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Abstract

In this note we show that k-convex functions on R"™ are twice differentiable almost everywhere
for every positive integer k > n/2. This generalizes the classical Alexsandrov’s theorem for
convex functions.

1 Introduction

A classical result of Alexsandrov [1] asserts that convex functions in R™ are
twice differentiable a.e., (see also [3], [8] for more modern treatments). It is
well known that Sobolev functions u € W?2?, for p > n/2 are twice differen-
tiable a.e.. The following weaker notion of convexity known as k-convexity
was introduced by Trudinger and Wang [12, 13]. Let Q C R™ be an open set
and C%(Q) be the class of continuously twice differentiable functions on €.

For k=1, 2,...,n and a function u € C*(Q), the k-Hessian operator, F}, is
defined by

Fuu] :== Sp(M(V?u)), (1.1)
where V?u = (9;;u) denotes the Hessian matrix of the second derivatives
of u, A(A) = (A1, A2, -+, An) the vector of eigenvalues of an n x n matrix



A € M™™ and Sk()) is the k-th elementary symmetric function on R", given
by

Se(N) = ) A, (1.2)

i1 <<y

Alternatively we may write
Fiu] = [Vul, (1.3)

where [A]) denotes the sum of k x k principal minors of an n x n matrix A,
which may also be called the k-trace of A. The study of k-Hessian operators
was initiated by Caffarelli, Nirenberg and Spruck [2] and Ivochkina [6] with
further developed by Trudinger and Wang [10, 12, 13, 14, 15].

A function u € C?*(Q) is called k-conver in Q if Fj[u] > 0 in Q for
j=1,2 ... k; that is, the eigenvalues A\(V?u) of the Hessian V?u of u lie in
the closed convex cone given by

Tp = {AeR" : S;(\) >0, j=1,2 ... k}. (1.4)

(see [2] and [13] for the basic properties of I'y.) We notice that Fiu] = Auw, is
the Laplacian operator and 1-convex functions are subharmonic. When k£ =
n, F,lu] = det(V?u), the Monge-Ampére operator and n-convex functions
are convex. To extend the definition of k-convexity for non-smooth functions
we adopt a viscosity definition as in [13]. An upper semi-continuous function
u : ) — [—00,00) (u# —o0 on any connected component of 1) is called k-
convez if Fi[qg] > 0, inQ for j =1,2,...,k, for every quadratic polynomial q
for which the difference u—q has a finite local maximum in 2. Henceforth, we
shall denote the class of k-convex functions in by ®*(2). When k =1 the
above definition is equivalent to the usual definition of subharmonic function,
see, for example (Section 3.2, [5]) or (Section 2.4, [7]). Thus ®'(€2) is the class
of subharmonic functions in 2. We notice that ®*(Q) C ®1(Q) C LL.(Q) for
k=1,2,...,n, and a function u € ®"(£2) if and only if it is convex on each
component of . Among other results Trudinger and Wang [13] (Lemma 2.2)
proved that u € ®*(Q) if and only if

/Qu(:v) (Za“ ij¢(x)> dx > 0 (1.5)

for all smooth compactly supported functions ¢ > 0, and for all constant
n X n symmetric matrices A = (a"”) with eigenvalues A(A) € I';, where T} is
dual cone defined by

Iii={AeR" : (\u) >0 for all pely}. (1.6)
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In this note we prove the following Alexsandrov type theorem for k-convex
functions.

Theorem 1.1. Letk >n/2,n>2 andu : R" — [—00,00) (u# —00 on
any component of R"™), be a k-convex function. Then u is twice differentiable
almost everywhere. More precisely, we have the Taylor’s series expansion for
L" x a.e.,

uly) — ule) — (Vu(w), y = 2) = 5(Vu(@)y — ), y = 2)| = olly — 21?),
(1.7)

asy — .

