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1. Introduction

The analysis of Ginzburg-Landau functionals as the length-scale parameter tends to zero is a
beautiful piece of mathematical analysis. Different ideas and techniques merged together along
the last twenty years, to give a clear picture of the relevant phenomena, as concentration of energy
and formation of topological singularities.

To make a long story very short, the analysis started with the study of the asymptotic behaviour
of the minimizers of Ginzburg-Landau functionals in dimension two, with prescribed boundary con-
ditions. Let Ω ⊂ R2 be bounded and with Lipschitz boundary. The Ginzburg-Landau functionals
GLε : H1(Ω;R2)→ [0,+∞), are defined as

(1.1) GLε(u) :=

(∫
Ω

1

2
|∇u|2 +

1

ε2
W (u)

)
,

where W ∈ C0(R2) is such that W (x) ≥ 0, W−1{0} = S1 and

lim inf
|x|→1

W (x)

(1− |x|)2
> 0, lim inf

|x|→∞

W (x)

|x|2
> 0.

In [2] are collected the main results for the asymptotic behavior of the minimizers uε of GLε with
a prescribed boundary datum g : ∂Ω 7→ S1 with degree d. For ε small, the energy GLε(uε) blows
up as d| log ε|, and d vortex-like singularities appear, around which uε looks like (a fixed rotation
of) x/|x|. Subtracting the leading term d| log ε| from the energy, a finite quantity remains in the
limit, called renormalized energy, depending on the position of the singularities.

After these results, much work has been devoted to understand the behavior of sequences of non
minimizers, with prescribed energetic regime, in the spirit of Γ-convergence. The main issues are
clearly the (zero order) Γ-convergence of GLε

| log ε| and the (first order) Γ-convergence of GLε−d| log ε|
to the renormalized energy. The picture is nowadays well understood. For the zero order Γ-
convergence [8] and [6] provide sharp lower bounds, while in [6] and [7] a Γ-convergence result is
proved in W 1,1(Ω;R2), and compactness of the singularities is expressed in terms of compactness
properties of the Jacobians Juε of uε in the dual of Hölder functions; in [1] the Γ-convergence
result is obtained (in any dimension and codimension) with respect to the flat convergence of the
Jacobians. To our knowledge a self contained proof of the first order Γ-convergence result is still
missing.

The aim of this paper is to revisit these Γ-convergence results, giving short, efficient and self-
contained proofs. Self-contained has to be understood in a very weak sense: we use many ideas
from [1], [8], [6], [7] and (for the first order Γ-limit) the analysis for minimizers developed in [2].
Our approach is the following: we consider the ball construction as done in [8]: it consists in
an efficient way of selecting balls where the energy concentrates. Then we plug a Dirac mass in
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each ball, obtaining a sequence of measures µε that approximates Juε, carrying all the topological
information and bringing compactness and Γ-liminf inequality in the zero order Γ-convergence
result. The Γ-limsup inequality is obtained by a standard construction. To prove the first order
Γ-convergence result we show that, if GLε(uε)/| log ε| is bounded, then around each singularity xi
we have GLε(uε) − πzi| log ε| ≥ C, where zi ∈ Z is the degree of the singularity. Moreover, if uε
are optimal in energy, then |zi| = 1 and around each singularity uε looks like (a rotation of) x

|x| .

These preliminary results allow to use the analysis done in [2] to derive the renormalized energy.
Let us conclude recalling that the case treated in this paper has been the building block for

a series of important generalizations, as for the case of external magnetic field [9], the three
dimensional case [1] and the study of the evolution of vortices [10]. The final goal of this paper
is to rewrite this building block within the solid formalism of Γ-convergence, with efficient and
self-contained short proofs.

2. Preliminary results

In this section we introduce the notion of Jacobian, current and degree. Given u ∈ H1(Ω;R2),
the Jacobian Ju of u is the L1 function defined by

Ju := det∇u.
Let us denote by C0,1(Ω) the space of Lipschitz continuous functions on Ω endowed with the norm

‖ϕ‖C0,1 := sup
x∈Ω
|f(x)|+ sup

x, y∈Ω, x 6=y

ϕ(x)− ϕ(y)

x− y
,

and by C0,1
c (Ω) its subspace of functions with compact support. The norm in the dual of C0,1

c (Ω)

will be denoted by || · ||flat and referred to as flat norm, while
flat→ denotes the convergence in the

flat norm. Finally, the norm in the dual of C0,1(Ω) will be denoted by || · ||flat(Ω) and by
flat(Ω)→

the corresponding convergence.
For every u ∈ H1(Ω;R2), we can consider Ju as an element of the dual of C0,1(Ω) by setting

< Ju, ϕ >:=

∫
Ω

Juϕdx for every ϕ ∈ C0,1(Ω).

Notice that Ju can be written in a divergence form as Ju = div (u1(u2)x2 ,−u1(u2)x1), i.e., for
every ϕ ∈ C0,1

c (Ω),

(2.1) < Ju, ϕ >= −
∫

Ω

u1(u2)x2ϕx1 − u1(u2)x1ϕx2 dx.

