PERCOLATION-TYPE PROBLEMS ON INFINITE RANDOM GRAPHS

ALESSANDRO BERARDUCCI, PIETRO MAJER AND MATTEO NOVAGA

Abstract

We study some percolation problems on the complete graph over \mathbb{N}. In particular, we give sharp sufficient conditions for the existence of (finite or infinite) cliques and paths in a random subgraph. No specific assumption on the probability, such as independency, is made. The main tools are a topological version of Ramsey theory, exchangeability theory and elementary ergodic theory.

Contents

1. Introduction 1
2. Notation 5
3. Problem 1 6
4. Extensions and related problems 9
4.1. A notion of capacity for directed graphs 9
4.2. Finite monotone paths and chromatic number 12
5. Problem 2 13
Appendix A. A topological Ramsey theorem 15
Appendix B. A few facts on exchangeable measures 16
References 19

1. Introduction

Let $G=\left(\mathbb{N}, \mathbb{N}^{[2]}\right)$ be the complete oriented graph having vertices in \mathbb{N}, with the orientation induced by the usual order of \mathbb{N}, and let us randomly choose some of its edges: that is, we associate to the edge $(i, j) \in \mathbb{N}^{[2]}$ (thus $i<j)$ a measurable set $X_{i j} \subseteq X$, where $(X \mathcal{A}, \mu)$ is a base probability space. We then ask if the resulting random graph contains an infinite path:

Problem 1. Let (X, \mathcal{A}, μ) be a probability space. For all $(i, j) \in \mathbb{N}^{[2]}$, let $X_{i j}$ be a measurable subset of X. Is there an infinite increasing sequence $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ such that $\bigcap_{i \in \mathbb{N}} X_{n_{i} n_{i+1}}$ is non-empty?

More formally, a random subgraph of the oriented graph G is defined by a measurable function $\left.F: X \rightarrow 2^{E_{G}}\right]$, where E_{G} is the set of edges of G and $2^{E_{G}}$ its powerset, equipped with the product σ-algebra. We briefly say that F has path percolation, or F contains an infinite path, if the subgraph $F(x)$

[^0]contains an infinite path for some $x \in X$. As in classic percolation theory, we wish to estimate the probability that F has path percolation, that is $\underbrace{2}$
$$
\mu(\{x \in X: F(x) \text { contains an infinite path }\})
$$
in terms of a parameter λ that bounds from below the probability that an edge e belongs to F, that is $\mu\left(X_{e}\right) \geq \lambda$, where $X_{e}:=\{x \in X: e \in F(x)\}$, for all $e \in E_{G}$.

It has to be noticed that the analogy with classic bond percolation is only formal, the main difference being that in the usual percolation models (see for instance [GR:99]) the events $X_{i j}$ are supposed independent, whereas in the present case the probability distribution is completely general, i.e. we do not impose any restriction on the events $X_{i j}$.

In Section 3, we show that path percolation occurs with probability strictly greater than $2 \lambda-1$ (see Theorem 3.3 and Corollary 3.4 for a precise statement). Moreover, we show that the estimate $2 \lambda-1$ is optimal; in particular X may fail to contain an infinite path if $\lambda<1 / 2$.

In order prove this result, we first observe that a subgraph H of $\left(\mathbb{N}, \mathbb{N}^{[2]}\right)$ does not contain an infinite path iff it admits a height function with values in ω_{1}, where ω_{1} is the first uncountable ordinal, i.e. there exists a graph map between H and the complete graph over ω_{1} with decreasing orientation, that is (α, β) is an edge of the graph if $\alpha, \beta \in \omega_{1}$ and $\alpha>\beta$.

Therefore, if a random graph F has no infinite paths, introducing the dependence on $x \in X$ and on the vertices of F, it is defined a measurable map from $X \times \mathbb{N}$ to ω_{1}, which can be also seen as a map $\varphi: X \rightarrow \omega_{1}^{\mathbb{N}}$, where $\omega_{1}^{\mathbb{N}}$ is equipped with the product σ-algebra generated by the finite subsets of ω_{1}. It turns out that φ is essentially bounded (see Lemma 3.2), which implies that $\varphi_{\#}(\mu)$ is a compactly supported Radon measure on $\omega_{1}^{\mathbb{N}}$, and that $\varphi\left(X_{i j}\right) \subseteq A_{i j}:=\left\{x \in \omega_{1}^{\mathbb{N}}: x_{i}>x_{j}\right\}$. As a consequence, in the determination of the threshold for existence of infinite paths
(1.1) $\lambda_{c}:=\sup \left\{\inf _{i<j \in \mathbb{N}} \mu\left(X_{i j}\right): F\right.$ random graph without infinite paths $\}$,
we can set $X=\omega_{1}^{\mathbb{N}}, X_{i j}=A_{i j}$, and reduce to the variational problem on the convex set $\mathcal{M}_{c}\left(\omega_{1}^{\mathbb{N}}\right)$ of compactly supported probability measures on $\omega_{1}^{\mathbb{N}}$:

$$
\begin{equation*}
\lambda_{c}=\sup _{m \in \mathcal{M}_{c}\left(\omega_{1}^{\mathbb{N}}\right)} \inf _{i<j \in \mathbb{N}} m\left(A_{i j}\right) . \tag{1.2}
\end{equation*}
$$

As a next step, we show that in (1.2) we can equivalently take the supremum in the smaller class of all the compactly supported exchangeable measures on $\omega_{1}^{\mathbb{N}}$ (see Appendix B and references therein for a precise definition). Thanks to this reduction, we can explicitly compute $\lambda_{c}=1 / 2$. We note that the supremum in 1.2 is not attained, which implies that for $\mu\left(X_{i j}\right) \geq 1 / 2$ path percolation occurs with positive probability.

A natural motivation for Problem 1 comes from the following situation, that we state in a very general form.

[^1]Suppose we are given a space E and a certain family X of sequences on E (e.g., minimizing sequences of a functional, or orbits of a discrete dynamical system, etc). A typical, general problem ask for existence of a sequence in the family X, that admits a subsequence with a prescribed property. One approach to it is by means of measure theory. The archetypal situation here come from recurrence theorems: one may ask if there exists a subsequence which belongs frequently to a given subset C of the "phase" space E (we refer to such sequences as " C-recurrent orbits"). If we consider the set $X_{i}:=\left\{x \in X: x_{i} \in C\right\}$, then a standard sufficient condition for existence of C-recurrent orbits is $\mu\left(X_{i}\right) \geq \lambda>0$, for some probability measure μ on X. In fact is easy to check that the set of C-recurrent orbits has measure at least λ by an elementary version of a Borel-Cantelli lemma (see Proposition 5.1). This is indeed the existence argument in the Poincaré Recurrence Theorem for measure preserving transformations. A more subtle question arises when one looks for a subsequence satisfying a given relation between two successive (or possibly more) terms: given a subset R of $E \times E$ we look for a subsequence $x_{i_{k}}$ such that $\left(x_{i_{k}}, x_{i_{k+1}}\right) \in R$ for all $k \in \mathbb{N}$. As before, we may consider the subset of X, with double indices $i<j, X_{i j}:=\left\{x \in X:\left(x_{i}, x_{j}\right) \in R\right\}$ and we are then led to Problem 1 .

By looking for other properties of the random graph F, we can embed Problem 1 in a wider class of pattern-search problems. Indeed, given a property \mathcal{P} of graphs, if we choose each edge of G with probability greater than λ, so that $\mu\left(X_{e}\right) \geq \lambda$ for all $e \in E_{G}$, we can ask if the graph $F(x)$ enjoys the property \mathcal{P}. Let

$$
\begin{aligned}
p(\lambda) & :=\inf \{\mu(\{x \in X: F(x) \text { satisfies } \mathcal{P}\}):(X, \mathcal{A}, \mu) \text { probability space }\} \\
\lambda_{c} & :=\inf \{\lambda \in[0,1]: p(\lambda)>0\} .
\end{aligned}
$$

Notice that, if G itself satisfies \mathcal{P}, then $p(\lambda) \leq \lambda$, since we can always choose all the edges of G simultaneously with probability λ. In Sections 3 and 4 we show that:

- if \mathcal{P} is the property of having an infinite path, then $p(\lambda)=\min \{2 \lambda-$ $1,0\}$ and $\lambda_{c}=1 / 2$;
- if \mathcal{P} is the property of having a path of length N, then $p(\lambda)=$ $\min \{(2 N \lambda-N+1) /(N+1), 0\}$ and $\lambda_{c}=(1-1 / N) / 2$;
- if \mathcal{P} is the property of having chromatic number greater than N, then $p(\lambda)=\min \{N \lambda-N+1,0\}$ and $\lambda_{c}=1-1 / N$.
More generally, we can consider analogous percolation problems in an oriented graph G, not necessarily equal to $\left(\mathbb{N}, \mathbb{N}^{[2]}\right)$. However, it can be shown that, if we replace G with a finitely branching graph (such as a finite dimensional network), then path percolation does not occur without some restriction on the probability, i.e. $p(\lambda)=0$ for all $\lambda<1$. On the other hand, if a vertex of G has infinite degree, then F contains an infinite cluster with probability at least $p(\lambda)=\lambda$, so that $\lambda_{c}=0$. In a future work, we explicitly determine the path percolation tresholds for a random subgraph of the shift graphs $G=\left(\mathbb{N}^{[k]}, \mathbb{N}^{[q]}\right)$, with $k<q \in \mathbb{N}$.

In Section 5 we let $G=\left(\mathbb{N}, \mathbb{N}^{[2]}\right)$ and we ask if a random graph F contains an infinite clique, i.e. a copy of G itself. Note that this problem is a random version of the classical Ramsey theorem [R:28] (we refer to [GP:73, PR:05],
and references therein, for various generalization of Ramsey theorem to infinite graphs). We show with an explicit example (see Example 5.2) that in this case $p(\lambda)=0$ for all $\lambda<1$, so that the answer is negative unless we impose some restrictions on the probability space.

