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Abstract

In this paper we study the regularity of flow maps of H3/2-vector fields on the circle in
terms of fractional Sobolev spaces. This problem is motivated by the understanding of the
geometry of Bers’s universal Teichmüller space.

Bers’s universal Teichmüller space, classically denoted by T (1), plays a significant role in
Teichmüller theory, as it contains as complex submanifolds all the finite-dimensional Teichmüller
spaces of Riemann surfaces. The space T (1) is an infinite-dimensional complex manifold modeled
on a Banach space, and it is a fundamental object in mathematics and in mathematical physics
(for instance, it is a promising geometric environment for a non-perturbative version of bosonic
string theory). We refer to [2, 6, 8] for an introduction to the subject and more details.

It turns out that T (1) is a group formed by quasi-symmetric maps on the circle which can
be endowed with a well-defined complex Hilbert manifold structure, compatible with the Weil-
Petersson metric and making the connected component to the identity into a topological group
(see [8]). Moreover the tangent space at the identity consists of H3/2-vector fields on the circle
S1. It is not known if the flows of such vector fields are contained in the connected component
of the identity (it is believed that this is the case and that they generate the whole connected
component). Thus, it is important to characterize the space of such flow maps. The aim of this
paper is precisely to give a characterizations of these flows in terms of fractional Sobolev norms.

It is well-known that, if a vector field belongs to H3/2+ε(S1) for some ε > 0, then for any
t ≥ 0 the flow map f(t, ·) : S1 → S1 belongs to H3/2+ε(S1) too (and this is the optimal regularity
one can hope for). Hence, one would be tempted to conjecture that the same holds for ε = 0.
Unfortunately s = 3/2 is the critical exponent for the embedding Hs

loc(R) ↪→ C1(R), and indeed,
as shown in this paper, the above result for ε = 0 is false. We can prove the following:

Theorem 0.1 Let f(t, ·) : S1 → S1 denote the flow map of a vector field u ∈ C([0, T ],H3/2(S1)).
Then:

1. The flow map belongs to W 1,p(S1) for all p ∈ [1,∞).

2. The flow map belongs to W 1+r,q(S1) for all r ∈ (0, 1/2), q ∈ [1, 1/r).
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On the other hand there exists an autonomous vector field u ∈ H3/2(S1) such that its flow map
is neither Lipschitz nor W 1+r,1/r for all r ∈ (0, 1). In particular the flow map is not H3/2.

As shown in [3], a direct consequence of our theorem is that every element of T (1) in the
connected component of the identity belongs to H3/2−ε(S1) for all ε > 0, a fact which is impor-
tant in the study of the geometry of T (1).

The structure of the paper is the following: in Section 1 we recall some simple well-known
facts on H3/2-functions and on flows of H3/2-vector fields on the circle. Then in Section 2 we
prove the regularity part of the theorem above. Finally in Section 3 we construct the counterex-
ample to the H3/2-regularity.

Acknowledgments: It is a pleasure to express my gratitude to François Gay-Balmaz, Tudor
Ratiu and Barbara Tumpach for fruitful discussions on the subject. I am also thankful to
François Gay-Balmaz and Tudor Ratiu for many useful comments on preliminary versions of
this paper.

1 Preliminaries

We recall that H3/2(S1) = W 3/2,2(S1) denotes the space of function v ∈ L2(S2) whose distribu-
tional derivative vx belongs to H1/2(S1) = W 1/2,2(S1) (see (2.4) below for the definition of the
W 1/2,2-norm).

Let u ∈ C([0, T ],H3/2(S1)), and consider the ODE
{

ḟ(t, x) = u
(
t, f(t, x)

)
, x ∈ S1,

f(0, x) = x.
(1.1)

Since H3/2 embeds into logLipschitz (see Lemma 1.1 below), existence and uniqueness for the
above ODE are well-known (see for instance [4]). Moreover the flow map f(t, ·) : S1 → S1 is a
homeomorphism for all t ∈ [0, T ]. We want to study the Sobolev regularity of the maps f(t, ·).

First of all we recall some known results on H3/2-functions.

Lemma 1.1 Let v ∈ H3/2(S1). Then, for any λ > 0, there exists a constant Cλ > 0 such that
∫

S1
e
λ|vx|/‖vx‖H1/2(S1) dx ≤ Cλ. (1.2)

Furthermore

|v(x)− v(y)| ≤ ‖vx‖H1/2(S1)|x− y| log
(

C1

|x− y|
)

∀x, y ∈ S1.