Equivalently, we have Ju = curl (u1∇u2) and Ju = 1
2curl j(u), where

j(u) :=
1

2
(u1∇u2 + u2∇u1)

is the so called current.
Notice that if u ∈ L∞(Ω;R2), then Ju is in the dual of H1(Ω). Let A ⊂ Ω open with Lipschitz

boundary. Then we have

(2.2)

∫
A

Ju =
1

2

∫
A

curl j(u) :=
1

2

∫
∂A

j(u) · τ,

where τ is the tangent field to ∂A, and the last integral is meant in the sense of H−
1
2 .

Let h ∈ H 1
2 (∂A;R2) with |h| ≥ α > 0. The degree of h is defined as follows

(2.3) deg(h, ∂A) :=
1

2π

∫
∂A

j(h/|h|) · τ.

In [4], [5] it is proved that the definition is well posed, that deg(h, ∂A) ∈ Z and, whenever
u ∈ H1(A;R2), |u| ≥ β > 0 in A, deg(u, ∂A) = 0, where in the notation of degree we identify u
with its trace. Finally, deg(u, ∂A) is stable with respect to the strong convergence in H1(A;R2).
Notice that u can be written in polar coordinates as u(x) = ρ(x)eiθ(x) on ∂A with |ρ| ≥ α, where
θ is the so called lifting of u. By [3, Theorem 1] (see also [3, Remark 3]), if A is simply connected
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and deg(u, ∂A) = 0, then the lifting can be selected in H
1
2 (∂A) with the map u 7→ θ continuous

(but the image of a bounded subset of H
1
2 (∂A;S1) is not necessarily bounded in H

1
2 (∂A)). If the

degree d is not zero, then the lifting can be locally selected in H
1
2 (∂A) with a “jump” of order

2πd.
Now we introduce some notion of modified Jacobian we will use in our Γ-convergence results.

The main observation is that, for every v := (v1, v2), w := (w1, w2) belonging to H1(Ω;R2) we
have

(2.4) Jv − Jw =
1

2

(
J(v1 − w1, v2 + w2)− J(v2 − w2, v1 + w1)

)
.

By (2.1) and (2.4) we immediately deduce the following lemma.

Lemma 2.1. Let vn and wn be two sequences in H1(Ω;R2) such that

‖vn − wn‖2(‖∇vn‖2 + ‖∇wn‖2)→ 0.

Then ‖Jvn − Jwn‖flat → 0.

Given 0 < τ < 1 and u ∈ H1(Ω;R2), set

(2.5) uτ := Tτ (|u|) u
|u|
, Jτu := Juτ , where Tτ (ρ) = min{ρ

τ
, 1}.

By Lemma 2.1 we easily deduce the following proposition.

Proposition 2.2. Let uε be a sequence in H1(Ω;R2) such that GLε(uε) ≤ C| log ε|, and let
0 < sε < 1 be such that sε

ε| log ε| →∞ as ε→ 0. Then

sup
sε≤s≤1

‖Juε − Jsuε‖flat → 0 as ε→ 0.

3. Ball construction

In this section we revisit the celebrated ball construction, a useful machinery for providing lower
bounds, following the approach by Sandier [8].

Let B = {Br1(x1), . . . , Brm(xm)} be a finite family of disjoint balls in R2, and set Rad(B) :=∑
ri. The ball construction consists in letting the balls alternatively expand and merge each

other. The expansion phase consists in letting all the balls expand in such a way that at each
(artificial) time the ratio θ(t) := ri(t)/ri is independent of i; we will parametrize the time enforcing
θ(t) = 1 + t. The expansion phase stops at the first time T when two balls Bri(t)(xi), Brj(t)(xj)
touch each other. Then the merging phase begins. It consists in collecting the balls Bri(T )(xi)
in subclasses and merging all the balls of a subclass in a larger ball BRj (yj) with the following
properties.

i) Rj is not larger than the sum of all the radii of the balls Bri(T )(xi) contained in BRj (yj).
ii) The balls BRj (yj) of the new family are disjoint.

After the merging, we define in each ball BRj (yj) a seed size sj by Rj/sj = θ(T ) = 1 + T (we
set sj = rj for t = 0). Then another expansion phase begins, during which we keep the seed
sizes constant, and we now enforce θ(t) := Rj(t)/sj = 1 + t, where t ≥ T . We proceed so forth
alternating merging to expansion phases, until a last phase where only one ball expands. Notice
that by construction, in particular by property i),

∑
sj does not increase during the merging. In

particular, we always have

(3.1)
∑

Rj(t) =
∑

(1 + t)sj ≤ (1 + t)Rad(B).

Now assume that to each ballBri(xi) of the original family B corresponds some integer multiplic-
ity zi ∈ Z, and set µ :=

∑
i ziδxi . Let F (B, µ, U) be defined as follows: if Ar,R(x) := BR(x)\Br(x)

is an annulus that does not intersect any Bri(xi), we set

F (B, µ,Ar,R(x)) := π|µ(Br(x))| log

(
R

r

)
.
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Then, for every open set U ⊂ R2 we set

F (B, µ, U) := sup
∑
i

F (Ai),

where the sup is over all finite families of disjoint annuli Ai ⊂ U that do not intersect any Bri(xi).