By Ramsey theorem, we know that if we assign to each element of $\mathbb{N}^{[k]}$ a colour taken from a set of n colours, then there is an infinite subset $J \subset \mathbb{N}$ such that all the elements of $J^{[k]}$ have the same colour. As a consequence, the probability is strictly positive if we restrict ourselves to the finite probability spaces with at most n elements. In analogy with Ramsey theorem, in Section 5 we deal with the following natural generalization of the previous problem:
Problem 2. Let (X, \mathcal{A}, μ) be a probability space. For all $\left(i_{1}, \ldots, i_{k}\right) \in \mathbb{N}^{[k]}$, let $X_{i_{1} \ldots i_{k}}$ be a measurable subset of X. Is there an infinite set $J \subset \mathbb{N}$ such that the intersection $\bigcap_{\left(i_{1}, \ldots, i_{k}\right) \in J^{[k]}} X_{i_{1} \ldots i_{k}}$ is non-empty?

As already observed, if X is a prescribed finite set, then the answer is positive by Ramsey theorem. In fact, if we choose an element $x_{i_{1} \ldots i_{k}} \in$ $X_{i_{1} \ldots i_{k}}$, we can intepret $x_{i_{1} \ldots i_{k}}$ as the colour of $\left(i_{1}, \ldots, i_{k}\right) \in \mathbb{N}^{[k]}$. If X is infinite the situation is more complicated, and we show that Problem 2 has a positive answer if the indicator functions of the sets $X_{i_{1} \ldots i_{k}}$ all belong to a compact subset of $L^{1}(X, \mu)$ (see Theorem 5.4).

Note: After this paper was completed we learned that Problem 1 had been originally proposed by P. Erdös and A. Hajnal in [EH:64], and a complete answer was later given by D. H. Fremlin and M. Talagrand in the very interesting paper [FT:85], where other related problems are also considered. In particular, Corollary 3.4 is already contained in [FT:85], at least when the probability space (X, μ) is the interval $[0,1]$ equipped with the Lebesgue measure. As far as we know, the solution of Problem 2 given in Theorem 5.4 is not present in the literature.

We would like to compare our approach and results with those in [FT:85]. Besides the fact that we do not impose any condition on the probability space, as already mentioned, our method allows us solve the following problem:
given a directed graph F, determine the critical treshold λ_{c} and the probability $p(\lambda)$ that $F(x) \rightarrow F$ (that is there exists a graph map between $F(x)$ and F), for some $x \in X$.
In Section 4, we completely solve this problem when F is a finite graph, showing in particular that

$$
\lambda_{c}=c_{0}(F):=\sup _{\lambda \in \Sigma_{F}} \sum_{(a, b) \in E_{F}} \lambda_{a} \lambda_{b},
$$

where Σ_{F} is the set of all sequences $\left\{\lambda_{a}\right\}_{a \in V_{F}}$ with values in $[0,1]$ and such that $\sum_{a \in V_{F}} \lambda_{a}=1$. As observed above, Problem 1 can be reformulated in this setting by letting F be the complete graph over ω_{1}.

On the contrary, [FT:85] the following somewhat complementary problem is considered:
given a directed graph F, determine the critical treshold λ_{c} such that that $F(x)$ contains a copy of F (in particular $F \rightarrow F(x)$), for some $x \in[0,1]$ and for all $\lambda>\lambda_{c}$.

The authors construct an algorithm which leads to a complete solution of the problem for finite F, and show that

$$
\lambda_{c}=\sup \left\{c_{0}(H): H \text { is finite and does not contain a copy of } F\right\} .
$$

Moreover, they can also solve this problem for some infinite graphs F, thus obtaining a solution of Problem 1. We observe that the notion of capacity we introduce in Section 4 is the same as in [FT:85].

As a final remark, we point out that our method is quite different from the one in [FT:85], since it relies on restating the problem as a variational problem like (1.2) for the probability measures on a suitable Cantor space, and then applying classical reasults of exchangeability theory (see Proposition B.4).

2. Notation

Given a compact metric space Λ, we let $\Lambda^{\mathbb{N}}$ be the space of all sequences taking values in Λ, endowed with the product topology. The space $\mathcal{M}\left(\Lambda^{\mathbb{N}}\right)$ of Borel measures on $\Lambda^{\mathbb{N}}$ can be identified with $C\left(\Lambda^{\mathbb{N}}\right)^{*}$, i.e. the dual of the Banach space of all continuous functions on $\Lambda^{\mathbb{N}}$. By the Banach-Alaoglu theorem the subset $\mathcal{M}_{1}\left(\Lambda^{\mathbb{N}}\right) \subset \mathcal{M}\left(\Lambda^{\mathbb{N}}\right)$ of probability measures is a compact (metrizable) subspace of $C\left(\Lambda^{\mathbb{N}}\right)^{*}$ endowed with the weak* topology. Given $p \in \mathbb{N}$, we identify p with the set $\{0,1, \ldots, p-1\}$, and we denote by $p^{\mathbb{N}}$ the (compact) Cantor space of all sequences taking values in p.

Notice that, when Λ is countable, the space $\mathcal{M}\left(\Lambda^{\mathbb{N}}\right)$ does not depend on the topology of Λ, and a measure $m \in \mathcal{M}\left(\Lambda^{\mathbb{N}}\right)$ is uniquely characterized by the values it takes on the cylindrical sets

$$
\begin{equation*}
E_{i_{1} \ldots i_{r}}\left(a_{1}, \ldots, a_{r}\right):=\left\{x \in \Lambda^{\mathbb{N}}: x_{i_{1}}=a_{1}, \ldots, x_{i_{r}}=a_{r}\right\} \tag{2.1}
\end{equation*}
$$

Given a topological space S and $k \in \mathbb{N}$, we let $S^{[k]}$ be the set of all subsets of S of cardinality k, endowed with the product topology. If S is ordered, we can identify $S^{[k]}$ with the set of k-tuples $\left(i_{1}, \ldots, i_{k}\right)$, with $i_{1}<\ldots<i_{k} \in S$.

Given a map $\sigma: \mathbb{N} \rightarrow \mathbb{N}$, we let $T^{\sigma}: \Lambda^{\mathbb{N}} \rightarrow \Lambda^{\mathbb{N}}$ be defined as $T^{\sigma}(x)_{i}=$ $x_{\sigma(i)}$, and we let $T_{\#}^{\sigma}: \mathcal{M}\left(\Lambda^{\mathbb{N}}\right) \rightarrow \mathcal{M}\left(\Lambda^{\mathbb{N}}\right)$ be the corresponding pushforward map. In particular, when $\sigma(i)=i+1, s=T^{\sigma}$ is the so-called shift map on $\Lambda^{\mathbb{N}}$. Given a multi-index $\iota=\left(i_{0}, \ldots, i_{r-1}\right) \in \mathbb{N}^{[r]}$, we let $T^{\iota}: \Lambda^{\mathbb{N}} \rightarrow \Lambda^{r}$ be such that $T^{\iota}(x)_{k}=x_{i_{k}}$ for all $k<r$, and we let $T_{\#}^{\iota}: \mathcal{M}\left(\Lambda^{\mathbb{N}}\right) \rightarrow \mathcal{M}\left(\Lambda^{r}\right)$ be the corresponding pushforward map. We also let $P_{k}: \Lambda^{\mathbb{N}} \rightarrow \Lambda$ be the projector on the $k^{\text {th }}$ coordinate, i.e. $P_{k}(x)=x_{k}$ for all $x \in \Lambda^{\mathbb{N}}$. We clearly have $P_{k+1}=P_{1} \circ s^{k}$ for all $k \in \mathbb{N}$.

We say that $f \in L^{1}\left(\Lambda^{\mathbb{N}}, m\right)$ is invariant with respect to $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ if $f=f \circ T^{\sigma} m$-almost everywhere. We say that a measure $m \in \mathcal{M}\left(\Lambda^{\mathbb{N}}\right)$ is invariant with respect to σ if $m=T_{\#}^{\sigma}(m)$.

We let $\mathfrak{S}_{c}(\mathbb{N}), \operatorname{Inj}(\mathbb{N}), \operatorname{Incr}(\mathbb{N}) \subset \mathbb{N}^{\mathbb{N}}$ be the families of maps $\sigma: \mathbb{N} \rightarrow$ \mathbb{N} which are compactly supported permutations, injective functions and strictly increasing functions, respectively.

We denote by $\overline{\mathbb{N}}$ the Alexandroff compactification of \mathbb{N}, equipped with a distance δ. For all $k \in \mathbb{N}$, a corresponding distance on the product space
$\overline{\mathbb{N}}^{[k]}$ can be defined as

$$
\delta_{k}\left(\left(j_{1}, \ldots, j_{k}\right),\left(i_{1}, \ldots, i_{k}\right)\right):=\max _{n \in\{1, \ldots, k\}} \delta\left(j_{n}, i_{n}\right)
$$

for all $\left(j_{1}, \ldots, j_{k}\right),\left(i_{1}, \ldots, i_{k}\right) \in \overline{\mathbb{N}}^{[k]}$.
Finally, given $k \in \mathbb{N}$ and $\sigma \in \operatorname{Incr}(\mathbb{N})$, we let $\sigma^{*}: \overline{\mathbb{N}}^{[k]} \rightarrow \overline{\mathbb{N}}^{[k]}$ be defined as $\sigma^{*}\left(i_{1}, \ldots, i_{k}\right)=\left(\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)\right)$, where we set $\sigma(\infty):=\infty$.

3. Problem 1

The following example shows that Problem 1 has in general a negative answer.

Example 3.1. Let $X=p^{\mathbb{N}}$, let $X_{i j}=A_{i j}=\left\{x \in p^{\mathbb{N}}: x_{i}>x_{j}\right\}$ for $i<j$, and let μ be the Bernoulli probability measure $B_{(1 / p, \ldots, 1 / p)}$. Then, the sets $A_{i j}$ have all measure $(1-1 / p) / 2$ but the intersections of the form $\bigcap_{k=0}^{p} A_{i_{k} i_{k+1}}$, with $i_{0}<\ldots<i_{p} \in \mathbb{N}$, are necessarily empty. It follows that $\lambda_{c} \geq 1 / 2$, where λ_{c} is defined as in (1.1).

In Section 4, we show that Example 3.1 is optimal in the sense that, if $\mu\left(X_{i j}\right)>(1-1 / p) / 2$, there exist monotone paths of length at least p, and there exist infinite paths if $\mu\left(X_{i j}\right) \geq 1 / 2$.

For all $x \in X$, we consider the ordered graph $F(x)<\mathbb{N}^{[2]}$, whose edges are all the (i, j), with $i<j$, such that $x \in X_{i j}$. Let also $X_{i} \subseteq X$ be the subset of all $x \in X$ such that $F(x)$ contains an infinite path starting from i, i.e. there exists an increasing sequence $\left\{j_{k}\right\}_{k \in \mathbb{N}}$, with $j_{1}=i$ and $x \in \bigcap_{k} X_{j_{k} j_{k+1}}$.

