PERCOLATION-TYPE PROBLEMS ON INFINITE RANDOM GRAPHS #### ALESSANDRO BERARDUCCI, PIETRO MAJER AND MATTEO NOVAGA ABSTRACT. We study some percolation problems on the complete graph over \mathbb{N} . In particular, we give sharp sufficient conditions for the existence of (finite or infinite) cliques and paths in a random subgraph. No specific assumption on the probability, such as independency, is made. The main tools are a topological version of Ramsey theory, exchangeability theory and elementary ergodic theory. #### Contents | 1. Introduction | 1 | |--|----| | 2. Notation | 5 | | 3. Problem 1 | 6 | | 4. Extensions and related problems | 8 | | 4.1. A notion of capacity for directed graphs | S | | 4.2. Finite monotone paths and chromatic number | 12 | | 5. Problem 2 | 13 | | Appendix A. A topological Ramsey theorem | 15 | | Appendix B. A few facts on exchangeable measures | 16 | | References | 19 | ## 1. Introduction Let $G = (\mathbb{N}, \mathbb{N}^{[2]})$ be the complete oriented graph having vertices in \mathbb{N} , with the orientation induced by the usual order of \mathbb{N} , and let us randomly choose some of its edges: that is, we associate to the edge $(i, j) \in \mathbb{N}^{[2]}$ (thus i < j) a measurable set $X_{ij} \subseteq X$, where (XA, μ) is a base probability space. We then ask if the resulting random graph contains an infinite path: **Problem 1.** Let (X, \mathcal{A}, μ) be a probability space. For all $(i, j) \in \mathbb{N}^{[2]}$, let X_{ij} be a measurable subset of X. Is there an infinite increasing sequence $\{n_i\}_{i\in\mathbb{N}}$ such that $\bigcap_{i\in\mathbb{N}} X_{n_i n_{i+1}}$ is non-empty? More formally, a random subgraph of the oriented graph G is defined by a measurable function $F: X \to 2^{E_G 1}$, where E_G is the set of edges of G and 2^{E_G} its powerset, equipped with the product σ -algebra. We briefly say that F has path percolation, or F contains an infinite path, if the subgraph F(x) ¹this is equivalent to specify a family of measurable sets $\{X_e\}_{e\in E_G}$, with $X_e\subseteq X$ contains an infinite path for some $x \in X$. As in classic percolation theory, we wish to estimate the probability that F has path percolation, that is² $$\mu(\{x \in X : F(x) \text{ contains an infinite path}\})$$ in terms of a parameter λ that bounds from below the probability that an edge e belongs to F, that is $\mu(X_e) \geq \lambda$, where $X_e := \{x \in X : e \in F(x)\}$, for all $e \in E_G$. It has to be noticed that the analogy with classic bond percolation is only formal, the main difference being that in the usual percolation models (see for instance [GR:99]) the events X_{ij} are supposed *independent*, whereas in the present case the probability distribution is completely general, i.e. we do not impose any restriction on the events X_{ij} . In Section 3, we show that path percolation occurs with probability strictly greater than $2\lambda - 1$ (see Theorem 3.3 and Corollary 3.4 for a precise statement). Moreover, we show that the estimate $2\lambda - 1$ is optimal; in particular X may fail to contain an infinite path if $\lambda < 1/2$. In order prove this result, we first observe that a subgraph H of $(\mathbb{N}, \mathbb{N}^{[2]})$ does not contain an infinite path iff it admits a height function with values in ω_1 , where ω_1 is the first uncountable ordinal, i.e. there exists a graph map between H and the complete graph over ω_1 with decreasing orientation, that is (α, β) is an edge of the graph if $\alpha, \beta \in \omega_1$ and $\alpha > \beta$. Therefore, if a random graph F has no infinite paths, introducing the dependence on $x \in X$ and on the vertices of F, it is defined a measurable map from $X \times \mathbb{N}$ to ω_1 , which can be also seen as a map $\varphi : X \to \omega_1^{\mathbb{N}}$, where $\omega_1^{\mathbb{N}}$ is equipped with the product σ -algebra generated by the finite subsets of ω_1 . It turns out that φ is essentially bounded (see Lemma 3.2), which implies that $\varphi_{\#}(\mu)$ is a compactly supported Radon measure on $\omega_1^{\mathbb{N}}$, and that $\varphi(X_{ij}) \subseteq A_{ij} := \{x \in \omega_1^{\mathbb{N}} : x_i > x_j\}$. As a consequence, in the determination of the threshold for existence of infinite paths (1.1) $$\lambda_c := \sup \left\{ \inf_{i < j \in \mathbb{N}} \mu(X_{ij}) : F \text{ random graph without infinite paths} \right\},$$ we can set $X = \omega_1^{\mathbb{N}}$, $X_{ij} = A_{ij}$, and reduce to the variational problem on the convex set $\mathcal{M}_c(\omega_1^{\mathbb{N}})$ of compactly supported probability measures on $\omega_1^{\mathbb{N}}$: (1.2) $$\lambda_{c} = \sup_{m \in \mathcal{M}_{c}(\omega_{1}^{\mathbb{N}})} \inf_{i < j \in \mathbb{N}} m(A_{ij}).$$ As a next step, we show that in (1.2) we can equivalently take the supremum in the smaller class of all the compactly supported exchangeable measures on $\omega_1^{\mathbb{N}}$ (see Appendix B and references therein for a precise definition). Thanks to this reduction, we can explicitly compute $\lambda_c = 1/2$. We note that the supremum in (1.2) is not attained, which implies that for $\mu(X_{ij}) \geq 1/2$ path percolation occurs with positive probability. A natural motivation for Problem 1 comes from the following situation, that we state in a very general form. ²it is not a priori obvious that this event has a well-defined probability, since it corresponds to the uncountable union of the sets $\bigcap_{k\in\mathbb{N}} X_{(i_k,i_{k+1})}$ over all strictly increasing sequences $i:\mathbb{N}\to\mathbb{N}$. However, it turns out that it belongs to the μ -completion of the σ -algebra generated by the X_{ij} Suppose we are given a space E and a certain family X of sequences on E(e.g., minimizing sequences of a functional, or orbits of a discrete dynamical system, etc). A typical, general problem ask for existence of a sequence in the family X, that admits a subsequence with a prescribed property. One approach to it is by means of measure theory. The archetypal situation here come from recurrence theorems: one may ask if there exists a subsequence which belongs frequently to a given subset C of the "phase" space E (we refer to such sequences as "C-recurrent orbits"). If we consider the set $X_i := \{x \in X : x_i \in C\}$, then a standard sufficient condition for existence of C-recurrent orbits is $\mu(X_i) \geq \lambda > 0$, for some probability measure μ on X. In fact is easy to check that the set of C-recurrent orbits has measure at least λ by an elementary version of a Borel-Cantelli lemma (see Proposition 5.1). This is indeed the existence argument in the Poincaré Recurrence Theorem for measure preserving transformations. A more subtle question arises when one looks for a subsequence satisfying a given relation between two successive (or possibly more) terms: given a subset R of $E \times E$ we look for a subsequence x_{i_k} such that $(x_{i_k}, x_{i_{k+1}}) \in R$ for all $k \in \mathbb{N}$. As before, we may consider the subset of X, with double indices i < j, $X_{ij} := \{x \in X : (x_i, x_j) \in R\}$ and we are then led to Problem 1. By looking for other properties of the random graph F, we can embed Problem 1 in a wider class of pattern-search problems. Indeed, given a property \mathcal{P} of graphs, if we choose each edge of G with probability greater than λ , so that $\mu(X_e) \geq \lambda$ for all $e \in E_G$, we can ask if the graph F(x)enjoys