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Abstract

We discuss some recent developments of the theory of BV functions and sets of
finite perimeter in infinite-dimensional Gaussian spaces. In this context the concepts
of Hausdorff measure, approximate continuity, rectifiability have to be properly
understood. After recalling the known facts, we prove a Sobolev-rectifiability result
and we list some open problems.

1 Introduction

This paper is devoted to the theory of sets of finite perimeter in infinite-dimensional Gaus-
sian spaces. We illustrate some recent results, we provide some new ones and eventually
we discuss some open problems.

We start first with a discussion of the finite-dimensional theory, referring to [13] and
[3] for much more on this subject. Recall that a Borel set E ⊂ Rm is said to be of finite
perimeter if there exists a vector valued measure DχE = (D1χE, . . . , DmχE) with finite
total variation in Rm satisfying the integration by parts formula:∫

E

∂φ

∂xi
dx = −

∫
Rm

φ dDiχE ∀i = 1, . . . ,m, ∀φ ∈ C1
c (Rm). (1)

De Giorgi proved in [10] a deep result on the structure of DχE, which could be considered
as the starting point of modern Geometric Measure Theory. First of all he identified a
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set FE, called by him reduced boundary, on which |DχE| is concentrated, and defined
a pointwise inner normal νE(x) = (νE,1(x), . . . , νE,m(x)) on it (see (26) for the precise
definition); then, through a suitable blow-up procedure, he proved that FE is count-
ably C1 rectifiable, i.e., it is contained in the union of countably many graphs of C1

functions defined on hyperplanes of Rm; finally, he proved the representation formula
DχE = νEH m−1 FE, where H m−1 is the (m − 1)-dimensional Hausdorff measure in
Rm. Actually, because of the rectifiability property, many other measures could be used
in place of H m−1, for instance the spherical Hausdorff measure S m−1. In light of these
results, the integration by parts formula reads∫

E

∂φ

∂xi
dx = −

∫
FE

φνE,i dH
m−1 ∀i = 1, . . . ,m, ∀φ ∈ C1

c (Rm).

This is much closer to the classical Gauss–Green formula, the only difference being that
boundary and inner normal are understoood in a measure-theoretic sense. A few years
later Federer proved in [12] that the same representation result of DχE holds for another
concept of boundary, the so-called essential boundary:

∂∗E :=

{
x ∈ Rm : lim sup

r↓0

L m(Br(x) ∩ E)

L m(Br(x))
> 0, lim sup

r↓0

L m(Br(x) \ E)

L m(Br(x))
> 0

}
,

where L m is the m-dimensional Lebesgue measure. Indeed, a consequence of De Giorgi’s
blow-up procedure is that FE ⊂ ∂∗E (because tangent sets to E at all points in the
reduced boundary are halfspaces), and in [12] it is shown that H m−1(∂∗E \FE) = 0.

If we now move to Gaussian spaces we have to change the reference measure from L m

to γ = GmL m, where Gm is the standard Gaussian kernel. Then, since ∂xi
Gm = −xiGm,

we have the Gaussian integration by parts formula∫
Rm

f
∂φ

∂xi
dγ = −

∫
Rm

φ
∂f

∂xi
dγ +

∫
Rm

xiφf dγ. (2)

This leads to the definition of Gaussian set of finite perimeter: we require the existence
of a measure DγχE = (Dγ,1χE, . . . , Dγ,mχE) satisfying∫

E

∂φ

∂xi
dγ = −

∫
Rm

φ dDγ,iχE +

∫
E

xiφ dγ ∀i = 1, . . . ,m, ∀φ ∈ C1
b (Rm). (3)

Both (2) and (3) can be extended to infinite-dimensional Gaussian spaces (X, γ), the
so-called Wiener spaces (see [7], [20]) by looking at directions in the Cameron-Martin space
H of (X, γ), see Section 4 for more details. Along these lines the theory of sets of finite
perimeter and BV functions has been initiated by Fukushima and Hino in [15, 16, 17].
More recently, we revisited the theory in [4, 5, 6], where we provided also compactness
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criteria in BV . Also, in these papers it is shown that BV functions can be characterized
in terms of the Ornstein-Uhlenbeck semigroup

Ttf(x) =

∫
X

f(e−tx+
√

1− e−2ty) dγ(y). (4)

This last point is particularly relevant, also because the original definition of De Giorgi
[9] was not based on the integration by parts formula (1), but precisely on the finiteness
of the limit (where t 7→ Rtf is the heat flow starting from f)

lim
t↓0

∫
Rm

|∇RtχE| dx. (5)

When looking for the counterpart of De Giorgi’s and Federer’s results in infinite-
dimensional spaces, several difficulties arise:

(i) The classical concept of Lebesgue approximate continuity, underlying also the defini-
tion of essential boundary, seems to fail or seems to be not reproducible in Gaussian
spaces (X, γ). For instance, in [21] it is shown that in general the balls of X can’t
be used, and in any case the norm of X is not natural from the point of view of
the calculus in Wiener spaces, where no intrinsic metric structure exists and the
differentiable structure is induced by H.

(ii) Suitable notions of codimension-1 Hausdorff measure, of rectifiability and of essen-
tial/reduced boundary have to be devised.