Recall that a partially ordered set admits a decreasing function into the first uncountable ordinal ω_{1} (the height function) if and only if it has no infinite increasing sequences. As a consequence, we can define a map φ : $X \times \mathbb{N} \rightarrow \omega_{1}+1$ by setting

$$
\varphi(x, i)= \begin{cases}\sup _{j>i: x \in X_{i j}} \varphi(x, j)+1 & \text { if } x \notin X_{i} \\ \omega_{1} & \text { otherwise }\end{cases}
$$

We identify this map with the map $\varphi: X \rightarrow\left(\omega_{1}+1\right)^{\mathbb{N}}$ defined as $\varphi(x)_{i}=$ $\varphi(x, i)$. We also set $\tilde{\varphi}: X \rightarrow \omega_{1}+1$ as $\tilde{\varphi}(x)=\sup _{i \in \mathbb{N}} \varphi(x, i)$. Notice that $\varphi(x, i)<\omega_{1}$ iff there is no infinite path in $F(x)$ starting from i, and in this case $\varphi(x, i)$ is precisely the height of i in $F(x)$. In particular, if F has no infinite paths, then the function φ takes value in $\omega_{1}^{\mathbb{N}}$ and, if there are no paths of length p, then it takes values in $p^{\mathbb{N}}$. On the other hand, path percolation occurs if and only if the set $\left\{x: \tilde{\varphi}(x)=\omega_{1}\right\}$ is non-empty. We also observe that the function φ can be equivalently defined by iteration as $\varphi(x, i)=\varphi_{\omega_{1}}(x, i)$, where

$$
\begin{align*}
\varphi_{\alpha}(x, i) & =\sup _{\beta<\alpha, j>i: x \in X_{i j}} \varphi_{\beta}(x, j)+1 \\
\varphi_{0}(x, i) & =0, \tag{3.1}
\end{align*}
$$

for all $i \in \mathbb{N}$ and $\alpha \leq \omega_{1}$.
From definition (3.1) it immediately follows that the sets $\{x: \varphi(x, k)=\alpha\}$ are measurable for all $k \in \mathbb{N}$ and $\alpha<\omega_{1}$. In Lemma 3.2 we show that the
set $\left\{x: \tilde{\varphi}(x)=\omega_{1}\right\}=\cup_{i} X_{i}$ of all x for which $F(x)$ contains an infinite path is also measurable.

We now show that $\tilde{\varphi}$ is always essentially bounded (even if not necessarily bounded everywhere) if F has no infinite paths.

Lemma 3.2. The set $\left\{x \in X: \tilde{\varphi}(x)=\omega_{1}\right\}$ is measurable. Moreover, if F has no infinite paths, then $\tilde{\varphi} \in L^{\infty}(X, \mu)$.

Proof. Let $\alpha_{0}<\omega_{1}$ be such that

$$
\mu(\{x \in X: \varphi(x, k)=\beta\})=0 \quad \forall k \in \mathbb{N} \text { and } \alpha_{0} \leq \beta<\omega_{1}
$$

This is possible since the sequence of values $\mu(\{x: \varphi(x, k) \leq \beta\})$ is increasing and uniformly bounded by $\mu(X)$. Then, the space X can be decomposed as union of the three disjoint sets

$$
\begin{aligned}
& X_{1}=\left\{x \in X: \tilde{\varphi}(x)<\alpha_{0}\right\} \\
& X_{2}=\left\{x \in X: \alpha_{0} \leq \tilde{\varphi}(x)<\omega_{1}\right\} \subseteq \bigcup_{k \in \mathbb{N}}\left\{x \in X: \varphi(x, k)=\alpha_{0}\right\} \\
& X_{3}=X \backslash\left(X_{1} \cup X_{2}\right)=\left\{x \in X: \tilde{\varphi}(x)=\omega_{1}\right\}
\end{aligned}
$$

The thesis follows observing that $\mu\left(X_{2}\right)=0$ by the definition of α_{0}.
As a consequence, if F has no infinite paths, then the function φ maps X (up to a set of zero measure) into the Cantor space $\alpha^{\mathbb{N}} \subset \omega_{1}^{\mathbb{N}}$ for some $\alpha<\omega_{1}$, so that it induces a Radon measure $m=\varphi_{\#}(\mu)$ on $\omega_{1}^{\mathbb{N}}$ concentrated on $\alpha^{\mathbb{N}}$, i.e. $m\left(\alpha^{\mathbb{N}}\right)=\mu(X)$. Moreover, $\varphi\left(X_{i j}\right) \subseteq A_{i j}$ for all $i<j \in \mathbb{N}$, where $A_{i j}:=\left\{x \in \alpha^{\mathbb{N}}: x_{i}>x_{j}\right\}$ as in Example 3.1, so that $m\left(A_{i j}\right) \geq \mu\left(X_{i j}\right)$ for all $i<j$. We denote by $\mathcal{M}_{\mathrm{c}}\left(\omega_{1}^{\mathbb{N}}\right)$ the set of all Radon measures on $\omega_{1}^{\mathbb{N}}$ with compact support, i.e. with support in $\alpha^{\mathbb{N}}$ for some $\alpha<\omega_{1}$.

We now state a sufficient condition for path percolation.
Theorem 3.3. Let $m \in \mathcal{M}_{\mathrm{c}}\left(\omega_{1}^{\mathbb{N}}\right)$. Then

$$
\begin{equation*}
\inf _{i<j \in \mathbb{N}} m\left(A_{i j}\right)<\frac{m\left(\omega_{1}^{\mathbb{N}}\right)}{2} \tag{3.2}
\end{equation*}
$$

In particular, path percolation occurs if

$$
\begin{equation*}
\lambda:=\inf _{i<j \in \mathbb{N}} \mu\left(X_{i j}\right) \geq \frac{1}{2} \tag{3.3}
\end{equation*}
$$

Actually the same argument shows that we can replace the "inf ${ }_{i<j}$ " (in both equations) with ' $\lim \sup _{i \rightarrow \infty} \lim \inf _{j \rightarrow \infty}$ ".
Proof. With no loss of generality we can assume that $m \in \mathcal{M}_{1}\left(\omega_{1}^{\mathbb{N}}\right)$, i.e. $m\left(\omega_{1}^{\mathbb{N}}\right)=1$. We divide the proof into four steps.
Step 1. Letting $\partial \omega_{1}$ be the derived set of ω_{1}, that is the subset of all countable limit ordinals, we can assume that

$$
m\left(\left\{x: x_{i} \in \partial \omega_{1}\right\}\right)=0 \quad \forall i \in \mathbb{N}
$$

Indeed, it is enough to observe that the left-hand side of (3.2) remains unchanged if we replace m with $s_{\#}(m)$, where $s: \omega_{1} \rightarrow \omega_{1} \backslash \partial \omega_{1}$ is the shift-map on ω_{1}, defined as $s(\alpha)=\alpha+1$ for all $\alpha<\omega_{1}$.

Step 2. Since the support of m is contained in $\alpha_{0}^{\mathbb{N}}$, for some compact ordinal $\alpha_{0}<\omega_{1}$, thanks to Proposition B.4 we can assume that m is asymptotically exchangeable, i.e. the sequence $m_{k}=\left(s_{\#}\right)^{k}(m)$ converges to an exchangeable measure $m^{\prime} \in \mathcal{M}_{1}\left(\alpha_{0}^{\mathbb{N}}\right)$ in the weak* topology.
Step 3. We shall prove by induction that for all $\alpha<\omega_{1}$ there holds

$$
\begin{equation*}
\inf _{i<j} m\left(\left\{x: x_{j}<x_{i} \leq \alpha\right\}\right) \leq m^{\prime}\left(\left\{x: x_{1}<x_{0} \leq \alpha\right\}\right) . \tag{3.4}
\end{equation*}
$$

Indeed, for $\alpha=0$ we have $\left\{x: x_{j}<x_{i} \leq 0\right\}=\emptyset$, and (3.4) holds.
As inductive step, let us assume that (3.4) holds for all $\alpha<\beta<\omega_{1}$, and we distinguish whether β is a limit ordinal or not. In the former case,

$$
\bigcap_{\alpha<\beta}\left\{x: \alpha<x_{i}<\beta\right\}=\emptyset,
$$

so that for all $\varepsilon>0$ there exists $\alpha<\beta$ such that $m^{\prime}\left(\left\{\alpha<x_{i}<\beta\right\}\right)<\varepsilon$. Moreover, by assumption $m^{\prime}\left(\left\{x_{i}=\beta\right\}\right)=0$ for any $i \in \mathbb{N}$, hence there exists $\alpha \leq \alpha_{i}<\beta$ such that $m\left(\left\{\alpha_{i} \leq x_{i}<\beta\right\}\right)<\varepsilon$. For all $i<j$ we have

$$
\begin{aligned}
\left\{x_{j}<x_{i} \leq \beta\right\} \subseteq & \left\{x_{j}<x_{i} \leq \alpha\right\} \cup\left\{x_{j} \leq \alpha<x_{i} \leq \beta\right\} \\
& \cup\left\{\alpha<x_{j} \leq \alpha_{i}\right\} \cup\left\{\alpha_{i}<x_{i} \leq \beta\right\},
\end{aligned}
$$

which gives

$$
\begin{aligned}
m\left(\left\{x_{j}<x_{i} \leq \beta\right\}\right) \leq & m\left(\left\{x_{j}<x_{i} \leq \alpha\right\}\right)+m\left(\left\{x_{j} \leq \alpha<x_{i} \leq \beta\right\}\right) \\
& +m\left(\left\{\alpha<x_{j} \leq \alpha_{i}\right\}\right)+m\left(\left\{\alpha_{i}<x_{i} \leq \beta\right\}\right) .
\end{aligned}
$$