the property \mathcal{P} . Let ``` p(\lambda) := \inf\{\mu(\{x \in X : F(x) \text{ satisfies } \mathcal{P}\}) : (X, \mathcal{A}, \mu) \text{ probability space}\} \lambda_c := \inf\{\lambda \in [0, 1] : p(\lambda) > 0\}. ``` Notice that, if G itself satisfies \mathcal{P} , then $p(\lambda) \leq \lambda$, since we can always choose all the edges of G simultaneously with probability λ . In Sections 3 and 4 we show that: - if \mathcal{P} is the property of having an infinite path, then $p(\lambda) = \min\{2\lambda 1, 0\}$ and $\lambda_c = 1/2$; - if \mathcal{P} is the property of having a path of length N, then $p(\lambda) = \min\{(2N\lambda N + 1)/(N + 1), 0\}$ and $\lambda_c = (1 1/N)/2$; - if \mathcal{P} is the property of having chromatic number greater than N, then $p(\lambda) = \min\{N\lambda N + 1, 0\}$ and $\lambda_c = 1 1/N$. More generally, we can consider analogous percolation problems in an oriented graph G, not necessarily equal to $(\mathbb{N}, \mathbb{N}^{[2]})$. However, it can be shown that, if we replace G with a finitely branching graph (such as a finite dimensional network), then path percolation does not occur without some restriction on the probability, i.e. $p(\lambda) = 0$ for all $\lambda < 1$. On the other hand, if a vertex of G has infinite degree, then F contains an infinite cluster with probability at least $p(\lambda) = \lambda$, so that $\lambda_c = 0$. In a future work, we explicitly determine the path percolation tresholds for a random subgraph of the shift graphs $G = (\mathbb{N}^{[k]}, \mathbb{N}^{[q]})$, with $k < q \in \mathbb{N}$. In Section 5 we let $G = (\mathbb{N}, \mathbb{N}^{[2]})$ and we ask if a random graph F contains an infinite clique, i.e. a copy of G itself. Note that this problem is a random version of the classical Ramsey theorem [R:28] (we refer to [GP:73, PR:05], and references therein, for various generalization of Ramsey theorem to infinite graphs). We show with an explicit example (see Example 5.2) that in this case $p(\lambda) = 0$ for all $\lambda < 1$, so that the answer is negative unless we impose some restrictions on the probability space. By Ramsey theorem, we know that if we assign to each element of $\mathbb{N}^{[k]}$ a colour taken from a set of n colours, then there is an infinite subset $J \subset
\mathbb{N}$ such that all the elements of $J^{[k]}$ have the same colour. As a consequence, the probability is strictly positive if we restrict ourselves to the finite probability spaces with at most n elements. In analogy with Ramsey theorem, in Section 5 we deal with the following natural generalization of the previous problem: **Problem 2.** Let (X, \mathcal{A}, μ) be a probability space. For all $(i_1, \ldots, i_k) \in \mathbb{N}^{[k]}$, let $X_{i_1 \ldots i_k}$ be a measurable subset of X. Is there an infinite set $J \subset \mathbb{N}$ such that the intersection $\bigcap_{(i_1, \ldots, i_k) \in J^{[k]}} X_{i_1 \ldots i_k}$ is non-empty? As already observed, if X is a prescribed finite set, then the answer is positive by Ramsey theorem. In fact, if we choose an element $x_{i_1...i_k} \in X_{i_1...i_k}$, we can interpret $x_{i_1...i_k}$ as the *colour* of $(i_1, ..., i_k) \in \mathbb{N}^{[k]}$. If X is infinite the situation is more complicated, and we show that Problem 2 has a positive answer if the indicator functions of the sets $X_{i_1...i_k}$ all belong to a compact subset of $L^1(X, \mu)$ (see Theorem 5.4). **Note:** After this paper was completed we learned that Problem 1 had been originally proposed by P. Erdös and A. Hajnal in [EH:64], and a complete answer was later given by D. H. Fremlin and M. Talagrand in the very interesting paper [FT:85], where other related problems are also considered. In particular, Corollary 3.4 is already contained in [FT:85], at least when the probability space (X, μ) is the interval [0, 1] equipped with the Lebesgue measure. As far as we know, the solution of Problem 2 given in Theorem 5.4 is not present in the literature. We would like to compare our approach and results with those in [FT:85]. Besides the fact that we do not impose any condition on the probability space, as already mentioned, our method allows us solve the following problem: given a directed graph F, determine the critical treshold λ_c and the probability $p(\lambda)$ that $F(x) \to F$ (that is there exists a graph map between F(x) and F), for some $x \in X$. In Section 4, we completely solve this problem when F is a finite graph, showing in particular that $$\lambda_c = c_0(F) := \sup_{\lambda \in \Sigma_F} \sum_{(a,b) \in E_F} \lambda_a \lambda_b \,,$$ where Σ_F is the set of all sequences $\{\lambda_a\}_{a\in V_F}$ with values in [0,1] and such that $\sum_{a\in V_F} \lambda_a = 1$. As observed above, Problem 1 can be reformulated in this setting by letting F be the complete graph over ω_1 . On the contrary, [FT:85] the following somewhat complementary problem is considered: given a directed graph F, determine the critical treshold λ_c such that that F(x) contains a copy of F (in particular $F \to F(x)$), for some $x \in [0, 1]$ and for all $\lambda > \lambda_c$. The authors construct an algorithm which leads to a complete solution of the problem for finite F, and show that $$\lambda_c = \sup \{c_0(H) : H \text{ is finite and does not contain a copy of } F\}.$$ Moreover, they can also solve this problem for some infinite graphs F, thus obtaining a solution of Problem 1. We observe that the notion of capacity we introduce in Section 4 is the same as in [FT:85]. As a final remark, we point out that our method is quite different from the one in [FT:85], since it relies on restating the problem as a variational problem like (1.2) for the probability measures on a suitable Cantor space, and then applying classical reasults of exchangeability theory (see Proposition B.4). # 2. Notation Given a compact metric space Λ , we let $\Lambda^{\mathbb{N}}$ be the space of all sequences taking values in Λ , endowed with the product topology. The space $\mathcal{M}(\Lambda^{\mathbb{N}})$ of Borel measures on $\Lambda^{\mathbb{N}}$ can be identified with $C(\Lambda^{\mathbb{N}})^*$, i.e. the dual of the Banach space of all continuous functions on $\Lambda^{\mathbb{N}}$. By the Banach-Alaoglu theorem the subset $\mathcal{M}_1(\Lambda^{\mathbb{N}}) \subset \mathcal{M}(\Lambda^{\mathbb{N}})$ of probability measures is a compact (metrizable) subspace of $C(\Lambda^{\mathbb{N}})^*$ endowed with the weak* topology. Given $p \in \mathbb{N}$, we identify p with the set $\{0, 1, \ldots, p-1\}$, and we denote by $p^{\mathbb{N}}$ the (compact) Cantor space of all sequences taking values in p. Notice that, when Λ is countable, the space $\mathcal{M}(\Lambda^{\mathbb{N}})$ does not depend on the topology of Λ , and a measure $m \in \mathcal{M}(\Lambda^{\mathbb{N}})$ is uniquely characterized by the values it takes on the cylindrical sets (2.1) $$E_{i_1...i_r}(a_1,...,a_r) := \left\{ x \in \Lambda^{\mathbb{N}} : x_{i_1} = a_1,...,x_{i_r} = a_r \right\}.