Remark 3.1. The definition of F is justified by the following observation. Let Ω̃ = Ω \ ∪B∈BB.

Given u ∈ H1(Ω̃;S1), let µ :=
∑
B∈C deg(u, ∂B)δx, where C denotes the family of balls in B that

are contained in Ω, and x is the center of B. Then, by Jensen inequality we easily deduce that

F (B, µ, U) ≤ 1

2

∫
U∩Ω̃

|∇u|2,

for every open set U ⊂ Ω (see for instance [8]).

Set B(t) the family of balls at time t (with the convention B(t) = B(t−) if t is a merging time).
By our definitions it easily follows (see [8] for more details) that for any B ∈ B(t)

(3.2) F (B, µ,B) ≥ π|µ(B)| log(1 + t).

We introduce the modified measure µ̃ as follows: let C(1) be the family of balls in B(1) that are
contained in Ω. We set

(3.3) µ̃ :=
∑

Br(x)∈C(1)

µ(Br(x))δx.

Theorem 3.2. Let Bn = {Bri,n(xi,n)} be a sequence of finite families of disjoint balls in R2 with
Rad(Bn)→ 0, and let µn :=

∑
i zi,nδxi,n , zi,n ∈ Z, be a given multiplicity measure. Assume

(3.4) F (Bn, µn,Ω) ≤ C| logRad(Bn)|.
Then the following holds.

1) Up to a subsequence µ̃n
flat→ µ for some µ =

∑N
i=1 ziδxi with zi ∈ Z, xi ∈ Ω.

2) Assume µ̃n
flat→ µ =

∑N
i=1 ziδxi . For every i and every σ ≤ 1

2dist(xi, ∂Ω ∪j 6=i xj)

lim inf
n

F (Bn, µn, Bσ(xi))− π|zi| log
σ

2Rad(Bn)
≥ 0.

Proof. We let the families Bn grow and merge as described above, and set Bn(t) the corresponding
family of balls at time t. Set Cn(t) := {B ∈ Bn(t), B ⊂ Ω}, Dn(t) := {B ∈ Bn(t), B ∩ ∂Ω 6= ∅}.
Set moreover

tn :=
1√

Rad(Bn)
− 1, νn :=

∑
Br(x)∈Cn(tn)

µn(Br(x))δx.

By the energy bound (3.4) and by (3.2) we have |µ̃n|(Ω) ≤ C| logRad(Bn)|, |νn|(Ω) ≤ C, and

hence up to a subsequence νn
flat→ µ for some µ =

∑N
i=1 ziδxi . To conclude the proof of 1) it is

enough to prove that νn − µ̃n
flat→ 0. By construction, (νn − µ̃n)(B) = 0 for every B ∈ Cn(tn). We

conclude that for every ϕn ∈ C0,1
c (Ω) with ‖ϕn‖C0,1

c
≤ 1 we have

(3.5) < νn − µ̃n, ϕn >=
∑

B∈Cn(tn)

∫
B

ϕn d(νn − µ̃n) +
∑

B∈Dn(tn)

∫
B

ϕn d(νn − µ̃n) ≤

∑
B∈Cn(tn)

(max
B

ϕn −min
B

ϕn) (|νn|+ |µ̃n|)(B) +
∑

B∈Dn(tn)

max
B
|ϕn|(|νn|+ |µ̃n|)(B) ≤

2
∑

B∈Bn(tn)

diam(B)(|νn|+ |µ̃n|)(B) ≤ C
√
Rad(Bn)| logRad(Bn)| → 0 as n→∞,

where in the last inequality we have used (see (3.1)) Rad(Bn(tn)) ≤
√
Rad(Bn).

We pass to the proof of 2). Let 0 < δ < σ be fixed. For n large enough we have that all the balls
B ∈ Bn(tn) with µn(B) 6= 0 either have a distance from xi smaller then δ, or larger than 2σ − δ.
We call the family of balls enjoying the first property Gn, and Hn the others. Notice that, for n
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large enough,
∑
B∈Gn µn(B) = zi. Let t̄n = σ−δ

2Rad(Bn) −1. Let In be the family of balls B ∈ Bn(t̄n)

which are contained in Bσ(xi). By (3.1) we have diam(B) ≤ σ − δ for every B ∈ Bn(t̄n), and
hence the balls in In contain all the balls in Gn (and none in Hn). Recalling (3.2) we deduce that

F (Bn, µn, Bσ(xi)) ≥
∑
B∈In

π|µn(B)|| log(1 + t̄n)| ≥ π|zi|| log(1 + t̄n)| = π|zi| log
σ − δ

2Rad(Bn)
.

We conclude by letting n→ +∞ and δ → 0. �

4. Γ-convergence of GLε

In this section we prove the zero order Γ-convergence result of GLε that collects results proved
in [6], [7], [1]. We will use the standard notation GLε(u,A) to denote the Ginzburg-Landau
functional localized on the open set A, i.e., defined as in (1.1) with Ω replaced by A.

