot be integrated out, which
results in a thermodynamical model with an infinite number of internal variables (essentially the
plastic strains at each point y of the torus Y).

In which sense is this still an elasto-plastic evolution? Such is the question that we address in
the final subsection of this paper (Subsection 6.2). The goal is to recover some kind of flow rule, a
harbinger of plasticity. This is achieved in Theorem 6.6 which demonstrates that, at almost every
macroscopic point x, the two-scale plastic flow follows the rules of normality – that is that it is
oriented along the normal to the yield surface, a y-dependent hypersurface – and this at all points
of the torus Y. The proof of Theorem 6.6 heavily relies upon Theorem 5.12 which is in turn a
localized version of the previously described Remark 5.13.

To achieve the results of Section 6 and in the spirit of e.g. [20], [13], [10], [11], we need to
use the duality between plastic strain and its counterpart the deviatoric stress. But those are not
defined on the same set of macroscopic points x because the plastic strain is a measure in both
x and y, which can thus concentrate in both variables, while the deviatoric stress is only defined
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LNx ⊗ LNy -a.e. Consequently, to even make sense of the duality for a fixed x, we need to resort
to the concept of disintegration of measures, Specifically, we need to disintegrate the two-scale
kinematically admissible fields and to define the accompanying duality results. This is performed
in the technical Section 5 which also includes the already mentioned lower semi-continuity result
(Theorem 5.7) and the inequality between dissipation and the global stress-plastic strain duality
product (Remark 5.13).

Because of that flow rule, we are seemingly at liberty to incorporate the obtained two-scale
evolution into the framework of standard generalized materials advocated in [12]. To do so however,
we do need an infinite number of internal variables. Those are the plastic strains Py(t, x) :=
P (t, x, y), with y ∈ Y . See Remark 6.7 for more details on the extent to which the previous
statement is justified.

Finally, the reader will undoubtedly note that force loads are not considered in this work. As
explained in [11, Remark 2.9], this is no restriction, provided that a uniform safe load condition
with a smooth enough associated deviatoric stress is satisfied; for details refer to that remark in
[11]. If such is not the case, then one should be very careful because, drawing a parallel with the
discussion in [6], one should expect that, besides the bulk-type homogenization detailed in this
work, a boundary-type homogenization also occurs.

1.2. Notation. The following notation will be adopted throughout.

General notation. For A ⊆ RN , 1A denotes the characteristic function of A, i.e., 1A(x) = 1
for x ∈ A and 1A(x) = 0 for x 6∈ A. The indicator function of A, denoted by IA, is defined as
IA(x) = 0 for x ∈ A, and IA(x) = +∞ for x 6∈ A. The symbol bA stands for “restricted to A”.
Finally LN stands for the usual Lebesgue measure, while HN−1 denotes the (N − 1) dimensional
Hausdorff measure.

Matrices. We denote by MN
sym the set of (N × N)-symmetric matrices and by MN

D the set of

trace-free elements of MN
sym. If M is an element of MN

sym, then MD denotes its deviatoric part,

i.e., its projection onto the subspace MN
D of MN

sym orthogonal to the identity mapping i for the

Frobenius inner product. The symbol · denotes that inner product. We denote by Ls(MN
D) the

set of symmetric endomorphisms on MN
D . For a, b ∈ RN , a � b stands for the symmetric matrix

such that (a� b)ij := (aibj + ajbi)/2.

Measures. If E is a locally compact separable metric space, and X a finite dimensional normed
space, Mb(E;X) will denote the space of finite Radon measures on E with values in X. For
µ ∈ Mb(E;X), we denote by |µ| its total variation. The space Mb(E;X) is the topological dual
of C0

0 (E;X∗), the set of continuous functions u from E to the vector dual X∗ of X which “vanish
at the boundary”, i.e., such that for every ε > 0 there exists a compact set K ⊆ E with |u(x)| < ε
for x 6∈ K. We will denote by M+

b (E) the space of positive bounded Radon measures on E.

If B is a borel subset of RN , and if µ ∈ M+
b (RN ) we will denote by µs the singular part of µ

with respect to to the N -dimensional Lebesgue measure.
We will make extensive use of the technique of generalized product and disintegration of mea-

sures, for which we refer the reader to [4, Section 2.5]. Given E,F locally compact separable
metric spaces, and η ∈M+

b (E), a map x 7→ µx ∈Mb(F ) is said to be η-measurable if the map

x 7→ µx(B)

is η-measurable for every Borel set B ⊆ F . Assuming moreover that the map x 7→ |µx|(F ) is

η-summable, the generalized product η
gen.

⊗ µx ∈Mb(E × F ) is defined through the equality

〈η
gen.

⊗ µx, f〉 :=

∫
E

(∫
F

f(x, y) dµx(y)

)
dη(x), f ∈ C0

0 (E × F ).

Moreover (see [4, Theorem 2.28]), every µ ∈Mb(E×F ) can be disintegrated, i.e., it can written

as a generalized product η
gen.

⊗ µx. Here η is the push forward of |µ| along the projection on E,
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i.e., for every Borel set B ⊆ E
η(B) := |µ|(B × F ),

while x 7→ µx ∈Mb(F ) is a suitable η-measurable map.

Further (see [4, Corollary 2.29]), |µ| = η
gen.

⊗ |µx|.
The generalized product technique, and the associated disintegration result, are easily extended

to the case of vector valued finite Radon measure.
By contrast, if µ and ν are in Mb(E) and Mb(F ), respectively, we will denote by µ ⊗ ν the

classical product measure in Mb(E × F ). Let us emphasize that, if π ∈Mb(E × F ) disintegrates

as π = µ
gen.

⊗ [a(x, y)ν], then it is not so that we can assert a priori that a is µ ⊗ ν-measurable.
This has to be established on a case by case basis and this will be a source of difficulties in the
proof of Proposition 4.7 and in Lemma 5.4.

The (kinematic) space BD. Let Ω ⊆ RN be an open set. In this paper as in previous works
on elasto-plasticity the displacement field u lies in BD(Ω), the space of functions with bounded
deformations. We refer the reader to e.g. [20, Chapter 2], and [3] for background material. Besides
elementary properties of BD(Ω), we will only appeal to two “finer” results. Firstly, the measure
Eu does not charge HN−1-negligible sets; see [3, Remark 3.3]. Secondly, assuming that Ω is
bounded with Lipschitz boundary and given Γd ⊆ ∂Ω with HN−1(Γd) > 0, Poincaré-Korn’s
inequality states that there exists C > 0, such that

‖u‖BD(Ω) ≤ C
(∫

Γd

|u| dHN−1 + ‖Eu‖Mb(Ω;MN
sym)

)
,

where Eu denotes the symmetrized gradient of u, and the integral on Γd involves the trace of u
on ∂Ω which is well defined as an element of L1(∂Ω;RN ); see [20, Chapter 2, Remark 2.5(ii)].

We say that

un
∗
⇀ u weakly∗ in BD(Ω)

iff

un → u, strongly in L1(Ω;RN ) and Eun
∗
⇀ Eu weakly∗ in Mb(Ω; MN

sym).

If Ω is bounded and Lipschitz, bounded sequences in BD(Ω) always admit a weakly∗ converging
subsequence.

Functional spaces. Given E ⊆ RN measurable, 1 ≤ p < +∞, and M a finite dimensional
normed space, Lp(E;M) stands for the space of p-summable functions on E with values in M ,
with associated norm denoted by ‖ · ‖p. Given A ⊆ RN open, H1(A;M) is the Sobolev space of
functions in L2(A;M) with distributional derivatives in L2.

Finally, let X be a normed space. We denote by BV (a, b;X) and AC(a, b;X) the space of
functions with bounded variation and the space of absolutely continuous functions from [a, b] to
X, respectively. We recall that the total variation of f ∈ BV (a, b;X) is defined as

VX(f ; a, b) := sup


k∑
j=1

‖f(tj)− f(tj−1)‖X : a = t0 < t1 < · · · < tk = b

 .

Periodicity. Our analysis of the homogenization problem relies on an extensive use of two-scale
convergence (see Section 4). We thus need to consider the space of [0, 1]N -periodic continuous (or
C1) functions on RN , and its dual, a space of measures that enjoys suitable periodicity properties.
These spaces are most conveniently viewed as acting on a torus.

Let Y := RN/ZN be the N -dimensional torus, Y := [0, 1)
N

, and let I : Y → Y denote the
corresponding canonical identification. For future reference, we set

(1.1) C := I−1(∂Y ).

For any Z ⊂ Y, we define

(1.2) Zε := {x ∈ RN : x/ε ∈ ZN + I(Z)},
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while for any function F : Y → X, where X is some set, the ε-periodic function Fε : RN → X is
defined as

(1.3) Fε(x) := F (yε),with x/ε− [x/ε] = I(yε) ∈ Y.

The ε-periodic function Fε will be abbreviated as F (x/ε) unless confusion might ensue.

Remark 1.1. Note that, if D is a Lipschitz hypersurface in Y, then the normal νε(x) at a given
point x ∈ Dε is actually of the form ν(y); in other words, yε in (1.3) is independent of ε. ¶

Throughout the paper, if X a finite dimensional vector space, we will identify the space of
[0, 1]N -periodic and continuous (resp. C1) functions with values in X with C0(Y;X) (resp.
C1(Y;X)). The dual space is then naturally identified with Mb(Y;X).

For our applications to plasticity, we need to consider BD functions on Y, i.e., those functions
u ∈ L1(Y; MN

sym) whose symmetrized gradient Eyu – defined by means of a local coordinates
system associated with the very definition of Y as a quotient space – is a finite Radon measure
on Y with values in MN

sym. These can be identified with those functions u : RN → RN which are
locally BD and Y -periodic. In other words, besides Y -periodicity, there exists C > 0 such that∣∣∣∣∫

Y

u · divψ dx

∣∣∣∣ ≤ C‖ψ‖∞
for every ψ ∈ C1

per([0, 1]N ;RN ). Thanks to periodicity, if u ∈ BD(Y) is such that Eyu = 0, that is
if u is a periodic “infinitesimal rigid body motion”, then u is a constant vector on Y. In particular,
we will use the following form of the Poincaré-Korn’s inequality on BD(Y): there exists C > 0
such that for every u ∈ BD(Y) with

∫
Y u dy = 0,∫
Y
|u| dy ≤ C|Eyu|(Y).

2. Quasi-static evolutions in periodic heterogeneous materials

In this section we detail the structure of periodic heterogenous materials and of elasto-plastic
evolutions for such materials.

The reference configuration. In all that follows Ω ⊂ RN is an open, bounded set with (at least)
Lipschitz boundary and exterior normal ν. Further, the Dirichlet part Γd of ∂Ω is a non empty
open set in the relative topology of ∂Ω with boundary ∂b∂ΩΓd in ∂Ω and we set Γt := ∂Ω \ Γ̄d.
Reproducing the setting of [11, Section 6], we introduce the following

Definition 2.1. We will say that ∂b∂ΩΓd is admissible iff, for any σ ∈ L2(Ω; MN
sym) with

(2.1) divσ = f in Ω, σν = g on Γt, σD ∈ L∞(Ω; MN
D)

where f ∈ LN (Ω;RN ) and g ∈ L∞(Γt;RN ), and every p ∈Mb(Ω ∪Γd; MN
D) such that there exists

an associated pair (u, e) ∈ BD(Ω)× LN/N−1(Ω; MN
sym) with

Eu = e+ p in Ω, p = (w − u)� νHN−1bΓd on Γd,

the distribution, defined for all ϕ ∈ C∞c (RN ) by

(2.2) 〈σD, p〉(ϕ) := −
∫
Ω

ϕσ · (e− Ew) dx−
∫
Ω

ϕf · (u− w) dx

−
∫
Ω

σ · [(u− w)�∇ϕ] dx+

∫
Γt

ϕg · (u− w) dHN−1

is a bounded Radon measure on RN with |〈σD, p〉| ≤ ‖σD‖∞|p|.

Definition 2.1 covers many “practical” settings like those of a hypercube with one of its faces
being the Dirichlet part Γd of the boundary; see [11, Section 6] for that and other such settings.
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Remark 2.2. Expression (2.2) defines a meaningful distribution on RN . Indeed, according to
[11, Proposition 6.1], if σ ∈ L2(Ω; MN

sym) is such that divσ ∈ LN (Ω;RN ) and σD ∈ L∞(Ω; MN
D),

then σ ∈ Lr(Ω; MN
sym) for every 1 ≤ r <∞ with

‖σ‖r ≤ Cr (‖σ‖2 + ‖divσ‖N + ‖σD‖∞)

for some Cr > 0. On the other hand, u ∈ LN/N−1(Ω;RN ) in view of the embedding of BD(Ω)
into LN/N−1(Ω;RN ). Further, u has a trace on ∂Ω which belongs to L1(∂Ω;RN ). Finally note
that, if σ is the restriction to Ω of a C1-function and if HN−1(∂b∂ΩΓd) = 0, then, performing
an integration by parts in BD (see [20, Chapter 2, Theorem 2.1]), the right hand side of (2.2)
coincides with the integral of ϕ with respect to the (well defined) measure σDp.

Geometry. Let Y := [0, 1)N be the unit cell in RN , while Y is the associated N -dimensional
torus. We view Y as being made of finitely many phases Yi, together with their interfaces, i.e.,
Y = ∪Ȳi. We assume that those phases are pairwise disjoint open sets with Lipschitz boundary.
Moreover it is not restrictive to assume that the transversality condition

(2.3) HN−1(∂Yi ∩ C) = 0

holds true (C was defined in (1.1)). This can be achieved by a translation of the unit cell Y , and
a suitable redefining of the associated identification map I : Y → Y .

Denoting by Γ the interfaces, i.e.,

Γ :=
⋃
i,j

∂Yi ∩ ∂Yj ,

we assume that there exists a compact set S ⊂ Γ with HN−1(S) = 0 and

Γ \ S is a C1-hypersurface.

We will write

Γ =
⋃
i 6=j

Γij ,

where Γij stands for the interface between Yi and Yj .
A torus Y that satisfies the collection of those (minimal) assumptions will be referred to hence-

forth as a geometrically admissible multiphase torus.
Throughout the rest of this paper it will be assumed that Y is a geometrically admissible

multiphase torus. If, further, Γ \ S is a C2-hypersurface, then Y will be referred to as a C2-
geometrically admissible multiphase torus.

Given ε > 0, we assume that our domain Ω is made up of the various phases (Yi)ε (see (1.2)).
Note that, provided that ε is chosen such that HN−1((∪i(∂Yi)ε)∩Γd) = 0, then, each point of Γd
outside a HN−1-negligible set belongs to a well defined phase. Therefore, Ω∪Γd is a geometrically
admissible multiphase domain in the sense of [11, Subsection 1.2]. Only those ε’s will be considered
from this point on.

Kinematic admissibility. Given the boundary displacement w ∈ H1(Ω;RN ), we adopt the
following

Definition 2.3 (Admissible configurations). A(w), the family of admissible configurations
relative to w, is the set of triplets (u, e, p) with

u ∈ BD(Ω), e ∈ L2(Ω; MN
sym), p ∈Mb(Ω ∪ Γd; MN

D),

and such that

(2.4) Eu = e+ p in Ω, p = (w − u)� νHN−1bΓd on Γd,

where ν denotes the outer normal to ∂Ω and (w − u) is to be understood in the sense of traces.
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The function u denotes the displacement field on Ω, while e and p are the associated elastic and
plastic strains. In view of the additive decomposition (2.4) of Eu and of the general properties of
BD functions recalled earlier, p does not charge HN−1-negligible sets. Moreover, given a Lipschitz
hypersurface D ⊂ Ω dividing Ω locally into the subdomains Ω+ and Ω−,

pbD = (u+ − u−)� νHN−1bD,

where ν is the normal to D pointing from Ω− to Ω+, and u± are the traces on D of the restrictions
of u to Ω±. Since p is assumed to take values in the space of deviatoric matrices MN

D , u+ − u− is
perpendicular to ν, so that only particular plastic strains are activated along D.