$$ Given a topological space S and $k \in \mathbb{N}$, we let $S^{[k]}$ be the set of all subsets of S of cardinality k, endowed with the product topology. If S is ordered, we can identify $S^{[k]}$ with the set of k-tuples (i_1, \ldots, i_k) , with $i_1 < \ldots < i_k \in S$. can identify $S^{[k]}$ with the set of k-tuples (i_1, \ldots, i_k) , with $i_1 < \ldots < i_k \in S$. Given a map $\sigma : \mathbb{N} \to \mathbb{N}$, we let $T^{\sigma} : \Lambda^{\mathbb{N}} \to \Lambda^{\mathbb{N}}$ be defined as $T^{\sigma}(x)_i = x_{\sigma(i)}$, and we let $T^{\sigma}_{\#} : \mathcal{M}(\Lambda^{\mathbb{N}}) \to \mathcal{M}(\Lambda^{\mathbb{N}})$ be the corresponding pushforward map. In particular, when $\sigma(i) = i+1$, $s = T^{\sigma}$ is the so-called *shift map* on $\Lambda^{\mathbb{N}}$. Given a multi-index $\iota = (i_0, \ldots, i_{r-1}) \in \mathbb{N}^{[r]}$, we let $T^{\iota} : \Lambda^{\mathbb{N}} \to \Lambda^r$ be such that $T^{\iota}(x)_k = x_{i_k}$ for all k < r, and we let $T^{\iota}_{\#} : \mathcal{M}(\Lambda^{\mathbb{N}}) \to \mathcal{M}(\Lambda^r)$ be the corresponding pushforward map. We also let $P_k : \Lambda^{\mathbb{N}} \to \Lambda$ be the projector on the k^{th} coordinate, i.e. $P_k(x) = x_k$ for all $x \in \Lambda^{\mathbb{N}}$. We clearly have $P_{k+1} = P_1 \circ s^k$ for all $k \in \mathbb{N}$. We say that $f \in L^1(\Lambda^{\mathbb{N}}, m)$ is invariant with respect to $\sigma : \mathbb{N} \to \mathbb{N}$ if $f = f \circ T^{\sigma}$ m-almost everywhere. We say that a measure $m \in \mathcal{M}(\Lambda^{\mathbb{N}})$ is invariant with respect to σ if $m = T^{\sigma}_{\#}(m)$. We let $\mathfrak{S}_c(\mathbb{N})$, $\operatorname{Inj}(\mathbb{N})$, $\operatorname{Incr}(\mathbb{N}) \subset \mathbb{N}^{\mathbb{N}}$ be the families of maps $\sigma : \mathbb{N} \to \mathbb{N}$ which are compactly supported permutations, injective functions and strictly increasing functions, respectively. We denote by \mathbb{N} the Alexandroff compactification of \mathbb{N} , equipped with a distance δ . For all $k \in \mathbb{N}$, a corresponding distance on the product space $\overline{\mathbb{N}}^{[k]}$ can be defined as $$\delta_k\left((j_1,\ldots,j_k),(i_1,\ldots,i_k)\right) := \max_{n\in\{1,\ldots,k\}} \delta\left(j_n,i_n\right)$$ for all $(j_1, \ldots, j_k), (i_1, \ldots, i_k) \in \overline{\mathbb{N}}^{[k]}$. Finally, given $k \in \mathbb{N}$ and $\sigma \in \operatorname{Incr}(\mathbb{N})$, we let $\sigma^* : \overline{\mathbb{N}}^{[k]} \to \overline{\mathbb{N}}^{[k]}$ be defined as $\sigma^* (i_1, \ldots, i_k) = (\sigma(i_1), \ldots, \sigma(i_k))$, where we set $\sigma(\infty) := \infty$. ## 3. Problem 1 The following example shows that Problem 1 has in general a negative answer. **Example 3.1.** Let $X = p^{\mathbb{N}}$, let $X_{ij} = A_{ij} = \{x \in p^{\mathbb{N}} : x_i > x_j\}$ for i < j, and let μ be the Bernoulli probability measure $B_{(1/p,\dots,1/p)}$. Then, the sets A_{ij} have all measure (1 - 1/p)/2 but the intersections of the form $\bigcap_{k=0}^p A_{i_k i_{k+1}}$, with $i_0 < \dots < i_p \in \mathbb{N}$, are necessarily empty. It follows that $\lambda_c \ge 1/2$, where λ_c is defined as in (1.1). In Section 4, we show that Example 3.1 is optimal in the sense that, if $\mu(X_{ij}) > (1 - 1/p)/2$, there exist monotone paths of length at least p, and there exist infinite paths if $\mu(X_{ij}) \ge 1/2$. For all $x \in X$, we consider the ordered graph $F(x) < \mathbb{N}^{[2]}$, whose edges are all the (i, j), with i < j, such that $x \in X_{ij}$. Let also $X_i \subseteq X$ be the subset of all $x \in X$ such that F(x) contains an infinite path starting from i, i.e. there exists an increasing sequence $\{j_k\}_{k \in \mathbb{N}}$, with $j_1 = i$ and $x \in \bigcap_k X_{j_k j_{k+1}}$. Recall that a partially ordered set admits a decreasing function into the first uncountable ordinal ω_1 (the height function) if and only if it has no infinite increasing sequences. As a consequence, we can define a map $\varphi: X \times \mathbb{N} \to \omega_1 + 1$ by setting $$\varphi(x,i) = \begin{cases} \sup_{j>i: \ x \in X_{ij}} \varphi(x,j) + 1 & \text{if } x \notin X_i, \\ \omega_1 & \text{otherwise.} \end{cases}$$ We identify this map with the map $\varphi: X \to (\omega_1 + 1)^{\mathbb{N}}$ defined as $\varphi(x)_i = \varphi(x,i)$. We also set $\tilde{\varphi}: X \to \omega_1 + 1$ as $\tilde{\varphi}(x) = \sup_{i \in \mathbb{N}} \varphi(x,i)$. Notice that $\varphi(x,i) < \omega_1$ iff there is no infinite path in F(x) starting from i, and in this case $\varphi(x,i)$ is precisely the height of i in F(x). In particular, if F has no infinite paths, then the function φ takes value in $\omega_1^{\mathbb{N}}$ and, if there are no paths of length p, then it takes values in $p^{\mathbb{N}}$. On the other hand, path percolation occurs if and only if the set $\{x: \tilde{\varphi}(x) = \omega_1\}$ is non-empty. We also observe that the function φ can be equivalently defined by iteration as $\varphi(x,i) = \varphi_{\omega_1}(x,i)$, where (3.1) $$\varphi_{\alpha}(x,i) = \sup_{\beta < \alpha, \ j > i: x
\in X_{ij}} \varphi_{\beta}(x,j) + 1$$ $$\varphi_{0}(x,i) = 0,$$ for all $i \in \mathbb{N}$ and $\alpha \leq \omega_1$. From definition (3.1) it immediately follows that the sets $\{x : \varphi(x, k) = \alpha\}$ are measurable for all $k \in \mathbb{N}$ and $\alpha < \omega_1$. In Lemma 3.2 we show that the set $\{x : \tilde{\varphi}(x) = \omega_1\} = \bigcup_i X_i$ of all x for which F(x) contains an infinite path is also measurable. We now show that $\tilde{\varphi}$ is always essentially bounded (even if not necessarily bounded everywhere) if F has no infinite paths. **Lemma 3.2.** The set $\{x \in X : \tilde{\varphi}(x) = \omega_1\}$ is measurable. Moreover, if F has no infinite paths, then $\tilde{\varphi} \in L^{\infty}(X, \mu)$. *Proof.* Let $\alpha_0 < \omega_1$ be such that $$\mu(\lbrace x \in X : \varphi(x,k) = \beta \rbrace) = 0 \quad \forall k \in \mathbb{N} \text{ and } \alpha_0 \leq \beta < \omega_1.$$ This is possible since the sequence of values $\mu(\{x: \varphi(x,k) \leq \beta\})$ is increasing and uniformly bounded by $\mu(X)$. Then, the space X can be decomposed as union of the three disjoint sets $$X_{1} = \{x \in X : \tilde{\varphi}(x) < \alpha_{0}\}$$ $$X_{2} = \{x \in X : \alpha_{0} \leq \tilde{\varphi}(x) < \omega_{1}\} \subseteq \bigcup_{k \in \mathbb{N}} \{x \in X : \varphi(x, k) = \alpha_{0}\}$$ $$X_{3} = X \setminus (X_{1} \cup X_{2}) = \{x \in X : \tilde{\varphi}(x) = \omega_{1}\}.$$ The thesis follows observing that $\mu(X_2) = 0$ by the definition of α_0 . As a consequence, if F has no infinite paths, then the function φ maps X (up to a set of zero measure) into the Cantor space $\alpha^{\mathbb{N}} \subset \omega_{1}^{\mathbb{N}}$ for some $\alpha < \omega_{1}$, so that it induces a Radon measure $m = \varphi_{\#}(\mu)$ on $\omega_{1}^{\mathbb{N}}$ concentrated on $\alpha^{\mathbb{N}}$, i.e. $m(\alpha^{\mathbb{N}}) = \mu(X)$. Moreover, $\varphi(X_{ij}) \subseteq A_{ij}$ for all $i < j \in \mathbb{N}$, where $A_{ij} := \{x \in \alpha^{\mathbb{N}} : x_i > x_j\}$ as in Example 3.1, so that $m(A_{ij}) \ge \mu(X_{ij})$ for all i < j. We denote by $\mathcal{M}_{\mathbf{c}}(\omega_{1}^{\mathbb{N}})$ the set of all Radon measures on $\omega_{1}^{\mathbb{N}}$ with compact support, i.e. with support in $\alpha^{\mathbb{N}}$ for some $\alpha < \omega_{1}$. We now state a sufficient condition for path percolation. **Theorem 3.3.** Let $m \in \mathcal{M}_{c}(\omega_{1}^{\mathbb{N}})$. Then (3.2) $$\inf_{i < j \in \mathbb{N}} m(A_{ij}) < \frac{m\left(\omega_1^{\mathbb{N}}\right)}{2}.$$ In particular, path percolation occurs if (3.3) $$\lambda := \inf_{i < j \in \mathbb{N}} \mu(X_{ij}) \ge \frac{1}{2}.$$ Actually the same argument shows that we can replace the " $\inf_{i < j}$ " (in both equations) with " $\limsup_{i \to \infty} \liminf_{j \to \infty}$ ". *Proof.