In Section 3 (see, Theorem 3.2.), we also prove that the absolute contin-
uous part of the k-Hessian measure (see, [12, 13]) pg[u], associated to a k-
convex function for k > n/2 is represented by Fj[u]. For the Monge-Ampére

measure plu] associated to a convex function wu, such result is obtained in
[16].

To conclude this introduction we note that it is equivalent to assume
only Fy[g] > 0, in the definition of k-convexity [13]. Moreover I'y may also
be characterized as the closure of the positivity set of Sy containing the
positive cone Iy, [2].

2 Notations and preliminary results

Throughout the text we use following standard notations. |- | and (-, -) will
stand for Euclidean norm and inner product in R", and B(z,r) will denote
the open ball in R™ of radius r centered at x. For measurable £ C R", £L™(E)
will denote its Lebesgue measure. For a smooth function u, the gradient and
Hessian of u are denoted by Vu = (iu,--- ,0,u) and Vu = (0iu)1<i j<n
respectively. For a locally integrable function f, the distributional gradient
and Hessian are denoted by Df = (D1 f,---, D, f) and D*u = (Djju)1<ij<n
respectively.

For the convenience of the readers, we cite the following Holder and gra-
dient estimates for k-convex functions, and the weak continuity result for
k-Hessian measures, [12, 13].

Theorem 2.1. (Theorem 2.7, [13]) For k > n/2, ®*(Q) C C2(Q) with
a:=2—n/k and for any Q' CC Q, u € ®¥(Q), there exists C > 0, depending



only onn and k such that

sup artell@ vl o (2.1)
x,y ‘JI— |a

xz,yeY Yy Q/

T #y

where d,, := dist(x, 0Q') and d,, = min{d, , d,}.

Theorem 2.2. (Theorem 4.1, [13]) Fork=1,...,n, and 0 < ¢ <

n
n—k’
the space of k-convex functions ®*(Q) lie in the local Sobolev space WS9(Q).
Moreover, for any Q' CcC Q" CcC Q and u € ®*(Q) there exists C > 0,
depending on n, k, q, ' and Q", such that

(/Q,\Du\q)l/q < C/”\u\. (2.2)

Theorem 2.3. [Theorem 1.1, [13]] For any u € ®*(Q), there exists a Borel
measure p[u] in Q such that

(1) prlu)(V) = [, Filu](z)dz for any Borel set V C Q, if u € C*(Q2) and

(i) f (um)m>1 s a sequence in ®F(Q) converges in LL (Q) to a function
u € OF(Q), the sequence of Borel measures (puy[tm])m>1 converges weakly to
]

Let us recall the definition of the dual cones, [11]

Iii={AeR" : (\,u) >0 for all pel}y},

which are also closed convex cones in R". We notice that I'; C I'; for j < k
with I =T, ={AeR"” : \; >0, j=1,2,...,n}, I'] is the ray given by

= {t1,---,1) : ¢t >0},

and I'; has the following interesting characterization,

2
1 n
It=<K X xel, : M\ < — i ) 2.
= Qe e o () 23)

We use this explicit representation of I'; to establish that the distributional
derivatives D;;u of the k-convex function u are signed Borel measures for
k > 2, (see also [13]).



Theorem 2.4. Let 2 < k < n and u : R" — [—00,0), be a k-convex
function. Then there exist signed Borel measures p* = pi7* such that

/ u(z) 0i¢(x) de = (z) du(x) for i,j=1,2,...,n, (2.4)
n R”

for all ¢ € C(R™).