These properties will be used below when defining the plastic properties of the multiphase
material Ω.

Elastic and plastic properties. The elasto-plastic properties of Ω are given in terms of a
periodic elastic tensor and a periodic dissipation potential.

The elasticity tensor. We consider elasticity tensors (Hooke’s law) of the form

(2.5) C(y)M := CD(y)MD + k(y)tr(M)i, y ∈ Y,

with CD := (CD)i ∈ Ls(MN
D) and k := ki > 0 on every Yi, with (CD)i such that

(2.6) (CD)iM ·M ≥ c1|M |2, ∀M ∈ MN
D ; ki ≥ c1,

for some c1 > 0.
For every ε > 0 and e ∈ L2(Ω; MN

sym) we consider the elastic energy

(2.7) Qε(e) :=
1

2

∫
Ω

Cεe · e dx,

where Cε(x) := C (x/ε) for every x ∈ Ω (see (1.3)).

The set of admissible stresses: In elasto-plasticity, the deviatoric part of the stress σ is restricted
by the yield condition. Thus, here, we are led to assuming the existence of a convex compact set
Ki ⊂ MN

D for each phase Yi. We further assume that those sets cannot be too small or too large,
i.e., there exist c3, c4 > 0 such that for every i

(2.8) B(0, c3) ⊂ Ki ⊂ B(0, c4).

We define

(2.9) K(y) := Ki, for y ∈ Yi,

and Kε(x) = K (x/ε), for x ∈ Ω.
Our formulation of the problem uses the Legendre transform of IKi , which is often referred to

as the dissipation potential.

The dissipation potential. For all y ∈ Yi and ξ ∈ MN
D , we define the dissipation potential to be

(2.10) H(y, ξ) = Hi(ξ) := sup{τ · ξ : τ ∈ Ki}.

This defines, for a.e. y ∈ Y, a convex, one-homogeneous function in ξ which further satisfies

c3|ξ| ≤ H(y, ξ) ≤ c4|ξ| for a.e. y ∈ Y.

This is not however sufficient for our purpose because we need the dissipation potential to act
upon the plastic strain (or plastic strain rate) which, being a measure, may concentrate on sets of
0-Lebesgue measure. Moreover, plastic strains can concentrate on the inner interfaces where they
will only activate particular strain-directions, as previously mentioned. We thus have to extend
H to every point in Y ×MN

D .
The dissipation potential H : Y×MN

D → [0,+∞] of a geometrically admissible multiphase torus
is constructed as follows.
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(a) In each phase Yi, we take

H(y, ξ) = Hi(ξ) for y ∈ Yi
with Hi : MN

D 7→ R such that

(2.11) ξ 7→ Hi(ξ) is convex and positively one-homogeneous in ξ

with

(2.12) c3|ξ| ≤ Hi(ξ) ≤ c4|ξ|,
where c3, c4 > 0 are independent of the phase i.

(b) At a point y ∈ Γ \ S on the interface between Yi and Yj such that the associated normal
ν(y) points from Yj to Yi, we set

(2.13)

{
H(y, ξ) := Hij(a, ν(y)), for every ξ = a� ν(y) ∈ MN

D ,

H(y, ξ) = +∞, otherwise on MN
D ,

where for every a ∈ RN and ν ⊥ a ∈ SN−1

Hij(a, ν) := inf{Hi(ai � ν) +Hj(−aj � ν) : a = ai − aj , ai, aj ∈ RN , ai ⊥ ν, aj ⊥ ν}.
Remark that

ξ 7→ H(y, ξ) is convex and positively one-homogeneous

and, for every a� ν(y) ∈ MN
D ,

(2.14) c3|a� ν(y)| ≤ H(y, a� ν(y)) ≤ c4|a� ν(y)|.
Also remark that, since Hi, Hj are continuous functions of ξ, ν is a continuous function of
y ∈ Γ \ S, while, by coercivity, the infimum in the inf-convolution is actually a minimum,
H(y, ξ) is lower semicontinuous on (Γ \S)×MN

D . Thus (y, ξ) 7→ H(y, ξ) is a Borel function.

(c) Finally, we define H(y, ξ) arbitrarily for y ∈ S for example as c3|ξ|, since those points will
not be relevant for the admissible plastic strains because HN−1(S) = 0.

It is readily seen that the resulting dissipation potential H : Y × MN
D → [0,+∞] is a Borel

function.

Remark 2.4. By convex conjugation, we can associate with the dissipation at y ∈ Γij \ S a set
K(y) ⊆ MN

D . That set is

K(y) = {ΣD ∈ MN
D : (ΣDν(y))τ ∈ (Kiν(y))τ ∩ (Kjν(y))τ},

where (·)τ denotes the orthogonal projection to the hyperplane tangent to Γij at y. Notice that
K(y) is a cylinder in MN

D . We take the view that this is a constraint on the vector (ΣDν(y))τ ,
rather than on the matrix ΣD. Set

(2.15) KΓ (y) := (Kiν(y))τ ∩ (Kjν(y))τ ⊆ RN .
That way, IKΓ (y) is the Legendre transform of the map a 7→ H(y, a � ν(y)) with a ⊥ ν(y), and
conversely. ¶

Coming to the periodic multiphase material, we consider the dissipation potential

Hε : (Ω ∪ Γd)×MN
D → [0,+∞]

defined as (see (1.3))

Hε(x, ξ) := H
(x
ε
, ξ
)
.

For every p ∈Mb(Ω ∪ Γd; MN
D) we define the dissipation functional to be

(2.16) Hε(p) :=

∫
Ω∪Γd

Hε

(
x,

p

|p|

)
d|p|,

where, from now onward, for any bounded Radon measure q on RN , q/|q| denotes the Radon-
Nikodym derivative of q with respect to its total variation |q|.
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If t 7→ p(t) is a map from [0, T ] toMb(Ω ∪ Γd; MN
D), we finally define the total dissipation over

an interval [a, b] ⊆ [0, T ] to be

Dε(a, b; p) := sup


k∑
j=1

Hε (p(tj)− p(tj−1)) : a = t0 < t1 < · · · < tk = b

 .

Quasistatic evolutions. We prescribe the boundary displacement w on Γd as the trace on Γd of

(2.17) w ∈ AC(0, T ;H1(RN ;RN )).

We now have all the ingredients for defining a quasi-static evolution as follows.

Definition 2.5 (Quasistatic evolution). We say that t 7→ (uε(t), eε(t), pε(t)) ∈ A(w(t)) is an
ε-quasi-static evolution relative to w provided that the following conditions hold for every t ∈ [0, T ].

(a) Global stability: for every (v, η, q) ∈ A(w(t))

(2.18) Qε(eε(t)) ≤ Qε(η) +Hε(q − p(t)).
(b) Energy equality: t 7→ p(t) has bounded variation from [0, T ] to Mb(Ω ∪ Γd; MN

D) and

Qε(e(t)) +Dε(0, t; p) = Qε(e(0)) +

∫ t

0

∫
Ω

σε(τ) · Eẇ(τ) dx dτ, withσε(t) := Cεeε(t).

The following existence result has been established in [11, Theorem 2.7].

Theorem 2.6 (Existence of a heterogeneous evolution). Assume that (2.5), (2.6), (2.11),
(2.12), (2.13), (2.17) are satisfied. Let (u0ε, e

0
ε, p

0
ε) ∈ A(w(0)) satisfy the global stability condition

(2.18). Then there exists a quasi-static evolution t 7→ (uε(t), eε(t), pε(t)) relative to the boundary
displacement w such that (uε(0), eε(0), pε(0)) = (u0ε, e

0
ε, p

0
ε).

Remark 2.7 (Balance equations). According to [11, Theorem 3.6], σε(t) satisfies the balance
equation and the admissibility conditions, i.e.,

divσε(t) = 0 in Ω, σε(t)ν = 0 on ∂Ω \ Γ̄d,

(σε)D(t, x) ∈ Kε(x) for a.e. x ∈ Ω.
We set

(2.19) Kε := {σ ∈ L2(Ω; MN
sym) : divσε = 0 in Ω, σεν = 0 on ∂Ω \ Γ̄d,

(σε)D(x) ∈ Kε(x) for a.e. x ∈ Ω},
and we refer to Kε as the family of ε-statically admissible stress fields. ¶

3. Elasto-plasticity on the periodic torus

In this section, we collect a few results which are consequences of [11] in a periodic setting:
they will be useful when dealing with the homogenization of quasi-static evolutions in periodic
heterogeneous materials.

Let Y be a geometrically admissible multiphase torus according to Section 2.

Definition 3.1 (Periodic admissible configurations). The family AY of admissible configu-
rations on Y is given by the set of triplets

u ∈ BD(Y), E ∈ L2(Y; MN
sym), P ∈Mb(Y; MN

D)

such that

Eyu = E + P on Y.
We set

ΠY := {P ∈Mb(Y; MN
D) : ∃(u,E) such that (u,E, P ) ∈ AY}.

Recalling (2.9), we adopt the following
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Definition 3.2 (Periodic statically admissible stresses). Σ ∈ L2(Y; MN
sym) is said to be a

statically admissible stress on the torus if

divyΣ = 0 on Y
and

ΣD(y) ∈ K(y) for a.e. y ∈ Y.
We denote the set of all such stresses by KY .

If Σ ∈ KY , in particular ΣD ∈ L∞(Y; MN
sym), from which it is deduced (see [11, Proposition

6.1]) that Σ ∈ Lr(Y; MN
sym) for every 1 ≤ r <∞ with

(3.1) ‖Σ‖r ≤ Cr (‖Σ‖2 + ‖ΣD‖∞)

for some Cr > 0.
Moreover, considering the interfaces Γ , it is possible to define a tangential trace for Σν on Γ \S

(Σν)τ ∈ L∞(Γ ;RN )

in the following way. Consider a smooth approximation Σn ∈ C∞(Y; MN
sym) such that

Σn → Σ strongly in L2(Y; MN
sym)

divyΣn → 0 strongly in L2(Y;RN )

‖(Σn)D‖∞ ≤ ‖ΣD‖∞,
and consider (Σnν)τ := (Σn)ν − ((Σn)ν · ν)ν (the tangential component of (Σn)D is defined
analogously). It is then immediate that (Σnν)τ = ((Σn)Dν)τ . Since y 7→ ν(y) is an L∞(Γ ;RN )-
mapping, there exists an L∞(Γ ;RN )-function (Σν)τ such that, up to a subsequence,

(Σnν)τ
∗
⇀(Σν)τ weakly∗ in L∞(Γ ;RN ).

(Σν)τ is only a function of {(Σn)D}n∈N which we will denote henceforth by (ΣDν)τ . Notice that
(ΣDν)τ may depend upon the approximation sequence {Σn}n∈N (or at least upon {(Σn)D}n∈N).
If Γ \ S is a C2-hypersurface, then (ΣDν)τ is uniquely determined as an element of L∞(Γ ;RN ).

Indeed, considering Γij , for every ϕ ∈ H1/2
00 (Γij ;RN ), it is readily seen that∫

Γij

(Σν)τ · ϕdHN−1 = 〈Σν, ϕ〉 − 〈(Σν)ν , ϕ〉,

where
〈(Σν)ν , ϕ〉 := 〈Σν, (ϕ · ν)ν〉.

Since the normal component (ϕ · ν)ν of ϕ with respect to Γij belongs to H
1/2
00 (Γij ;RN ) in view of

the regularity of ν, the definition of (Σν)ν is meaningful.
The following result is a consequence of [11, Section 6 and Lemma 3.8].

Theorem 3.3 (Duality). Let P ∈ ΠY and Σ ∈ KY . Then, the distribution

(3.2) 〈ΣD, P 〉(ψ) := −
∫
Y
ψ(y)Σ · E dy −

∫
Y

Σ · [u�∇ψ] dy, ψ ∈ C1(Y),

is a bounded Radon measure on Y such that

|〈ΣD, P 〉| ≤ ‖ΣD‖∞|P |.
Moreover, for every i 6= j, and for every tangential trace (ΣDν)τ ,

〈ΣD, P 〉bΓij = (ΣDν)τ · (ui − uj)HN−1bΓij ,
where ν points from Yj to Yi, and ui, uj are the traces on Γij of the restrictions of u on Yi and
Yj.

Remark 3.4. Remark that the proof of Lemma 3.8 in [11] only requires that ΣD ∈ L∞(Y; MN
D)

and thus that the requirement that Σ ∈ KY in the previous theorem can be weakened to Σ ∈
L2(Y; MN

sym) with divy Σ = 0 on Y and ΣD ∈ L∞(Y; MN
D). ¶

The following result holds true (see [11, Proposition 3.9 and Theorem 3.13]).
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Proposition 3.5. Let (u,E, P ) ∈ AY , Σ ∈ KY , and let Y be a C2-admissible multiphase torus.
Then

H

(
y,

P

|P |

)
|P | ≥ 〈ΣD, P 〉 as measures on Y.

If moreover equality holds, then

P

|P |
(y) ∈ NK(y)(ΣD(y)) for LN a.e. y ∈ {|P | > 0},

where NK(y)(ΣD(y)) denotes the normal cone to K(y) at ΣD(y), and, for every i 6= j,

ui − uj

|ui − uj |
∈ ~NKΓ (y)((ΣDν)τ (y)) for HN−1 a.e. y ∈ {ui 6= uj},

where ν points from Yj to Yi, ui, uj are the traces on Γij of the restrictions of u on Yi and Yj
and ~NKΓ (y)(τ) denotes the normal cone – a cone of vectors – to KΓ (y) at a vector τ ⊥ ν(y).

4. Two-scale convergence of measures

In this section we recall the definition and the main properties of two-scale convergence for
Radon measures proved in [2]. We also prove a structure result for the two-scale limit of sym-
metrized gradients of weakly* converging sequences of BD functions.

4.1. Definitions and basic properties. We adopt the following

Definition 4.1 (Two-scale measure convergence). Let Ω ⊆ RN be an open set, {µε}ε>0 be
a family in Mb(Ω) and consider µ ∈Mb(Ω × Y). Then,

µε
w∗-2
⇀ µ0 two-scale weakly* in Mb(Ω × Y)

iff, for every χ ∈ C0
0 (Ω × Y),

lim
ε→0

∫
Ω

χ
(
x,
x

ε

)
dµε(x) =

∫
Ω×Y

χ(x, y) dµ(x, y).

The convergence is called two-scale weak* convergence.

Remark 4.2. Notice that the family {µε}ε>0 determines the family of measures {λε}ε>0 ⊂
Mb(Ω × Y) obtained by setting∫

Ω×Y
χ(x, y) dλε(x, y) :=

∫
Ω

χ
(
x,
x

ε

)
dµε(x)

for every χ ∈ C0
0 (Ω×Y). Thus µ0 is simply the weak* limit inMb(Ω×Y) of a suitable subsequence

of {λε}ε>0. ¶

Remark 4.3. Let D ⊆ Y, and assume that µε has its support on Ω ∩ Dε, and that µε
w∗-2
⇀

µ0, two-scale weakly* in Mb(Ω × Y). Then,

supp µ0 ⊂ Ω × D̄.
¶

In view of Remark 4.2, two-scale weak* convergence satisfies the following compactness property.

Proposition 4.4 (Two-scale compactness). Let Ω ⊆ RN be an open set and {µε}ε>0 be a
bounded family in Mb(Ω). Then there exist µ0 ∈Mb(Ω × Y) and εn → 0 such that

µεn
w∗-2
⇀ µ0 two-scale weakly* in Mb(Ω × Y).