By induction hypothesis we know that

$$
\inf _{i<j} m\left(\left\{x_{j}<x_{i} \leq \alpha\right\}\right) \leq m^{\prime}\left(\left\{x_{1}<x_{0} \leq \alpha\right\}\right),
$$

and, since m is asymptotically exchangeable, we have

$$
m\left(\left\{x_{j} \leq \alpha<x_{i} \leq \beta\right\}\right)=m^{\prime}\left(\left\{x_{1} \leq \alpha<x_{0} \leq \beta\right\}\right)+o(1)
$$

and

$$
m\left(\left\{\alpha<x_{j} \leq \alpha_{i}\right\}\right)=m^{\prime}\left(\left\{\alpha<x_{1} \leq \alpha_{i}\right\}\right)+o(1),
$$

as $(i, j) \rightarrow+\infty$, where we used the fact that the sets $\left\{x_{j} \leq \alpha<x_{i} \leq \beta\right\}$ and $\left\{\alpha<x_{j} \leq \alpha_{i}\right\}$ are both clopen. Therefore, we get

$$
\begin{aligned}
\inf _{i<j} m\left(\left\{x_{j}<x_{i} \leq \beta\right\}\right) \leq & m^{\prime}\left(\left\{x_{1}<x_{0} \leq \alpha\right\}\right)+m^{\prime}\left(\left\{x_{1} \leq \alpha<x_{0} \leq \beta\right\}\right) \\
& +m^{\prime}\left(\left\{\alpha<x_{1} \leq \beta\right\}\right)+\varepsilon+o(1) \\
\leq & m^{\prime}\left(\left\{x_{1}<x_{0} \leq \beta\right\}\right)+2 \varepsilon+o(1),
\end{aligned}
$$

so that the inequality (3.4) holds true with $\alpha=\beta$, when β is a limit ordinal.
On the other hand, if $\beta=\alpha+1$, for $(i, j) \rightarrow+\infty$ we have

$$
\begin{aligned}
m\left(\left\{x_{j}<x_{i} \leq \beta\right\}\right) & =m\left(\left\{x_{j}<x_{i} \leq \alpha\right\}\right)+m\left(\left\{x_{j} \leq \alpha, x_{i}=\beta\right\}\right) \\
& =m^{\prime}\left(\left\{x_{1}<x_{0} \leq \alpha\right\}\right)+m^{\prime}\left(\left\{x_{1} \leq \alpha, x_{0}=\beta\right\}\right)+o(1) \\
& =m^{\prime}\left(\left\{x_{1}<x_{0} \leq \beta\right\}\right)+o(1),
\end{aligned}
$$

where we used again the induction hypothesis, and the fact that the set $\left\{x_{j} \leq \alpha, x_{i}=\beta\right\}$ is clopen.

Inequality (3.4) is then proved for all $\alpha<\omega_{1}$.

Step 4. We now conclude the proof of the theorem. Since the measure m^{\prime} is exchangeable, from (3.4) it follows

$$
\begin{equation*}
\inf _{i<j} m\left(A_{i j}\right) \leq m^{\prime}\left(\left\{x: x_{1}<x_{0}\right\}\right)=\frac{1}{2}\left(1-m^{\prime}\left(\left\{x: x_{1}=x_{0}\right\}\right)\right) \leq \frac{1}{2} \tag{3.5}
\end{equation*}
$$

Moreover, from (B.5) and the fact that $\Lambda=\alpha_{0}$ is countable, it follows that $m^{\prime}\left(\left\{x: x_{1}=x_{0}\right\}\right)=0$ iff $m^{\prime}=0$, so that the strict inequality holds in (3.5).

Combining Example 3.1 with Theorem 3.3 we obtain a complete solution to Problem 1 in terms of $\mu\left(X_{i j}\right)$: assume that $\mu\left(X_{i j}\right) \geq \lambda$ for all $i<j$, then path percolation occurs if $\lambda \geq 1 / 2$, on the contrary if $\lambda<1 / 2$ there are random subgraphs F of ($\mathbb{N}, \mathbb{N}^{[2]}$) with no infinite paths.

The next result provides a sharp lower bound on the probability of path percolation.

Corollary 3.4. Assume that the sets $X_{i j}$ are such that $\mu\left(X_{i j}\right) \geq \lambda \geq 1 / 2$ for all $(i, j) \in \mathbb{N}^{[2]}$. Let P_{λ} be the set of all $x \in X$ such that $F(x)$ contains an infinite path. Then $\mu\left(P_{\lambda}\right)>2 \lambda-1$.

Proof. Let $\tilde{\varphi}: X \rightarrow \omega_{1}+1$ as above, so that $\tilde{\varphi}(x)=\omega_{1}$ iff $x \in P_{\lambda}$, and let $m=\left(\left.\tilde{\varphi}\right|_{X \backslash P_{\lambda}}\right)_{\#}(\mu) \in \mathcal{M}_{\mathrm{c}}\left(\omega_{1}^{\mathbb{N}}\right)$. By Theorem 3.3 we then have

$$
\lambda-\mu\left(P_{\lambda}\right) \leq \inf _{i<j \in \mathbb{N}} \mu\left(X_{i j} \cap\left(X \backslash P_{\lambda}\right)\right)=\inf _{i<j \in \mathbb{N}} m\left(A_{i j}\right)<\frac{1-\mu\left(P_{\lambda}\right)}{2}
$$

which gives $\mu\left(P_{\lambda}\right)>2 \lambda-1$.

4. Extensions and Related problems

4.1. A notion of capacity for directed graphs. A directed graph F is a couple of sets $\left(V_{F}, E_{F}\right)$, which are respectively the set of vertices and the set of edges of F, such that E_{F} is a subset of $V_{F} \times V_{F}$. We denote by \mathcal{G} the class of all directed graphs $F=\left(V_{F}, E_{F}\right)$. Notice that it is possible that both the edges (a, b) and (b, a) belong to F. Given $F \in \mathcal{G}$, we let the clique number $\operatorname{cl}(F)$ of F be the maximum $n \in \overline{\mathbb{N}}$ such that F has a complete subgraph of cardinality n.

For all $F \in \mathcal{G}$, we define the capacity of F as

$$
\begin{equation*}
c_{0}(F):=\sup _{\lambda \in \Sigma_{F}} \sum_{(a, b) \in E_{F}} \lambda_{a} \lambda_{b} \in[0,1], \tag{4.1}
\end{equation*}
$$

where Σ_{F} is the symplex of all sequences $\left\{\lambda_{a}\right\}_{a \in V_{F}}$ such that $\lambda_{a} \geq 0$ and $\sum_{a \in V_{F}} \lambda_{a}=1$. Notice that the capacity is an invariant for directed graphs, up to isomorphism, and it is equal to 1 if F contains an arcloop.

Given two graphs $F, G \in \mathcal{G}$ we write $G<F$ to indicate that G is a subgraph of F, i.e. $V_{G}=V_{F}$ and $E_{G} \subseteq E_{F}$. More generally, we say that G maps into F, and we write $G \rightarrow F$, if there is a $\operatorname{map} \varphi: V_{G} \rightarrow V_{F}$ such that $(\varphi(a), \varphi(b)) \in E_{F}$ for all $(a, b) \in E_{G}$. Notice that

$$
\begin{equation*}
c_{0}(G) \leq c_{0}(F) \quad \text { for all } \quad F, G \in \mathcal{G} \quad \text { such that } \quad G \rightarrow F . \tag{4.2}
\end{equation*}
$$

The following result shows that the capacity reduces to the clique number, for suitable finite graphs.

Proposition 4.1. Let $F \in \mathcal{G}$ be a finite graph. If F is oriented, that is

$$
(a, b) \in E_{F} \quad \Rightarrow \quad(b, a) \notin E_{F} \quad \forall a, b \in V_{F},
$$

then

$$
\begin{equation*}
c_{0}(F)=\frac{1}{2}\left(1-\frac{1}{\operatorname{cl}(F)}\right) . \tag{4.3}
\end{equation*}
$$

If F is symmetric with no arcloops, that is

$$
(a, a) \notin E_{F} \quad \text { and } \quad(a, b) \in E_{F} \quad \Rightarrow \quad(b, a) \in E_{F} \quad \forall a, b \in V_{F},
$$

then

$$
\begin{equation*}
c_{0}(F)=1-\frac{1}{\operatorname{cl}(F)} . \tag{4.4}
\end{equation*}
$$

Proof. Let F be a finite oriented graph, and let $\lambda \in \Sigma_{F}$ be a maximizing distribution, meaning that $c_{0}(F)=\sum_{(a, b) \in E_{F}} \lambda_{a} \lambda_{b}$, and let S_{λ} be the subgraph of F spanned by the support of λ, that is $V_{S_{\lambda}}=\left\{a \in V_{F}: \lambda_{a}>0\right\}$. From Lagrange's multiplier Theorem it follows that, for all $a \in V_{S_{\lambda}}$, we have

$$
\begin{equation*}
\sum_{b \in V_{F}:(a, b) \in E_{F} \text { or }(b, a) \in E_{F}} \lambda_{b}=2 c_{0}(F) . \tag{4.5}
\end{equation*}
$$

If $a, a^{\prime} \in V_{S_{\lambda}}$, we can consider the distribution $\lambda^{\prime} \in \Sigma_{F}$ such that $\lambda_{a}^{\prime}=0$, $\lambda_{a^{\prime}}^{\prime}=\lambda_{a}+\lambda_{a^{\prime}}$, and $\lambda_{b}^{\prime}=\lambda_{b}$ for all $b \in V_{F} \backslash\left\{a, a^{\prime}\right\}$. From 4.5 it then follows that λ^{\prime} is also a maximizing distribution whenever a and a^{\prime} are independent vertices, that is neither $\left(a, a^{\prime}\right)$ nor $\left(a^{\prime}, a\right)$ belong to E_{F}.

As a first consequence, S_{λ} is a clique whenever λ has minimal support. Indeed, let K be a maximal clique contained in S_{λ}, and assume by contradiction that there exists $a \in V_{S_{\lambda}} \backslash V_{K}$. Letting $a^{\prime} \in V_{K}$ be a vertex of F independent of a (such a^{\prime} exists since K is a maximal clique), and letting $\lambda^{\prime} \in \Sigma_{F}$ as above, we have $c_{0}(F)=\sum_{(a, b) \in E_{F}} \lambda_{a}^{\prime} \lambda_{b}^{\prime}$, contradicting the minimality of $V_{S_{\lambda}}$.

Once we know that S_{λ} is a clique, again from 4.5 we get that λ is a uniform ditribution, that is $\lambda_{a}=\lambda_{b}$, for all $a, b \in V_{S_{\lambda}}$. It follows

$$
c_{0}(F)=\frac{1}{2}\left(1-\frac{1}{\left|S_{\lambda}\right|}\right) \leq \frac{1}{2}\left(1-\frac{1}{\operatorname{cl}(F)}\right)
$$

which in turn implies (4.4), the opposite inequality being realized by a uniform distribution on a maximal clique.