Proof. We recall that, if w ∈ H1/2(S1) and ‖w‖H1/2(S1) = 1, then there exist two constants
c, C > 0 such that ∫

S1
ecw2

dx ≤ C
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(see for instance [7, pag. 26, Exercise 5]). Using the inequality

λ
|vx|

‖vx‖H1/2(S1)

≤ c
|vx|2

‖vx‖2
H1/2(S1)

+
λ2

4c
,

we immediately get (1.2) with Cλ = Ceλ2/(4c).
To prove the second part of the lemma, by Jensen’s inequality applied to w := v/‖vx‖H1/2(S1)

we have

|w(x)− w(y)| ≤
∫ y

x
|wx(z)| dz =

∫ y

x
log

(
e|wx(z)|

)
dz

≤ |x− y| log
(

1
|y − x|

∫ y

x
e|wx(z)| dz

)
≤ |x− y| log

(‖e|wx|‖L1(S1)

|x− y|
)

.

As ‖e|wx|‖L1(S1) ≤ C1, the logLipschitz regularity of v follows. ¤

2 Regularity results

We can now begin the study of the regularity properties of the flow map f(t, ·). Since we want
to prove a priori estimates on some Sobolev norms of f(t, ·), in what follows we can assume
without loss of generality that u is smooth (so that f is smooth too).

2.1 The flow map is W 1,p for all p ∈ [1,∞).

Proposition 2.1 Let ρt denotes the density of the push-forward of the Lebesgue measure L 1

under the flow map f(t, ·), i.e.
f(t, ·)#L 1 = ρtL

1.

Then
ρt(f(t, x)) = e−

∫ t
0 ux(s,f(s,x)) ds, fx(t, x) = e

∫ t
0 ux(s,f(s,x)) ds. (2.1)

Moreover, for any p ∈ [1,∞) and T > 0, there exist two constants C̄1 and C̄2, depending only
on the product pT‖ux‖L∞([0,T ],H1/2(S1)), such that

‖ρt‖Lp(S1) ≤ C̄1 ∀t ∈ [0, T ], (2.2)

‖fx(t)‖Lp(S1) ≤ C̄2 ∀t ∈ [0, T ].

Proof. The formula for fx follows easily differentiating (1.1) with respect to x and observing that
fx(0, x) = 1, while the formula for ρt is a direct consequence of the identity fx(t, x)ρt(f(t, x)) = 1
(which follows from the definition of ρt and the change of variable formula).
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Let us first estimate ‖ρt‖Lp(S1). Thanks to (2.1) we have
∫

S1
ρp

t (x) dx =
∫

S1
ρp−1

t (x)ρt(x) dx =
∫

S1
ρp−1

t (f(t, x)) dx

≤
∫

S1
e(p−1)

∫ t
0 |ux(s,f(s,x))| ds dx ≤

∫

S1
1
t

∫ t

0
et(p−1)|ux(s,f(s,x))| ds dx

=
1
t

∫ t

0

∫

S1
et(p−1)|ux(s,f(s,x))| dx ds ≤ 1

t

∫ t

0

∫

S1
eT (p−1)|ux(s,x)|ρs(x) dx ds,

where at the second line we used Jensen’s inequality. Now, set Λ(t) :=
∫ t
0 ‖ρs‖p

Lp(S1)
ds and apply

Hölder’s inequality to get

Λ′(t) ≤ 1
t

(∫ t

0

∫

S1
eTp|ux(s,x)| dx ds

)1/p′

Λ1/p(t)

≤ Kt1/p′−1Λ1/p(t) = Kt−1/pΛ1/p(t),

(2.3)

with K := ‖ ∫
eTp|ux(t,x)| dx‖1/p′

L∞(0,T ). An integration of this differential inequality yields Λ(t) ≤
Kp′t, which inserted into (2.3) gives

∫

S1
ρp

t (x) dx ≤
∥∥∥∥
∫

S1
eTp|ux(t,x)| dx

∥∥∥∥
L∞(0,T )

∀t ∈ [0, T ].