Remark 4.5. The notion of two-scale weak* convergence can be adapted easily to measures
Mb(Ω;X), where X is a finite dimensional space. For our applications in plasticity, X will be
either RN , or the spaces of matrices MN

sym and MN
D . ¶

The following lower semi-continuity lemma is a two-scale analogue of Reshetnyak’s lower semi-
continuity theorem ([4, Theorem 2.38] or [18, Theorem 1.7]).
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Lemma 4.6. Let Ω be an open subset of RN , X a finite dimensional linear space, and let H :
X → [0,+∞) be a convex and positively one-homogeneous function. If {µε}ε>0 is a bounded family
of measures in Mb(Ω;X) such that

µε
w∗-2
⇀ µ0 two-scale weakly* in Mb(Ω × Y;X),

then

lim inf
ε

∫
Ω

H

(
µε
|µε|

)
d|µε| ≥

∫
Ω×Y

H

(
µ0

|µ0|

)
d|µ0|.

Proof. We can endowX with an inner product. SinceH is convex and positively one-homogeneous,

H(ξ) = sup
m∈N
{am · ξ : am ∈ X}.

Let us extract a sequence {εn}n∈N such that, setting µn := µεn ,

lim inf
ε

∫
Ω

H

(
µε
|µε|

)
d|µε| = lim

n

∫
Ω

H

(
µn
|µn|

)
d|µn|.

Denote by H ∈Mb(Ω × Y) the two-scale weak* limit of (a subsequence of)

H

(
µn
|µn|

)
|µn|

(still indexed by n). We will show that

(4.1)
H
|µ0|

(x0, y0) ≥ H
(
µ0

|µ0|
(x0, y0)

)
for |µ0|- a.e. (x0, y0) in Ω × Y.

Then, by the very definition of two-scale convergence, for any 0 ≤ ϕ ≤ 1 ∈ C0
c (Ω),

lim
n

∫
Ω

H

(
µn
|µn|

)
d|µn| ≥

∫
Ω×Y

ϕ(x)dH(x, y) ≥
∫
Ω×Y

ϕ(x)H

(
µ0

|µ0|
(x, y)

)
d|µ0|(x, y).

Letting ϕ↗ 1 on Ω, we get the result by virtue of Lebesgue’s dominated convergence theorem.
Take (x0, y0) to be a Lebesgue point for µ0/|µ0| with respect to |µ0|. Since we can argue locally,

Besicovič’s derivation theorem allows us to choose (x0, y0) such that, if Br(x0, y0) denotes the open
ball of center (x0, y0) and radius r in RN × Y

H
|µ0|

(x0, y0) = lim
r→0+

H(Br(x0, y0))

|µ0|(Br(x0, y0))
.

Choose a sequence {rk ↘ 0} and ϕk,l ∈ C0
c (Brk(x0, y0)) with 0 ≤ ϕk,l

l

↗ 1Brk (x0,y0). Then, by
monotone convergence,

H
|µ0|

(x0, y0) = lim
k

1

|µ0|(Brk(x0, y0))
lim
l

∫
Ω×Y

ϕk,l(x, y)dH(x, y)

= lim
k

1

|µ0|(Brk(x0, y0))
lim
l

lim
n

∫
Ω

ϕk,l

(
x,

x

εn

)
H

(
µn
|µn|

(x)

)
d|µn|(x)

≥ lim inf
k

1

|µ0|(Brk(x0, y0))
lim inf

l
lim
n

∫
Ω

ϕk,l

(
x,

x

εn

)
am · dµn(x)

= lim inf
k

1

|µ0|(Brk(x0, y0))
lim inf

l

∫
Ω×Y

ϕk,l(x, y)am · dµ0(x, y).

Lebesgue’s dominated convergence theorem finally yields

H
|µ0|

(x0, y0) ≥ lim inf
k

1

|µ0|(Brk(x0, y0))

∫
Brk (x0,y0)

am · dµ0 = am · µ0/|µ0|(x0, y0).

Taking the supremum of the right hand-side of the above inequality over m ∈ N yields (4.1). �
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4.2. Two-scale limits of symmetrized gradients of BD functions. For our homogenization
problem in plasticity, we will need to consider two-scale weak* limits of measures which are also
symmetrized gradients of BD functions. For Ω ⊆ RN open, set

(4.2) X (Ω) :=
{
µ ∈Mb(Ω × Y;RN )) : Eyµ ∈Mb(Ω × Y; MN

sym),

µ(F × Y) = 0 for every Borel set F ⊆ Ω} ,

where Eyµ denotes the distributional symmetrized gradient of µ with respect to y. The following
proposition enumerates the main properties of X (Ω) that will be used in the sequel.

Proposition 4.7. Let µ ∈ X (Ω). Then,

(a) There exist η ∈ M+
b (Ω) and a Borel map (x, y) ∈ Ω × Y 7→ µx(y) ∈ RN such that, for

η-a.e. x ∈ Ω,

(4.3) µx ∈ BD(Y),

∫
Y
µx(y) dy = 0, |Eyµx|(Y) 6= 0,

and

µ = µx(y) η ⊗ LNy .
Moreover, the map x 7→ Eyµx ∈Mb(Y; MN

sym) is η-measurable and

Eyµ = η
gen.

⊗ Eyµx.

(b) For any C1-hypersurface D ⊆ Y, if ν denotes a continuous unit normal vector field to D,
then

(4.4) Eyµb(Ω ×D) = a(x, y)�ν(y) η ⊗ (HN−1bD),

where a : Ω ×D → RN is a Borel function.

Proof. Let us prove item (a). By [4, Theorem 2.28 and Corollary 2.29] we know that µ and
λ := Eyµ can be disintegrated with respect to proj#|µ| and proj#|λ| respectively, proj denoting
the projection of Ω × Y on the first factor, and proj# the associated push forward of measures.
Setting

η := proj#|µ|+ proj#|λ|
we infer the disintegrations

(4.5) µ = η
gen.

⊗ µx and λ = η
gen.

⊗ λx

with µx ∈ Mb(Y;RN ), λx ∈ Mb(Y; MN
sym). Further, if F := {x ∈ Ω : |λx|(Y) 6= 0}, then,

obviously, λ = ηbF
gen.

⊗ λx.
For every g ∈ C1(Y; MN

sym) and f ∈ C1
c (Ω),∫

Ω

f(x)〈µx,divyg〉 dη(x) = 〈η
gen.

⊗ µx, f(x)divyg〉 = 〈µ,divy(f(x)g(y))〉

= −〈Eyµ, f(x)g(y)〉 = −〈ηbF
gen.

⊗ λx, f(x)g(y)〉 = −
∫
Ω

f(x)1F (x)〈λx, g(y)〉 dη(x).

Letting g vary in a countable and dense set (by Fourier series for example), we obtain that, for
η-a.e. x ∈ Ω and for all h ∈ C1(Y; MN

sym),

〈µx,divyh〉 = −〈1F (x)λx, h(y)〉,

i.e., using a regularization argument through convolution,

(4.6) µx ∈ BD(Y) and Eyµx = 1F (x)λx.

Finally, since µ(G× Y) = 0 for every Borel set G ⊆ Ω we get, for every f ∈ C0
c (Ω),

0 = 〈µ, f(x)〉 =

∫
Ω

f(x)µx(Y) dη(x),
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so that, for η-a.e. x ∈ Ω,

(4.7) µx(Y) = 0.

In particular, for |η|-a.e. x in Ω \ F , µx is a rigid body motion on Y that satisfies (4.7), hence
µx ≡ 0 and we can thus replace η by ηbF in both equalities in (4.5). We still denote the new
measure by η from now onward.

In order to complete the proof of item (a), it suffices to show that it is not restrictive to assume
that (x, y) 7→ µx(y) is a Borel map. From (4.5) and (4.6), we infer that µ is absolutely continuous
with respect to η ⊗ LNy . Consequently, there exists a Borel map h : Ω × Y → RN such that

µ = h(x, y)η⊗LNy . Moreover for η-a.e. x ∈ Ω there exists Sx ⊆ Y with LNy (Sx) = 0 and such that

h(x, y) = µx(y) for every y 6∈ Sx.
This is sufficient for replacing µx with h(x, ·)LNy in (4.5), so that point (a) follows.

Let us come to item (b). In view of the regularity of D, we can assume that the map y 7→ ν(y)
is continuous. By item (a), the map x 7→ EyµxbD is η-measurable with

Eyµb(Ω ×D) = η
gen.

⊗ (EyµxbD) .

Thanks to the structure of symmetrized gradients of BD-functions, for η-a.e. x ∈ Ω,

EyµxbD = b(x, y)� ν(y)HN−1bD,
for a suitable b(x, y) ∈ RN . We thus infer that Eyµb(Ω ×D) is absolutely continuous with respect
to the measure ζ := η ⊗ (HN−1bD). By Radon-Nikodym’s theorem, we deduce that

(4.8) Eyµb(Ω ×D) = η
gen.

⊗
[
b(x, y)� ν(y)HN−1bD

]
= f(x, y)ζ

for a suitable Borel function f : Ω × D → MN
sym. As previously noted in the introduction, this

equality is not sufficient to infer that f(x, y) = b(x, y) � ν(y), ζ-a.e. on Ω × D, from which the
thesis would then easily follow. From equality (4.8) we can only infer, as above, that, for η-a.e.
x ∈ Ω, there exists Nx ⊆ D with HN−1(Nx) = 0, and such that

(4.9) f(x, y) = b(x, y)� ν(y) for every y 6∈ Nx.
Let us show that there exists a map a : Ω ×D → RN such that

(4.10) f(x, y) = a(x, y)� ν(y) for ζ-a.e. (x, y) ∈ Ω ×D.

For every y ∈ D, we consider Π(y) := {ξ � ν(y) : ξ ∈ RN} ⊆ MN
sym and the Borel set B :=

{(x, y) ∈ Ω × D : dist(f(x, y),Π(y)) 6= 0}. That set is readily seen to be ζ-negligible in view of
(4.9) and of Fubini’s theorem. Then (4.10) follows. Finally, we can assume that a is Borel regular
since ν is continuous and does not vanish on D, so that the proof of item (b) is concluded. �

The following result will be useful.

Lemma 4.8. The space
E := {Eyµ : µ ∈ X (Ω)}

is weakly* closed in Mb(Ω × Y; MN
sym).

Proof. In view of the Krein-Smulian theorem and since C0
0 (Ω×Y; MN

sym) is separable, it is enough
to show sequential weak*-closedness. Assume that {λn}n∈N is a sequence in E such that

λn
∗
⇀ λ weakly∗ in Mb(Ω × Y; MN

sym).

By assumption there exists a measure µn ∈ X (Ω) such that Eyµn = λn. Note that {µn}n∈N is
bounded in Mb(Ω × Y;RN ): indeed item (a) of Proposition 4.7 implies that

µn = µnx ηn ⊗ LNy , Eyµn = ηn
gen.

⊗ Eyµ
n
x ,

with ηn ∈ M+
b (Ω) and µnx ∈ BD(Y) satisfying (4.3) for ηn-a.e. x ∈ Ω. Taking into account

Poincaré-Korn’s inequality in BD(Y) and applying [4, Corollary 2.29 ], we obtain

|µn|(Ω × Y) =

∫
Ω

[∫
Y
|µnx(y)| dy

]
dηn(x) ≤ C

∫
Ω

|Eyµnx |(Y)dηn(x) = C|λn|(Ω × Y)≤ C ′,
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for some constant C ′. Up to a subsequence, there exists µ ∈Mb(Ω × Y;RN ) with

µn
∗
⇀ µ weakly∗ in Mb(Ω × Y;RN ).

Clearly Eyµ = λ. Moreover, passing to the limit in the equality∫
Ω×Y

f(x) dµn(x, y) = 0, f ∈ C0
c (Ω),

we get, by standard approximation arguments,

µ(F × Y) = 0

for every Borel set F ⊆ Ω, so that λ ∈ E .
�

The following lemma is essential in the study of two-scale weak* limits of symmetrized gradients
of BD functions.

Lemma 4.9. Let Ω ⊆ RN be an open set and λ ∈ Mb(Ω × Y; MN
sym). The following items are

equivalent:

(a) For every χ ∈ C0
0 (Ω × Y; MN

sym) with divy χ(x, y) = 0 (in the sense of distributions)∫
Ω×Y

χ(x, y) dλ(x, y) = 0.

(b) There exists µ ∈ X (Ω) such that λ = Eyµ.

Proof. The fact that (b) implies (a) follows by integration by parts and a density argument.
Let us assume that (a) holds. By Lemma 4.8, E := {Eyµ : µ ∈ X (Ω)} is weakly* closed in
Mb(Ω ×Y; MN

sym). Then, if by contradiction (b) is not true, i.e., λ /∈ E , Hahn-Banach theorem –

which is applied here toMb(Ω×Y; MN
sym) equipped with its weak-* topology – yields the existence

of χ ∈ C0
0 (Ω × Y; MN

sym) such that

(4.11)

∫
Ω×Y

χ(x, y) dλ(x, y) = 1,

and, for every µ ∈ X (Ω),

(4.12)

∫
Ω×Y

χ(x, y) dEyµ(x, y) = 0.

In particular, choosing µ to be a smooth function, (4.12) implies that divy χ(x, y) = 0 (in the
sense of distributions). As a consequence, (4.11) is against point (a), and the result follows. �

The previous results combine into a structure result for two-scale weak* limits of symmetrized
gradients of BD functions.

Proposition 4.10 (Symmetrized gradients). Let Ω ⊆ RN be open, and let {uε}ε>0 be a
bounded family in BD(Ω) such that

uε
∗
⇀ u weakly∗ in BD(Ω)

for some u ∈ BD(Ω) as ε→ 0. Let

Euε
w∗-2
⇀ λ two-scale weakly* in Mb(Ω × Y; MN

sym).

Then there exists µ ∈ X (Ω) such that

λ = Eu⊗ LNy + Eyµ.

Proof. Since uε → u strongly in L1(Ω;RN ),

uε LNx
w∗-2
⇀ u(x)LNx ⊗ LNy two-scale weakly* in Mb(Ω × Y;RN ).

By compactness, there exist εn → 0 and λ ∈Mb(Ω × Y; MN
sym) such that

Euεn
w∗-2
⇀ λ two-scale weakly* in Mb(Ω × Y; MN

sym).



16 G. FRANCFORT AND A. GIACOMINI

Considering χ ∈ C1
c (Ω × Y; MN

sym) with divy χ = 0, from the equality∫
Ω

χ
(
x,
x

ε

)
dEuε(x) = −

∫
Ω

divx χ
(
x,
x

ε

)
uε(x) dx

we get that, as ε→ 0,∫
Ω×Y

χ(x, y) dλ(x, y) = −
∫
Ω×Y

divx χ(x, y)u(x) dxdy =

∫
Ω×Y

χ(x, y) d(Eu⊗ LNy ).

By a density argument, we infer that∫
Ω×Y

χd[λ− Eu⊗ LNy ] = 0

for every χ ∈ C0
0 (Ω × Y; MN

sym) with divy χ = 0 in the sense of distributions. The result now
follows by Lemma 4.9. �

4.3. Unfolding of sequences of symmetrized gradients of BD functions. In the following
we adapt the unfolding method originally developed for sequences of Lp-functions in[8, 9] to the
setting at hand.

For every ε > 0 let

Qiε :=

{
x ∈ RN :

x− εi
ε
∈ [0, 1)N

}
and xiε := εi.

Clearly RN = ∪i∈ZNQiε. Given Ω ⊆ RN open, we set

(4.13) Iε(Ω) := {i ∈ ZN : Qiε ⊂ Ω}.

For µε ∈Mb(Ω) and Qiε ⊂ Ω we let µiε ∈Mb(Y) be the measure defined as

(4.14)

∫
Y
ψ(y) dµiε(y) :=

1

εN

∫
Qiε

ψ
(x
ε

)
dµε(x), ψ ∈ C0(Y).

Then, set λ̃ε ∈Mb(Ω × Y), the unfolded measure associated with µε, to be

(4.15) λ̃ε :=
∑

i∈Iε(Ω)

(LNx bQiε)⊗ µiε.

Proposition 4.11 (Unfolding). Let Ω ⊆ RN be open and {µε}ε>0 be a bounded family inMb(Ω)
such that

µε
w∗-2
⇀ µ0 two-scale weakly∗ in Mb(Ω × Y).