The case of a symmetric graph follows immediately from the oriented case.

Notice that a finite graph F is oriented if and only if $c_{0}(F)<1 / 2$. Notice also that, if F is a finite directed graph (not necessarily oriented) the proof of Proposition 4.1 shows that there exists a maximizing $\lambda \in \Sigma_{F}$ whose support is a clique (not necessarily of maximal order).

Let us denote by F^{G} the Cantor space of all functions $u: V_{G} \rightarrow V_{F}$, endowed with the product topology induced by the discrete topology on V_{F}.

Given two oriented graphs F, G, we can define the relative capacity of F with respect to G as

$$
\begin{equation*}
c(F, G):=\sup _{m \in \mathcal{M}_{1}\left(F^{G}\right)} \inf _{(a, b) \in E_{G}} m\left(\left\{u \in F^{G}:(u(a), u(b)) \in E_{F}\right\}\right) \in[0,1] . \tag{4.6}
\end{equation*}
$$

The relative capacity is in general quite difficult to compute, but it reduces to the previous notion of capacity when V_{F} is finite and $G=\left(\mathbb{N}, \mathbb{N}^{[2]}\right)$.

Proposition 4.2. For all $F \in \mathcal{G}$ such that $\left|V_{F}\right|<\infty$, it holds

$$
\begin{equation*}
c\left(F,\left(\mathbb{N}, \mathbb{N}^{[2]}\right)\right)=c_{0}(F) . \tag{4.7}
\end{equation*}
$$

Proof. Reasoning as in the proof of Theorem 3.3, from Proposition B. 4 it follows that we can equivalently take the supremum in (4.6) among the measures $m \in \mathcal{M}_{1}\left(V_{F}^{\mathbb{N}}\right)$ which are exchangeable. Moreover, recalling (B.6), every exchangeable measure is a convex integral combination of Bernoulli measures B_{λ}, with $\lambda \in \Sigma_{F}$. It follows that it is sufficient to compute the supremum on the Bernoulli measures, so that (4.6) reduces to (4.1).

Given $F, G \in \mathcal{G}$, let us now consider a random subgraph of G, that is we associate to each $(a, b) \in E_{G}$ a measurable set $X_{a b} \subset X$, with $\mu\left(X_{a b}\right) \geq \lambda$ for some $\lambda \in[0,1]$. In the same spirit of Problem 1, we then ask which is the probability that the random graph does not map into F.

As above, for all $x \in X$ we let $F(x)<G$ be such that

$$
E_{F(x)}=\left\{(a, b) \in E_{G}: x \in X_{a b}\right\}
$$

and we let

$$
P_{\lambda}:=\{x \in X: F(x) \nrightarrow F\} .
$$

Proposition 4.3. Let $F, G \in \mathcal{G}$, with $G<\left(\mathbb{N}, \mathbb{N}^{[2]}\right)$. If $c(F, G)<1$, there holds

$$
\begin{equation*}
\mu\left(P_{\lambda}\right) \geq p(\lambda)=\frac{\lambda-c(F, G)}{1-c(F, G)} \tag{4.8}
\end{equation*}
$$

Proof. We proceed as in the first part of Section 3. Letting $\widetilde{X}:=X \backslash P_{\lambda}$, for all $x \in \widetilde{X}$ we have $F(x) \rightarrow F$, where the map is realized by a function from $V_{F(x)}=\mathbb{N}$ to V_{F}, which in turn defines a map $\varphi: \widetilde{X} \rightarrow F^{G}$. Let now

$$
m:=\frac{1}{\mu(\tilde{X})} \varphi_{\#}(\mu) \in \mathcal{M}_{1}\left(F^{G}\right) .
$$

Notice that

$$
\varphi\left(X_{a b} \cap \widetilde{X}\right) \subseteq\left\{u \in F^{G}:(u(a), u(b)) \in E_{F}\right\}
$$

for all $(a, b) \in E_{G}$, so that

$$
\begin{equation*}
\frac{\mu\left(X_{a b} \cap \tilde{X}\right)}{\mu(\tilde{X})} \leq m\left(\left\{u \in F^{G}:(u(a), u(b)) \in E_{F}\right\}\right) \leq c(F, G) \tag{4.9}
\end{equation*}
$$

The thesis now follows from (4.9) and the inequality

$$
\frac{\mu\left(X_{a b} \cap \tilde{X}\right)}{\mu(\widetilde{X})} \geq \frac{\lambda-\mu\left(P_{\lambda}\right)}{1-\mu\left(P_{\lambda}\right)}
$$

4.2. Finite monotone paths and chromatic number. For all $p \in \mathbb{N}$, we shall consider the graphs $\left(p, p^{[2]}\right)$ and Q_{p}, where

$$
Q_{p}=\left(V_{Q_{p}}, E_{Q_{p}}\right) \quad \text { with } \quad V_{Q_{p}}=p, \quad E_{Q_{p}}=\{(i, j) \in p \times p: i \neq j\}
$$

A direct computation as in the proof of Proposition 4.1 gives

$$
\begin{equation*}
c_{0}\left(\left(p, p^{[2]}\right)\right)=\frac{1}{2}\left(1-\frac{1}{p}\right), \quad c_{0}\left(Q_{p}\right)=1-\frac{1}{p} . \tag{4.10}
\end{equation*}
$$

Notice that $G \rightarrow Q_{p}$ iff $\chi(G) \leq p$, where $\chi(G)$ is the chromatic number of G [B:79], and $G \rightarrow\left(p, p^{[2]}\right)$ iff G does not contain a path of length p. Indeed, the first assertion is equivalent to the definition of chromatic number, whereas the second follows by associating to each vertex $v \in V_{G}$ the number $(p-1)-d(v) \in p$, where $d(v)$ is the maximal length of a path in G starting from v.

By Propositions 4.2 and 4.3 with $G=\left(\mathbb{N}, \mathbb{N}^{[2]}\right)$, for all $\lambda \in[0,1]$ we have

$$
\begin{equation*}
\mu\left(P_{\lambda}\right) \geq \frac{\lambda-c_{0}(F)}{1-c_{0}(F)} \tag{4.11}
\end{equation*}
$$

When $F=\left(p, p^{[2]}\right)$, then $x \in P_{\lambda}$ iff $F(x) \nrightarrow\left(p, p^{[2]}\right)$, i.e. $F(x)$ contains a path of length p, and from 4.10 and 4.11 it follows

$$
\mu\left(P_{\lambda}\right) \geq \frac{2 p \lambda-p+1}{p+1}
$$

Example 3.1 shows that such estimate is optimal, so that

$$
p(\lambda):=\inf \left\{\mu\left(P_{\lambda}\right):(X, \mu) \text { probability space }\right\}=\frac{2 p \lambda-p+1}{p+1} .
$$

In particular, if $\lambda>\lambda_{c}=(1-1 / p) / 2$, then the random subgraph $F(x)$ contains a path of length p with probability at least $p(\lambda)>0$.

Remark 4.4. Notice that for all $p \in \mathbb{N}$ and $G \in \mathcal{G}$ the following equivalent statements hold:
G contains a path of length $p \quad \Leftrightarrow \quad C_{p} \rightarrow G \quad \Leftrightarrow \quad G \nrightarrow\left(p, p^{[2]}\right)$,
where $C_{p}<\left(p, p^{[2]}\right)$ is such that $(i, j) \in E_{C_{p}}$ iff $j=i+1$. In particular, one may consider ($p, p^{[2]}$) as dual of the graph C_{p} with respect to graph mapping, so that it naturally arises the question of which graphs, other than C_{p}, admit such dual representation.

When $F=Q_{p}$, then $x \in P_{\lambda}$ iff $\chi(F(x))>p$, and we have

$$
\mu\left(P_{\lambda}\right) \geq p \lambda-p+1=p(\lambda)
$$

Example 5.2 shows that also this estimate is optimal. As a consequence, if $\lambda>\lambda_{c}=1-1 / p$, then the random subgraph $F(x)$ has chromatic number strictly greater than p with probability at least $p(\lambda)>0$.

5. Problem 2

We recall the following standard Borel-Cantelli type result.
Proposition 5.1. Let $k=1$ and let $X_{i} \subseteq X$ be such that $\mu\left(X_{i}\right) \geq \lambda$, for all $i \in \mathbb{N}$ and for some $\lambda>0$. Then, Problem 2 has a positive answer, i.e. there is an infinite set $J \subset \mathbb{N}$ such that

$$
\bigcap_{i \in J} X_{i} \neq \emptyset
$$

Proof. The set $Y:=\bigcap_{n} \bigcup_{i>n} X_{i}$ is a decreasing intersection of sets of (finite) measure greater than $\lambda>0$, hence $\mu(Y) \geq \lambda$ and, in particular, Y is nonempty. Now it suffices to note that any element x of Y belongs to infinitely many X_{i} 's.

Proposition 5.1 has the following interpretation in terms of percolation: if we choose each element of \mathbb{N} with probability greater or equal to λ, we obtain an infinite random subset with probability grater or equal to $p(\lambda)=\lambda$ (we recall that $p(\lambda)$ is always less than or equal to λ).

The following example shows that Problem 2 has in general a negative answer for $k>1$.
Example 5.2. Let $p \in \mathbb{N}$ and consider the Cantor space $X=p^{\mathbb{N}}$, equipped with the Bernulli measure $B_{(1 / p, \ldots, 1 / p)}$, and let $X_{i j}:=\left\{x \in X: x_{i} \neq x_{j}\right\}$. Then each $X_{i j}$ has measure $\lambda=1-1 / p$, and for all $x \in X$ the graph $F(x):=\left\{(i, j) \in \mathbb{N}^{[2]}: x \in X_{i j}\right\}$ does not contains cliques (i.e. complete subgraphs) of cardinality ($p+1$).