Theorem 4.1. The following Γ-convergence result holds.

i) (Compactness) Let (uε) ⊂ H1(Ω;R2) be such that GLε(uε) ≤ C| log ε|. Then, up to a

subsequence, J(uε)
flat→ µ, where µ := π

∑N
i=1 ziδxi for some xi ∈ Ω, zi ∈ Z.

ii) (Γ-liminf inequality) Let (uε) ⊂ H1(Ω;R2) be such that J(uε)
flat→ µ := π

∑N
i=1 ziδxi .

Then, there exists C ∈ R such that, for every i and every σ ≤ 1
2dist(xi, ∂Ω ∪j 6=i xj) we

have

(4.1) lim inf
ε

GLε(uε, Bσ(xi))− π|zi| log
σ

ε
≥ C.

In particular, there exists a constant C such that

(4.2) lim inf
ε

GLε(uε)− | log ε||µ|(Ω) ≥ C.

iii) (Γ-limsup inequality) For every µ := π
∑N
i=1 ziδxi , there exists (uε) ⊂ H1(Ω;R2) such that

J(uε)
flat→ µ, 1

| log ε|GLε(uε) → |µ|(Ω), and if |zi| = 1, GLε(uε) − |µ|(Ω)| log ε| ≤ C for

some C ∈ R.

Proof. By standard density arguments in Γ-convergence we may assume that uε are smooth.
Following the notations in [8], we set

Ωε,τ := {|uε| > τ}, γε,τ := ∂Ωε,τ \ ∂Ω, Θε(τ) :=

∫
Ωε,τ

∣∣∣∣∇ uε
|uε|

∣∣∣∣2 , nε(τ) :=

∫
γε,τ

|∇|uε||.

By Coarea Formula we have

GLε(uε) ≥
1

2

∫ ∞
0

(
nε(τ) +

2W (τ)

ε2

∫
γε,τ

1

|∇|uε||

)
dτ − 1

2

∫ ∞
0

τ2dΘ′ε(τ),

where Θ′ε(τ) is the distributional derivative of the decreasing function Θε(τ) and the inequality is
due to the possible presence of flat regions {∇|uε| = 0} with positive measure.

Set τε := 1− ε1/3, and Kε,τ := Ω \Ωε,τ . Then, by the energy bounds, for every τ ≤ τε we have

|Kε,τ | ≤ Cε
4
3 | log ε| ≤ 1

2 |Ω|, so that, using also that Ω is Lipschitz we have

(4.3) H1(∂Kε,τ ) ≤ CH1(γε,τ ).

Notice that, by definition of Hausdorff measure, being ∂Kε,τ compact, it is always contained in a
finite union of balls Bri(yi) such that

∑
i ri ≤ H1(∂Kε,τ ). Moreover, after a merging procedure,

we can always assume that such balls are disjoint. As a consequence, either Kε,τ or Ω \Kε,τ is
contained in the union of such balls. In the latter case, since |Ω \Kε,τ | ≥ 1

2 |Ω| we have
∑
i ri ≥ c,

and we replace these balls by one single ball containing Ω. In both cases, we have a family of balls
Bε,τ whose union contains Kε,τ , such that

(4.4) Rad(Bε,τ ) ≤ cH1(∂Kε,τ ) ≤ CH1(γε,τ ).

Let K̃ε,τ be their union and Ω̃ε,τ := Ω \ K̃ε,τ . Since Kε,τ is monotone in τ (with respect to
inclusion), we can always assume that Rad(Bε,τ ) is increasing with respect to τ .
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By Hölder inequality and (4.4), for τ ≤ τε we have

(4.5) Rad(Bε,τ )2 ≤ CH1(γε,τ )2 ≤ Cnε(τ)

∫
γε,τ

1

|∇|uε||
.

By (4.5), Young inequality and integration by parts of τ2dΘ′ε(τ) we have

GLε(uε) ≥
1

2

∫ ∞
0

nε(τ) +
H1(γε,τ )2W (τ)

Cε2nε(τ)
dτ − 1

2

∫ ∞
0

τ2dΘ′ε(τ) ≥∫ ∞
0

√
W (τ)

Cε
H1(γε,τ ) + τΘε(τ) dτ ≥∫ τ̃ε

0

√
W (τ)

Cε
Rad(Bε,τ ) + τΘε(τ) dτ +

∫ τε

τ̃ε

√
W (τ)

Cε
Rad(Bε,τ ) + τΘε(τ) dτ

(4.6)

where τ̃ε = 1−2ε
1
3 . By (4.6) and the energy bound, recalling also that τ 7→ Rad(Bε,τ ) is increasing,

it follows that

(4.7) Rad(Bε,s) ≤ Rad(Bε,τ̃ε) ≤ Cε
1
3 | log ε| for all s ≤ τ̃ε.

Let Cε,s be the family of balls in Bε,s that are contained in Ω, and set

µε,s :=
∑

B∈Cε,s

deg(uε, ∂B)δx,

where x is the center of B. Moreover, let µ̃ε,s be the corresponding modified measure defined
according with (3.3), i.e., letting Cε,s(1) be the family of balls in Bε,s(1) that are contained in Ω,

µ̃ε,s =
∑

B∈Cε,s(1)

µε(B)δx,

where x is the center of B. By (4.6) and (4.7) we have

θε(τ̃ε) ≤ C| log ε| ≤ C| logRad(Bε,τ̃ε)|.