Proof. Let k > 2 and u € ®*(R"). Since ®*(R") C ®*(R") for k > 2, it is
enough to prove the theorem for k = 2. Let u be a 2-convex function in R".
For A € S"*" the space of n x n symmetric matrices, define the distribution
Ta : C*R") — R, by

Ty(o) = /Rn u(x)Zaij 0 (x) dx

By (1.5), Ta(¢) > 0 for A € S™*" with eigenvalues A\(A) € I';, and ¢ > 0.
Therefore, by Riesz representation (see, for example Theorem 2.14 in [9] or
Theorem 1, Section 1.8 in [3]), there exist a Borel measure p# in R™, such
that

Ta(¢) = /anb > a'Dyjude= [ ¢dp’, (2.5)
2

Rn

for all ¢ € C?(R") and all n x n symmetric matrices A with \(A) € T3.
In order to prove the second order distributional derivatives D;;u of u to be
signed Borel measures, we need to make special choices for the matrix A.
By taking A = I,,, the identity matrix, \(A) € I't C I'5, we obtain a Borel
measure /" such that

R"

/ ¢ ZDu‘U de= [ ¢dp™, (2.6)
R™ =1

for all ¢ € C2(R"). Therefore, the trace of the distributional Hessian D?u, is
a Borel measure. For each i =1,...,n, let A; be the diagonal matrix with all
entries 1 but the i-th diagonal entry being 0. Then by the characterization
of I'5 in (2.3), it follows that A(A;) € I'5. Hence there exist a Borel measure
1t in R™ such that

/ ¢y Djudr= [ ¢du', (2.7)
B g R

for all ¢ € C%(R™). From (2.6) and (2.7) it follows that, the diagonal entries

Dju = p'" — ¥ := % are signed Borel measure and

/ u0jpdr = ¢ du™ (2.8)
n R”
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for all ¢ € C*(R"). Let {ey,...,e,} be the standard orthonormal basis in
R"™ and for a, b € R", a ® b := (a'l’), denotes the n x n rank-one matrix.
For 0 <t < 1andi# j, let us define A;; := I, +t[e; R e; +¢; R e]. By a
straight forward calculation, it is easy to see that the vector of eigenvalues
MA;)=0—-t,1+¢1,---, 1) eI for0<t < (n/2(n— 1))"/%. Note that
for this choice of A;;

Z 'O = Z O + 2t Dy

k,l=1

Thus for i # j, (2.5) and (2.6) yields

[ tvote= | [ o dtonoir [ 3 ousar]
1

k,l=1

dp — dp'

2t[ ¢ dp /ncb It }

where
SR 1 &
. = (A _ o In) — Ay _ kk
= o (e — ) 21&(“ ];u>

Therefore D;ju = p, are signed Borel measures and satisfies the identity
(2.4). O

A function f € L] _(R") is said to have locally bounded variation in R™ if
for each bounded open subset €' of R,

sup{ fdivedr : ¢ € CHY;RY), |¢(x)| <1 forall z € Q'} < 00.
Q/

We use the notation BVj,.(R™), to denote the space of such functions. For
the theory of functions of bounded variation readers are referred to [4, 17, 3].

Theorem 2.5. Letn > 2, k > n/2 and u : R" — [—00,00), be a k-

convex function. Then w is differentiable a.e. L™ au loc(R™), for
T
alli=1,....n

k
Proof. Observe that for kK > n/2, we can taken < ¢ < n ? and by the
n—

gradient estimate (2.2), we conclude that k-convex functions are differentiable
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L ae x. Let Q' CCR", ¢ = (¢, ,¢") € CL(;R") such that |¢(z)] < 1
for z € /. Then by integration by parts and the identity (2.4), we have for
1=1,...,n,

Ou divqﬁdx:—z u ¢

d
- Q/ axzax] v

Q/ axz

J

> [
j=17%
< () < o0,
j=1

where |p] is the total variation of the Radon measure p*. This proves the
theorem. O

3 Twice differentiability

Let u be a k-convex function, & > 2, then by the Theorem 2.4, we have
D?u = (u¥); j, where u are Radon measures. By Lebesgue’s Decomposition
Theorem, we may write

:U’Z]:M;Jc—i_:ué] for i?j:]-?"'an?