Thanks to (1.2) applied with λ = Tp‖ux‖L∞([0,T ],H1/2(S1)), the estimate on ‖ρt‖Lp(S1) follows.
Now that we have the bound on ‖ρt‖Lp(S1), it is not difficult to control ‖fx(t)‖Lp(S1):

∫

S1
|fx(t, x)|p dx ≤

∫

S1
ep

∫ t
0 |ux(s,f(s,x))| ds dx ≤

∫

S1
ep

∫ T
0 |ux(s,f(s,x))| ds dx

≤
∫

S1
1
T

∫ T

0
eTp|ux(s,f(s,x))| ds dx =

1
T

∫ T

0

∫

S1
eTp|ux(s,x)|ρs(x) dx ds,

and we conclude applying Holder’s inequality, together with (1.2) and (2.2). ¤
Thanks to the above proposition, we obtain that f ∈ L∞([0, T ],W 1,p(S1)) for all p ∈ [1,∞).

2.2 The flow map is W 1+r,q for all r ∈ (0, 1/2), q ∈ [1, 1/r).

In this paragraph we prove higher spatial regularity on f .
Let us recall the definition of the W s,p(S1) norm for s ∈ (0, 1):

‖v‖W s,p(S1) := ‖v‖Lp(S1) +
(∫

S1

∫

S1
|v(x)− v(y)|p
|x− y|1+sp

dx dy

)1/p

. (2.4)

We need a preliminary result:

Lemma 2.2 For all r ∈ (0, 1/2) and q ∈ [1, 1/r), we have ux ◦ f ∈ L∞([0, T ],W r,q(S1)).
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Proof. We observe that for any α ∈ (1,∞), denoting by α′ is its dual exponent, we have
∫

S1
ep|ux(t,f(t,x))| dx =

∫

S1
ep|ux(t,x)|ρt(x) dx ≤ ‖ep|ux(t)|‖Lα(S1)‖ρt‖Lα′ (S1).

This, combined with (1.2) and (2.2), implies

e|ux(·,f)| ∈ L∞([0, T ], Lp(S1)) ∀ p ∈ [1,∞). (2.5)

In particular ux(·, f) ∈ L∞([0, T ], Lq(S1)).
To prove the fractional Sobolev regularity of ux(·, f), fix α ∈ (1,∞), with α − 1 small (the

smallness, depending on r and q, will be chosen later). Then
∫

S1

∫

S1
|ux(t, f(t, x))− ux(t, f(t, y))|q

|x− y|1+rq
dx dy

=
∫

S1

∫

S1
|ux(t, f(t, x))− ux(t, f(t, y))|q

|f(t, x)− f(t, y)|1+rq

|f(t, x)− f(t, y)|1+rq

|x− y|1+rq
dx dy

≤
(∫

S1

∫

S1
|ux(t, f(t, x))− ux(t, f(t, y))|αq

|f(t, x)− f(t, y)|α(1+rq)
dx dy

)1/α

(∫

S1

∫

S1
|f(t, x)− f(t, y)|α′(1+rq)

|x− y|α′(1+rq)
dx dy

)1/α′

.

Regarding the second term, we have
∫

S1

∫

S1
|f(t, x)− f(t, y)|α′(1+rq)

|x− y|α′(1+rq)
dx dy = ‖f‖α′(1+rq)

W τ,α′(1+rq)(S1)
, τ = 1− 1

α′(1 + rq)
.

Since τ < 1 and f ∈ L∞([0, T ],W 1,p(S1)) for all p ∈ [1,∞), the second term is bounded uniformly
in time.

We now consider the first term. We have
∫

S1

∫

S1
|ux(t, f(t, x))− ux(t, f(t, y))|αq

|f(t, x)− f(t, y)|α(1+rq)
dx dy =

∫

S1

∫

S1
|ux(t, x)− ux(t, y)|αq

|x− y|α(1+rq)
ρt(x)ρt(y) dx dy

≤
(∫

S1

∫

S1
|ux(t, x)− ux(t, y)|α2q

|x− y|α2(1+rq)
dx dy

)1/α(∫

S1

∫

S1
ρt(x)α′ρt(y)α′ dx dy

)1/α′

≤ ‖ux(t)‖αq

W u,α2q(S1)
‖ρt‖2

Lα′ (S1)
,

with

u = r +
α2 − 1
α2q

.

We recall that
W 1/2,2(S1) ↪→ W u,q(S1) for u ∈ (0, 1/2], q ∈ [1, 1/u] (2.6)

(see [5, pag. 350, Theorem 4]). Thus

‖ux(t)‖
W u,α2q(S1)

≤ C‖ux(t)‖W 1/2,2(S1)
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provided u ≤ 1/2 and uα2q ≤ 1. Since both α and q are greater or equal than 1, by the definition
of u these two conditions are true provided that

r + (α2 − 1) ≤ 1
2
, α2(1 + rq) ≤ 2.