Since θε(s) ≥ 2F (Bε,s, µε,s,Ω) (see Remark 3.1), by the energy bound and Theorem 3.2 we have
(up to a subsequence)

(4.8) πµ̃ε,τ̃ε
flat→ µ := π

N∑
i=1

ziδxi .

By definition of µ̃ε,s (see also (2.2) and (2.5)) we have that (Jsuε − πµ̃ε,s)(B) = 0 for every
B ∈ Cε,s(1). Therefore, By Proposition (2.2) and (4.7) we have

lim
ε→0

sup
ε

1
7≤s≤τ̃ε

‖J(uε)− πµ̃ε,s‖flat = lim
ε→0

sup
ε

1
7≤s≤τ̃ε

‖Js(uε)− πµ̃ε,s‖flat =(4.9)

lim
ε→0

sup

ε
1
7 ≤ s ≤ τ̃ε
‖ϕ‖

C
0,1
c
≤ 1

∑
B∈Bε,s(1)

|Jsuε|(B) oscB(ϕ) ≤ lim
ε→0

Cε−
2
7 | log ε|Rad(Bε,τ̃ε(1)) = 0.

By (4.8) and (4.9) we deduce in particular the compactness property i).
Now we prove the Γ-liminf inequality, starting with the global version (4.2). By Theorem 3.2

and (4.9) we have

(4.10) lim inf
ε

inf
ε

1
7≤s≤τ̃ε

Θε(s)− 2|µ|(Ω)| logRad(Bε,s)| ≥ C.

From (4.6) we deduce

GLε(uε) ≥
∫ τε

ε
1
7

√
W (τ)

Cε
Rad(Bε,τ )− 2τ |µ|(Ω) logRad(Bε,τ ) dτ − C
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Notice that the right-hand side is minimized for

Rad(Bε,τ ) =
2C|µ|(Ω)τε√

W (τ)
.

Therefore, for ε small enough,

GLε(uε) ≥
∫ τε

ε
1
7

2|µ|(Ω)τ − 2τ |µ|(Ω) log
2C|µ|(Ω)τε√

W (τ)
dτ − C ≥

|µ|(Ω)| log ε| − 2|µ|(Ω)

∫ τε

ε
1
7

log
2C|µ|(Ω)τ√

W (τ)
dτ − C ≥ |µ|(Ω)| log ε| − C.

(4.11)

The proof of (4.1) is identical, replacing Ω by Bσ(xi) and (4.10) by

lim inf
ε

sup
ε

1
7≤s≤τ̃ε

Θε(s)− 2π|zi|(log
σ

Rad(Bε,s)
) ≥ C.

Let us sketch the proof of the Γ-limsup inequality. By a standard density argument we can
assume zi = ±1. Let uε,i(r, θ) := e±iθg(r), where (θ, r) are polar coordinate centered at xi and
g(s) := min{ sε , 1}. Then a recovery sequence is given by u = ΠN

i=1ui, where ui are identified with
complex functions. The straightforward computations are left to the reader. �

5. First order Γ-convergence to the renormalized energy

In this section we prove the first order Γ-convergence of GLε to the renormalized energy,
introduced in [2]. We begin by recalling the main definitions and results of [2] that we need.

Let µ :=
∑N
i=1 ziδxi, with |zi| = 1, xi ∈ Ω. Let moreover Φ0 be the solution of{

∆Φ0 = 2πµ in Ω,
Φ = 0 on ∂Ω,

and let R0(x) = Φ0 −
∑
di log |x− xi|. The renormalized energy is defined as follows

(5.1) W(µ) := −π
∑
i6=j

zizj log |xi − xj | − π
∑
i

ziR0(xi).

Let now σ > 0 be such that Bσ(xi) are disjoint and contained in Ω and set Ωσ := Ω \ ∪iBσ(xi).
Consider the following minimization problems

m(σ, µ) := min
u∈H1(Ωσ ;S1)

{
1

2

∫
Ωσ

|∇u|2, deg(u, ∂Bσ(xi)) = zi

}
,(5.2)

m̃(σ, µ) := min
u∈H1(Ωσ ;S1),|αi|=1

{
1

2

∫
Ωσ

|∇u|2, u(z) =
αi
σzi

(z − xi)zi on ∂Bσ(xi)

}
,(5.3)

γ(ε, σ) := min
u∈H1(Bσ;R2)

{
GLε(u,Bσ), u(x) ∂Bσ =

x

|x|

}
.(5.4)

Theorem 5.1 (Bethuel, Brezis, Hélein [2]). We have

lim
σ→0

m(σ, µ) + π|µ|(Ω) log σ = lim
σ→0

m̃(σ, µ) + π|µ|(Ω) log σ = W(µ).

Moreover, there exists γ ∈ R such that

lim
ε→0

γ(ε, σ) + π log
ε

σ
= γ.