Let {λ̃ε}ε>0 ⊂Mb(Ω×Y) be the associated family of unfolded measure according to (4.15). Then

λ̃ε
∗
⇀ µ0 weakly∗ in Mb(Ω × Y).

Proof. It suffices to show that, for every χ ∈ C0
c (Ω × Y),

lim
ε→0

∫
Ω×Y

χdλ̃ε = lim
ε→0

∫
Ω×Y

χdλε.

Let Ω̃ ⊂ RN be open, bounded and such that supp(χ) ⊂⊂ Ω̃ × Y.
Note that

(4.16) lim
ε

εN#(Iε(Ω̃)) = LN (Ω̃).

Then, for ε small enough,∫
Ω̃×Y

χ(x, y) dλ̃ε =
1

εN

∑
i∈Iε(Ω̃)

∫
Qiε×Qiε

χ
(
z,
x

ε

)
dµε(x)dz,



ON PERIODIC HOMOGENIZATION IN PLASTICITY 17

so that, with (4.16),∣∣∣∣∫
Ω×Y

χ(x, y) dλε −
∫
Ω×Y

χ(x, y) dλ̃ε

∣∣∣∣= ∣∣∣∣∫
Ω̃×Y

χ(x, y) dλε −
∫
Ω̃×Y

χ(x, y) dλ̃ε

∣∣∣∣
≤ ‖χ‖∞

(
LN (Ω̃)− εN#(Iε(Ω̃)

)
+

∑
i∈Iε(Ω̃)

∫
Qiε

∣∣∣∣∣χ(x, xε)− 1

εN

∫
Qiε

χ
(
z,
x

ε

)
dz

∣∣∣∣∣ d|µε|
≤ O(ε) + δε|µε|(Ω̃),

with
δε := sup

|x1−x2|<ε
√
N,y∈Y

|χ(x1, y)− χ(x2, y)| → 0.

Hence the result upon letting ε go to 0. �

Remark 4.12 (Two-scale convergence in Lebesgue spaces). Unfolding provides an easy link
between two-scale weak* convergence of measures and two-scale convergence of Lp-functions. Let
Ω ⊂ RN be open and bounded and {uε}ε>0 be a bounded family in Lp(Ω) for some p ∈ (1,+∞)
such that

uε LN
w∗-2
⇀ µ0 two-scale weak* in Mb(Ω × Y).

Then there exists u0 ∈ Lp(Ω × Y) such that

(4.17) µ0 = u0(x, y)LNx ⊗ LNy .
Indeed, according to (4.14), for every i ∈ Iε(Ω)

µiε = viε(y)LNy
where viε(y) := uε(x

i
ε + εI(y)). Consequently,

λ̃ε = vε(x, y)LNx ⊗ LNy with vε(x, y) :=
∑

i∈Iε(Ω)

1Qiε(x)viε(y).

A direct computation shows that∫
Ω×Y

|vε(x, y)|p dxdy =

∫
∪i∈Iε(Ω)Qiε

|uε(x)|p dx ≤
∫
Ω

|uε|p dx.

By weak compactness of Lp(Ω × Y) we infer immediately that (4.17) holds true.
We will say that

uε
w-2
⇀ u0 two-scale weakly in Lp(Ω × Y).

If further

lim
ε→0

∫
Ω

|uε|p dx =

∫
Ω×Y

|u0|p dxdy,

we will say that

uε
s-2→ u0 two-scale strongly in Lp(Ω × Y).

¶

In the context of unfolding, sequences of symmetrized gradients of BD functions will satisfy
the following proposition which will be used in the proof of Theorem 5.7.

Proposition 4.13. Let Ω ⊆ RN be open and let B ⊆ Y be an open set with Lipschitz boundary.
If uε ∈ BD(Ω), the unfolded measure associated with Euεb(Bε \ Cε)) according to (4.15) is given
by

(4.18)
∑

i∈Iε(Ω)

(LNx bQiε)⊗ Eyûiεb(B \ C) ,

where C is defined in (1.1) and ûiε ∈ BD(Y) is such that

(4.19)

∫
∂B
|ûiε| dHN−1 + |Eyûiε|(B ∩ C) ≤

C

εN
|Euε|(int(Qiε)),
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for some constant C independent of i and ε.

Proof. Remark that Cε =
(
∪i∂Qiε

)
∩Ω. Accordingly, for i ∈ Iε(Ω) and ψ ∈ C1(Y; MN

sym),∫
Qiε

ψ
(x
ε

)
· dEuεb(Bε \ Cε) =

∫
int(Qiε)

ψ
(x
ε

)
· dEuεbBε.

Since Bε has a Lipschitz boundary, uε1Bε ∈ BDloc(Ω) with

EuεbBε = E(uε1Bε) + (uε)b∂Bε � νHN−1b∂Bε,

where, from now onward in this proof, for any open Lipschitz domain A ⊂⊂ Ω and any u ∈ BD(Ω),
ub∂A denotes the trace of u1A on ∂A, while ν is the exterior normal to ∂A. Then,∫

int(Qiε)

ψ
(x
ε

)
· dEuεbBε

=

∫
int(Qiε)

ψ
(x
ε

)
· dE(uε1Bε) +

∫
int(Qiε)

ψ
(x
ε

)
· [(uε)b∂Bε � ν] dHN−1b∂Bε.

If we set viε(z) := uε(x
i
ε + εz) for z ∈ (0, 1)N , viε ∈ BD((0, 1)N ) and, thanks to the periodicity of

ψ, the definition of Bε, and Remark 1.1,

(4.20)

∫
Qiε

ψ
(x
ε

)
· dEuεb(Bε \ Cε) =

εN−1
∫
(0,1)N

ψ(z) · dE(viε1I(B))(z) + εN−1
∫
(0,1)N

ψ(z) · [(viε)b∂I(B)(z)� ν(z)] dHN−1(z).

Adding a rigid body motion to uε on Qiε does not change Euε on Bε \ Cε, hence it does not
modify the computation in (4.20). But then, by Poincaré-Korn’s inequality we may as well assume
that

(4.21)

∫
∂(0,1)N

|(viε)b∂(0, 1)N | dHN−1 ≤ C|Eviε|((0, 1)N ) =
C

εN−1
|Euiε|(int(Qiε))

for some constant C > 0 independent of i and ε.
Let ûiε ∈ BD(Y) be such that

ûiε(y) :=
1

ε
viε(I(y)).

From (4.21) and through the identification of the opposite sides of ∂(0, 1)N when passing to Y,
we obtain

(4.22) |Eyûiε|(Y) ≤ C + 1

εN
|Euiε|(int(Qiε)).

Moreover, ∫
(0,1)N

ψ · dE(v̂iε1I(B)) = ε

∫
Y\C

ψ · dE(ûiε1B)

while ∫
(0,1)N

ψ · [(viε)b∂I(B)� ν] dHN−1 = ε

∫
∂B\C

ψ · [(ûiε)b∂B � ν] dHN−1,

where (ûiε)b∂B denotes the trace on ∂B of the restriction of ûiε to B. Therefore (4.20) reads as

1

εN

∫
Qiε

ψ
(x
ε

)
· dEuεb(Bε \ Cε) =

∫
Y\C

ψ · dE(ûiε1B) +

∫
∂B\C

ψ · [(ûiε)b∂B � ν] dHN−1.

Now,

E(ûiε1B) = EûiεbB − (ûiε)b∂B � νHN−1b∂B,
thus (4.20) finally reads as

(4.23)
1

εN

∫
Qiε

ψ
(x
ε

)
dEuεb(Bε \ Cε) =

∫
Y
ψ dEyû

i
εb(B \ C).



ON PERIODIC HOMOGENIZATION IN PLASTICITY 19

Note that we can add to ûiε rigid body motions on the finitely many connected components of
B with no effect on the preceding equality, nor on Eyû

i
εb(B ∩ C) (since rigid body motions on B

are continuous on B). As a consequence, thanks to Poincaré-Korn’s inequality on BD(Y), and in
view of (4.22), we can assume that∫

∂B
|ûiε| dHN−1 + |Eyûiε|(B ∩ C)

≤ C ′|Eyûiε|(B) + |Eyûiε|(B ∩ C) ≤ (C ′ + 1)|Eyûiε|(Y) ≤ C ′′

εN
|Euiε|(int(Qiε))

for some C ′, C ′′ independent of i and ε, so that (4.19) follows. �

5. Two-scale kinematics and two-scale statics

This section, the most technical of the paper, is devoted to an investigation of the disintegration
and duality properties of the two-scale limits of the kinematically admissible fields uε, eε, pε and of
the statically admissible fields σε associated with the heterogenous evolution. We will also discuss
the lower semi-continuity properties of the various energies involved in that evolution.

5.1. Two-scale kinematics and lower semicontinuity. In this subsection, we define the set
of admissible two-scale (kinematically admissible) configurations and proceed, for future use, to
disintegrate them in a manner such that almost every x-fiber (with respect to a suitable measure)
is actually an element of Ay (see Definition 3.1). We then show that two-scale kinematically
admissible configurations arise from a natural compactness argument. We finally establish a lower
semi-continuity result for the ε-dissipation potentials Hε resulting in a homogenized dissipation
potential Hhom.

In order to handle the Dirichlet boundary condition, it proves convenient to consider Ω′ ⊆ RN
open bounded and such that ∂Ω ∩ Ω′ = Γd. Given a boundary displacement w ∈ H1(RN ;RN ),
and a configuration (u, e, p) ∈ A(w), we may extend u, e, p to Ω′ by setting

(5.1) u = w, e = Ew, p = 0 on Ω′ \Ω.

It is readily checked that the admissibility conditions (2.4) become

(5.2) Eu = e+ p on Ω′.

Then the family of admissible configurations for w can be described as

(5.3) A(w) = {(u, e, p) ∈ BD(Ω′)×L2(Ω′; MN
sym)×Mb(Ω

′; MN
D) : (5.1) and (5.2) are satisfied}.

Coming to a two-scale setting, we adopt the following

Definition 5.1 (Kinematically admissible two-scale configurations). Ahom(w), the family
of admissible two-scale configurations relative to w, is the set of triplets (u,E, P ) with

u ∈ BD(Ω′), E ∈ L2(Ω′ × Y; MN
sym), P ∈Mb(Ω

′ × Y; MN
D),

such that

(5.4) u = w, E = Ew, P = 0 on (Ω′ \Ω)× Y,

and also such that there exists µ ∈ X (Ω′) (see (4.2)) with

(5.5) E(x, y)LNx ⊗ LNy + P − Eu⊗ LNy = Eyµ in Ω′ × Y.

Further, set

Π(w) :=
{
P ∈Mb(Ω

′ × Y; MN
D) : ∃(u,E) such that (u,E, P ) ∈ Ahom(w)

}
.

Remark 5.2. The element µ ∈ X (Ω′) associated with (u,E, P ) according to the previous defini-
tion is uniquely determined. Indeed (5.5) implies that Eyµ is uniquely determined. The disintegra-

tions µ = µx(y)η⊗LNy and Eyµ = η
gen.

⊗ Eyµx for a suitable η ∈M+
b (Ω′) given by Proposition 4.7
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are such that µx ∈ BD(Y) and
∫
Y µx dy = 0 for η-a.e. x ∈ Ω′. Thus Poincaré-Korn’s inequality

on BD(Y) yields

|µ|(Ω′ × Y) =

∫
Ω′

[∫
Y
|µx(y)| dy

]
dη(x) ≤ C

∫
Ω′
|Eyµx(y)|(Y) dη(x) = |Eyµ|(Ω′ × Y),

from which the uniqueness of µ follows.

Remark 5.3. If T ⊆ Y is such that HN−1(T ) = 0, then

P b(Ω′ × T ) = 0.

Indeed P b(Ω′×T ) = Eyµb(Ω′×T ), and the conclusion results from item (a) in Proposition 4.7.¶

The following disintegration result then holds:

Lemma 5.4 (Admissible configurations and disintegration). Let (u,E, P ) ∈ Ahom(w) with
associated µ ∈ X (Ω′), and set

η := LNx + (proj#|P |)s ∈M+
b (Ω′).

The following disintegrations hold true:

(5.6) Eu⊗ LNy = A(x) η⊗LNy ,

(5.7) E(x, y)LNx ⊗ LNy = C(x)E(x, y) η⊗LNy ,

(5.8) P = η
gen.

⊗ Px,
and we can choose a Borel map (x, y) 7→ µx(y) ∈ RN such that

(5.9) µ = µx(y)η ⊗ LNy , Eyµ = η
gen.

⊗ Eyµx.

Above, A : Ω′ → MN
sym and C : Ω′ → [0,+∞[ are the respective Radon-Nikodym derivatives of Eu

and LNx with respect to η, E(x, y) is a Borel representative of E, while µx ∈ BD(Y),
∫
Y µx dy = 0,

and Px ∈Mb(Y; MN
D) for η-a.e. x ∈ Ω′.

In particular, for η-a.e. x ∈ Ω′, the measure Px ∈ Mb(Y; MN
D) is the plastic strain of the

element of AY given by
(µx, C(x)E(x, ·)−A(x), Px).

Proof. Since (proj)#(Eyµ) = 0, we get from (5.5)

Eu =

(∫
Y
E(x, y) dy

)
LNx + proj#(P ) = e(x)LNx + proj#(P ) on Ω′,

where e(x) :=
∫
Y E(x, y) dy ∈ L2(Ω′; MN

sym). Consequently, the measure Eu is absolutely contin-
uous with respect to η. We can thus write

Eu⊗ LNy = A(x)η ⊗ LNy ,

where A : Ω′ → MN
sym is the Radon-Nikodym derivative of Eu with respect to η, so that (5.6)

follows. If C : Ω′ → [0,+∞[ is the Radon-Nikodym derivative of LNx with respect to η, and E(x, y)
is a Borel representative of E, it is immediate that

E(x, y)LNx ⊗ LNy = C(x)E(x, y)η ⊗ LNy ,
so that (5.7) holds true. Finally, by [4, Theorem 2.28], the measure P can be disintegrated with
respect to proj#|P | which is absolutely continuous with respect to η, so that the disintegration
(5.8) follows.

Let us come to (5.9). By item (a) in Proposition 4.7,

µ = µ̃x(y)ζ ⊗ LNy , Eyµ = ζ
gen.

⊗ Eyµ̃x
for a suitable measure ζ ∈ M+

b (Ω′), and a suitable Borel function (x, y) 7→ µ̃x(y) ∈ RN with
µ̃x ∈ BD(Y),

∫
Y µ̃x dy = 0 and

|Eyµ̃x|(Y) 6= 0
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for ζ-a.e. x ∈ Ω′. At the expense of replacing ζ with |Eyµ̃x|(Y)ζ, it is not restrictive to assume
that |Eyµ̃x|(Y) = 1 for ζ-a.e. x ∈ Ω′.

Since, by [4, Corollary 2.29], proj#|Eyµ| = ζ, while, in view of the above,

proj#|Eyµ| =
{∫
Y
|C(x)E(x, y)−A(x)| dy + |Px|(Y)

}
η,

ζ is absolutely continuous with respect to η. Thus, ζ = D(x)η, where D : Ω′ → [0,+∞[ can be
chosen to be a Borel map. The disintegration (5.9) follows upon setting

µx(y) := D(x)µ̃x(y).

Finally, note that, for η-a.e. x ∈ Ω′,
Eyµx = (C(x)E(x, ·)−A(x))LNy + Px.

Moreover, in view of the very definition of η,

C(x) ∈ [0, 1],

so that ∫
Ω′

[∫
Y
|C(x)E(x, y)|2 dy

]
dη ≤

∫
Ω′

[∫
Y
|E(x, y)|2 dy

]
dx < +∞.

Thus, C(x)E(x, ·) − A(x) ∈ L2(Y; MN
sym) for η-a.e. x ∈ Ω′, and this proves the last assertion of

the lemma. �

Remark 5.5. Since |P | = η ⊗ |Px|,

η ⊗ Px
|Px|
|Px| = η ⊗ Px = P =

P

|P |
|P | = η ⊗ P

|P |
|Px|,

so that, for η-a.e. x ∈ Ω′,

(5.10)
P

|P |
(x, ·) =

Px
|Px|

|Px|-a.e. on Y.