In view of Example 5.2, we need to impose further restrictions on the sets $X_{i_{1} \ldots i_{k}}$, in order to get a positive answer to Problem 2. In the following, we shall always assume that

$$
\begin{equation*}
\mu\left(X_{i_{1} \ldots i_{k}}\right) \geq \lambda \quad \forall\left(i_{1}, \ldots, i_{k}\right) \in \mathbb{N}^{[k]} \tag{5.1}
\end{equation*}
$$

for some $\lambda>0$.
Notice that, if each set $X_{i_{1} \ldots i_{k}}$ has the form $X_{i_{1}} \cap \cdots \cap X_{i_{k}}$ and satisfies (5.1), then Problem 2 has a positive answer by Proposition 5.1. Moreover, by Ramsey theorem, Problem 2 has a positive answer if there is a finite set $S \subset X$ such that each $X_{i_{1}, \ldots, i_{k}}$ has a non-empty intersection with S. In particular, this is the case if X is a countable set and (5.1) holds.
Proposition 5.3. Let X be a compact metric space and assume that each set $X_{i_{1} \ldots i_{k}}$ contains a ball $B_{i_{1}, \ldots, i_{k}}$ of radius $r>0$. Then Problem 2 has a positive answer.
Proof. Applying Lemma A. 1 to the centers of the balls $B_{i_{1}, \ldots, i_{k}}$ it follows that for all $0<r^{\prime}<r$ there exists an infinite set J and a ball B of radius r^{\prime} such that

$$
B \subset \bigcap_{\left(j_{1}, \ldots, j_{k}\right) \in J^{[k]}} X_{j_{1} \ldots j_{k}}
$$

We now give a sufficient condition for a positive answer to Problem 2.

Theorem 5.4. Assume that the sets $X_{i_{1} \ldots i_{k}}$ satisfy (5.1), and the indicator functions of $X_{i_{1} \ldots i_{k}}$ belong to a compact subset \mathcal{K} of $L^{1}(X, \mu)$. Then, for any $\varepsilon>0$ there exists an infinite set $J \subset \mathbb{N}$ such that

$$
\mu\left(\bigcap_{\left(i_{1}, \ldots, i_{k}\right) \in J^{[k]}} X_{i_{1} \ldots i_{k}}\right) \geq \lambda-\varepsilon .
$$

Proof. Consider first the case $k=1$. By compactness of \mathcal{K}, for all $\varepsilon>0$ there exist an increasing sequence $\left\{i_{n}\right\}$ and a set $X_{\infty} \subset X$, with $\mu\left(X_{\infty}\right) \geq \lambda$, such that

$$
\mu\left(X_{\infty} \Delta X_{i_{n}}\right) \leq \frac{\varepsilon}{2^{n}} \quad \forall n \in \mathbb{N}
$$

As a consequence, letting $J:=\left\{i_{n}: n \in \mathbb{N}\right\}$ we have

$$
\mu\left(\bigcap_{n \in \mathbb{N}} X_{i_{n}}\right) \geq \mu\left(X_{\infty} \cap \bigcap_{n \in \mathbb{N}} X_{i_{n}}\right) \geq \mu\left(X_{\infty}\right)-\sum_{n \in \mathbb{N}} \mu\left(X_{\infty} \Delta X_{i_{n}}\right) \geq \lambda-\varepsilon
$$

For $k>1$, we apply Lemma A. 1 with

$$
\begin{aligned}
M & =\mathcal{K} \subset L^{1}(X) \\
f\left(i_{1}, \ldots, i_{k}\right) & =\chi_{X_{i_{1} \ldots i_{k}}} \in L^{1}(X)
\end{aligned}
$$

In particular, recalling Remark A.2, for all $\varepsilon>0$ there exist $J=\sigma(\mathbb{N})$, $X_{\infty} \subset X$, and $X_{i_{1} \ldots i_{m}} \subset X$, for all $\left(i_{1}, \ldots, i_{m}\right) \in J^{[m]}$ with $1 \leq m<k$, such that $\mu\left(X_{\infty}\right) \geq \lambda$ and for all $\left(i_{1}, \ldots, i_{k}\right) \in J^{[k]}$ it holds

$$
\begin{aligned}
\mu\left(X_{\infty} \Delta X_{i_{1}}\right) & \leq \frac{\varepsilon}{2^{\sigma^{-1}\left(i_{1}\right)}} \\
\mu\left(X_{i_{1} \ldots i_{m}} \Delta X_{i_{1} \ldots i_{m+1}}\right) & \leq \frac{\varepsilon}{2^{\sigma^{-1}\left(i_{m+1}\right)}} .
\end{aligned}
$$

Reasoning as above, it then follows

$$
\begin{aligned}
& \mu\left(X_{\infty} \Delta \bigcap_{\left(i_{1}, \ldots, i_{k}\right) \in J} X_{i_{1} \ldots i_{k}}\right) \leq \\
& \sum_{i_{1} \in \mathbb{N}} \mu\left(X_{\infty} \Delta X_{i_{1}}\right)+\sum_{i_{1}<i_{2}} \mu\left(X_{i_{1}} \Delta X_{i_{1} i_{2}}\right)+ \\
& \cdots+\sum_{i_{1}<\cdots<i_{k}} \mu\left(X_{i_{1} \ldots i_{k-1}} \Delta X_{i_{1} \ldots i_{k}}\right) \leq C(k) \varepsilon
\end{aligned}
$$

where $C(k)>0$ is a constant depending only on k. Therefore

$$
\begin{aligned}
\mu\left(\bigcap_{\left(i_{1}, \ldots, i_{k}\right) \in J^{[k]}} X_{i_{1} \ldots i_{k}}\right) & \geq \mu\left(X_{\infty} \cap \bigcap_{\left(i_{1}, \ldots, i_{k}\right) \in J^{[k]}} X_{i_{1} \ldots i_{k}}\right) \\
& \geq \mu\left(X_{\infty}\right)-\mu\left(X_{\infty} \Delta \bigcap_{\left(i_{1}, \ldots, i_{k}\right) \in J^{[k]}} X_{i_{1} \ldots i_{k}}\right) \\
& \geq \lambda-C(k) \varepsilon
\end{aligned}
$$

Notice that from Theorem 5.4 it follows that Problem 2 has a positive answer if there exist an infinite $J \subseteq \mathbb{N}$ and sets $\widetilde{X}_{i_{1} \ldots i_{k}} \subseteq X_{i_{1} \ldots i_{k}}$ with $\left(i_{1}, \ldots, i_{k}\right) \in J^{[k]}$, such that $\mu\left(\tilde{X}_{i_{1} \ldots i_{k}}\right) \geq \lambda$ for some $\lambda>0$, and the indicator functions of $\widetilde{X}_{i_{1} \ldots i_{k}}$ belong to a compact subset of $L^{1}(X)$.

Remark 5.5. We recall that, when X is a compact subset of \mathbb{R}^{n} and the perimeters of the sets $X_{i_{1} \ldots i_{k}}$ are uniformly bounded, then the family $\chi_{X_{i_{1} \ldots i_{k}}}$ has compact closure in $L^{1}(X)$ (see for instance [AFP:00, Thm. 3.23]). In particular, if the sets $X_{i_{1} \ldots i_{k}}$ have equibounded Cheeger constant, i.e. if there exists $C>0$ such that

$$
\min _{E \subset X_{i_{1} \ldots i_{k}}} \frac{\operatorname{Per}(E)}{|E|} \leq C \quad \forall\left(i_{1}, \ldots, i_{k}\right) \in \mathbb{N}^{[k]}
$$

then Problem 2 has a positive answer.

Appendix A. A topological Ramsey theorem

We prove the following topological lemma, which is a generalization of the well-known Ramsey theorem [R:28] (see also [C:74]).

Lemma A.1. Let M be a compact metric space, let $k \in \mathbb{N}$, and let f : $\mathbb{N}^{[k]} \rightarrow M$. Then, for any distance δ on $\overline{\mathbb{N}}$ there exists $\sigma \in \operatorname{Incr}(\mathbb{N})$ such that $f \circ \sigma^{*}: \mathbb{N}^{[k]} \rightarrow M$ is 1 -Lipschitz. As a consequence, it can be extended to a 1-Lipschitz function on the whole of $\overline{\mathbb{N}}^{[k]}$.

Proof. We proceed by induction on k. When $k=1$, by compactness of M there exist $x \in M$ and a subsequence $f \circ \sigma$ of f converging to x with the property

$$
\begin{aligned}
& d_{M}(f(\sigma(n)), x) \quad \text { is decreasing in } n \\
& d_{M}(f(\sigma(n)), x) \leq \frac{1}{2} \inf _{m>n} \delta(n, m) \quad \forall n \in \mathbb{N}
\end{aligned}
$$

For all $n \leq m$, it then follows

$$
d_{M}(f(\sigma(n)), f(\sigma(m))) \leq 2 d_{M}(f(\sigma(n)), x) \leq \delta(n, m)
$$

Assuming that the thesis is true for some $k \in \mathbb{N}$, we now prove that it is true also for $k+1$. By inductive assumption, for all $j \in \mathbb{N}$ there exists $\sigma_{j} \in \operatorname{Incr}(\mathbb{N})$ such that $f\left(j, \sigma_{j}^{*}(\cdot)\right)$ is 1 -Lipschitz on $\mathbb{N}^{[k]}$. (This makes sense if σ_{j} has values bigger than j, and it is easy to see that we can choose it in this way.)

By a recursive construction we can also assume that $J_{j+1} \subseteq J_{j}$, where we set $J_{j}:=\sigma_{j}(\mathbb{N})$. Let $x_{j} \in M$ be the limit of $f\left(j, \sigma_{j}^{*}(\iota)\right)$ for $\min (\iota) \rightarrow \infty$. By compactness of M there is $x_{\infty} \in M$ and an increasing function $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that $x_{\sigma(n)}$ converges to x_{∞}. Moreover, we can choose σ such that
$\sigma(n+1) \in J_{\sigma(n)}$ and the following holds:

$$
\begin{aligned}
& d_{M}\left(x_{\sigma(n)}, x_{\infty}\right) \text { is decreasing in } n \\
& d_{M}\left(x_{\sigma(n)}, x_{\infty}\right) \leq \frac{1}{4} \inf _{m>n} \delta(n, m) \\
& \sup _{\iota \in \mathbb{N}^{[k]}, \min (\iota)>n} d_{M}\left(f\left(\sigma^{*}(n, \iota)\right), x_{\sigma(n)}\right) \text { is decreasing in } n \\
& \sup _{\iota \in \mathbb{N}^{[k]}, \min (\iota)>n} d_{M}\left(f\left(\sigma^{*}(n, \iota)\right), x_{\sigma(n)}\right) \leq \frac{1}{4} \inf _{m>n} \delta(n, m) .
\end{aligned}
$$

Note that the last two properties follows from the fact that $f\left(\sigma^{*}(n, \iota)\right)$ can be made arbitrarily close to its limit $x_{\sigma(n)}$ provided σ maps the integers $>n$ into sufficiently large elements of $J_{\sigma(n)}$.