Remark 5.2. Consider the case Ω = BR, µ = δ0. by Jensen inequality we have that the
minimizers of (5.2) are given by the one parameter family

(5.5) K :=

{
α
z

|z|
, α ∈ C, |α| = 1

}
.

In particular, by Theorem 5.1, for Ω = BR we have W(δ0) = π logR.

Theorem 5.3. The following Γ-convergence result holds.
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i) (Compactness) Let M ∈ N and (uε) ⊂ H1(Ω;R2) be such that GLε(uε)−Mπ| log ε| ≤ C.

Then, up to a subsequence, Juε
flat→ µ =

∑N
i=1 ziδxi , with zi ∈ Z \ {0}, xi ∈ Ω, Ñ :=∑

|zi| ≤M . Moreover, if Ñ = M , then N = Ñ = M , i.e., |zi| = 1 for every i.

ii) (Γ-liminf inequality) Let uε be such that Juε
flat→ µ =

∑M
i=1 ziδxi with |zi| = 1, xi ∈ Ω.

Then,

lim inf GLε(uε)−Mπ| log ε| ≥W(µ) +Mγ.

iii) (Γ-limsup inequality) Given µ =
∑M
i=1 ziδxi , |zi| = 1, xi ∈ Ω, there exists uε with Juε

flat→
µ such that

GLε(uε)−Mπ| log ε| →W(µ) +Mγ.

Proof. Proof of i). The fact that, up to a subsequence Juε
flat→ µ =

∑N
i=1 ziδxi , with Ñ :=

∑
|zi| ≤

M , is a direct consequence of the zero order Γ-convergence result stated in Theorem 4.1. Assume
now Ñ = M , and let us prove that |zi| = 1. Let 0 < σ1 < σ2 be such that that Bσ2(xi) are disjoint
and contained in Ω. Then, by (4.1) in Theorem 4.1, for ε small enough we have

GLε(uε) ≥
N∑
i=1

GLε(uε, Bσ1(xi)) +GLε(uε, Ai) ≥
N∑
i=1

π|zi| log
σ1

ε
+GLε(uε, Ai)− C,(5.6)

where Ai := Bσ2
(xi) \Bσ1

(xi). By the energy bound, we deduce that GLε(uε, A) ≤ C, and hence
(up to a subsequence) uε ⇀ ui in H1(Ai;R2), for some ui = eiθi(x) ∈ H1(Ai;S

1). Moreover, it is
easy to see that deg(ui, ∂Bσ2

(xi)) = |zi|, for instance arguing as follows: by the energy bound and
standard Fubini’s arguments, for almost every σ1 < σ < σ2 we have that (up to a subsequence)
the trace of uε on ∂Bσ(xi) is bounded in H1(∂Bσ(xi);R2) and hence weakly converge to the trace
of u. The assertion follows by the very definition of degree (2.3).

For every i we have

(5.7)
1

2

∫
Ai

|∇ui|2 =
1

2

∫
Ai

|∇θi|2 ≥ π|zi|2(log σ2 − log σ1).

By (5.7) and (5.6) we conclude that, for ε small enough,

GLε(uε) ≥
N∑
i=1

π|zi| log
σ1

ε
+ π|zi|2(log σ2 − log σ1)−C = πM | log ε|+ π

N∑
i=1

(z2
i − |zi|) log

σ2

σ1
−C.

Letting σ1 → 0, the energy bound yields |zi| ≡ 1.
Proof of ii). For every r > 0, by (4.1) we can assume that GLε(uε,Ωr) ≤ C, so that (up to
a subsequence) uε ⇀ u in H1

loc(Ω \ ∪xi;R2). Let σ > 0 be such that Bσ(xi) are disjoint and
contained in Ω. Let t ≤ σ, and consider the minimization problem (5.2) in Bt \B t

2
for µ = δ0. Set

dt(w,K) := min{‖w − v‖H1(Bt\B t
2

;R2) : v ∈ K},

where K is the family of minimizers given by (5.5). It is easy to prove that for any given δ > 0
there exists c > 0 (independent of t) such that, if dt(uε(·+ xi),K) ≥ δ, then

lim inf
ε

∫
Bt(xi)\B t

2
(xi)

|∇uε|2 ≥ log 2 + c.

Indeed, arguing by contradiction, if there exists a subsequence uε such that

log 2 ≤
∫
Bt(xi)\B t

2
(xi)

|∇u|2 ≤ lim
ε

∫
Bt(xi)\B t

2
(xi)

|∇uε|2 = log 2,

then we would conclude that uε → u strongly in H1(Bt(xi)\B t
2
(xi);R2), hence dt(u(·+xi),K) ≥ δ.

This is in contradiction with the definition of K (see Remark 5.2), noticing that deg(ui, ∂Bt(xi)) =
zi = ±1 and that u(·+xi) has minimal energy log 2. Let m ∈ N be such that mc ≥W(µ)+M(γ−
log σ−C), where C is the constant in (4.1). For l = 1, . . . ,m set Cl(xi) := B21−lσ(xi) \B2−lσ(xi).
We consider now two cases.
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First case: for ε small enough and for every fixed 1 ≤ l ≤ m, there exists at least one i such that
d21−lσ(uε(·+ xi),K) ≥ δ. Then by (4.1) we conclude (for ε small enough)

GLε(uε) ≥M(log
σ

2m
− log ε+ C) +

m∑
l=1

M∑
i=1

1

2

∫
Cl(xi)

|∇uε|2 ≥

M(log σ −m log 2− log ε+ C) +m
(
(M log 2 + c

)
≥

M(log σ − log ε+ C) + W(µ) +M(γ − log σ − C) = M(| log ε|+ γ) + W(µ).