* With no loss of generality we can assume that $m \in \mathcal{M}_1(\omega_1^{\mathbb{N}})$, i.e. $m(\omega_1^{\mathbb{N}}) = 1$. We divide the proof into four steps. Step 1. Letting $\partial \omega_1$ be the derived set of ω_1 , that is the subset of all countable limit ordinals, we can assume that $$m(\lbrace x: x_i \in \partial \omega_1 \rbrace) = 0 \quad \forall i \in \mathbb{N}.$$ Indeed, it is enough to observe that the left-hand side of (3.2) remains unchanged if we replace m with $s_{\#}(m)$, where $s: \omega_1 \to \omega_1 \setminus \partial \omega_1$ is the shift-map on ω_1 , defined as $s(\alpha) = \alpha + 1$ for all $\alpha < \omega_1$. Step 2. Since the support of m is contained in $\alpha_0^{\mathbb{N}}$, for some compact ordinal $\alpha_0 < \omega_1$, thanks to Proposition B.4 we can assume that m is asymptotically exchangeable, i.e. the sequence $m_k = (s_{\#})^k(m)$ converges to an exchangeable measure $m' \in \mathcal{M}_1(\alpha_0^{\mathbb{N}})$ in the weak* topology. Step 3. We shall prove by induction that for all $\alpha < \omega_1$ there holds (3.4) $$\inf_{i < j} m \left(\{ x : x_j < x_i \le \alpha \} \right) \le m' \left(\{ x : x_1 < x_0 \le \alpha \} \right).$$ Indeed, for $\alpha = 0$ we have $\{x : x_j < x_i \le 0\} = \emptyset$, and (3.4) holds. As inductive step, let us assume that (3.4) holds for all $\alpha < \beta < \omega_1$, and we distinguish whether β is a limit ordinal or not. In the former case, $$\bigcap_{\alpha < \beta} \{ x : \ \alpha < x_i < \beta \} = \emptyset,$$ so that for all $\varepsilon > 0$ there exists $\alpha < \beta$ such that $m'(\{\alpha < x_i < \beta\}) < \varepsilon$. Moreover, by assumption $m'(\{x_i = \beta\}) = 0$ for any $i \in \mathbb{N}$, hence there exists $\alpha \leq \alpha_i < \beta$ such that $m(\{\alpha_i \leq x_i < \beta\}) < \varepsilon$. For all i < j we have $$\{x_j < x_i \le \beta\} \subseteq \{x_j < x_i \le \alpha\} \cup \{x_j \le \alpha < x_i \le \beta\}$$ $$\cup \{\alpha < x_j \le \alpha_i\} \cup \{\alpha_i < x_i \le \beta\},$$ which gives $$m(\{x_j < x_i \le \beta\}) \le m(\{x_j < x_i \le \alpha\}) + m(\{x_j \le \alpha < x_i \le \beta\}) + m(\{\alpha < x_j \le \alpha_i\}) + m(\{\alpha_i < x_i \le \beta\}).$$ By induction hypothesis we know that $$\inf_{i < j} m\left(\left\{x_j < x_i \le \alpha\right\}\right) \le m'\left(\left\{x_1 < x_0 \le \alpha\right\}\right),$$ and, since m is asymptotically exchangeable, we have $$m(\{x_j \le \alpha < x_i \le \beta\}) = m'(\{x_1 \le \alpha < x_0 \le \beta\}) + o(1),$$ and $$m\left(\left\{\alpha < x_j \leq \alpha_i\right\}\right) = m'\left(\left\{\alpha < x_1 \leq \alpha_i\right\}\right) + o(1),$$ as $(i,j) \to +\infty$, where we used the fact that the sets $\{x_i \le \alpha < x_i \le \beta\}$ and $\{\alpha < x_i \le \alpha_i\}$ are both clopen. Therefore, we get $$\inf_{i < j} m \left(\{ x_j < x_i \le \beta \} \right) \le m' \left(\{ x_1 < x_0 \le \alpha \} \right) + m' \left(\{ x_1 \le \alpha < x_0 \le \beta \} \right)$$ $$+ m' \left(\{ \alpha < x_1 \le \beta \} \right) + \varepsilon + o(1)$$ $$\le m' \left(\{ x_1 < x_0 \le \beta \} \right) + 2\varepsilon + o(1) ,$$ so that the inequality (3.4) holds true with $\alpha = \beta$, when β is a limit ordinal. On the other hand, if $\beta = \alpha + 1$, for $(i, j) \to +\infty$ we have $$m(\{x_j < x_i \le \beta\}) = m(\{x_j < x_i \le \alpha\}) + m(\{x_j \le \alpha, x_i = \beta\})$$ = $m'(\{x_1 < x_0 \le \alpha\}) + m'(\{x_1 \le \alpha, x_0 = \beta\}) + o(1)$ = $m'(\{x_1 < x_0 \le \beta\}) + o(1)$, where we used again the induction hypothesis, and the fact that the set $\{x_i \leq \alpha, \ x_i = \beta\}$ is clopen. Inequality (3.4) is then proved for all $\alpha < \omega_1$. Step 4. We now conclude the proof of the theorem. Since the measure m' is exchangeable, from (3.4) it follows $$(3.5) \inf_{i < j} m(A_{ij}) \le m'(\{x : x_1 < x_0\}) = \frac{1}{2} (1 - m'(\{x : x_1 = x_0\})) \le \frac{1}{2}.$$ Moreover, from (B.5) and the fact that $\Lambda = \alpha_0$ is countable, it follows that $m'(\{x: x_1 = x_0\}) = 0$ iff m' = 0, so that the strict inequality holds in (3.5). Combining Example 3.1 with Theorem 3.3 we obtain a complete solution to Problem 1 in terms of $\mu(X_{ij})$: assume that $\mu(X_{ij}) \geq \lambda$ for all i < j, then path percolation occurs if $\lambda \geq 1/2$, on the contrary if $\lambda < 1/2$ there are random subgraphs F of $(\mathbb{N}, \mathbb{N}^{[2]})$ with no infinite paths. The next result provides a sharp lower bound on the probability of path percolation. **Corollary 3.4.** Assume that the sets X_{ij} are such that $\mu(X_{ij}) \geq \lambda \geq 1/2$ for all $(i, j) \in \mathbb{N}^{[2]}$. Let P_{λ} be the set of all $x \in X$ such that F(x) contains an infinite path. Then $\mu(P_{\lambda}) > 2\lambda - 1$. *Proof.* Let $\tilde{\varphi}: X \to \omega_1 + 1$ as above, so that $\tilde{\varphi}(x) = \omega_1$ iff $x \in P_{\lambda}$, and let $m = (\tilde{\varphi}|_{X \setminus P_{\lambda}})_{\#}(\mu) \in \mathcal{M}_{c}(\omega_{1}^{\mathbb{N}})$. By Theorem 3.3 we then have $$\lambda - \mu(P_{\lambda}) \leq \inf_{i < j \in \mathbb{N}} \mu\left(X_{ij} \cap (X \setminus P_{\lambda})\right) = \inf_{i < j \in \mathbb{N}} m(A_{ij}) < \frac{1 - \mu(P_{\lambda})}{2},$$ which gives $\mu(P_{\lambda}) > 2\lambda - 1$. #### 4. Extensions and related problems 4.1. A notion of capacity for directed graphs. A directed graph F is a couple of sets (V_F, E_F) , which are respectively the set of vertices and the set of edges of F, such that E_F is a subset of $V_F \times V_F$. We denote by \mathcal{G} the class of all directed graphs $F = (V_F, E_F)$. Notice that it is possible that both the edges (a, b) and (b, a) belong to F. Given $F \in \mathcal{G}$, we let the clique number $\operatorname{cl}(F)$ of F be the maximum $n \in \overline{\mathbb{N}}$ such that F has a complete subgraph of cardinality n. For all $F \in \mathcal{G}$, we define the *capacity* of F as (4.1) $$c_0(F) := \sup_{\lambda \in \Sigma_F} \sum_{(a,b) \in E_F} \lambda_a \lambda_b \in [0,1],$$ where Σ_F is the symplex of all sequences $\{\lambda_a\}_{a\in V_F}$ such that $\lambda_a \geq 0$ and $\sum_{a\in V_F} \lambda_a = 1$. Notice that the capacity is an invariant for directed graphs, up to isomorphism, and it is equal to 1 if F contains an arcloop. Given two graphs $F, G \in \mathcal{G}$ we write G < F to indicate that G is a subgraph of F, i.e. $V_G = V_F$ and $E_G \subseteq E_F$. More generally, we say that G maps into F, and we write $G \to F$, if there is a map $\varphi : V_G \to V_F$ such that $(\varphi(a), \varphi(b)) \in E_F$ for all $(a, b) \in E_G$. Notice that $$(4.2) c_0(G) \le c_0(F) \text{for all} F, G \in \mathcal{G} \text{such that} G \to F.$$ The following result shows that the capacity reduces to the clique number, for suitable finite graphs. **Proposition 4.1.** Let $F \in \mathcal{G}$ be a finite graph. If F is oriented, that is $$(a,b) \in E_F \implies (b,a) \notin E_F \quad \forall a,b \in V_F$$ then (4.3) $$c_0(F) = \frac{1}{2} \left(1 -