where pi is absolutely continuous with respect to £™ and p¥ is supported
on a set with Lebesgue measure zero. Let u;; be the density of the abso-

y 0
lutely continuous part, i.e., du¥, = u;; dx, u;; € L (R"™). Set u;; := W;x]”
Vouim (228 = (ug)y € b (RSR™™) and D%, = (4);,. Thus
) 8%0%9 i, LY RA2V] loc ) s s /0"

the vector valued Radon measure D*u can be decomposed as D*u = [D?u),.+
[D?u]s, where d[D?u],. = V?udz. Now we are in a position to prove the the-
orem 1.1. To carry out the proof, we use a similar approach to Evans and
Gariepy, see, Section 6.4, in [3].

Proof of Theorem 1.1. Let n > 2 and u be a k-convex function on R",
k > n/2. Then by Theorem 2.4, and Theorem 2.5, we have for L™ a.e. x

lim |IVu(y) — Vu(x)|dy = 0, (3.1)
r—0 B(z,r)
lim IV2u(y) — V2u(z)|dy = 0 (3.2)
r—0 B(z,r)



and

lim =0. (3.3)
r—0 rn
where f, f dz we denote the mean value (L"(E | » [dr. Fix a point x

for which (3.1)-(3.3) holds. Without loss generahty we may assume x = 0.
Then following similar calculations as in the proof of Theorem 1, Section 6.4
in [3], we obtain,

fB(r)

as r — 0. In order to establish

) = 0) = (Vul0).) = 5 (FPuOe )| dy =ols?), (34)

sup
B(r/2)

u(y) — u(0) — (Vu(0),y) — % <V2u(0)y, y>‘ =o(r?) asr —0, (3.5)

we need the following lemma.

Lemma 3.1. Let h(y) := u(y) — u(0) — (Vu(0),y) — % (V*u(0)y,y). Then

there exists a constant C' > 0 depending only on n, k and |V*u(0)|, such that
forany 0 <r <1

h
sup |(y—a —f y)| dy + Cr*~=, (3.6)
y,2€B(r) ‘y o Z‘ B(2r)
y#z

where a:= (2 —n/k).
A
Proof. Let A :=|V?u(0)| and define g(y) := h(y) + §|y|2 Since 4y[* —

u(0) — (Vu(0),y) — 5 (V2u(0)y,y) is convex and sum of two k-convex func-
tions are k-convex (follows from (1.4)), we conclude that g is k-convex.
Applying the Holder estimate in (2.1) for g with Q' = B(2r), there exists
C :=C(n,k) > 0, such that

o wp‘“w_gfﬂzdmﬁ%MﬁB@mw“ wp\ﬂw—gfﬂ
y,2€B(r) |y o Z| y,2€B(r) ‘y - Z|
y#z Yy F#z
S sup dn+a|g( ) g(gz)|
y,2€B(2r) |y - Z‘
y#z
<C/ y)ldy
B(2r)
< 0/3(2 | \h(y)| dy + Cr"*2 (3.7)



where d,, , := min{dist(y, 0B(2r)), dist(z,0B(2r))}. Therefore the estimate
(3.6) for h follows from the estimate (3.7) and the definition of g. O

Proof of Theorem 1.1. (ctd.) To prove (3.5), take 0 < ¢, < 1, such
that /" < 1/2. Then there exists ry depending on ¢ and &, sufficiently
small, such that, for 0 < r < rg

£z e Br) ¢ h(z)| > @?) < iz/ Ih(2) d=
€r B(r)
= o(r") by (3.4)
< 6L7(B(r)) (3.8)

Set o := §'/"r. Then for each y € B(r/2) there exists z € B(r) such that
|h(2)] <er? and |y —z| <o
Hence for each y € B(r/2), we obtain by (3.4) and (3.6),

Ih(5)] < 1A(:)] + 1h(y) — A(:)
<oty (o, Boldr)

1
< er? 4+ C§/ e —a/ \h(y)| dy + r*®
= J B(2r)

< er? 4+ 05 (f |h(y)| dy + 7"2)
B(2r)

=12 (e+Cs*") +o(r®) as r—0

By choosing ¢ such that, C9%™ = ¢, we have for sufficiently small ¢ > 0 and
0<r<rg,

sup |h(y)| < 2er? +o(r?).