¶

The definition of the class of admissible two-scale configurations is motivated by the following
compactness result.

Lemma 5.6 (Compactness). Let {(uε, eε, pε)}ε>0⊂A(w) be such that

‖uε‖BD(Ω′) + ‖eε‖L2(Ω′;MN
sym) + ‖pε‖Mb(Ω′;MN

D) ≤ C

and
uε ⇀ u weakly* in BD(Ω′)

eε
w-2
⇀ E two-scale weakly in L2(Ω′ × Y; MN

sym)

pε
w∗-2
⇀ P two-scale weakly* in Mb(Ω

′ × Y; MN
D).

Then (u,E, P ) ∈ Ahom(w).

Proof. Since (uε, eε, pε) = (w,Ew, 0) on Ω′ \Ω, it is immediate that (5.4) holds.
By compactness of the canonical injection of BD into L1,

uε → u strongly in L1(Ω′;RN ),

so that

uεLNx
w∗-2
⇀ u LNx ⊗ LNy two-scale weakly* in Mb(Ω

′ × Y;RN ).

From the compatibility condition

Euε = eε + pε on Ω′

we deduce, in view of Proposition 4.10, the existence of µ ∈ X (Ω′) such that

Eu(x)⊗ LNy + Eyµ = E(x, y)LNx ⊗ LNy + P

and the result follows. �
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For (u,E, P ) ∈ Ahom(w) we set

(5.11) Qhom(E) :=
1

2

∫
Ω×Y

C(y)E · E dxdy

and

(5.12) Hhom(P ) :=

∫
(Ω∪Γd)×Y

H

(
y,

P

|P |

)
d|P |.

We callQhom the homogenized elastic energy, andHhom the homogenized dissipation. The domain
of integration in the definition of Hhom can be extended to Ω′ since P = 0 on (Ω′ \Ω)× Y.

The following lower semi-continuity result holds.

Theorem 5.7 (Lower semicontinuity). Let (uε, eε, pε) ∈ A(w) be such that

(5.13)

uε ⇀ u weakly* in BD(Ω′)

eε
w-2
⇀ E two-scale weakly in L2(Ω′ × Y; MN

sym)

pε
w∗-2
⇀ P two-scale weakly* in Mb(Ω

′ × Y; MN
D),

with (u,E, P ) ∈ Ahom(w). Then, for Qε and Hε as in (2.7) and (2.16) respectively, we get

(5.14) Qhom(E) ≤ lim inf
ε
Qε(eε),

and

(5.15) Hhom(P ) ≤ lim inf
ε
Hε(pε).

Proof. We first prove (5.14). In view of Remark 4.12, it is readily seen that

Cεeε
w-2
⇀ C(y)E two-scale weakly in L2(Ω′ × Y; MN

sym).

Given Φ ∈ C∞c (Ω × Y; MN
sym), and passing to the limit in the inequality

0 ≤ 1

2

∫
Ω

Cε(x)
(
eε − Φ

(
x,
x

ε

))
·
(
eε − Φ

(
x,
x

ε

))
dx

we obtain∫
Ω×Y

C(y)E · Φ(x, y) dx dy − 1

2

∫
Ω×Y

C(y)Φ(x, y) · Φ(x, y) dx dy ≤ lim inf
ε
Qε(eε).

Letting Φ converge to E strongly in L2(Ω × Y; MN
sym) yields (5.14).

The proof of (5.15) is more delicate, and we proceed in two steps.

Step 1.As a first step, consider B ⊆ Y, an open set with Lipschitz boundary, and also such that
∂B \ T is C1, for some compact set T with HN−1(T ) = 0. Assume also that ∂B ∩ C ⊆ T , where
C has been introduced in (1.1).

Let vε ∈ BD(Ω′) be such that

vε
∗
⇀ v weakly∗ in BD(Ω′),

and (see (1.2))

Evεb(Ω′ ∩ Bε)
w∗-2
⇀ π two-scale weakly* in Mb(Ω

′ × Y; MN
sym).

We claim that π is supported in Ω′ × B̄ and that

(5.16) πb(Ω′ × (∂B \ T )) = a(x, y)� ν(y) ζ,

where ζ ∈ M+
b (Ω′ × (∂B \ T )), a : Ω′ × (∂B \ T ) → RN is a Borel map, and ν is the exterior

normal to ∂B.
Indeed, in view of Remark 4.3, the two-scale weak* limits (up to subsequences) of

Evεb(Ω′ ∩ Bε ∩ (C)ε) ∈Mb(Ω
′; MN

sym)
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have support concentrated on Ω′ × (B ∩ C). Since by assumption ∂B ∩ C ⊆ T , they do not
contribute to the behaviour of π on Ω′× (∂B \T ). We can therefore focus on the two-scale weak*
limit π̃ (up to subsequences) of

Evεb(Ω′ ∩ (Bε \ Cε)) ∈Mb(Ω
′; MN

sym)

as

πb(Ω′ × (∂B \ T )) = π̃b(Ω′ × (∂B \ T )).

Let ∑
i∈Iε(Ω′)

(LNx bQiε)⊗ µiε ∈Mb(Ω
′ × Y; MN

sym)

be the unfolded measure associated with Evεb(Ω′∩(Bε \Cε)) according to (4.15). Then, appealing
to Proposition 4.13, we get, for every χ ∈ C1

c (Ω′ × Y; MN
sym) with divyχ(x, y) = 0,

(5.17)

∫
Ω′×Y

χ(x, y) dπ̃(x, y) = lim
ε→0

∑
i∈Iε(Ω′)

∫
Qiε

[∫
B\C

χ(x, y) · dEy v̂iε

]
dx

= lim
ε→0

∑
i∈Iε(Ω′)

∫
Qiε

[∫
∂B
χ (x, y)·(v̂iε(y)� ν(y)) dHN−1(y)−

∫
C∩B

χ(x, y)·dEv̂iε
]
dx

for a suitable v̂iε ∈ BD(Y) such that

(5.18)

∫
∂B
|v̂iε| dHN−1 + |Ey v̂iε|(C ∩ B) ≤ C

εN
|Evε|(int(Qiε)),

where C > 0 independent of i and ε.
In view of (5.18) a density argument allows us to rewrite (5.17) as

(5.19)

∫
Ω′×Y

χdπ̃ = lim
ε→0

∫
Ω′×Y

χdλ1ε +

∫
Ω′×Y

χdλ2ε, χ ∈ C0
0 (Ω′ × Y; MN

sym), divyχ = 0,

with λ1ε, λ
2
ε ∈Mb(Ω

′ × Y; MN
sym), such that (up to a subsequence)

λ1ε
∗
⇀ λ1, λ2ε

∗
⇀ λ2 weakly∗ in Mb(Ω

′ × Y; MN
sym).

Moreover supp(λ1) ⊆ Ω′×∂B and supp(λ2) ⊆ Ω′× (C ∩ B). In view of (5.19), Lemma 4.9 implies
the existence of µ ∈ X (Ω′) such that

π̃ = λ1 + λ2 + Eyµ.

Recalling that ∂B ∩ C ⊆ T ,

π̃b(∂B \ T ) = λ1b(∂B \ T ) + Eyµb(∂B \ T ).

Thanks to item (b) in Proposition 4.7, the proof is complete if we show the analogue of (5.16) for
λ1b(∂B \ T ).

Consider

ηε := v̂ε(x, y)LNx ⊗ (HN−1y b∂B) ∈Mb(Ω
′ × Y;RN )

with

v̂ε(x, y) :=
∑

i∈Iε(Ω′)

1Qiε(x)v̂iε(y),

so that λ1ε = ηε(x, y) � ν(y) for any Borel extension of ν to Y. In view of (5.18), up to a
subsequence,

ηε
∗
⇀ η weakly∗ in Mb(Ω

′ × Y;RN ),

for some η ∈Mb(Ω
′ × Y;RN ). Since ν is continuous along ∂B \ T , we immediately get

λ1b(∂B \ T ) =
η

|η|
� ν |η|b(∂B \ T ),

so that claim (5.16) follows because η/|η| is a Borel function.
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Step 2. We now prove (5.15), assuming, with no loss of generality, that

(5.20) lim inf
ε
Hε(pε) < +∞.

We decompose pε as

pε =
∑
i

piε +
∑
i 6=j

pijε

where, since pε does not charge HN−1-negligible sets,

piε := pεb(Ω′ ∩ (Yi)ε) and pijε := pεb(Ω′ ∩ (Γij\S)ε).

Up to a subsequence,

piε
w∗-2
⇀ P i two-scale weakly* in Mb(Ω

′ × Y; MN
D),

and

pijε
w∗-2
⇀ P ij two-scale weakly* in Mb(Ω

′ × Y; MN
D).

Clearly

(5.21) P =
∑
i

P i +
∑
i 6=j

P ij

with supp(P i) ⊆ Ω̄ × Ȳi and, thanks to Remark 4.3, supp(P ij) ⊆ Ω̄ × Γij .
Invoking Lemma 4.6 we get

lim inf
ε

∫
Ω∪Γd

Hε

(
x,

piε
|piε|

)
d|piε| = lim inf

ε

∫
Ω′
H

(
x

ε
,
piε
|piε|

)
d|piε|

= lim inf
ε

∫
Ω′
Hi

(
piε
|piε|

)
d|piε| ≥

∫
Ω′×Y

Hi

(
P i

|P i|

)
d|P i|

=

∫
Ω′×Yi

Hi

(
P i

|P i|

)
d|P i|+

∫
Ω′×Γ

Hi

(
P i

|P i|

)
d|P i|

≥
∫
Ω′×Yi

H

(
y,

P i

|P i|

)
d|P i|+

∑
j 6=i

∫
Ω′×(Γij\S)

Hi

(
P i

|P i|

)
d|P i|.

By (5.13) eε
w-2
⇀ E two-scale weakly in L2(Ω′ × Y; MN

sym), so that

Euεb(Ω′ ∩ (Yi)ε)
w∗-2
⇀ E1Ω′×YiLNx ⊗ LNy + P i two-scale weakly* in Mb(Ω

′ × Y; MN
sym).

We denote by ν the normal to Γij pointing from Yj to Yi. Since, according to (2.3), HN−1(Γ∩C) =
0, so that we may as well identify S with S ∪ (Γ ∩ C), ensuring that Γ ∩ C ⊂ S, the first step of
the proof implies that, for every j 6= i,

(5.22) P ib(Ω × (Γij \ S)) = −(aij � ν) ηij

for a suitable ηij ∈ M+
b (Ω′ × (Γij \ S)), and suitable Borel functions aij : Ω′ × (Γij \ S) → RN

such that aij(x) ⊥ ν(x) for ηij-a.e. (x, y) ∈ Ω× (Γij \S) (recall that P i has values in MN
D). Thus,

(5.23) lim inf
ε

∫
Ω∪Γd

Hε

(
x,

piε
|piε|

)
d|piε| =

≥
∫
Ω′×Yi

H

(
y,

P i

|P i|

)
d|P i|+

∑
j 6=i

∫
Ω′×(Γij\S)

Hi

(
−aij � ν

)
dηij .

As to pijε ,

pijε = (uiε − ujε)� ν
(x
ε

)
HN−1b(Γij\S)ε,
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where uiε and ujε are the traces of uε on Ω′∩ (Γij\S)ε coming from (Yi)ε and (Yj)ε respectively. In
view of the definition of H on Γij\S (see (2.13)), and since the inf-convolution is indeed attained
as a minimum, we get

(5.24)

∫
Ω∪Γd

Hε

(
x,

pijε

|pijε |

)
d|pijε | =

∫
Ω′∩(Γij\S)ε

Hε

(
x,

pijε

|pijε |

)
d|pijε |

=

∫
Ω′∩(Γij\S)ε

Hε

(
x, (uiε − ujε)(x)� ν

(x
ε

))
dHN−1

=

∫
Ω′∩(Γij\S)ε

[
Hi

(
biji,ε(x)� ν

(x
ε

))
+Hj

(
−bijj,ε(x)� ν

(x
ε

))]
dHN−1,

for suitable Borel functions biji,ε, b
ij
j,ε : Ω′ ∩ (Γij\S)ε → RN such that

biji,ε(x)− bijj,ε(x) = uiε(x)− ujε(x) for HN−1-a.e. x ∈ (Γij\S)ε

with

biji,ε(x) ⊥ ν
(x
ε

)
, bijj,ε(x) ⊥ ν

(x
ε

)
for HN−1-a.e. x ∈ (Γij\S)ε.

Note that the Borel character of the functions biji,ε, b
ij
j,ε can be argued by approximating uiε − ujε

along (Γij\S)ε by simple functions, and recalling that ν is continuous.
In view of the coercivity estimate (2.12) and of the bound (5.20) we obtain∫

Ω′∩(Γij\S)ε

[∣∣∣biji,ε(x)� ν
(x
ε

)∣∣∣+
∣∣∣bijj,ε(x)� ν

(x
ε

)∣∣∣] dHN−1(x) ≤ C

for a suitable constant C > 0. The bound above actually implies that the measures

ηiji,ε := biji,εH
N−1b[Ω′ ∩ (Γij\S)ε] and ηijj,ε := bijj,εH

N−1b[Ω′ ∩ (Γij\S)ε]

are bounded in ε. Thus, recalling Remark 4.3, we can assume that, up to a subsequence that will
not be relabeled, biji,ε � ν

(
x
ε

)
HN−1b[Ω′ ∩ (Γij\S)ε]

w∗-2
⇀ λiji two-scale weakly* in Mb(Ω

′ × Y; MN
sym)

bijj,ε � ν
(
x
ε

)
HN−1b[Ω′ ∩ (Γij\S)ε]

w∗-2
⇀ λijj two-scale weakly* in Mb(Ω

′ × Y; MN
sym),

and  ηiji,ε
w∗-2
⇀ ηiji = biji |η

ij
i | two-scale weakly* in Mb(Ω

′ × Y;RN )

ηijj,ε
w∗-2
⇀ ηijj = bijj |η

ij
j | two-scale weakly* in Mb(Ω

′ × Y;RN ),

with λij , λji ∈Mb(Ω
′ × Y; MN

sym) and ηiji , η
ij
j ∈Mb(Ω

′ × Y;RN ) such that

supp(λij), supp(λji), supp(ηiji ), supp(ηijj ) ⊆ Ω̄ × Γij .

Since the normal vector field ν is continuous on Γij \ S, we get

λij = (biji � ν) |ηiji | and λji = (bijj � ν) |ηijj | on Ω′ × (Γij \ S).

In view of Lemma 4.6 we obtain

(5.25) lim inf
ε

∫
(Ω∪Γd)∩(Γij\S)ε

Hε

(
x,

pijε

|pijε |

)
d|pijε | = lim inf

ε

∫
Ω′∩(Γij\S)ε

Hε

(
x,

pijε

|pijε |

)
d|pijε |

= lim inf
ε

∫
Ω′∩(Γij\S)ε

[
Hi

(
biji,ε(x)� ν

(x
ε

))
+Hj

(
−bijj,ε(x)� ν

(x
ε

))]
dHN−1(x)

≥
∫
Ω′×(Γij\S)

Hi(b
ij
i � ν(y)) d|ηiji |+

∫
Ω′×(Γij\S)

Hj(−bijj � ν(y)) d|ηijj |.
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Recalling (5.21) and (5.22), the previous analysis shows that

(5.26) P b(Ω′ × (Γij\S)) = −(aij � ν) ηij+(aji � ν) ηji + (biji � ν) |ηiji | − (bijj � ν) |ηijj |
= [(ci − cj)� ν] ζij ,

where ζij := ηij + ηji + |ηiji | + |η
ij
j |, and ci, cj are suitable Borel functions on Ω′ × (Γij\S) with

values in RN such that

(ci � ν) ζij = −(aij � ν)λij + (biji � ν) |ηiji |,
idem for cj . Further,

ci(x, y) ⊥ ν(y), cj(x, y) ⊥ ν(y) for ζij-a.e. (x, y) ∈ Ω′ × (Γij\S).