\frac{1}{\text{cl}(F)} \right).$$ If F is symmetric with no arcloops, that is $$(a, a) \notin E_F$$ and $(a, b) \in E_F$ \Rightarrow $(b, a) \in E_F$ $\forall a, b \in V_F$, then (4.4) $$c_0(F) = 1 - \frac{1}{\text{cl}(F)}.$$ *Proof.* Let F be a finite oriented graph, and let $\lambda \in \Sigma_F$ be a maximizing distribution, meaning that $c_0(F) = \sum_{(a,b) \in E_F} \lambda_a \lambda_b$, and let S_λ be the subgraph of F spanned by the support of λ , that is $V_{S_\lambda} = \{a \in V_F : \lambda_a > 0\}$. From Lagrange's multiplier Theorem it follows that, for all $a \in V_{S_\lambda}$, we have (4.5) $$\sum_{b \in V_F: (a,b) \in E_F \text{ or } (b,a) \in E_F} \lambda_b = 2 c_0(F).$$ If $a, a' \in V_{S_{\lambda}}$, we can consider the distribution $\lambda' \in \Sigma_F$ such that $\lambda'_a = 0$, $\lambda'_{a'} = \lambda_a + \lambda_{a'}$, and $\lambda'_b = \lambda_b$ for all $b \in V_F \setminus \{a, a'\}$. From (4.5) it then follows that λ' is also a maximizing distribution whenever a and a' are independent vertices, that is neither (a, a') nor (a', a) belong to E_F . As a first consequence, S_{λ} is a clique whenever λ has minimal support. Indeed, let K be a maximal clique contained in S_{λ} , and assume by contradiction that there exists $a \in V_{S_{\lambda}} \setminus V_{K}$. Letting $a' \in V_{K}$ be a vertex of F independent of a (such a' exists since K is a maximal clique), and letting $\lambda' \in \Sigma_{F}$ as above, we have $c_{0}(F) = \sum_{(a,b) \in E_{F}} \lambda'_{a} \lambda'_{b}$, contradicting the minimality of $V_{S_{\lambda}}$. Once we know that S_{λ} is a clique, again from (4.5) we get that λ is a uniform distribution, that is $\lambda_a = \lambda_b$, for all $a, b \in V_{S_{\lambda}}$. It follows $$c_0(F) = \frac{1}{2} \left(1 - \frac{1}{|S_{\lambda}|} \right) \le \frac{1}{2} \left(1 - \frac{1}{\text{cl}(F)} \right) ,$$ which in turn implies (4.4), the opposite inequality being realized by a uniform distribution on a maximal clique. The case of a symmetric graph follows immediately from the oriented case. \Box Notice that a finite graph F is oriented if and only if $c_0(F) < 1/2$. Notice also that, if F is a finite directed graph (not necessarily oriented) the proof of Proposition 4.1 shows that there exists a maximizing $\lambda \in \Sigma_F$ whose support is a clique (not necessarily of maximal order). Let us denote by F^G the Cantor space of all functions $u: V_G \to V_F$, endowed with the product topology induced by the discrete topology on V_F . Given two oriented graphs F, G, we can define the *relative capacity* of F with respect to G as (4.6) $$c(F,G) := \sup_{m \in \mathcal{M}_1(F^G)} \inf_{(a,b) \in E_G} m\left(\{ u \in F^G : (u(a), u(b)) \in E_F \} \right) \in [0,1].$$ The relative capacity is in general quite difficult to compute, but it reduces to the previous notion of capacity when V_F is finite and $G = (\mathbb{N}, \mathbb{N}^{[2]})$. **Proposition 4.2.** For all $F \in \mathcal{G}$ such that $|V_F| < \infty$, it holds (4.7) $$c\left(F, (\mathbb{N}, \mathbb{N}^{[2]})\right) = c_0(F).$$ *Proof.* Reasoning as in the proof of Theorem 3.3, from Proposition B.4 it follows that we can equivalently take the supremum in (4.6) among the measures $m \in \mathcal{M}_1(V_F^{\mathbb{N}})$ which are exchangeable. Moreover, recalling (B.6), every exchangeable measure is a convex integral combination of Bernoulli measures B_{λ} , with $\lambda \in \Sigma_F$. It follows that it is sufficient to compute the supremum on the Bernoulli measures, so that (4.6) reduces to (4.1). Given $F, G \in \mathcal{G}$, let us now consider a random subgraph of G, that is we associate to each $(a,b) \in E_G$ a measurable set $X_{ab} \subset X$, with $\mu(X_{ab}) \geq \lambda$ for some $\lambda \in [0,1]$. In the same spirit of Problem 1, we then ask which is the probability that the random graph *does not* map into F. As above, for all $x \in X$ we let F(x) < G be such that $$E_{F(x)} = \{(a, b) \in E_G : x \in X_{ab}\}$$ and we let $$P_{\lambda} := \{ x \in X : F(x) \not\to F \}$$. **Proposition 4.3.** Let $F, G \in \mathcal{G}$, with $G < (\mathbb{N}, \mathbb{N}^{[2]})$. If c(F, G) < 1, there holds (4.8) $$\mu(P_{\lambda}) \ge p(\lambda) = \frac{\lambda - c(F, G)}{1 - c(F, G)}.$$ *Proof.* We proceed as in the first part of Section 3. Letting $\widetilde{X} := X \setminus P_{\lambda}$, for all $x \in \widetilde{X}$ we have $F(x) \to F$, where the map is realized by a function from $V_{F(x)} = \mathbb{N}$ to V_F , which in turn defines a map $\varphi : \widetilde{X} \to F^G$. Let now $$m := \frac{1}{\mu\left(\widetilde{X}\right)} \varphi_{\#}(\mu) \in \mathcal{M}_1\left(F^G\right) .$$ Notice that $$\varphi\left(X_{ab}\cap\widetilde{X}\right)\subseteq\left\{u\in F^G:\,\left(u(a),u(b)\right)\in E_F\right\}$$ for all $(a, b) \in E_G$, so that $$(4.9) \qquad \frac{\mu\left(X_{ab}\cap\widetilde{X}\right)}{\mu\left(\widetilde{X}\right)} \leq m\left(\left\{u \in F^G: \left(u(a), u(b)\right) \in E_F\right\}\right) \leq c(F, G).$$ The thesis now follows from (4.9) and the inequality $$\frac{\mu\left(X_{ab}\cap\widetilde{X}\right)}{\mu\left(\widetilde{X}\right)} \geq \frac{\lambda - \mu\left(P_{\lambda}\right)}{1 - \mu\left(P_{\lambda}\right)}.$$ 4.2. Finite monotone paths and chromatic number. For all $p \in \mathbb{N}$, we shall consider the graphs $(p, p^{[2]})$ and Q_p , where $$Q_p = \left(V_{Q_p}, E_{Q_p}\right) \quad \text{with} \quad V_{Q_p} = p, \quad E_{Q_p} = \left\{(i, j) \in p \times p : i \neq j\right\}.$$ A direct computation as in the proof of Proposition 4.1 gives (4.10) $$c_0(p, p^{[2]}) = \frac{1}{2} \left(1 - \frac{1}{p}\right), \quad c_0(Q_p) = 1 - \frac{1}{p}.$$ Notice that $G \to Q_p$ iff $\chi(G) \leq p$, where $\chi(G)$ is the chromatic number of G [B:79], and $G \to (p, p^{[2]})$ iff G does not contain a path of length p. Indeed, the first assertion is equivalent to the definition of chromatic number, whereas the second follows by associating to each vertex $v \in V_G$ the number $(p-1)-d(v) \in p$, where d(v) is the maximal length of a path in G starting from v By Propositions 4.2 and 4.3 with $G = (\mathbb{N}, \mathbb{N}^{[2]})$, for all $\lambda \in [0, 1]$ we have (4.11) $$\mu\left(P_{\lambda}\right) \ge \frac{\lambda - c_0(F)}{1 - c_0(F)}.$$ When $F = (p, p^{[2]})$, then $x \in P_{\lambda}$ iff $F(x) \not\to (p, p^{[2]})$, i.e. F(x) contains a path of length p, and from (4.10) and (4.11) it follows $$\mu\left(P_{\lambda}\right) \ge \frac{2p\lambda - p + 1}{p + 1}$$. Example 3.1 shows that such estimate is optimal, so that $$p(\lambda) := \inf\{\mu(P_{\lambda}) : (X, \mu) \text{ probability space}\} = \frac{2p\lambda - p + 1}{p + 1}.$$ In particular, if $\lambda > \lambda_c = (1 - 1/p)/2$, then the random subgraph F(x) contains a path of length p with probability at least $p(\lambda) > 0$. **Remark 4.4.** Notice that for all $p \in \mathbb{N}$ and $G \in \mathcal{G}$ the following equivalent statements hold: $$G$$ contains a path of length $p \Leftrightarrow C_p \to G \Leftrightarrow G \not\to (p,p^{[2]})$, where $C_p < (p, p^{[2]})$ is such that $(i, j) \in E_{C_p}$ iff j = i + 1. In particular, one may consider $(p, p^{[2]})$ as dual of the graph C_p with respect to graph mapping, so that it naturally arises the question of which graphs, other than C_p , admit such dual representation. When $$F = Q_p$$, then $x \in P_\lambda$ iff $\chi(F(x)) > p$, and we have $$\mu(P_{\lambda}) > p\lambda - p + 1 = p(\lambda)$$. Example 5.2 shows that also this estimate is optimal. As a consequence, if $\lambda > \lambda_c = 1 - 1/p$, then the random subgraph F(x) has chromatic number strictly greater than p with probability at least $p(\lambda) > 0$. #### 5. Problem 2 We recall the following standard Borel-Cantelli type result. **Proposition 5.1.