(5.8)

Second case: Up to a subsequence, there exists 1 ≤ l̄ ≤ m such that for every i we have
dσ̄(uε(· + xi),K) ≤ δ, where σ̄ := 21−l̄σ. By standard Fubini’s arguments there exists 2/3σ̄ ≤
σ̃ ≤ 3/4σ̄ such that the Ginzburg-Landau energy of uε on ∂Bσ̃(xi) is uniformly bounded. We can
easily modify uε with an infinitesimal amount of energy to enforce |uε| = 1 on ∂Bσ̃(xi). Let us
denote by θ the lifting of x/|x|. By [3, Theorem 1] (see also [3, Remark 3]) there exists r(δ)→ 0
as δ → 0 such that uε = |uε|eiθε (up to additive constant in the phase) with

‖θε − θ‖
H

1
2 (∂Bσ̃(xi))

≤ r(δ).

Let Tε be the harmonic solution on Bσ̄(xi)\Bσ̃(xi) with boundary conditions θε and θ on ∂Bσ̃(xi)
and ∂Bσ̄(xi), respectively. We extend uε on Bσ̄(xi)\Bσ̃(xi) setting ũε := eiTε on Bσ̄(xi)\Bσ̃(xi).
Hence we have

GLε(uε, Bσ̄(xi)) ≥ GLε(ũε, Bσ̄(xi)) + r(ε, δ) ≥ γ(ε, σ̄) + r(ε, δ),

where limδ→0 limε→0 r(ε, δ) = 0. By Theorem 5.1 we conclude that

GLε(uε) = GLε(uε,Ωσ̄) +

M∑
i=1

GLε(uε, Bσ̄(xi)) ≥

W(µ)−Mπ log σ̄ +M(γ − π log
ε

σ̄
) + r(ε, δ) = M(| log ε|+ γ)) + W(µ) + r(ε, δ).

The proof follows by the arbitrariness of δ.
Proof of iii). Let uε,σ be the function that agrees with a minimizer of (5.3) in Ωσ, and with
αiwε,σ(x) in each Bσ(xi), where wε,σ is a minimizer of problem (5.4), and αi is a unit vector
suitable chosen to match the boundary conditions on ∂Bσ(xi). By Theorem 5.1 there exists a
suitable σε such that uε := uε,σε is optimal in energy. �

6. Boundary conditions

In this section we deal with prescribed boundary conditions g on ∂Ω, and prove in this context
the first order Γ-convergence of GLε to the renormalized energy (the zero order Γ-convergence
result can be deduced as a particular case). The renormalized energy Wg is defined according
with (5.1), but now the function φ solves the following boundary value problem.{

∆Φ = µ in Ω;
∂Φ
∂ν = g × gτ on ∂Ω.

Then, Theorem 5.1 holds true with W replaced by Wg, and with m(σ, µ), m̃(σ, µ) replaced by

mg(σ, µ), m̃g(σ, µ) defined in the obvious way. Given g ∈ H 1
2 (∂Ω;R2) we denote by H1

g (Ω;R2)

the subspace of functions in H1(Ω;R2) with trace g.

Theorem 6.1. The following Γ-convergence result holds.

i) (Compactness) Let M ∈ N, (uε) ⊂ H1
g (Ω;R2) be such that GLε(uε) −Mπ| log ε| ≤ C.

Up to a subsequence, Juε
flat(Ω)→ µ =

∑N
i=1 ziδxi , where xi ∈ Ω, zi ∈ Z \ {0},

∑
zi =

deg(g, ∂Ω), Ñ :=
∑
|zi| ≤ M . Moreover, if Ñ = M , then N = Ñ = M , i.e., |zi| =

1 for every i, and all xi’s belong to Ω. In particular, if M = deg(g, ∂Ω), then zi =
sign(deg(g, ∂Ω)).
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ii) (Γ-liminf inequality) Let uε ∈ H1
g (Ω;R2) be such that Juε

flat→ µ =
∑M
i=1 ziδxi with |zi| =

1, xi ∈ Ω. Then,

lim inf GLε(uε)−Mπ| log ε| ≥Wg(µ) +Mγ.

iii) (Γ-limsup inequality) Given µ =
∑M
i=1 ziδxi with |zi| = 1, xi ∈ Ω, there exists uε ∈

H1
g (Ω;R2) with Juε

flat→ µ such that

GLε(uε)−Mπ| log ε| →Wg(µ) +Mγ.