Since

Hε(pε) =
∑
i

∫
Ω∪Γd

Hε

(
x,

piε
|piε|

)
d|piε|+

∑
i 6=j

∫
(Ω∪Γd)∩(Γij\S)ε

Hε

(
x,

pijε

|pijε |

)
d|pijε |,

we get, thanks to (5.23) and (5.25),

lim inf
ε
Hε(pε)

≥
∑
i

lim inf
ε

∫
Ω∪Γd

Hε

(
x,

piε
|piε|

)
d|piε|+

∑
i 6=j

lim inf
ε

∫
(Ω∪Γd)∩(Γij\S)ε

Hε

(
x,

pijε

|pijε |

)
d|pijε |

≥
∑
i

∫
Ω′×Yi

H

(
y,

P i

|P i|

)
d|P i|+

∑
j 6=i

∫
Ω′×(Γij\S)

Hi

(
−aij � ν

)
dηij


+
∑
i 6=j

(∫
Ω′×(Γij\S)

Hi(b
ij
i � ν) d|ηiji |+

∫
Ω′×(Γij\S)

Hj(−bijj � ν) d|ηijj |

)
=

∫
Ω′×∪iYi

H

(
y,

p

|p|

)
d|p|

+
∑
i 6=j

(∫
Ω′×(Γij\S)

Hi

(
−aij � ν

)
dηij +

∫
Ω′×(Γij\S)

Hj

(
aji � ν

)
dηji

+

∫
Ω′×(Γij\S)

Hi(b
ij
i � ν) d|ηiji |+

∫
Ω′×(Γij\S)

Hj(−bijj � ν) d|ηijj |

)
.

In view of (5.26), by the definition of H on Ω′ × (Γij\S) and the sub-additive character of Hi and
Hj , and since, in view of Remark 5.3, P does not charge Ω′ × S, we deduce that

lim inf
ε
Hε(pε) ≥

∫
Ω′×∪iYi

H

(
y,

P

|P |

)
d|P |

+
∑
i 6=j

∫
Ω′×(Γij\S)

[
Hi

(
ci(x, y)� ν(y)

)
+Hj(−cj(x, y)� ν(y))

]
dζij(x, y)

≥
∫
Ω′×∪iYi

H

(
y,

P

|P |

)
d|P |+

∑
i6=j

∫
Ω′×(Γij\S)

H(y, (ci − cj)� ν) dζij

=

∫
Ω′×∪iYi

H

(
y,

P

|P |

)
d|P |+

∑
i 6=j

∫
Ω′×(Γij\S)

H

(
y,

P

|P |

)
d|P | = Hhom(P ),

which concludes the proof. �

5.2. Two-scale statics and duality. In this subsection we define two-scale (statically admissi-
ble) stress configurations, investigate the duality between those and elements of Ahom(w) in the
spirit of Theorem 3.3 and Proposition 3.5, and show that they naturally arise as two-scale weak
limits of statically admissible stress fields.

We adopt the following
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Definition 5.8 (Two-scale static admissibility). An element Σ ∈ L2(Ω×Y; MN
sym) such that

divyΣ = 0 on Ω × Y, ΣD(x, y) ∈ K(y) for LNx ⊗ LNy -a.e. (x, y) ∈ Ω × Y

and

(5.27) divxσ = 0 in Ω, σ · ν = 0 on ∂Ω \ Γ d,

where σ(x) :=
∫
Y Σ(x, y) dy, is said to be two-scale statically admissible and we denote by Khom

the set of all such stresses.

Remark 5.9. Recalling Definition 3.2, if Σ ∈ Khom, then, for a.e. x ∈ Ω,

Σ(x, ·) ∈ KY .

According to (3.1), there exists, for every 1 ≤ r <∞, a constant Cr > 0 (independent of x) such
that

‖Σ(x, ·)‖Lr(Y;MN
sym) ≤ Cr

[
‖Σ(x, ·)‖L2(Y;MN

sym)+‖ΣD(x, ·)‖L∞(Y;MN
sym)

]
.

¶

Let P ∈ Πhom(w) and Σ ∈ Khom. In view of the Lemma 5.4, P = η ⊗ Px, Px being a plastic
strain for an admissible configuration on Y for η-a.e. x ∈ Ω′. On the other hand, according to
Remark 5.9, for LNx -a.e. x ∈ Ω, Σx := Σ(x, ·) ∈ L2(Y; MN

sym) is a statically admissible stress field
on Y. Thus it would be tempting to conclude that, recalling Theorem 3.3, a coupling between
Px and Σx is available on almost every fiber with base in Ω. But there is a snag: the measure
η can have concentrated parts, while Σx is only well defined almost everywhere with respect to
the Lebesgue measure. To overcome this difficulty, we will have to construct in a first step an
adequate approximation of Σ (see Lemma 5.10), then use that approximation to define in turn a
(disintegrated) two-scale analogue of the duality measure 〈ΣD, P 〉 defined in (3.2) (see Proposition
5.11) and to obtain the analogue of Proposition 3.5 (see Theorem 5.12).

Lemma 5.10 (Approximation of stresses). Let Σ ∈ Khom. There exists Σn : RN ×Y → MN
sym

with

(5.28) Σn ∈ L2(RN × Y; MN
sym),

and such that the following holds:

(a) Σn(x, y) ∈ C∞(RN ;L2(Y; MN
sym));

(b) divy Σn(x, ·) = 0 on Y for every x ∈ RN , and

‖Σn(x, y)‖L2(Y;MN
sym) ≤ C̃n‖Σ‖L2(Ω×Y;MN

sym),

where C̃n does not depend on x. Moreover

sup
n
‖(Σn)D(x, ·)‖∞ <∞

and, for every 1 ≤ r <∞ there exists Cn > 0 such that

‖Σn(x, ·)‖Lr(Y;MN
sym) ≤ Cn;

(c) For every ε > 0, there exists Nε such that, for n ≥ Nε and for every x ∈ RN

(Σn(x, y))D ∈ (1 + ε)K(y) for a.e. y ∈ Y;

(d) Σn → Σ strongly in L2(Ω × Y; MN
sym); and

(e) Setting σn(x) :=
∫
Y Σn(x, y) dy and σ(x) :=

∫
Y Σ(x, y) dy, σn ∈ C∞(RN ; MN

sym),

sup ‖(σn)D‖∞ < +∞,

σn → σ strongly in L2(Ω; MN
sym)

div σn → 0 strongly in LN (Ω;RN )

σn → σ strongly in Lr(Ω; MN
sym) for every 1 ≤ r <∞.
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Proof. Let us extend Σ to RN×Y by setting Σ = 0 outside Ω. For every x ∈ ∂Ω, consider an open
neighborhood U such that ∂Ω ∩ U is a Lipschitz subgraph with respect to a suitable coordinate
system. We cover ∂Ω with finitely many open set U1, . . . , Um associated with x1, . . . , xm ∈ ∂Ω,
and assume that there exists τi ∈ RN such that

(5.29) (Ui ∩Ω) + aτi ⊂⊂ Ω, 0 < a < 1.

Let {ψi}i=1,...,m be a partition of unity of ∂Ω subordinated to {Ui}i=1,...,m. Write

(5.30) Σ =

m∑
i=1

ψiΣ +

(
1−

m∑
i=1

ψi

)
Σ :=

m∑
i=1

Σi + Σ0,

the last term having compact support in Ω × Y.
The approximation Σn is obtained by infinitesimally translating each Σi in the direction −τi

and taking a convolution with respect to x, while Σ0 is simply regularized by convolution with
respect to x. We then use a diagonal argument.

Indeed, (5.28), items (a) and (d) immediately follow, while item (b) follows by the definition of
Khom and the continuity of the ψi’s if one further takes Remark 5.9 into account . As far as item
(c) is concerned, the definition of Khom implies that, for a.e. x ∈ RN and a.e. y ∈ Y,

(Σi)D(x, y) ∈ ψi(x)K(y), (i = 1, . . . ,m), (Σ0)D(x, y) ∈

(
1−

m∑
i=1

ψi(x)

)
K(y).

Given ε > 0, in view of the continuity of ψi and of the convexity of K(y), the construction above
yields that, for n large enough, and for every x ∈ RN and a.e. y ∈ Y,

(Σni )D(x, y) ∈ (ψi(x) + ε)K(y), (Σn0 )D(x, y) ∈

(
1 + ε−

m∑
i=1

ψi(x)

)
K(y),

so that, using the convexity of K(y) once more, (Σn(x, y))D ∈ (1 + (m+ 1)ε)K(y) for a.e. y ∈ Y.
Item (c) thus follows in view of the arbitrariness of ε.

Let us finally come to item (e). We need only to justify the convergence of divσn, the first two
properties being a consequence of the previous items modulo an integration in y, while the last
statement is a consequence of the inequality in Remark 2.2. From (5.30) we deduce integrating in
y

σ =

m∑
i=1

ψiσ +

(
1−

m∑
i=1

ψi

)
σ.

The associated approximation obtained by translations and convolutions can be written explicitly
as

σn(x) = ρn(x) ?

[
m∑
i=1

ψi(x+ anτi)σ(x+ anτi) +

(
1−

m∑
i=1

ψi(x)

)
σ(x)

]
with an ↘ 0 and {ρn}n∈N suitable convolution kernels. Since div(σ(x + anτi)) = 0 thanks to
(5.29), the convergence follows from (5.27) and Remark 2.2 which imply that σ is in Lr(Ω; MN

sym)
for 1 ≤ r <∞. �

Proposition 5.11 (Two scale duality). Let Σ ∈ Khom, and (u,E, P ) ∈ Ahom(w). Let η ∈
M+

b (Ω′) be the measure such that P = η ⊗ Px, with Px ∈ Mb(Y; MN
D), according to Lemma 5.4.

Then,

(a) If {Σn}n∈N is the sequence given by Lemma 5.10, the sequence {λn}n∈N defined as

λn := η
gen.

⊗ 〈(Σn)D(x, ·), Px〉,

(where 〈(Σn)D(x, ·), Px〉 is the measure on Y associated with the duality between the stress
Σn(x, ·) and the plastic strain Px according to Remark 3.4) is a bounded sequence of
elements of Mb(Ω

′ × Y);
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(b) There exists a subsequence of {λn}n∈N (still indexed by n) and an element λ ∈Mb(Ω
′×Y)

such that
λn

∗
⇀ λ weakly∗ in Ω′ × Y,

with

(5.31) λ = (LNx bΩ)
gen.

⊗ 〈ΣD(x, ·), Px〉+ λs,

where 〈ΣD(x, ·), Px〉 ∈ Mb(Y) denotes the duality between the stress ΣD(x, ·) ∈ KY and
the plastic strain Px ∈ ΠY , and where λs ∈Mb(Ω

′ × Y) is such that

|λs| << ηs
gen.

⊗ |Px|.
Finally, if ∂b∂ΩΓd is admissible in the sense of Definition 2.1, the mass of λ is given

by

(5.32) λ(Ω′ × Y) = −
∫
Ω×Y

Σ · E dxdy +

∫
Ω

σ · Ew dx.

Proof. Proof of item (a). By Lemma 5.4, for η-a.e. x ∈ Ω′ the measure Px ∈ Mb(Y; MN
D) is the

plastic strain of the admissible configuration on Y given by (µx, C(x)E(x, ·) − A(x), Px), where
µx ∈ BD(Y), while C : Ω′ → [0, 1] and A : Ω′ → MN

sym are the Radon-Nykodim derivatives of LNx
and Eu with respect to η, respectively. Thanks to Lemma 5.10,

Σn(x, ·) ∈ L2(Y; MN
sym), (Σn)D(x, ·) ∈ L∞(Y; MN

D), divyΣn(x, ·) = 0

for every x ∈ Ω′. We conclude that the duality 〈(Σn)D(x, ·), Px〉 is well defined as an element in
Mb(Y) for η-a.e. x ∈ Ω′.

By definition of 〈(Σn)D(x, ·), Px〉,

(5.33) 〈(Σn)D(x, ·), Px〉(ψ) = −
∫
Y
ψ(y)Σn(x, y) · [C(x)E(x, y)−A(x)] dy

−
∫
Y

Σn(x, y) · [µx(y)�∇ψ(y)] dy

for every ψ ∈ C1(Y). The η-a.e. defined map

(5.34) x 7→ 〈(Σn)D(x, ·), Px〉(ψ) is η-measurable on Ω′.

Indeed, a direct computation shows that the maps f(x, y) := ψ(y)Σn(x, y) · [C(x)E(x, y)−A(x)]
and g(x, y) := Σn(x, y) · [µx(y)�∇ψ(y)] are summable with respect to the measure η⊗LNy . Then
(5.34) follows by Fubini’s theorem.

Through a standard approximation argument, we infer that x 7→ 〈Σn(x, ·), Px〉(F ) is η-measurable
for every Borel set F ⊆ Y. Since, in view of item (b) in Lemma 5.10,

|〈(Σn)D(x, ·), Px〉| ≤ ‖(Σn)D(x, ·)‖∞|Px| ≤ C|Px|,
we deduce from the actual definition of generalized products (see Subsection 1.2 or [4, Definition

2.27]) that λn = η
gen.

⊗ 〈Σn(x, ·), Px〉 is well defined as an element of Mb(Ω
′ × Y).

Since

|λn| = η
gen.

⊗ |[(Σn)D(x, ·), Px]| ≤ η
gen.

⊗ ‖(Σn)D(x, ·)‖∞|Px| ≤ C|P |,
with C independent of n, we infer that {λn}n∈N is bounded in Mb(Ω

′ × Y).

Proof of item (b). Up to a subsequence,

λn
∗
⇀ λ weakly∗ in Ω′ × Y

for a suitable λ ∈Mb(Ω
′ × Y). For every ϕ ∈ C0

c (Ω′), the very definition of λn yields

〈λn, ϕ〉 = −
∫
Ω′×Y

ϕ(x)Σn(x, y) · C(x)E(x, y) d(η ⊗ LNy ) +

∫
Ω′
ϕ(x)σn(x) ·A(x) dη(x)

= −
∫
Ω′
ϕ(x)Σn(x, y) · E(x, y) dxdy +

∫
Ω′
ϕ(x)σn(x) dEu(x).
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But σn is continuous, so∫
Ω′
ϕ(x)σn(x) · dEu(x) =

∫
Ω′
ϕ(x)σn(x) · e(x) dx+

∫
Ω′
ϕ(x)σn(x) · dp(x)

=

∫
Ω′
ϕ(x)σn(x) · e(x) dx+

∫
Ω′
ϕ(x)(σn)D(x) · dp(x),

hence

〈λn, ϕ〉 = −
∫
Ω′×Y

ϕ(x)Σn · E dxdy +

∫
Ω′
ϕσn · e dx+

∫
Ω′
ϕ(σn)D · dp,

where e(x) :=
∫
Y E(x, y) dy ∈ L2(Ω′; MN

sym) and p := proj#P ∈Mb(Ω
′; MN

D).

Since σn ∈ C∞(RN ; MN
sym) we have, recalling Remark 2.2,

(σn)Dp = 〈(σn)D, p〉 as measures on Ω′.

Appealing to the convergences of σn to σ in item (e) of Lemma 5.10 we deduce from the definition
of the duality product in (2.2) and the facts that ϕ ≡ 0 on Γ̄t while p ≡ 0 on Ω′ \ Ω̄ that

〈(σn)D, p〉
∗
⇀ 〈(σ)D, p〉 weakly∗ in Mb(Ω

′)

(and thus that 〈(σ)D, p〉 ∈ Mb(Ω
′)), with, for every ϕ ∈ C0

c (Ω′),

〈(σ)D, p〉(ϕ) = −
∫
Ω

ϕσ · (e− Ew) dx−
∫
Ω

σ · [(u− w)�∇ϕ] dx.