** Let k = 1 and let $X_i \subseteq X$ be such that $\mu(X_i) \ge \lambda$, for all $i \in \mathbb{N}$ and for some $\lambda > 0$. Then, Problem 2 has a positive answer, i.e. there is an infinite set $J \subset \mathbb{N}$ such that $$\bigcap_{i\in J} X_i \neq \emptyset.$$ *Proof.* The set $Y := \bigcap_n \bigcup_{i>n} X_i$ is a decreasing intersection of sets of (finite) measure greater than $\lambda > 0$, hence $\mu(Y) \ge \lambda$ and, in particular, Y is non-empty. Now it suffices to note that any element x of Y belongs to infinitely many X_i 's. Proposition 5.1 has the following interpretation in terms of percolation: if we choose each element of \mathbb{N} with probability greater or equal to λ , we obtain an infinite random subset with probability grater or equal to $p(\lambda) = \lambda$ (we recall that $p(\lambda)$ is always less than or equal to λ). The following example shows that Problem 2 has in general a negative answer for k > 1. **Example 5.2.** Let $p \in \mathbb{N}$ and consider the Cantor space $X = p^{\mathbb{N}}$, equipped with the Bernulli measure $B_{(1/p,\dots,1/p)}$, and let $X_{ij} := \{x \in X : x_i \neq x_j\}$. Then each X_{ij} has measure $\lambda = 1 - 1/p$, and for all $x \in X$ the graph $F(x) := \{(i,j) \in \mathbb{N}^{[2]} : x \in X_{ij}\}$ does not contains cliques (i.e. complete subgraphs) of cardinality (p+1). In view of Example 5.2, we need to impose further restrictions on the sets $X_{i_1...i_k}$, in order to get a positive answer to Problem 2. In the following, we shall always assume that (5.1) $$\mu(X_{i_1...i_k}) \ge \lambda \qquad \forall (i_1, ..., i_k) \in \mathbb{N}^{[k]},$$ for some $\lambda > 0$. Notice that, if each set $X_{i_1...i_k}$ has the form $X_{i_1} \cap \cdots \cap X_{i_k}$ and satisfies (5.1), then Problem 2 has a positive answer by Proposition 5.1. Moreover, by Ramsey theorem, Problem 2 has a positive answer if there is a finite set $S \subset X$ such that each $X_{i_1,...,i_k}$ has a non-empty intersection with S. In
particular, this is the case if X is a countable set and (5.1) holds. **Proposition 5.3.** Let X be a compact metric space and assume that each set $X_{i_1...i_k}$ contains a ball $B_{i_1,...,i_k}$ of radius r > 0. Then Problem 2 has a positive answer. *Proof.* Applying Lemma A.1 to the centers of the balls $B_{i_1,...,i_k}$ it follows that for all 0 < r' < r there exists an infinite set J and a ball B of radius r' such that $$B \subset \bigcap_{(j_1,\dots,j_k)\in J^{[k]}} X_{j_1\dots j_k}.$$ We now give a sufficient condition for a positive answer to Problem 2. **Theorem 5.4.** Assume that the sets $X_{i_1...i_k}$ satisfy (5.1), and the indicator functions of $X_{i_1...i_k}$ belong to a compact subset K of $L^1(X,\mu)$. Then, for any $\varepsilon > 0$ there exists an infinite set $J \subset \mathbb{N}$ such that $$\mu\left(\bigcap_{(i_1,\dots,i_k)\in J^{[k]}} X_{i_1\dots i_k}\right) \ge \lambda - \varepsilon.$$ *Proof.* Consider first the case k=1. By compactness of \mathcal{K} , for all $\varepsilon>0$ there exist an increasing sequence $\{i_n\}$ and a set $X_{\infty}\subset X$, with $\mu(X_{\infty})\geq \lambda$, such that $$\mu(X_{\infty}\Delta X_{i_n}) \leq \frac{\varepsilon}{2^n} \quad \forall n \in \mathbb{N}.$$ As a consequence, letting $J := \{i_n : n \in \mathbb{N}\}$ we have $$\mu\left(\bigcap_{n\in\mathbb{N}}X_{i_n}\right)\geq\mu\left(X_{\infty}\cap\bigcap_{n\in\mathbb{N}}X_{i_n}\right)\geq\mu\left(X_{\infty}\right)-\sum_{n\in\mathbb{N}}\mu\left(X_{\infty}\Delta X_{i_n}\right)\geq\lambda-\varepsilon.$$ For k > 1, we apply Lemma A.1 with $$M = \mathcal{K} \subset L^{1}(X)$$ $$f(i_{1}, \dots, i_{k}) = \chi_{X_{i_{1} \dots i_{k}}} \in L^{1}(X).$$ In particular, recalling Remark A.2, for all $\varepsilon > 0$ there exist $J = \sigma(\mathbb{N})$, $X_{\infty} \subset X$, and $X_{i_1...i_m} \subset X$, for all $(i_1, ..., i_m) \in J^{[m]}$ with $1 \leq m < k$, such that $\mu(X_{\infty}) \geq \lambda$ and for all $(i_1, ..., i_k) \in J^{[k]}$ it holds $$\mu\left(X_{\infty}\Delta X_{i_1}\right) \leq \frac{\varepsilon}{2^{\sigma^{-1}(i_1)}}$$ $$\mu\left(X_{i_1...i_m}\Delta X_{i_1...i_{m+1}}\right) \leq \frac{\varepsilon}{2^{\sigma^{-1}(i_{m+1})}}.$$ Reasoning as above, it then follows $$\mu\left(X_{\infty}\Delta\bigcap_{(i_{1},\dots,i_{k})\in J^{[k]}}X_{i_{1}\dots i_{k}}\right) \leq \sum_{i_{1}\in\mathbb{N}}\mu\left(X_{\infty}\Delta X_{i_{1}}\right) + \sum_{i_{1}< i_{2}}\mu\left(X_{i_{1}}\Delta X_{i_{1}i_{2}}\right) + \cdots + \sum_{i_{1}< \dots< i_{k}}\mu\left(X_{i_{1}\dots i_{k-1}}\Delta X_{i_{1}\dots i_{k}}\right) \leq C(k)\varepsilon,$$ where C(k) > 0 is a constant depending only on k. Therefore $$\mu\left(\bigcap_{(i_1,\dots,i_k)\in J^{[k]}} X_{i_1\dots i_k}\right) \geq \mu\left(X_{\infty} \cap \bigcap_{(i_1,\dots,i_k)\in J^{[k]}} X_{i_1\dots i_k}\right)$$ $$\geq \mu\left(X_{\infty}\right) - \mu\left(X_{\infty}\Delta \bigcap_{(i_1,\dots,i_k)\in J^{[k]}} X_{i_1\dots i_k}\right)$$ $$\geq \lambda - C(k)\varepsilon.$$ Notice that from Theorem 5.4 it follows that Problem 2 has a positive answer if there exist an infinite $J \subseteq \mathbb{N}$ and sets $\widetilde{X}_{i_1...i_k} \subseteq X_{i_1...i_k}$ with $(i_1,\ldots,i_k) \in J^{[k]}$, such that $\mu\left(\widetilde{X}_{i_1...i_k}\right) \geq \lambda$ for some $\lambda > 0$, and the indicator functions of $\widetilde{X}_{i_1...i_k}$ belong to a compact subset of $L^1(X)$. **Remark 5.5.** We recall that, when X is a compact subset of \mathbb{R}^n and the perimeters of the sets $X_{i_1...i_k}$ are uniformly bounded, then the family $\chi_{X_{i_1...i_k}}$ has compact closure in $L^1(X)$ (see for instance [AFP:00, Thm. 3.23]). In particular, if the sets $X_{i_1...i_k}$ have equibounded Cheeger constant, i.e. if there exists C > 0 such that $$\min_{E \subset X_{i_1 \dots i_k}} \frac{\operatorname{Per}(E)}{|E|} \le C \qquad \forall (i_1, \dots, i_k) \in \mathbb{N}^{[k]},$$ then Problem 2 has a positive answer. # APPENDIX A. A TOPOLOGICAL RAMSEY THEOREM We prove the following topological lemma, which is a generalization of the well-known Ramsey theorem [R:28] (see also [C:74]). **Lemma A.1.** Let M be a compact metric space, let $k \in \mathbb{N}$, and let $f: \mathbb{N}^{[k]} \to M$. Then, for any distance δ on $\overline{\mathbb{N}}$ there exists $\sigma \in \operatorname{Incr}(\mathbb{N})$ such that $f \circ \sigma^* : \mathbb{N}^{[k]} \to M$ is 1-Lipschitz. As a consequence, it can be extended to a 1-Lipschitz function on the whole of $\overline{\mathbb{N}}^{[k]}$. *Proof.* We proceed by induction on k. When k=1, by compactness of M there exist $x \in M$ and a subsequence $f \circ \sigma$ of f converging to x with the property $$\begin{array}{ll} d_M\left(f(\sigma(n)),x\right) & \text{is decreasing in } n \\ \\ d_M\left(f(\sigma(n)),x\right) & \leq & \frac{1}{2}\inf_{m>n}\delta(n,m) \quad \forall n\in\mathbb{N} \ . \end{array}$$ For all $n \leq m$, it then follows $$d_M(f(\sigma(n)), f(\sigma(m))) \le 2d_M(f(\sigma(n)), x) \le \delta(n, m)$$. Assuming that the thesis is true for some $k \in \mathbb{N}$, we now prove that it is true also for k+1. By inductive assumption, for all $j \in \mathbb{N}$ there exists $\sigma_j \in \operatorname{Incr}(\mathbb{N})$ such that $f(j, \sigma_j^*(\cdot))$ is 1-Lipschitz on $\mathbb{N}^{[k]}$. (This makes sense if σ_j has values bigger than j, and it is easy to see that we can choose it in this way.) By a recursive construction we can also assume that $J_{j+1} \subseteq J_j$, where we set $J_j := \sigma_j(\mathbb{N})$. Let $x_j \in M$ be the limit of $f(j, \sigma_j^*(\iota))$ for $\min(\iota) \to \infty$. By compactness of M there is $x_\infty \in M$ and an increasing function $\sigma \colon \mathbb{N} \to \mathbb{N}$ such that $x_{\sigma(n)}$ converges to x_∞ . Moreover, we can choose σ such that $\sigma(n+1) \in J_{\sigma(n)}$ and the following holds: $$d_{M}\left(x_{\sigma(n)}, x_{\infty}\right) \qquad \text{is decreasing in } n$$ $$d_{M}\left(x_{\sigma(n)}, x_{\infty}\right) \leq \frac{1}{4} \inf_{m>n} \delta(n, m)$$ $$\sup_{\iota \in \mathbb{N}^{[k]}, \min(\iota) > n} d_{M}\left(f\left(\sigma^{*}(n, \iota)\right), x_{\sigma(n)}\right) \qquad \text{is decreasing in } n$$ $$\sup_{\iota \in \mathbb{N}^{[k]}, \min(\iota) > n} d_{M}\left(f\left(\sigma^{*}(n, \iota)\right), x_{\sigma(n)}\right) \leq \frac{1}{4} \inf_{m>n} \delta(n, m).