As r < 1/2 and rq < 1, for α− 1 small enough both inequalities hold, and so also the first term
is bounded uniformly in time. ¤

We can now prove the fractional Sobolev estimate on fx. Considering the equation satisfied
by |fx(t, x)− fx(t, y)|, we easily get

d

dt
|fx(t, x)− fx(t, y)| ≤ |ux(t, f(t, x))− ux(t, f(t, y))||fx(t, x)|

+ |ux(t, f(t, y))||fx(t, x)− fx(t, y)|

Since fx(0, x) = 1 we have |fx(0, x)− fx(0, y)| = 0, and so by Duhamel’s formula

|fx(t, x)− fx(t, y)| ≤
∫ t

0
e
∫ t

s |ux(τ,f(τ,y))| dτ |ux(s, f(s, x))− ux(s, f(s, y))||fx(s, x)| ds.

Hence, using Holder’s and Jensen’s inequalities, we obtain

|fx(t, x)− fx(t, y)|q
|x− y|1+rq

≤ t1−1/q

∫ t

0
eq

∫ t
s |ux(τ,f(τ,y))| dτ |ux(s, f(s, x))− ux(s, f(s, y))|q

|x− y|1+rq
|fx(s, x)|q ds

≤ t1−1/q

∫ T

0

(
1
T

∫ T

0
eTq|ux(τ,f(τ,y))| dτ

) |ux(s, f(s, x))− ux(s, f(s, y))|q
|x− y|1+rq

|fx(s, x)|q ds.

We already proved in (2.5) that e|ux(·,f)| ∈ L∞([0, T ], Lp(S1)) for all p < ∞. Moreover
fx ∈ L∞([0, T ], Lp(S1)) for all p < ∞. Finally, since ux(·, f) ∈ L∞([0, T ], W τ,α(S1)) for all
τ < 1/2 and α < 1/τ , as rq < 1 there exists β > 1, with β − 1 small, such that

|ux(s, f(s, x))− ux(s, f(s, y))|q
|x− y|1+rq

∈ Lβ(S1 × S1),

uniformly in time. Indeed this amounts to say that
∫

S1

∫

S1
|ux(s, f(s, x))− ux(s, f(s, y))|βq

|x− y|(1+rq)β
dx dy = ‖ux(s, f)‖βq

W τ,βq(S1)
≤ C ∀ s ∈ [0, T ],

where τ = r+ β−1
qβ . By (2.6) this is true provided qβ ≤ 1/τ , or equivalently (1+rq)β ≤ 2, which

is clearly true for β sufficiently close to 1.
Combining all these facts together and using Holder’s inequality on S1×S1, we easily deduce

that |fx(t, x)− fx(t, y)|q
|x− y|1+rq

∈ L1(S1 × S1)

uniformly in time. Thus fx ∈ L∞([0, T ],W r,q(S1)) for all r ∈ (0, 1/2) and q ∈ [1, 1/r), as wanted.
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3 A counterexample to higher regularity

In this section we show the optimality of the results proved before. As we will see, the flow of the
vector field constructed below is neither Lipschitz nor W 1+r,1/r for all r ∈ (0, 1). In particular,
taking r = 1/2, the flow map is not H3/2.

Let us consider the function u : [0, 1] → R given by

u(x) =
(∫ x

0

∫ 1/2

y

1
z
√
| log(z)| log | log(z)| dz dy

)
ϕ(x),

where ϕ is a smooth function such that

0 ≤ ϕ ≤ 1, ϕ(x) =
{

1 for x ∈ [0, 1/4],
0 for x ∈ [1/2, 1].

We observe that u is a periodic autonomous vector field on [0, 1] (and so it can be considered
as a vector field on S1) such that

ux(x) =
∫ 1/2

x

1
z
√
| log(z)| log | log(z)| dz

for x ∈ (0, 1/4). Moreover u is smooth away from 0.
Since the function

R2 3 w 7→
∫ 1/2

|w|

1
z
√
| log(z)| log | log(z)| dz

belongs to H1
loc(R2), its trace on the line {z2 = 0} belongs to H

1/2
loc (R) (see [1, Paragraph 7.56]).