With item (d) in Lemma 5.10, and since e ≡ E ≡ Ew outside Ω, we deduce that

〈λ, ϕ〉 = lim
n
〈λn, ϕ〉

= lim
n

[
−
∫
Ω′×Y

ϕ(x)Σn · E dxdy +

∫
Ω′
ϕ(x)σn · e dx+ 〈(σn)D, p〉(ϕ)

]
= lim

n

[
−
∫
Ω×Y

ϕ(x)Σn · E dxdy +

∫
Ω

ϕ(x)σn · e dx+ 〈(σn)D, p〉(ϕ)

]
= −

∫
Ω×Y

ϕ(x)Σ · E dxdy +

∫
Ω

ϕ(x)σ · e dx+ 〈σD, p〉(ϕ).

If ∂b∂ΩΓd is admissible, letting ϕ↗ 1Ω′ we get

λ(Ω′ × Y) = −
∫
Ω×Y

Σ · E dxdy +

∫
Ω

σ · e dx+ 〈σD, p〉(Ω)

= −
∫
Ω×Y

Σ · E dxdy +

∫
Ω

σ · e dx−
∫
Ω

σ · (e− Ew) dx = −
∫
Ω×Y

Σ · E dxdy +

∫
Ω

σ · Ew dx,

which is (5.32).
It now remains to establish the precise form (5.31) of λ. Note that, since Px = 0 for LN -a.e.

x ∈ Ω′ \Ω and η = LNx + ηs,

λn = LNx
gen.

⊗ 〈(Σn)D(x, ·), Px〉+ ηs
gen.

⊗ 〈(Σn)D(x, ·), Px〉

= (LNx bΩ)
gen.

⊗ 〈(Σn)D(x, ·), Px〉+ ηs
gen.

⊗ 〈(Σn)D(x, ·), Px〉 =: λ1n + λ2n.

In view of item (b) in Lemma 5.10,

|λ1n| ≤ C(LNx bΩ)
gen.

⊗ |Px| ≤ C|P | and |λ2n| ≤ Cηs
gen.

⊗ |Px| ≤ C|P |,
with C independent of n. As a consequence, we may assume that, up to the extraction of a further
subsequence,

λ1n
∗
⇀ λ1 weakly∗ in Mb(Ω

′ × Y)

λ2n
∗
⇀ λ2 weakly∗ in Mb(Ω

′ × Y)

with

|λ1| ≤ C(LNx bΩ)
gen.

⊗ |Px| and |λ2| ≤ Cηs
gen.

⊗ |Px|
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as measures on Ω′ × Y.
In view of items (b) and (d) of Lemma 5.10, and taking into account Remark 5.9,

Σn(x, ·)→ Σ(x, ·) strongly in Lr(Y; MN
sym) for a.e. x ∈ Ω, 1 ≤ r <∞.

Since, according to Lemma 5.4, (µx, C(x)E(x, ·)−A(x), Px) ∈ AY , hence (C(x)E(x, ·)−A(x)) ∈
L2(Y,MN

sym) for η-a.e. x ∈ Ω, we immediately pass to the limit in (5.33) and conclude that

〈(Σn)D(x, ·), Px〉
∗
⇀ 〈(Σ)D(x, ·), Px〉 weakly∗ in Mb(Y).

By the very definition of a generalized product, we finally obtain

λ1 = (LNx bΩ)
gen.

⊗ 〈(Σ)D(x, ·), Px〉.
Since λ = λ1 + λ2, (5.31) follows and the proof is complete. �

We now establish the two-scale analogue of Proposition 3.5.

Theorem 5.12. Assume that Y is a C2-admissible multiphase torus. Then, for every Σ ∈ Khom
and (u,E, P ) ∈ Ahom(w),

H

(
y,

P

|P |

)
|P | ≥ λ,

with λ defined in (5.31).
Further, if equality holds, then for LNx -a.e. x ∈ Ω,

Px
|Px|

(y) ∈ NK(y)(ΣD(x, y)) for LNy a.e. y ∈ {|Px| > 0};

and, letting µ ∈ X (Ω′) be the measure associated with (u,E, P ) and using the disintegration (5.9),
we get, for LNx -a.e. x ∈ Ω and for every i 6= j,

µix(y)− µjx(y)

|µix(y)− µjx(y)|
∈ ~NKΓ (y)((ΣD(x, ·)ν)τ (y)) for HN−1-a.e. y ∈ {µix 6= µjx},

where µix and µjx are the traces on Γij of the restrictions of µx on Yi and Yj respectively, assuming

that ν points from Yj to Yi, and where ~NKΓ (y)(τ) denotes the normal cone (a cone of vectors) to
KΓ (y) at a vector τ ⊥ ν(y).

Proof. Let {Σn}n∈N be the sequence given by Lemma 5.10, and let {λn}n∈N be the associated
measures defined in Proposition 5.11. Given ε > 0, item (c) in Lemma 5.10 implies that, for n
large enough,

(Σn)D(x, ·) ∈ (1 + ε)K(y) for a.e. y ∈ Y and for every x ∈ Ω′.
By Proposition 3.5, we deduce that, for η-a.e. x ∈ Ω′,

H

(
y,

Px
|Px|

)
|Px| ≥

1

1 + ε
〈(Σn)D(x, ·), Px〉 as measures on Y.

Consequently, in view of (5.10) and item (a) in Proposition 5.11,

H

(
y,

P

|P |

)
|P | = η

gen.

⊗ H

(
y,

P

|P |

)
|Px| = η

gen.

⊗ H

(
y,

Px
|Px|

)
|Px| ≥

1

1 + ε
λn.

Item (b) in Proposition 5.11 implies the desired inequality upon passing to the limit in n, then in
ε.

If, further, equality holds, then the decomposition P = η
gen.

⊗ Px, with η := LNx + (proj#|P |)s
given by Lemma 5.4 implies, in view of (5.31), that

(LNx bΩ)
gen.

⊗ H

(
y,

P

|P |

)
|Px| = (LNx bΩ)

gen.

⊗ 〈ΣD(x, ·), Px〉

so that, recalling (5.10),

H

(
y,

Px
|Px|

)
|Px| = 〈ΣD(x, ·), Px〉 as measures on Y,
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and this for LNx -a.e. x ∈ Ω. The result now follows from Proposition 3.5 once it is recalled that,
thanks to Lemma 5.4, Px is the plastic strain of the BD deformation µx on Y. �

Remark 5.13. Assuming that ∂b∂ΩΓd is admissible in the sense of Definition 2.1, the previous
theorem, together with (5.32) immediately imply the two-scale version of the principle of maximum
plastic work, that is that, for any Σ ∈ Khom and any triplet (u,E, P ) ∈ Ahom(w),

Hhom(P ) ≥ [Σ |P ] := −
∫
Ω×Y

Σ · E dxdy +

∫
Ω

σ · Ew dx. ¶

As a final remark in this subsection, two-scale statically admissible fields naturally arise as
two-scale weak limits of ε-statically admissible stress fields (see (2.19)). Indeed,

Proposition 5.14. Let (σε)ε>0 be a bounded family in L2(Ω; MN
sym) such that σε ∈ Kε and

σε
w-2
⇀ Σ two-scale weakly in L2(Ω × Y; MN

sym).

Then Σ ∈ Khom.

Proof. Since σ(x) :=
∫
Y Σ(x, y) dy is the weak L2-limit of σε, it is immediate that

divx σ = 0 in Ω, σ · ν = 0 on ∂Ω \ Γ d.

Applying the definition of two-scale weak convergence it is readily seen that

divy Σ = 0 on Y.

In order to prove the thesis, we appeal to Remark 4.12. The function Σ is the weak limit in
L2(Ω × Y; MN

sym) of the functions

Σε(x, y) :=
∑

i∈Iε(Ω)

1Qiε(x)σiε(y),

where Iε(Ω) is defined in (4.13), and σiε(y) := σε(x
i
ε + εI(y)). Since σε ∈ Kε, we deduce that

Σε ∈
{

Ξ ∈ L2(Ω × Y; MN
sym) : ΞD(x, y) ∈ K(y) for a.e. (x, y) ∈ Ω × Y

}
.

But this set is convex and closed in strong topology of L2(Ω×Y; MN
sym), hence weakly closed, and

this concludes the proof. �

6. Two-scale homogenization of the quasi-static evolution

In this last section, we address in a first subsection the two-scale limit of the heterogeneous quasi-
static evolution, while we derive the corresponding generalized flow rule in a second subsection.

6.1. Two-scale quasi-static evolutions and the homogenization result. For any t 7→
P (t) ∈ Mb(Ω

′ × Y; MN
D), t ∈ [0, T ], we define the homogenized total dissipation on [a, b] ⊆ [0, T ]

to be

Dhom(a, b;P ) := sup

 ∑
i=1,...,I

Hhom (P (ti)− P (ti−1)) : a = t0 ≤ t1 ≤ ... ≤ tI = b

 ,

where Hhom was defined in (5.12).
Recalling the definitions of Ahom(w) and of Qhom (see Definition 5.1 and (5.11)), we are now

in a position to formulate a notion of quasi-static elasto-plastic evolution in a two-scale setting.

Definition 6.1 (Two-scale quasi-static evolution). We say that

t 7→ (u(t), E(t), P (t)) ∈ Ahom(w(t))

is a two-scale quasi-static evolution relative to w iff the following conditions hold for every t ∈
[0, T ].
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(a) Global stability: for every (v,Ξ, Q) ∈ Ahom(w(t))

Qhom(E(t)) ≤ Qhom(Ξ) +Hhom(Q− P (t)).

(b) Energy equality: t 7→ P (t) has bounded variation from [0, T ] to Mb(Ω
′ × Y; MN

D) and

Qhom(E(t)) +Dhom(0, t;P ) = Qhom(E(0)) +

∫ t

0

∫
Ω

σ(τ) · Eẇ(τ) dx dτ,

where σ(t, x) :=
∫
Y C(y)E(t, x, y) dy for a.e. x ∈ Ω.

As will be seen shortly, two-scale quasi-static evolutions naturally arise in the description of
the behavior of quasi-static evolutions in periodic heterogeneous materials as the size of the mi-
crostructure goes to zero.

For every ε > 0, let (u0ε, e
0
ε, p

0
ε) ∈ A(w(0)) be globally stable initial configurations such that

(6.1)


u0ε

∗
⇀ u0 weakly* in BD(Ω′)

e0ε
s-2→ E0 two-scale strongly in L2(Ω′ × Y; MN

sym)

p0ε
w∗-2
⇀ P0 two-scale weakly* in Mb(Ω

′ × Y; MN
D)

for some (u0, E0, P0) ∈ Ahom(w(0)). In particular,

(6.2) lim
ε→0

Qε(e
0
ε) = Qhom(E0).

In view of the above assumptions on (u0ε, e
0
ε, p

0
ε), Theorem 2.6 applies to the evolution at fixed ε

and delivers a quasi-static evolution in the sense of Definition 2.5. The following homogenization
result holds.

Theorem 6.2 (Two-scale homogenization of a quasi-static evolution). Assume that

• ∂b∂ΩΓd is admissible in the sense of Definition 2.1;
• Relations (2.5), (2.6), (2.11), (2.12), (2.13), (2.17) hold; and
• For every ε > 0, (u0ε, e

0
ε, p

0
ε) ∈ Aε(w(0)) are globally stable configurations satisfying (6.1).

Let

t 7→ (uε(t), eε(t), pε(t))

be a quasi-static evolution relative to the boundary displacement w such that

(uε(0), eε(0), pε(0)) = (u0ε, e
0
ε, p

0
ε).

Then there exists εn → 0 and a two-scale quasi-static evolution

t 7→ (u(t), E(t), P (t))

relative to the boundary displacement w such that

(u(0), E(0), P (0)) = (u0, E0, P0)

and such that, upon setting (un, en, pn) := (uεn , eεn , pεn),

(6.3)


un(t)

∗
⇀u(t) weakly* in BD(Ω′)

en(t)
w-2
⇀ E(t) two-scale weakly in L2(Ω′ × Y; MN

sym)

pn(t)
w∗-2
⇀ P (t) two-scale weakly* in Mb(Ω

′ × Y; MN
D).

for every t ∈ [0, T ].

Proof. We divide the proof into several steps.

Step 1: Compactness. From the energy balance at fixed ε and upon application of [20, Chapter
II, Proposition 2.4] – taking

∫
Ω′\Ω |u|dx as continuous semi-norm on BD(Ω′) –we conclude to the

existence of a constant C > 0 such that, for every ε > 0 and t ∈ [0, T ],

(6.4) ‖uε(t)‖BD(Ω′) + ‖eε(t)‖L2(Ω′;MN
sym) + VMb(Ω′;MN

D)(0, t; pε) ≤ C.
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In view of Proposition 4.4 and of Remark 4.2, application of [14, Theorem 3.2] yields a sequence
{εn ↘ 0} and P ∈ BV (0, T ;Mb(Ω

′ × Y; MN
D)) such that, for every t ∈ [0, T ],

pn(t)
w∗-2
⇀ P (t) two-scale weakly∗ in Mb(Ω

′ × Y; MN
D).

Further, for a possibly t-dependent subsequence {εnt}nt∈N of {εn}n∈N,

(6.5)

{
unt(t)

∗
⇀u(t) weakly* in BD(Ω′)

ent(t)
w-2
⇀ E(t) two-scale weakly in L2(Ω′ × Y; MN

sym),

and, according to Lemma 5.6, (u(t), E(t), P (t)) ∈ Ahom(w(t)).
Finally, in view of Remark 4.12, we can choose {εnt}nt∈N such that

σnt(t) := Cεnt ent(t)
w-2
⇀Σ(t) := C(y)E(t) two-scale weakly in L2(Ω × Y; MN

sym);

consequently,

(6.6) σnt(t) ⇀ σ(t) weakly in L2(Ω; MN
sym)

where σ(t, x) :=
∫
Y Σ(t, x, y) dy for a.e. x ∈ Ω. By Proposition 5.14, Σ(t) ∈ Khom because, in

view of Remark 2.7, σnt(t) ∈ Kεnt .

Step 2: Global stability. Since (u(t), E(t), P (t)) ∈ Ahom(w(t)) (with associated µ(t) ∈ X (Ω′)),
then, for every (v,Ξ, Q) ∈ Ahom(w(t)) (with associated ν ∈ X (Ω′)), (v − u(t),Ξ− E(t), Q− P (t)) ∈
Ahom(0). Since Σ(t) ∈ Khom, Remark 5.13 implies that

Hhom(Q− P (t)) ≥ −
∫
Ω×Y

Σ · (Ξ− E(t))dxdy = −
∫
Ω×Y

C(y)E(t) · (Ξ− E(t))dxdy,

from which it is immediately deduced that

Hhom(Q− P (t)) +Qhom(Ξ) ≥ Qhom(E(t)) +Qhom(Ξ− E(t)) ≥ Qhom(E(t)),

hence the global stability.
Assume that (u′(t), E′(t), P (t)) ∈ Ahom(w(t)), with associated µ′(t) ∈ X (Ω′), also satisfies

global stability. Then, by the convexity of the set Ahom(w(t)) and the strict convexity of Qhom,
it is immediate that

E′(t) = E(t).

From the admissibility condition (5.5) we infer

Eu(t)⊗ LNy + Eyµ(t) = Eu′(t)⊗ LNy + Eyµ
′(t) on Ω′ × Y,

so that taking the average with respect to y we obtain

Eu(t) = Eu′(t) in Ω′.

Since u(t) = u′(t) = w(t) on Ω′ \Ω, using again [20, Chapter II, Proposition 2.4] with
∫
Ω′\Ω |u|dx

as continuous semi-norm on BD(Ω′), we infer u(t) = u′(t) on Ω′. Therefore, there is no need to
extract a subsequence {εnt}nt∈N from {εn}n∈N in (6.5), so that the whole sequences {un(t)}n∈N,
{En(t)}n∈N converge, which establishes (6.3).