$$ Note that the last two properties follows from the fact that $f(\sigma^*(n,\iota))$ can be made arbitrarily close to its limit $x_{\sigma(n)}$ provided σ maps the integers > n into sufficiently large elements of $J_{\sigma(n)}$. For all (n, ι) , $(m, \kappa) \in \mathbb{N}^{[k+1]}$, with $n \leq m$, it then follows $$d_M(f(\sigma^*(n,\iota)), f(\sigma^*(m,\kappa))) \leq \delta_k(\iota,\kappa)$$ if $n = m$, by inductive assumption, while for n < m we have $$d_{M}\left(f\left(\sigma^{*}(n,\iota)\right), f\left(\sigma^{*}(m,\kappa)\right)\right) \leq \sup_{\iota \in \mathbb{N}^{[k]}} d_{M}\left(f\left(\sigma^{*}(n,\iota)\right), x_{\sigma(n)}\right) + d_{M}\left(x_{\sigma(n)}, x_{\infty}\right) + d_{M}\left(x_{\sigma(n)}, x_{\infty}\right) + \sup_{\kappa \in \mathbb{N}^{[k]}} d_{M}\left(f\left(\sigma^{*}(m,\kappa)\right), x_{\sigma(m)}\right) \leq \delta(n,m) \leq \delta_{k+1}\left((n,\iota), (m,\kappa)\right),$$ that is, $f \circ \sigma^*$ is 1-Lipschitz on $\mathbb{N}^{[k+1]}$. Lemma A.1 is a sort of asymptotic Ramsey theorem with colours in a compact metric space, and reduces to the classical Ramsey theorem when the space M is finite. **Remark A.2.** Notice also that Lemma A.1 implies that there exists an infinite set $J = \sigma(\mathbb{N}) \subset \mathbb{N}$ such that, for all $0 \leq m < k$ and $(i_1, \ldots, i_m) \in J^{[m]}$, there are limit points $x_{i_1...i_m} \in M$ with the property $$x_{i_1...i_m} = \lim_{\substack{(i_{m+1},...,i_k) \to \infty \\ (i_1...i_k) \in J^{[k]}}} x_{i_1...i_k},$$ where we set $x_{i_1...i_k} := f(i_1,...,i_k)$. Moreover, by choosing the distance $\delta(n,m) = \varepsilon |2^{-n} - 2^{-m}|$, we may also require $$d_M(x_{i_1...i_m}, x_{i_1...i_k}) \le \frac{\varepsilon}{2^{\sigma^{-1}(i_{m+1})}} \quad \forall (i_1, ..., i_k) \in J^{[k]}.$$ # APPENDIX B. A FEW FACTS ON EXCHANGEABLE MEASURES Let Λ be a compact metric space and let $\Lambda^{\mathbb{N}}$ be the space of all sequences $u: \mathbb{N} \to \Lambda$ endowed with the product topology. Given $m \in \mathcal{M}(\Lambda^{\mathbb{N}})$ and $f \in L^p(\Lambda^{\mathbb{N}})$, with $p \in [1, +\infty]$, we let $$\tilde{f} = E(f|\mathcal{A}_s) \in L^p(\Lambda^{\mathbb{N}})$$ be the conditional probability of f with respect to the σ -algebra \mathcal{A}_s of the shift-invariant Borel subsets of $\Lambda^{\mathbb{N}}$. In particular, \tilde{f} is shif-invariant, and by Birkhoff's theorem (see f.e. [P:82]) we have $$\tilde{f} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f \circ s^k,$$ where the limit holds almost everywhere and in the strong topology of $L^1(\Lambda^{\mathbb{N}})$. We now recall a classical notion of *exchangeable measure* due to De Finetti [DF:74], showing some equivalent conditions. **Proposition B.1.** Given $m \in \mathcal{M}_1(\Lambda^{\mathbb{N}})$, the following conditions are equivalent: - a) m is $\mathfrak{S}_c(\mathbb{N})$ -invariant; - b) m is $Inj(\mathbb{N})$ -invariant; - c) m is $Incr(\mathbb{N})$ -invariant. If m satisfies one of these equivalent conditions we say that m is exchange-able. Notice that an exchangeable measure is always shift-invariant, while there are shift-invariant measures which are not exchangeable. *Proof.* Since $\mathfrak{S}_c(\mathbb{N}) \subset \operatorname{Inj}(\mathbb{N})$ and $\operatorname{Incr}(\mathbb{N}) \subset \operatorname{Inj}(\mathbb{N})$, the implications b) \Rightarrow a) and b) \Rightarrow c) are obvious. The implication a) \Rightarrow b) is also obvious since it is trivially true on the cylindrical sets (2.1), which
generate the whole Borel σ -algebra of $\Lambda^{\mathbb{N}}$. Let us prove that $c) \Rightarrow b$). We first show that, if c) holds, then for all $f \in L^{\infty}(\Lambda^{\mathbb{N}})$ it holds (B.1) $$\tilde{f} = \lim_{n \to \infty} f \circ s^n,$$ where the limit is taken in the weak* topology of $L^{\infty}(\Lambda^{\mathbb{N}})$. Indeed, since the sequence $f \circ s^n$ is bounded in $L^{\infty}(\Lambda^{\mathbb{N}})$, it is enough to prove the convergence of (B.2) $$\int_{\Lambda^{\mathbb{N}}} (f \circ s^n) g \, dm$$ for all g in a dense subset D of $L^1(\Lambda^{\mathbb{N}})$. Letting $$D = \{ g \in L^{\infty}(\Lambda^{\mathbb{N}}) : g(x) = g_1(x_1) \cdots g_r(x_r) \}$$ for some $r \in \mathbb{N}$ and $g_1, \dots, g_r \in L^{\infty}(\Lambda) \},$ the convergence of (B.2) follows at once from the fact that m is $Incr(\mathbb{N})$ -invariant and $g \in D$, which implies that the quantity in (B.2) is constant for all n > r. To conclude the proof, it remains to show that (B.3) $$\int_{\Lambda^{\mathbb{N}}} g \, dm = \int_{\Lambda^{\mathbb{N}}} g \circ T^{\sigma} \, dm \,,$$ for all $g \in D$ and $\sigma \in \text{Inj}(\mathbb{N})$. Notice that, by assumption, the right-hand side of (B.3) does not depend on σ as long as $\sigma \in \text{Incr}(\mathbb{N})$, in particular $$\int_{\Lambda^{\mathbb{N}}} g \, dm = \int_{\Lambda^{\mathbb{N}}} (g_1 \circ P_{i_1}) \cdots (g_r \circ P_{i_r}) \, dm \,,$$ for all $(i_1, \ldots, i_r) \in \mathbb{N}^{[r]}$. Recalling (B.1) and passing to the limit as $i_r \to +\infty, \ldots, i_1 \to +\infty$, we then obtain $$\int_{\Lambda^{\mathbb{N}}} g \, dm = \int_{\Lambda^{\mathbb{N}}} \widetilde{g_1 \circ P_1} \cdots \widetilde{g_r \circ P_1} \, dm \, .$$ Reasoning in the same way for the function $g \circ T^{\sigma}$, we finally get $$\int_{\Lambda^{\mathbb{N}}} g \circ T^{\sigma} dm = \int_{\Lambda^{\mathbb{N}}} \widetilde{g_1 \circ P_1} \cdots \widetilde{g_r \circ P_1} dm = \int_{\Lambda^{\mathbb{N}}} g dm.$$ **Remark B.2.** If Λ is countable, a measure m is exchangeable iff for all $r \in \mathbb{N}$ there exists a symmetric function $f : \Lambda^r \to \mathbb{R}$ such that for all $(i_1, \ldots, i_r) \in \mathbb{N}^{[r]}$ and $(a_1, \ldots, a_r) \in \Lambda^r$ it holds (B.4) $$m(E_{i_1...i_r}(a_1,...,a_r)) = f(a_1,...,a_r).$$ In other words, an exchangeable measure on $\Lambda^{\mathbb{N}}$, with Λ countable, is such that the measure of the cylindrical set $E_{i_1...i_r}(a_1,\ldots,a_r)$ only depends on a_1,\ldots,a_r , and does not depend on the sequence of indices i_1,\ldots,i_r . **Lemma B.3.** Let $m \in \mathcal{M}_1(\Lambda^{\mathbb{N}})$ be exchangeable, then for all $f \in L^1(\Lambda^{\mathbb{N}})$ the following conditions are equivalent: - a) f is $\mathfrak{S}_c(\mathbb{N})$ -invariant; - b) f is $Inj(\mathbb{N})$ -invariant; - c) f is shift-invariant. *Proof.