B(r/2)

Hence

Bs(u/pQ) u(y) — u(0) — (Vu(0),y) — % <V2u(0)y,y> dy =o(r®) asr —0.

This proves (1.7) for x = 0 and hence u is twice differentiable at z = 0.
Therefore u is twice differentiable at every x and satisfies (1.7), for which
(3.1)-(3.3) holds. This proves the theorem. O

Let u be a k-convex function and puglu] be the associated k-Hessian mea-
sure. Then p[u] can be decomposed as the sum of a regular part p3°[u] and
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a singular part pj[u]. As an application of the Theorem 1.1, we prove the
following theorem.

Theorem 3.2. Let Q C R be an open set and u € ®*(Q), k > n/2. Then
the absolute continuous part of py[u] is represented by the k-Hessian operator
Filu]. That is

il lu] = Fylu] de . (3.9)

Proof. Let u be a k-convex function, & > n/2 and u, be the mollification
of u. Then by (1.5) and properties of mollification (see, for example Theorem
1, Section 4.2 in [3]) it follows that u, € ®*(2) N C>(Q). Since u is twice
differentiable a.e. (by Theorem 1.1) and u € W' (Q) (by Theorem 2.5), we
conclude that V?u, — V?u in L] . Let ug[u] and pgfu] are the Hessian
measures associated to the functions u. and w respectively. Then the by
weak continuity Theorem 2.3 (Theorem 1.1, [13]), uglu.] converges to pu[u]

in measure and pgfue] = Fiue] dz. It follows that for any compact set E C €2,

pe[ul(E) > limsup pipfuc|(E) = lim sup/ Filue]. (3.10)
e—0 e—0 E

Since Filu] > 0 and Filuc)(z) — Fy[u](x) a.e., by Fatou’s lemma, for every

relatively compact measurable subset E of ), we have

/EFk[u] < liminf/EFk[uﬁ]. (3.11)

€E—

Therefore by Theorem 3.1, [13], it follows that Fi[u] € L{ (). Let ug[u] =

loc
P32 [u] 4 i [u], where p¢fu] = hdxz, h € Li..(2) and pj[u] is the singular part
supported on a set of Lebesgue measure zero. We would like to prove that
h(z) = Fylu|(z) L™ a.e. x. By taking E := B(z,r), from (3.10) and (3.11),

we obtain

pelu)(B,r) Hilu)(Blz, 1)
fB(m) Fleldy = =2 B = fmm) hy+ =By - 1Y
Hence by letting € — 0, we obtain
Fylul(z) < h(z) L" ae. z. (3.13)

To prove the reverse inequality, let us recall that h is the density of the
absolute continuous part of the measure p[u], that is for £ a.e. x

@) (B
M) = e B, ) A £n(Bla, )

(3.14)
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Since pjfu] is supported on a set of Lebesgue measure zero,
pilu](0B(x, 7)) =0, L' ae. r>0.

Therefore by the weak continuity of ugluc] (see, for example Theorem 1,
Section 1.9 [3]), we conclude that

lir% prlud (B(z, 7)) = pe[u)(B(x, 7)), L' ae. r>0. (3.15)
Let § > 0, then for € < € = €(d) and for L' a.e. r >0, L" a.e.

(14 8)p[ud (B(z, 1))
Mz) < lim £7(B(z, 1))

= (1+0)lim Filud] dy
r—0 B(z,r)
— (14 6)Fylud(2) (3.16)

By letting € — 0 and finally 6 — 0, we obtain
h(z) < Fylul(x), L" a.e. x.

This proves the theorem. O
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