Step 3: Energy balance. We start with the energy balance at fixed ε. It states in particular
(see Theorem 2.6) that for any partition 0 ≤ t1 ≤ .... ≤ tm = t of [0, t],

Qεn(en(t)) +

m−1∑
i=0

Hεn(pn(ti+1)− pn(ti)) ≤ Qεn(en(0)) +

∫ t

0

∫
Ω

σn(s) · Eẇ(s) dx ds.

Pass to the limit as n↗∞. For the left-hand side, Theorem 5.7 yields

Qhom(E(t)) +

m−1∑
i=0

Hhom(P (ti+1)− P (ti)) ≤ lim inf
n

[
Qεn(en(t)) +

m−1∑
i=0

Hεn(pn(ti+1)− pn(ti))

]
.
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In view of (6.4) and of (6.6), Lebesgue’s dominated convergence theorem entails that the limit of

the second term in the right hand-side is given by
∫ t
0

∫
Ω
σ(s) · Eẇ(s) dx ds. In view of (6.2),

lim
n
Qεn(en(0)) = Qhom(E0).

Recalling all limits, we finally obtain

Qhom(E(t)) +

m−1∑
i=0

Hhom(P (ti+1)− P (ti)) ≤ Qhom(E0) +

∫ t

0

∫
Ω

σ(s) · Eẇ(s) dx ds.

Taking the supremum over all partitions 0 ≤ t1 ≤ .... ≤ tm = t of [0, t] then yields

(6.7) Qhom(E(t)) +Dhom(0, t;P ) ≤ Qhom(E0) +

∫ t

0

∫
Ω

σ(s) · Eẇ(s) dx ds.

Deriving the reverse inequality in (6.7) is straightforward. Indeed, the argument is identical to
that at the end of the proof of [11, Theorem 2.7] upon replacing Q,D,H by Qhom,Dhom,Hhom,
respectively, and replacing the global minimality statement used there by item (a) in Definition
6.1. It simply consists in testing, at time ti, the global minimality of the triplet (u(ti), E(ti), P (ti))
by (u(ti+1) +w(ti)−w(ti+1), E(ti+1) + (Ew(ti)−Ew(ti+1)), P (ti+1)) ∈ Ahom(w(ti)) and passing
to the limit in the time step in the resulting inequality upon remarking that the BV regularity
in time for P implies that t 7→ Σ(t) ∈ L2(Ω × Y; MN

sym) can only have a countable number of
discontinuity points; see [11, Remark 2.6 and Theorem 2.7] for details. �

6.2. Flow rule for two-scale quasi-static evolutions. This subsection is devoted to the anal-
ysis of the flow rule for a two-scale quasi-static evolution. To this end, we need to interpret the
energy equality for a two-scale quasi-static evolution in terms of a more classical flow rule with
respect to the variable y.

Lemma 6.3 (Static admissibility). Let t 7→ (u(t), E(t), P (t)) ∈ Ahom(w(t)) be a two-scale
quasi-static evolution according to Definition 6.1. Then, for every t ∈ [0, T ],

Σ(t) := CE(t) ∈ Khom,
where Khom is the set of two-scale statically admissible stresses (see Definition 5.8).

Proof. Take (v,Ξ, Q) ∈ Ahom(0). From global stability with (u(t) + v,E(t) + Ξ, P (t) +Q) as test
field, it is immediate that ∫

Ω×Y
Σ(t) · Ξ dxdy +Hhom(Q) ≥ 0

so that

−Hhom(Q) ≤
∫
Ω×Y

Σ(t) · Ξ dxdy ≤ Hhom(−Q).

Considering (0, EyΦ(x, y), 0) ∈ Ahom(0) where Φ(x, y) ∈ C∞c (Ω × Y;RN ) (with associated

µ :=
(

Φ(x, y)−
∫
Y Φ(x, y) dy

)
LNx ⊗ LNy ∈ X (Ω′)), the previous inequality entails that

divyΣ = 0 on Ω × Y.

Given B1 ⊆ Ω and B2 ⊆ Y Borel sets, and an arbitrary ξ ∈ MN
D , then

(0, ξ1B1×B2
(x, y),−ξ1B1×B2

(x, y)) ∈ Ahom(0)

(with associated µ := 0 ∈ X (Ω′)). Thus, for LNx ⊗LNy -a.e. (x, y) ∈ Ω×Y, H(y, ξ) ≥ ΣD(t, x, y) ·ξ,
so that, by the definition (2.10) of H and the arbitrariness of ξ, we conclude that

ΣD(x, y) ∈ K(y).

Finally, by considering (v,Exv, 0) ∈ Ahom(0) with v ∈ C1(Ω) and v = 0 on Ω′ \Ω, we get

divxσ = 0 in Ω, σ · ν = 0 on ∂Ω \ Γ d,
so that Σ(t) ∈ Khom. �
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A proof completely analogous to that of [10, Theorem 5.2], this in the two-scale setting and
modulo the absence of external loads, would entail the following

Proposition 6.4 (Regularity in time). If t 7→ (u(t), E(t), P (t)) is a two-scale quasi-static
evolution, then

(u,E, P ) ∈ AC(0, T ;BD(Ω′)× L2(Ω′ × Y; MN
sym)×Mb(Ω

′ × Y; MN
D)).

Moreover, the following limits exist for a.e. t ∈ [0, T ]:

u̇(t) := lim
s→t

u(s)− u(t)

s− t
weakly∗ in BD(Ω′)

Ė(t) := lim
s→t

E(s)− E(t)

s− t
strongly in L2(Ω′ × Y; MN

sym)

Ṗ (t) := lim
s→t

P (s)− P (t)

s− t
weakly∗ in Mb(Ω

′ × Y; MN
D),

with (u̇(t), Ė(t), Ṗ (t)) ∈ A(ẇ(t)). Finally Dhom(0, t;P ) ∈ AC(0, T ) and, for a.e. t ∈ [0, T ],

Ḋhom(0, t;P ) = −
∫
Ω×Y

Σ(t) · Ė(t) dxdy +

∫
Ω

σ(t) · Eẇ(t) dx.

We need the following lower semicontinuity result for the two-scale dissipation potential Hhom.

Proposition 6.5 (Lower semicontinuity of Hhom). Let (un, En, Pn) ∈ Ahom(wn) be such that

(6.8)

un
∗
⇀ u weakly* in BD(Ω′)

En ⇀ E weakly in L2(Ω′ × Y; MN
sym)

Pn
∗
⇀ P weakly* in Mb(Ω

′ × Y; MN
D)

wn → w strongly in H1(RN ;RN ).

Then (u,E, P ) ∈ Ahom(w) and

(6.9) Hhom(P ) ≤ lim inf
n
Hhom(Pn).

Proof. Since

(6.10) Eun ⊗ LNy + Eyµ
n = En LNx ⊗ LNy + Pn on Ω′ × Y

and in view of Lemma 4.8, we immediately infer that (u,E, P ) ∈ Ahom(w).
The lower semicontinuity (6.9) follows by an argument identical to Step 2 in the proof of

Theorem 5.7 provided that we establish the following result. Let B ⊆ Y be an open set with
Lipschitz boundary and exterior normal denoted by ν, such that ∂B \ T is of class C1 for some
closed set T ⊆ ∂B with HN−1(T ) = 0. If

Pnb(Ω′ × B)
∗
⇀ λ weakly∗ in Mb(Ω

′ × Y; MN
D),

then

(6.11) λb(Ω′ × (∂B \ T )) = a(x, y)� ν(y) η

for a suitable measure η ∈M+
b (Ω′×(∂B \ T )) and for a suitable Borel map a : Ω′×(∂B \ T )→ RN

with a(x, y) ⊥ ν(y) for η-a.e. (x, y) ∈ Ω′ × (∂B \ T ).
In order to establish (6.11), let us consider µn ∈ X (Ω′) associated with (un, En, Pn). Up to

subsequences, we may assume that

Eyµ
nb(Ω′ × B)

∗
⇀ λ̃ weakly∗ in Mb(Ω

′ × Y; MN
sym).

In view of the convergences (6.8) and of the admissibility condition (6.10), the restriction of λ on

Ω′ × ∂B is the same as that of λ̃.
A direct computation similar to that in the proof of Proposition 4.11 shows that, upon setting

(Eyµ
nb(Ω′ × B))iε(F ) :=

1

εN
Eyµ

n(Qiε × (F ∩ B))
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for every Borel set F ⊆ Y, then, as ε→ 0,∑
i∈Iε(Ω′)

(LNx bQiε)⊗ (Eyµ
nb(Ω′ × B))iε

∗
⇀ Eyµ

nb(Ω′ × B) weakly∗ in Mb(Ω
′ × Y; MN

sym).

Since, with obvious notation,

(Eyµ
nb(Ω′ × B))iε = (Eyµ

n)iεbB,
a diagonalization process yields the existence of a sequence {εn ↘ 0}n∈N such that∑

i∈Iεn (Ω′)

(LNx bQiεn)⊗ (Eyµ
n)iεnbB

∗
⇀ λ̃ weakly∗ in Mb(Ω

′ × Y; MN
sym).

Now,

(6.12) (µn)iεn ∈ BD(Y) and Ey(µn)iεn = (Eyµ
n)iεn .

Indeed, in view of Lemma 5.4,
µn = µnx(y)ηn ⊗ LNy

where ηn := LNx + (proj#|Pn|)s, and (x, y) 7→ µnx(y) ∈ RN is a Borel map with µnx ∈ BD(Y) for
η-a.e. x ∈ Ω. Moreover, x 7→ Eyµ

n
x is ηn-measurable and Eyµ

n = ηn ⊗ Eyµnx .
For every ε > 0, i ∈ Iε(Ω) and g ∈ C1(Y; MN

sym),

(µn)iε(divy g) =

∫
Qiε×Y

µnx(y) · divy g(y) dηn(x)dy =

∫
Qiε

(∫
Y
µnx(y) · divy g(y) dy

)
dηn(x)

= −
∫
Qiε

(∫
Y
g(y) dEyµ

n
x(y)

)
dηn(x) = −

∫
Qiε×Y

g(y) dEyµ
n = −(Eyµ

n)iε(g),

where all integrals above are meaningful, hence (6.12).
Then, for every χ ∈ C1

c (Ω′ × Y; MN
sym) with divy χ = 0,

(6.13)

∫
Ω′×Y

χ(x, y)λ̃(x, y) = lim
n

∑
i∈Iεn (Ω′)

∫
Qiεn

(∫
B
χ(x, y) d(Eyµ

n)iεn

)
dx

= lim
n

∑
i∈Iεn (Ω′)

∫
Qiεn

(∫
B
χ(x, y) dEy(µn)iεn

)
dx

= lim
n

∑
i∈Iεn (Ω′)

∫
Qiεn

(∫
∂B
χ(x, y) · [(µn)iεn(y)� ν(y)] dHN−1(y)

)
dx.

At the expense of subtracting infinitesimal rigid body motions on B, we may assume that∫
∂B
|(µn)iεn | dH

N−1 ≤ C|Ey(µn)iεn |(B) ≤ C

εNn
|Eyµn|(Qiεn × B)

for some constant C > 0 independent of n and i. Since {Eyµn}n∈N is a bounded sequence in
Mb(Ω

′ × Y; MN
sym), the measures∑

i∈Iεn (Ω′)

(LNx bQiεn)⊗ (µn)iεnH
N−1b∂B ∈Mb(Ω

′ × ∂B;RN ).

and ∑
i∈Iεn (Ω′)

LNx bQiεn ⊗
[
(µn)iεn � νH

N−1b∂B
]
∈Mb(Ω

′ × ∂B; MN
sym)

form bounded sequences, so that, up to subsequences, we may assume that∑
i∈Iεn (Ω′)

(LNx bQiεn)⊗ (µn)iεnH
N−1b∂B ∗

⇀ ζ ∈Mb(Ω
′ × ∂B;RN ),

and ∑
i∈Iεn (Ω′)

(LNx bQiεn)⊗
[
(µn)iεn � νH

N−1b∂B
] ∗
⇀ π weakly∗ in Mb(Ω

′ × ∂B; MN
sym).
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In view of Lemma 4.9 and of (6.13), there exists µ ∈ X (Ω′) such that

λ̃ = π + Eyµ.

Since ν is continuous on ∂B \ T , we immediately deduce that

πb(∂B \ T ) =
ζ

|ζ|
� ν |ζ|b(∂B \ T ),

so that appealing to item (b) in Proposition 4.7, (6.11) follows. �

The following result finally yields the flow rule for two-scale quasi-static evolutions.

Theorem 6.6 (Two-scale flow rule). Assume that Y is a C2-admissible multiphase torus and
that ∂b∂ΩΓd is admissible in the sense of Definition 2.1. Let t 7→ (u(t), E(t), P (t)) ∈ Ahom(w(t))
be a two-scale quasi-static evolution. Then, for a.e. t ∈ [0, T ],

(a) (u̇(t), Ė(t), Ṗ (t)) ∈ Ahom(ẇ(t));
(b) For LNx -a.e. x ∈ Ω,

Ṗx(t)

|Ṗx(t)|
(y) ∈ NK(y)(ΣD(t, x, y)) for LNy a.e. y ∈ {|Ṗx(t)| > 0},

where Ṗx results from the decomposition (5.8) of Lemma 5.4;

(c) Letting µ̇(t) ∈ X (Ω′) be the measure associated with (u̇(t), Ė(t), Ṗ (t)) ∈ Ahom(ẇ(t)), for
LNx -a.e. x ∈ Ω and for every i 6= j,

µ̇ix(t, y)− µ̇jx(t, y)

|µ̇ix(t, y)− µ̇jx(t, y)|
∈ ~NKΓ (y)((ΣD(t, x, ·)ν)τ (y)) for HN−1-a.e. y ∈ {µ̇ix(t) 6= µ̇jx(t)},

where µ̇x(t) results from the disintegration (5.9) of µ̇(t), µ̇ix(t) and µ̇jx(t) are the traces on
Γij of the restrictions of µ̇x(t) on Yi and Yj respectively, assuming that ν points from Yj
to Yi, and where ~NKΓ (y)(τ) denotes the normal cone (a cone of vectors) to KΓ (y) at a
vector τ ⊥ ν(y).

Proof. Let t ∈ [0, T ] be a time such that ẇ(t) exists inH1(RN ;RN ), u̇(t), Ė(t), Ṗ (t) and Ḋhom(0, t;P )
exist in the sense of Proposition 6.4 with

Ḋhom(0, t;P ) = −
∫
Ω×Y

Σ(t) : Ė(t) dxdy +

∫
Ω

σ(t) : Eẇ(t) dx.

By Proposition 6.5 we deduce that (u̇(t), Ė(t), Ṗ (t)) ∈ Ahom(ẇ(t)). Since Dhom is a total varia-
tion, and since Hhom is positively one-homogeneous, then, for t1 > t,

Hhom
(
P (t1)− P (t)

t1 − t

)
≤ D

hom(0, t1;P )−Dhom(0, t;P )

t1 − t
.

Hence, taking the limit for t1 → t, and appealing to Proposition 6.5, we infer that

Hhom(Ṗ (t)) ≤ −
∫
Ω×Y

Σ(t) : Ė(t) dxdy +

∫
Ω

σ(t) : Eẇ(t) dx.

But Σ(t) ∈ Khom by virtue of Lemma 6.3, so that the opposite inequality holds true in view of
Remark 5.13, and we obtain

Hhom(Ṗ (t)) = −
∫
Ω×Y

Σ(t) : Ė(t) dxdy +

∫
Ω

σ(t) : Eẇ(t) dxdy.

The result then immediately follows from Theorem 5.12. �

Remark 6.7. The disintegrations of P (t) and Ṗ (t) do not imply that Ṗx(t) is the derivative of
Px(t) in the weak-* (or strict) sense of Proposition 6.4. Consequently, the flow rule of Theorem
6.6 cannot be construed as completely vindicating the two-scale evolution as that corresponding
to a generalized standard material in the sense of [12]. This discrepancy will hopefully be resolved
in future investigations. ¶
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Brescia

E-mail address, A. Giacomini: alessandro.giacomini@ing.unibs.it