For all $(n, \iota),(m, \kappa) \in \mathbb{N}^{[k+1]}$, with $n \leq m$, it then follows

$$
d_{M}\left(f\left(\sigma^{*}(n, \iota)\right), f\left(\sigma^{*}(m, \kappa)\right)\right) \leq \delta_{k}(\iota, \kappa) \quad \text { if } \quad n=m
$$

by inductive assumption, while for $n<m$ we have

$$
\begin{aligned}
d_{M}\left(f\left(\sigma^{*}(n, \iota)\right), f\left(\sigma^{*}(m, \kappa)\right)\right) \leq & \sup _{\iota \in \mathbb{N}^{[k]}} d_{M}\left(f\left(\sigma^{*}(n, \iota)\right), x_{\sigma(n)}\right) \\
& +d_{M}\left(x_{\sigma(n)}, x_{\infty}\right)+d_{M}\left(x_{\sigma(m)}, x_{\infty}\right) \\
& +\sup _{\kappa \in \mathbb{N}^{[k]}} d_{M}\left(f\left(\sigma^{*}(m, \kappa)\right), x_{\sigma(m)}\right) \\
\leq & \delta(n, m) \leq \delta_{k+1}((n, \iota),(m, \kappa)),
\end{aligned}
$$

that is, $f \circ \sigma^{*}$ is 1 -Lipschitz on $\mathbb{N}^{[k+1]}$.
Lemma A. 1 is a sort of asymptotic Ramsey theorem with colours in a compact metric space, and reduces to the classical Ramsey theorem when the space M is finite.

Remark A.2. Notice also that Lemma A.1 implies that there exists an infinite set $J=\sigma(\mathbb{N}) \subset \mathbb{N}$ such that, for all $0 \leq m<k$ and $\left(i_{1}, \ldots, i_{m}\right) \in$ $J^{[m]}$, there are limit points $x_{i_{1} \ldots i_{m}} \in M$ with the property

$$
x_{i_{1} \ldots i_{m}}=\lim _{\substack{\left(i_{m+1}, \ldots, i_{k}\right) \rightarrow \infty \\\left(i_{1} \ldots i_{k}\right) \in J J}} x_{i_{1} \ldots i_{k}},
$$

where we set $x_{i_{1} \ldots i_{k}}:=f\left(i_{1}, \ldots, i_{k}\right)$. Moreover, by choosing the distance $\delta(n, m)=\varepsilon\left|2^{-n}-2^{-m}\right|$, we may also require

$$
d_{M}\left(x_{i_{1} \ldots i_{m}}, x_{i_{1} \ldots i_{k}}\right) \leq \frac{\varepsilon}{2^{\sigma^{-1}\left(i_{m+1}\right)}} \quad \forall\left(i_{1}, \ldots, i_{k}\right) \in J^{[k]}
$$

Appendix B. A few facts on exchangeable measures

Let Λ be a compact metric space and let $\Lambda^{\mathbb{N}}$ be the space of all sequences $u: \mathbb{N} \rightarrow \Lambda$ endowed with the product topology. Given $m \in \mathcal{M}\left(\Lambda^{\mathbb{N}}\right)$ and $f \in L^{p}\left(\Lambda^{\mathbb{N}}\right)$, with $p \in[1,+\infty]$, we let

$$
\tilde{f}=E\left(f \mid \mathcal{A}_{s}\right) \in L^{p}\left(\Lambda^{\mathbb{N}}\right)
$$

be the conditional probability of f with respect to the σ-algebra \mathcal{A}_{s} of the shift-invariant Borel subsets of $\Lambda^{\mathbb{N}}$. In particular, \tilde{f} is shif-invariant, and by Birkhoff's theorem (see f.e. [P:82]) we have

$$
\tilde{f}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f \circ s^{k}
$$

where the limit holds almost everywhere and in the strong topology of $L^{1}\left(\Lambda^{\mathbb{N}}\right)$ 。

We now recall a classical notion of exchangeable measure due to De Finetti [DF:74, showing some equivalent conditions.
Proposition B.1. Given $m \in \mathcal{M}_{1}\left(\Lambda^{\mathbb{N}}\right)$, the following conditions are equivalent:
a) m is $\mathfrak{S}_{c}(\mathbb{N})$-invariant;
b) m is $\operatorname{Inj}(\mathbb{N})$-invariant;
c) m is $\operatorname{Incr}(\mathbb{N})$-invariant.

If m satisfies one of these equivalent conditions we say that m is exchangeable. Notice that an exchangeable measure is always shift-invariant, while there are shift-invariant measures which are not exchangeable.

Proof. Since $\mathfrak{S}_{c}(\mathbb{N}) \subset \operatorname{Inj}(\mathbb{N})$ and $\operatorname{Incr}(\mathbb{N}) \subset \operatorname{Inj}(\mathbb{N})$, the implications b) \Rightarrow a) and $b) \Rightarrow$ c) are obvious.

The implication $a) \Rightarrow b$) is also obvious since it is trivially true on the cylindrical sets (2.1), which generate the whole Borel σ-algebra of $\Lambda^{\mathbb{N}}$.

Let us prove that $c) \Rightarrow b$). We first show that, if c) holds, then for all $f \in L^{\infty}\left(\Lambda^{\mathbb{N}}\right)$ it holds

$$
\begin{equation*}
\tilde{f}=\lim _{n \rightarrow \infty} f \circ s^{n} \tag{B.1}
\end{equation*}
$$

where the limit is taken in the weak* topology of $L^{\infty}\left(\Lambda^{\mathbb{N}}\right)$. Indeed, since the sequence $f \circ s^{n}$ is bounded in $L^{\infty}\left(\Lambda^{\mathbb{N}}\right)$, it is enough to prove the convergence of

$$
\begin{equation*}
\int_{\Lambda^{\mathbb{N}}}\left(f \circ s^{n}\right) g d m \tag{B.2}
\end{equation*}
$$

for all g in a dense subset D of $L^{1}\left(\Lambda^{\mathbb{N}}\right)$. Letting

$$
\begin{aligned}
D= & \left\{g \in L^{\infty}\left(\Lambda^{\mathbb{N}}\right): g(x)=g_{1}\left(x_{1}\right) \cdots g_{r}\left(x_{r}\right)\right. \\
& \text { for some } \left.r \in \mathbb{N} \text { and } g_{1}, \ldots, g_{r} \in L^{\infty}(\Lambda)\right\}
\end{aligned}
$$

the convergence of $(\overline{\mathrm{B} .2})$ follows at once from the fact that m is $\operatorname{Incr}(\mathbb{N})$ invariant and $g \in D$, which implies that the quantity in $(\bar{B} .2)$ is constant for all $n>r$. To conclude the proof, it remains to show that

$$
\begin{equation*}
\int_{\Lambda^{\mathbb{N}}} g d m=\int_{\Lambda^{\mathbb{N}}} g \circ T^{\sigma} d m \tag{B.3}
\end{equation*}
$$

for all $g \in D$ and $\sigma \in \operatorname{Inj}(\mathbb{N})$. Notice that, by assumption, the right-hand side of (B.3) does not depend on σ as long as $\sigma \in \operatorname{Incr}(\mathbb{N})$, in particular

$$
\int_{\Lambda^{\mathbb{N}}} g d m=\int_{\Lambda^{\mathbb{N}}}\left(g_{1} \circ P_{i_{1}}\right) \cdots\left(g_{r} \circ P_{i_{r}}\right) d m
$$

for all $\left(i_{1}, \ldots, i_{r}\right) \in \mathbb{N}^{[r]}$. Recalling (B.1) and passing to the limit as $i_{r} \rightarrow$ $+\infty, \ldots, i_{1} \rightarrow+\infty$, we then obtain

$$
\int_{\Lambda^{\mathbb{N}}} g d m=\int_{\Lambda^{\mathbb{N}}} \widetilde{g_{1} \circ P_{1}} \cdots \widetilde{g_{r} \circ P_{1}} d m
$$

Reasoning in the same way for the function $g \circ T^{\sigma}$, we finally get

$$
\int_{\Lambda^{\mathbb{N}}} g \circ T^{\sigma} d m=\int_{\Lambda^{\mathbb{N}}} \widetilde{g_{1} \circ P_{1}} \cdots \widetilde{g_{r} \circ P_{1}} d m=\int_{\Lambda^{\mathbb{N}}} g d m
$$

Remark B.2. If Λ is countable, a measure m is exchangeable iff for all $r \in \mathbb{N}$ there exists a symmetric function $f: \Lambda^{r} \rightarrow \mathbb{R}$ such that for all $\left(i_{1}, \ldots, i_{r}\right) \in \mathbb{N}^{[r]}$ and $\left(a_{1}, \ldots, a_{r}\right) \in \Lambda^{r}$ it holds

$$
\begin{equation*}
m\left(E_{i_{1} \ldots i_{r}}\left(a_{1}, \ldots, a_{r}\right)\right)=f\left(a_{1}, \ldots, a_{r}\right) \tag{B.4}
\end{equation*}
$$

In other words, an exchangeable measure on $\Lambda^{\mathbb{N}}$, with Λ countable, is such that the measure of the cylindrical set $E_{i_{1} \ldots i_{r}}\left(a_{1}, \ldots, a_{r}\right)$ only depends on a_{1}, \ldots, a_{r}, and does not depend on the sequence of indices i_{1}, \ldots, i_{r}.
Lemma B.3. Let $m \in \mathcal{M}_{1}\left(\Lambda^{\mathbb{N}}\right)$ be exchangeable, then for all $f \in L^{1}\left(\Lambda^{\mathbb{N}}\right)$ the following conditions are equivalent:
a) f is $\mathfrak{S}_{c}(\mathbb{N})$-invariant;
b) f is $\operatorname{Inj}(\mathbb{N})$-invariant;
c) f is shift-invariant.

Proof. Since $\mathfrak{S}_{c}(\mathbb{N}) \subset \operatorname{Inj}(\mathbb{N})$ and $s \in \operatorname{Inj}(\mathbb{N})$, the implications b) \Rightarrow a) and b) \Rightarrow c) are obvious.