From this fact we easily deduce that ux ∈ H1/2(S1), so that u ∈ H3/2(S1)
We now want to prove that flow map generated by u is neither Lipschitz nor in W 1+r,1/r

for all r ∈ (0, 1). To this aim we will use that the flow map is Hölder continuous uniformly in
time (for instance, this is a consequence of the W 1,p regularity proved in Proposition 2.1). More
precisely, since f(t, 0) = 0 for all t, there exist C > 0 and 0 < α < 1 such that

0 ≤ f(t, x) ≤ Cxα for t ∈ [0, 1], x ∈ [0, 1]. (3.1)

For simplicity of notation, we define

U(y) :=
∫ 1/2

y

1
z
√
| log(z)| log | log(z)| dz

(so that U(y) = ux(y) for y > 0 close to 0). Observe that U ′(y) < 0 and U(y) → +∞ as y → 0+.
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3.1 The flow map is not Lipschitz.

From the equation

ḟ(t, x) =
∫ f(t,x)

0
U(y) dy for x > 0 small

we have
d

dt
log

(
f(t, x)

)
=

∫
−

f(t,x)

0
U(y) dy,

where
∫− denotes the averaged integral. We want to prove that, for t ∈ (0, 1], the flow map

f(t, ·) : [0, 1] → [0, 1] is not Lipschitz at 0.
Since y 7→ U(y) is decreasing, by (3.1) we get

d

dt
log

(
f(t, x)

)
=

∫
−

f(t,x)

0
U(y) ≥

∫
−

Cxα

0
U(y) dy := V (x) for x > 0 small.

This implies that for x > 0 small

f(t, x) ≥ xetV (x) ∀ t ∈ [0, 1].

Since V (x) → +∞ as x → 0+, we obtain

lim
x→0+

|f(t, x)− f(t, 0)|
x

= lim
x→0+

f(t, x)
x

≥ lim
x→0+

etV (x) = +∞ ∀ t ∈ (0, 1].

This proves the desired result.

3.2 The flow map is not in W 1+r,1/r for all r ∈ (0, 1).

Fix t > 0 small, and let q := 1/r > 1. We want to prove that
∫

S1

∫

S1
|fx(t, x)− fx(t, x + h)|q

h2
dx dh = +∞.

Obviously it suffices to show that
∫ ε

0

∫ ε

0

|fx(t, x)− fx(t, x + h)|q
h2

dx dh = +∞.

for some ε > 0 small (the smallness of ε to be chosen later).
Differentiating the equation satisfied by f with respect to x, for x > 0 small we have

{
ḟx(s, x) = fx(s, x)U(f(s, x)),
fx(0, x) = 1,

which gives
fx(t, x) = e

∫ t
0 U(f(s,x)) ds.
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Therefore, if we define F (x) :=
∫ t
0 U(f(s, x)) ds (recall that t is fixed), for x, y > 0 small we get

fx(t, x)− fx(t, y) = eF (x) − eF (y) =
∫ 1

0

d

dτ
eτF (x)+(1−τ)F (y) dτ

= [F (x)− F (y)]
∫ 1

0
eτF (x)+(1−τ)F (y) dτ,

(3.2)

and

F (x)− F (y) =
∫ t

0

(
U(f(s, x))− U(f(s, y))

)
ds =

∫ t

0

∫ f(s,y)

f(s,x)

1
z
√
| log(z)| log | log(z)| dz ds.

Assume 0 < x < y, with y small. Then, since f(s, x) ≤ f(s, y) for all s, we have F (x) ≥ F (y).
Hence ∫ 1

0
eτF (x)+(1−τ)F (y) dτ ≥ eF (y) (3.3)

and

|F (x)− F (y)| = F (x)− F (y) =
∫ t

0

∫ f(s,y)

f(s,x)

1
z
√
| log(z)| log | log(z)| dz ds.

We now have the following:

Lemma 3.1 There exists δ > 0 such that, if 0 < x < y < δ, then the function

s 7→
∫ f(s,y)

f(s,x)

1
z
√
| log(z)| log | log(z)| dz

is increasing on [0, t].

Proof. Recalling that U ′(u) = − 1

u
√
| log(u)| log | log(u)

, we have

d

ds

∫ f(s,y)

f(s,x)

1
z
√
| log(z)| log | log(z)| dz =

ḟ(s, y)
f(s, y)

√
| log(f(s, y))| log | log(f(s, y))|

− ḟ(s, x)
f(s, x)

√
| log(f(s, x))| log | log(f(s, x))| = −

∫ f(s,y)
0 U(z) dz

U ′(f(s, y))
+

∫ f(s,x)
0 U(z) dz

U ′(f(s, x))
.