Proof. The proof of ii) and iii) is exactly as the proof of the analogous statements in Theorem 5.3,
so we give only the proof of i). We can assume that g is the trace of a function, still denoted by

g ∈ H1(U ;S1), where U is a neighborhood of ∂Ω. Let Ω̃ := Ω ∪ U , and let ũε be the extension of

uε on Ω̃ defined by ũε = uε in Ω and ũε = g on U \ Ω. By construction we have

(6.1) GLε(ũε, Ω̃)−Mπ| log ε| ≤ C̃ for some C̃ ≥ 0.

There exists a costant c > 0 such that, given ϕ ∈ C0,1(Ω), there exists an extension ϕ̃ ∈ C0,1
c (Ω̃)

of ϕ with ‖ϕ̃‖C0,1
c (Ω̃) ≤ c‖ϕ‖C0,1(Ω). By Theorem 4.1 (using also that Jg = 0), there exists

µ =
∑N
i=1 ziδxi with xi ∈ Ω, Ñ :=

∑
|zi| ≤M , such that

‖Juε − µ‖flat(Ω) = sup
‖ϕ‖C0,1(Ω)≤1

< Juε − µ, ϕ > ≤ sup
‖ϕ̃‖

C
0,1
c (Ω̃)≤c

< Jũε − µ, ϕ̃ >→ 0.

Moreover, by (2.2) and (2.3) we have

deg(g, ∂Ω) = Juε(Ω)→
N∑
i=1

zi.

If now Ñ = M , we deduce |zi| = 1 for every i by statement i) of Theorem 5.3. Finally, the
fact that xi belong to Ω follows as in the proof of ii) of Theorem 5.3. More precisely, by (6.1)

we have that (up to a subsequence) ũε ⇀ u in H1
loc(Ω̃ \ ∪xi). Recall that for any t such that

Bt(xi) ⊂ Ω̃, given δ > 0 there exists c > 0 (independent of t) such that, if the distance of u from
K in H1(Bt(xi) \B t

2
(xi)) is larger than δ, then∫

Bt(xi)\B t
2

(xi)

|∇u|2 ≥ log 2 + c.

It follows that for any δ the distance of u from K is less then δ for infinitely many annuli B2−n(xi)\
B2−(n+1)(xi). This is possible only if xi belongs to Ω. �

Finally, we consider the case of varying boundary conditions gε. We need the following Lemma.

Lemma 6.2. Let gε, hε ∈ H
1
2 (∂Ω;R2) be such that gε − hε → 0 in H

1
2 (∂Ω;R2), and such that

|gε|−1 and |gε−hε|ε converge to 0 uniformly as ε→ 0. Finally, let vε ∈ H1
gε(Ω;R2) with ‖vε‖∞ ≤ C,

GLε(vε) ≤ C| log ε|. Then, there exists wε ∈ H1
hε

(Ω;R2) such that

GLε(vε)−GLε(wε)→ 0 as ε→ 0.

Proof. By [3, Theorem 1] (see also [3, Remark 3]) we can always write vε = |vε|eiθε(x) and hε =

|hε|ei(θε(x)+tε) with tε → 0 in H
1
2 (∂Ω). Let τε be the harmonic extension of tε in Ω, and let ρε

be the harmonic extension of |hε||gε| in Ω. Notice that ρεe
iτε → 1 in H1(Ω) and (ρεe

iτε − 1)/ε → 0

uniformly. The desired function wε is given by

wε(x) := ρε(x)ei(τε(x))vε(x).

�

Theorem 6.3. Let g ∈ H 1
2 (∂Ω;S1), gε ∈ H

1
2 (∂Ω;R2) be such that

i) gε → g in H
1
2 (∂Ω;R2);

ii) |gε−g|ε → 0 uniformly as ε→ 0.
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Then, Theorem 6.1 still holds true with uε ∈ H1
g (Ω;R2) replaced by uε ∈ H1

gε(Ω;R2).

Proof. Any uε ∈ H1
gε(Ω;R2) bounded in energy can be extended in a neighborhood Ω̃ of Ω with

a bounded amount of energy, so that the proof of compactness follows exactly as in the case of
a fixed boundary datum. A possible extension is constructed as follows: by [3, Theorem 1] (see

also [3, Remark 3]) we have gε = geitε with tε → 0 in H
1
2 (∂Ω). Then, we define ũε on Ω̃ \ Ω as

ũε = g̃ρεe
iτε , where g̃ is an extension of g, ρε is the harmonic extension of |gε| with boundary

datum 1 on ∂Ω̃, and τε is the harmonic extension of tε with boundary datum 0 on ∂Ω̃.
Finally, by Lemma 6.2 for any sequence uε bounded in energy and in L∞ one can easily switch

the boundary conditions from g to gε and viceversa with vanishing perturbations in the energy.
This is enough to deduce the Γ-liminf and Γ-limsup inequality from Theorem 6.1.

Acknowledgments

We wish to tank Etienne Sandier for some discussions and suggestions that made more elegant
the proof of Theorem 5.3, and Adriano Pisante for many clarifying discussions on the theory of
degree and lifting map.

References

[1] Alberti G., Baldo S., Orlandi G.: Variational convergence for functionals of Ginzburg-Landau type. Indiana
Univ. Math. J. 54 (2005), no. 5, 1411–1472.
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