In order to prove that a$) \Rightarrow \mathrm{b}$), we let $\mathcal{F}=\left\{\sigma \in \operatorname{Inj}(\mathbb{N}): f=f \circ T^{\sigma}\right\}$, which is a closed subset of $\operatorname{Inj}(\mathbb{N})$ containing $\mathfrak{S}_{c}(\mathbb{N})$. Then, it is enough to observe that $\mathfrak{S}_{c}(\mathbb{N})$ is a dense subset of $\operatorname{Inj}(\mathbb{N}) \subset \mathbb{N}^{\mathbb{N}}$, with respect to the product topology of $\mathbb{N}^{\mathbb{N}}$, so that $\mathcal{F}=\overline{\mathfrak{S}_{c}(\mathbb{N})}=\operatorname{Inj}(\mathbb{N})$.

Let us prove that c$) \Rightarrow$ a). Let $\sigma \in \mathfrak{S}_{c}(\mathbb{N})$ and let n be such that $\sigma(i)=i$ for all $i \geq n$. It follows that $s^{k} \circ T^{\sigma}=s^{k}$, for all $k \geq n$. As a consequence, for m-almost every $x \in \Lambda^{\mathbb{N}}$ it holds

$$
f \circ T^{\sigma}(x)=f \circ s^{n} \circ T^{\sigma}(x)=f \circ s^{n}(x)=f(x)
$$

where the first equality holds since the measure m is $\mathfrak{S}_{c}(\mathbb{N})$-invariant.
Notice that from Lemma B. 3 it follows that \tilde{f} is $\operatorname{Inj}(\mathbb{N})$-invariant for all $f \in L^{1}\left(\Lambda^{\mathbb{N}}\right)$. In particular, for an exchangeable measure, the σ-algebra of the shift-invariant sets coincides with the (a priori smaller) σ-algebra of the $\operatorname{Inj}(\mathbb{N})$-invariant sets.

Thanks to a theorem of De Finetti, suitably extended in HS:55, there is an integral representation \grave{a} la Choquet for the exchangeable measures on $\Lambda^{\mathbb{N}}$. More precisely, in [HS:55] it is shown that the extremal points of the (compact) convex set of all exchangeable measures are given by the product measures $\sigma^{\mathbb{N}}$, with $\sigma \in \mathcal{M}_{1}(\Lambda)$. As a consequence, Choquet theorem C:69] provides an integral representation for any exchangeable measure m on $\Lambda^{\mathbb{N}}$, i.e. there is a probability measure $\mu \in \mathcal{M}_{1}(\Lambda)$ such that

$$
\begin{equation*}
m=\int_{\mathcal{M}_{1}(\Lambda)} \sigma^{\mathbb{N}} d \mu(\sigma) \tag{B.5}
\end{equation*}
$$

When Λ is finite, i.e. $\Lambda=p=\{0, \ldots, p-1\}$ for some $p \in \mathbb{N}$, we can identify $\mathcal{M}_{1}(\Lambda)$ with the symplex Σ_{p} of all $\lambda \in[0,1]^{p}$ such that $\sum_{i=0}^{p-1} \lambda_{i}=1$. Given $\lambda \in \Sigma_{p}$, we denote by B_{λ} the (product) Bernoulli measure on $p^{\mathbb{N}}$ such that all the events $E_{i}(a)$ are independent and $B_{\lambda}\left(E_{i}(a)\right)=B_{\lambda}\left(E_{j}(a)\right)=\lambda_{a}$, for all $i, j \in \mathbb{N}$ and $a \in p$. In this case, (B.5) becomes

$$
\begin{equation*}
m=\int_{\Sigma_{p}} B_{\lambda} d \mu(\lambda) \tag{B.6}
\end{equation*}
$$

where μ is a probability measure on Σ_{p}.
We say that a measure $m \in \mathcal{M}\left(\Lambda^{\mathbb{N}}\right)$ is asymptotically exchangeable if the sequence $m_{k}:=\left(s_{\#}\right)^{k}(m)$ weakly* converges to an exchangeable measure K:78.

We now prove that any probability measure on $\Lambda^{\mathbb{N}}$ is asymptotically exchangeable on a suitable subsequence of indeces (we refer to [C:74, FS:76, K:78, K:05 for similar results).
Proposition B.4. Given $m \in \mathcal{M}_{1}\left(\Lambda^{\mathbb{N}}\right)$ there is an increasing function $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that $T_{\#}^{\sigma}(m)$ is asymptotically exchangeable.
Proof. Thanks to Lemma A.1, applied with $M=\mathcal{M}_{1}\left(S^{r}\right)$, for all $r \in \mathbb{N}$ there is an infinite set $J_{r} \subset \mathbb{N}$ such that $T_{\#}^{\prime}(m)$ is convergent in $\mathcal{M}_{1}\left(S^{r}\right)$, for $\iota=\left(i_{0}, \ldots, i_{r-1}\right) \in\left[J_{r}\right]^{r}$ and $i_{0} \rightarrow \infty$. By a diagonal argument, we can choose the same set $J \subset \mathbb{N}$ for all $r \in \mathbb{N}$. Letting $\sigma \in \operatorname{Incr}(\mathbb{N})$ be such that $\sigma(\mathbb{N})=J$, we claim that $T_{\#}^{\sigma}(m)$ is asymptotically exchangeable.

Let us first show that $m_{k}:=s_{\#}^{k} \circ T_{\#}^{\sigma}(m)$ is convergent in $\mathcal{M}_{1}\left(S^{\mathbb{N}}\right)$. Indeed, since the sequence m_{k} is precompact in $\mathcal{M}_{1}\left(S^{\mathbb{N}}\right)$, it is enough to show that $T_{\#}^{\prime}\left(m_{k}\right)$ is convergent in $\mathcal{M}_{1}\left(S^{r}\right)$ for all $\iota \in \mathbb{N}^{[r]}$ and $r \in \mathbb{N}$, and the latter follows as above from Lemma A. 1 and the choice of J.

It remains to prove that the limit m^{\prime} of m_{k} is exchangeable. By Proposition B.1. it is enough to show that $T_{\#}^{\theta}\left(m^{\prime}\right)=m^{\prime}$, for every $\theta \in \operatorname{Incr}(\mathbb{N})$. Again by the choice of J, the sequence of measures $T_{\#}^{\theta} \circ T_{\#}^{\prime}\left(m_{k}\right)$ has the same limit of $T_{\#}^{\ell}\left(m_{k}\right)$ for all $\iota \in \mathbb{N}^{[r]}$ and $r \in \mathbb{N}$, which in turn implies $T_{\#}^{\theta}\left(m^{\prime}\right)=m^{\prime}$.
Remark B.5. Notice that, if m is asymptotically exchangeable, then for all $\left(a_{1}, \ldots, a_{r}\right) \in S^{r}$ the limit exchangeable measure m^{\prime} satisfies

$$
\begin{align*}
m\left(\left\{x_{i_{1}+k}=a_{1}, \ldots, x_{i_{r}+k}=a_{r}\right\}\right) & \leq m^{\prime}\left(\left\{x_{i_{1}}=a_{1}, \ldots, x_{i_{r}}=a_{r}\right\}\right) \\
& +o(1) \text { as } k \rightarrow+\infty, \tag{B.7}
\end{align*}
$$

and the equality holds if the points $\left\{a_{j}\right\}$ are open in S for all $1 \leq j \leq r$ (which is always the case if S is finite). More generally, the equality holds in (B.7) for all clopen (i.e. both open and closed) $C \subseteq S^{r}$, that is

$$
m^{\prime}\left(\left\{\left(x_{1}, \ldots, x_{r}\right) \in C\right\}\right)=\lim _{k \rightarrow+\infty} m\left(\left\{\left(x_{i_{1}+k}, \ldots, x_{i_{r}+k}\right) \in C\right\}\right) .
$$

References

[AFP:00] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical monographs (2000).
[B:79] B. Bollobás, Graph Theory: An Introductory Course, Springer-Verlag, New York (1979).
[C:74] S. D. Chatterji, A subsequence principle in probability theory, Bull. of the AMS 80 (1974), 495-497.
[C:69] G. Choquet, Lectures on Analysis I, Benjamin, Reading, Mass. (1969).
[DF:74] B. De Finetti, Theory of Probability, Wiley, London (1974).
[PR:05] C. A. Di Prisco, Mathematics versus metamathematics in Ramsey theory of the real numbers, Proceedings of the 12th International Congress, King's College Publications (2005), 171-187.
[EH:64] P. Erdös, A. Hajnal, Some remarks on set theory. IX: Combinatorial problems in measure theory and set theory. Mich. Math. J. 11 (1964), 107-127.
[FS:76] T. Figiel, L. Sucheston, An application of Ramsey sets in analysis, Advances in Math. 20 (1976), 103-105.
[FT:85] D. H. Fremlin, M. Talagrand, Subgraphs of random graphs, Trans. Amer. Math. Soc. 291 (1985), 551-582.
[GP:73] F. Galvin, K. Prikry, Borel sets and Ramsey's theorem, Journal of Symbolic Logic 38 (1973), 193-198.
[GR:99] G. Grimmett, Percolation, II ed., Springer-Verlag, Berlin (1999).
[HS:55] E. Hewitt and J. Savage, Symmetric measures on cartesian products, Trans. of the AMS 80 (1955), 470-501.
[K:05] O. Kallenberg, Probabilistic Symmetries and Invariance Principles, SpringerVerlag, New York (2005).
[K:78] J. F. C. Kingman, Uses of exchangeability, Annals of Prob. 6 (1978), 183-197.
[P:82] W. Parry, Topics in Ergodic Theory, Cambridge University Press, Cambridge (1982).
[R:28] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., Ser. 2, 30 (1928), 338-384.

Alessandro Berarducc ${ }^{3}$ Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy, Email: berardu@dm.unipi.it

Pietro Majer, Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy, Email: majer@dm.unipi.it

Matteo Novaga, Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy, Email: novaga@math. unipd. it

[^2]
[^0]: ${ }^{1}$ this is equivalent to specify a family of measurable sets $\left\{X_{e}\right\}_{e \in E_{G}}$, with $X_{e} \subseteq X$

[^1]: $2_{i t}$ is not a priori obvious that this event has a well-defined probability, since it corresponds to the uncountable union of the sets $\bigcap_{k \in \mathbb{N}} X_{\left(i_{k}, i_{k+1}\right)}$ over all strictly increasing sequences $i: \mathbb{N} \rightarrow \mathbb{N}$. However, it turns out that it belongs to the μ-completion of the σ-algebra generated by the $X_{i j}$

[^2]: 02865 (2006-08)