Considering the function

u 7→ G(u) :=

∫ u
0 U(z) dz

U ′(u)
,

we observe that

G′(u) =
U(u)
U ′(u)

− U ′′(u)
∫ u
0 U(z) dz

U ′(u)2
=

U(u)U ′(u)− U ′′(u)
∫ u
0 U(z) dz

U ′(u)2
.

Since U ′(u) < 0 for u small, while
∫ u
0 U(z) dz, U(u), U ′′(u) > 0 for u small, we immediately get

G′(u) < 0. This implies that G(u) is decreasing for u small, and since f(s, x) ≤ f(s, y) the result
follows. ¤
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Thanks to the lemma above we get

F (x)− F (y) ≥
∫ t

0

∫ f(0,y)

f(0,x)

1
z
√
| log(z)| log | log(z)| dz ds = t[U(x)− U(y)]

for 0 < x < y small, which combined with (3.2) and (3.3) gives

|fx(t, x)− fx(t, y)| ≥ t[U(x)− U(y)]eF (y). (3.4)

We now want to give a lower bound on eF (y). By (3.1) we have U(f(s, y)) ≥ U(Cyα), and so

F (y) ≥
∫ t

0
U(Cyα) ds = tU(Cyα).

Moreover we observe that, for u > 0 sufficiently small,

U(u) =
∫ 1/2

u

1
z
√
| log(z)| log | log(z)| dz = −2

∫ 1/2

u

d

dz

(√
| log(z)|

) 1
log | log(z)| dz

= −2
√
| log(z)| 1

log | log(z)|

∣∣∣∣
1/2

u

+ 2
∫ 1/2

u

1

z
√
| log(z)|(log | log(z)|)2 dz

≥
√
| log(u)| 1

log | log(u)| ,

and so, if y > 0 is small enough (the smallness depending on C, α, t, q),

eF (y) ≥ etU(Cyα) ≥ e
2t
√
| log(Cyα)| 1

log | log(Cyα)| ≥ e
log | log(y)|

2 =
√
| log(y)|.

Combining the above inequality with (3.4) we finally obtain

|fx(t, x)− fx(t, y)| ≥ t
√
| log(y)| [U(x)− U(y)] for 0 < x < y small. (3.5)

Since u 7→ 1

u
√
| log(u)| log | log(u)| is decreasing near 0, for 0 < x < y small we also have

U(x)− U(y) = −(y − x)
∫ 1

0
U ′(x + r(y − x)) dr

= (y − x)
∫ 1

0

1
(x + r(y − x))

√
| log(x + r(y − x))| log | log(x + r(y − x))| dr

≥ (y − x)
y
√
| log(y)| log | log(y)| .

(3.6)

Thus we are left with proving that
∫ ε

0

∫ ε

0

|fx(t, x)− fx(t, x + h)|q
h2

dx dh = +∞,
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with ε > 0 small enough such that both (3.5) and (3.6) hold for y ∈ [0, 2ε]. Thanks to (3.5) and
(3.6) we obtain

∫ ε

0

∫ ε

0

|fx(t, x)− fx(t, x + h)|q
h2

dx dh

≥ tq
∫ ε

0

∫ ε

0
| log(x + h)|q/2 |U(x)− U(x + h)|q

h2
dx dh

≥ tq
∫ ε

0

∫ ε

0
| log(x + h)|q/2 hq−2

(x + h)q| log(x + h)|q/2 logq | log(x + h)| dx dh

= tq
∫ ε

0

∫ ε

0

hq−2

(x + h)q logq | log(x + h)| dx dh,

and as q > 1

∫ ε

0

hq−2

(x + h)q logq | log(x + h)| dx =
∫ h+ε

h

hq−2

yq logq | log(y)| dy

∼ hq−2

hq−1 logq | log(h)| =
1

h logq | log(h)| as h → 0+,

where the estimate for the second integral follows easily by an integration by parts. Thus we
finally conclude that

∫ ε

0

∫ ε

0

|fx(t, x)− fx(t, x + h)|q
h2

dx dh & tq
∫ ε

0

1
h logq | log(h)| dh = +∞,

as desired.
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