* Since $\mathfrak{S}_c(\mathbb{N}) \subset \text{Inj}(\mathbb{N})$ and $s \in \text{Inj}(\mathbb{N})$, the implications b) \Rightarrow a) and b) \Rightarrow c) are obvious. In order to prove that a) \Rightarrow b), we let $\mathcal{F} = \{\sigma \in \operatorname{Inj}(\mathbb{N}) : f = f \circ T^{\sigma}\}$, which is a closed subset of $\operatorname{Inj}(\mathbb{N})$ containing $\mathfrak{S}_c(\mathbb{N})$. Then, it is enough to observe that $\mathfrak{S}_c(\mathbb{N})$ is a dense subset of $\operatorname{Inj}(\mathbb{N}) \subset \mathbb{N}^{\mathbb{N}}$, with respect to the product topology of $\mathbb{N}^{\mathbb{N}}$, so that $\mathcal{F} = \overline{\mathfrak{S}_c(\mathbb{N})} = \operatorname{Inj}(\mathbb{N})$. Let us prove that $c) \Rightarrow a$). Let $\sigma \in \mathfrak{S}_c(\mathbb{N})$ and let n be such that $\sigma(i) = i$ for all $i \geq n$. It follows that $s^k \circ T^{\sigma} = s^k$, for all $k \geq n$. As a consequence, for m-almost every $x \in \Lambda^{\mathbb{N}}$ it holds $$f \circ T^{\sigma}(x) = f \circ s^n \circ T^{\sigma}(x) = f \circ s^n(x) = f(x),$$ where the first equality holds since the measure m is $\mathfrak{S}_c(\mathbb{N})$ -invariant. \square Notice that from Lemma B.3 it follows that \tilde{f} is $\operatorname{Inj}(\mathbb{N})$ -invariant for all $f \in L^1(\Lambda^{\mathbb{N}})$. In particular, for an exchangeable measure, the σ -algebra of the shift-invariant sets coincides with the (a priori smaller) σ -algebra of the $\operatorname{Inj}(\mathbb{N})$ -invariant sets. Thanks to a theorem of De Finetti, suitably extended in [HS:55], there is an integral representation à la Choquet for the exchangeable measures on $\Lambda^{\mathbb{N}}$. More precisely, in [HS:55] it is shown that the extremal points of the (compact) convex set of all exchangeable measures are given by the product measures $\sigma^{\mathbb{N}}$, with $\sigma \in \mathcal{M}_1(\Lambda)$. As a consequence, Choquet theorem [C:69] provides an integral representation for any exchangeable measure m on $\Lambda^{\mathbb{N}}$, i.e. there is a probability measure $\mu \in \mathcal{M}_1(\Lambda)$ such that (B.5) $$m = \int_{\mathcal{M}_1(\Lambda)} \sigma^{\mathbb{N}} d\mu(\sigma).$$ When Λ is finite, i.e. $\Lambda = p = \{0, \dots, p-1\}$ for some $p \in \mathbb{N}$, we can identify $\mathcal{M}_1(\Lambda)$ with the symplex Σ_p of all $\lambda \in [0,1]^p$ such that $\sum_{i=0}^{p-1} \lambda_i = 1$. Given $\lambda \in \Sigma_p$, we denote by B_{λ} the (product) Bernoulli measure on $p^{\mathbb{N}}$ such that all the events $E_i(a)$ are independent and $B_{\lambda}(E_i(a)) = B_{\lambda}(E_j(a)) = \lambda_a$, for all $i, j \in \mathbb{N}$ and $a \in p$. In this case, (B.5) becomes (B.6) $$m = \int_{\Sigma_p} B_{\lambda} d\mu(\lambda),$$ where μ is a probability measure on Σ_p . We say that a measure $m \in \mathcal{M}(\Lambda^{\mathbb{N}})$ is asymptotically exchangeable if the sequence $m_k := (s_{\#})^k(m)$ weakly* converges to an exchangeable measure [K:78]. We now prove that any probability measure on $\Lambda^{\mathbb{N}}$ is asymptotically exchangeable on a suitable subsequence of indeces (we refer to [C:74, FS:76, K:78, K:05] for similar results). **Proposition B.4.** Given $m \in \mathcal{M}_1(\Lambda^{\mathbb{N}})$ there is an increasing function $\sigma \colon \mathbb{N} \to \mathbb{N}$ such that $T^{\sigma}_{\#}(m)$ is asymptotically exchangeable. Proof. Thanks to Lemma A.1, applied with $M = \mathcal{M}_1(S^r)$, for all $r \in \mathbb{N}$ there is an infinite set $J_r \subset \mathbb{N}$ such that $T^{\iota}_{\#}(m)$ is convergent in $\mathcal{M}_1(S^r)$, for $\iota = (i_0, \ldots, i_{r-1}) \in [J_r]^r$ and $i_0 \to \infty$. By a diagonal argument, we can choose the same set $J \subset \mathbb{N}$ for all $r \in \mathbb{N}$. Letting $\sigma \in \operatorname{Incr}(\mathbb{N})$ be such that $\sigma(\mathbb{N}) = J$, we claim that $T^{\sigma}_{\#}(m)$ is asymptotically exchangeable. Let us first show that $m_k := s_\#^k \circ T_\#^\sigma(m)$ is convergent in $\mathcal{M}_1(S^\mathbb{N})$. Indeed, since the sequence m_k is precompact in $\mathcal{M}_1(S^\mathbb{N})$, it is enough to show that $T_\#^\iota(m_k)$ is convergent in $\mathcal{M}_1(S^r)$ for all $\iota \in \mathbb{N}^{[r]}$ and $r \in \mathbb{N}$, and the latter follows as above from Lemma A.1 and the choice of J. It remains to prove that the limit m' of m_k is exchangeable. By Proposition B.1, it is enough to show that $T^{\theta}_{\#}(m') = m'$, for every $\theta \in \operatorname{Incr}(\mathbb{N})$. Again by the choice of J, the sequence of measures $T^{\theta}_{\#} \circ T^{\iota}_{\#}(m_k)$ has the same limit of $T^{\iota}_{\#}(m_k)$ for all $\iota \in \mathbb{N}^{[r]}$ and $r \in \mathbb{N}$, which in turn implies $T^{\theta}_{\#}(m') = m'$. **Remark B.5.** Notice that, if m is asymptotically exchangeable, then for all $(a_1, \ldots, a_r) \in S^r$ the limit exchangeable measure m' satisfies $$m(\{x_{i_1+k} = a_1, \dots, x_{i_r+k} = a_r\}) \le m'(\{x_{i_1} = a_1, \dots, x_{i_r} = a_r\}) + o(1) \text{ as } k \to +\infty,$$ and the equality holds if the points $\{a_j\}$ are open in S for all $1 \leq j \leq r$ (which is always the case if S is finite). More generally, the equality holds in (B.7) for all clopen (i.e. both open and closed) $C \subseteq S^r$, that is $$m'(\{(x_1,\ldots,x_r)\in C\}) = \lim_{k\to+\infty} m(\{(x_{i_1+k},\ldots,x_{i_r+k})\in C\}).$$ ## References [AFP:00] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical monographs (2000). - [B:79] B. Bollobás, Graph Theory: An Introductory Course, Springer-Verlag, New York (1979). - [C:74] S. D. Chatterji, A subsequence principle in probability theory, Bull. of the AMS 80 (1974), 495–497. - [C:69] G. Choquet, Lectures on Analysis I, Benjamin, Reading, Mass. (1969). - [DF:74] B. De Finetti, Theory of Probability, Wiley, London (1974). - [PR:05] C. A. Di Prisco, Mathematics versus metamathematics in Ramsey theory of the real numbers, *Proceedings of the 12th International Congress, King's College Publications* (2005), 171–187. - [EH:64] P. Erdös, A. Hajnal, Some remarks on set theory. IX: Combinatorial problems in measure theory and set theory. *Mich. Math. J.* 11 (1964), 107–127. - [FS:76] T. Figiel, L. Sucheston, An application of Ramsey sets in analysis, Advances in Math. 20 (1976), 103–105. - [FT:85] D. H. Fremlin, M. Talagrand, Subgraphs of random graphs, Trans. Amer. Math. Soc. 291 (1985), 551–582. - [GP:73] F. Galvin, K. Prikry, Borel sets and Ramsey's theorem, Journal of Symbolic Logic 38 (1973), 193–198. - [GR:99] G. Grimmett, Percolation, II ed., Springer-Verlag, Berlin (1999). - [HS:55] E. Hewitt and J. Savage, Symmetric measures on cartesian products, Trans. of the AMS 80 (1955), 470–501. - [K:05] O. Kallenberg, Probabilistic Symmetries and Invariance Principles, Springer-Verlag, New York (2005). - [K:78] J. F. C. Kingman, Uses of exchangeability, Annals of Prob. 6
(1978), 183-197. - [P:82] W. Parry, Topics in Ergodic Theory, Cambridge University Press, Cambridge (1982). - [R:28] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., Ser. 2, 30 (1928), 338–384. Alessandro Berarducci³, Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy, email: berardu@dm.unipi.it PIETRO MAJER, DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PISA, LARGO B. PONTECORVO 5, 56127 PISA, ITALY, EMAIL: MAJER@DM.UNIPI.IT Matteo Novaga, Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy, email: novaga@math.unipd.it $^{^3\}mathrm{partially}$ supported by the project: Geometría Real (GEOR) DGICYT MTM2005-02865 (2006-08)