Nevertheless, some relevant progresses have been obtained by Feyel-De la Pradelle in
[14] and by Hino in [19]. In [14] a family of Hausdorff pre-measures S∞−1

F (of spherical
type) have been introduced by looking at the factorization X = Ker(πF ) ⊗ F , with F
m-dimensional subspace of H, and considering the measures S m−1 on the m-dimensional
fibers of the decomposition. A crucial monotonicity property of these pre-measures with
respect to F allows to define S∞−1 as limF S∞−1

F (the limit being taken in the sense
of directed sets). In [19] this approach has been used to build a Borel set ∂∗FE, called
cylindrical essential boundary, for which the representation formula

|DγχE| = S∞−1
F ∂∗FE (6)

holds. Here F = {Fn}n≥1 is an increasing family of finite-dimensional subspaces of QX∗

(here X∗ is the dual of X and Q is the covariance operator from X∗ to H ⊂ X) whose
union is dense in H and S∞−1

F = limn S∞−1
Fn

. Notice that, while the left hand side in the
representation formula is independent of the choice of F , both the cylindrical essential
boundary and S∞−1

F depend on F . The problem of getting a representation formula
in terms of the coordinate-free measure S∞−1 of [14] is still open. This seems to be
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strongly related to the problem of finding coordinate-free definitions of reduced/essential
boundary.

In connection with (ii), adapting some ideas from [1, 2] and answering in part to one
of the questions raised in [19], we are able to show that |DγχE| is concentrated on the
union of countably many graphs of entire W 1,1 functions defined on hyperplanes of X
orthogonal to vectors in H (because of this, γ factors as a product of Gaussian measures
and the notion of Sobolev function defined on the hyperplane makes sense).

The paper is organized as follows: in Section 2 we fix some basic notation, in Section 3
we study the codimension 1 spherical Hausdorff measures of [14]. In Section 4 we recall
some preliminary results on BV functions and sets of finite perimeter needed in the
proofs. In Section 5 we prove, following with minor variants the original proof in [19],
Hino’s representation formula (6) of the perimeter measure. In Section 6 we prove that
|DχE| is concentrated on countably many graphs of entire Sobolev functions. Finally,
in Section 7 we discuss open problems and research perspectives: the improvement from
Sobolev to Lipschitz in our rectifiability result and potential coordinate-free definitions of
essential/reduced boundary. Our proposals are in the same spirit as De Giorgi’s pioneering
intuition (5), and based on the Ornstein-Uhlenbeck semigroup.

It is a pleasure and an honour for us to dedicate this paper to Louis Nirenberg, on the
occasion of his 85th birthday.

2 Basic Notation

First, we recall some measure-theoretic notation. We denote by B(X) the σ-algebra of
Borel sets in a metric space X and by M+(X) the space of Borel nonnegative and finite
measures in X; we often use the fact that if I is a directed set and µi ∈ M+(X) satisfy
µi ≤ µj for i ≤ j, supi µi(X) < ∞, then limi µi belongs to M+(X). We also denote
by P(X) the subspace of probability measures and by M (X) the space of Borel signed
measures with finite total variation in X. We use the notation f] for the push-forward
operator from measures in X to measures in Y , induced by a Borel map f : X → Y , and
the notation µ E for the restriction operator, defined by µ E(B) = µ(E ∩B).

If E is a subset of a finite-dimensional Hilbert space F , we denote by ∂∗E its essential
boundary, namely the set of points x ∈ F where the volume density does not exist or it
is different from 0, 1. Here “volume” refers to the unique Lebesgue measure on F , but
any Gaussian measure in F would lead to an equivalent definition of ∂∗E.

We mostly use the notation X for a separable Banach space endowed with a centered
and non-degenerate Gaussian measure γ (i.e., the support of γ is the whole of X). We
denote by X∗ the dual of X and by Q : X∗ → X the covariance operator of γ: it is a
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continuous linear operator uniquely determined by

〈y∗, Qx∗〉 =

∫
X

〈x∗, x〉〈y∗, x〉 dγ(x) ∀x∗, y∗ ∈ X∗.

It can be easily proved that Q = RR∗, where R∗ : X∗ → L2(X, γ) is given by R∗x∗(x) =
〈x∗, x〉, and R : L2(X, γ) → X is given by

Rf :=

∫
X

xf(x) dγ(x).

The Cameron-Martin space H of (X, γ) is given by RH , where H is the closure in
L2(X, γ) of R∗X∗. Since R is injective on H we can define a Hilbert norm on H in such
a way that R : H → H is an isometry, and with this choice QX∗ is dense in H, while
H embeds continuously and densely in X. We use the notation 〈·, ·〉 also for the inner
product in H and the notation | · | for the induced norm; since the typical element of X∗

is denoted by x∗, y∗, etc., this should not create a real ambiguity.
The symbol FC1

b (X) denotes the space of continuously differentiable cylindrical func-
tions with bounded derivatives, that is, u ∈ FC1

b (X) if

u(x) = v(〈x∗1, x〉, . . . , 〈x∗m, x〉)

for some v ∈ C1
b (Rm) and x∗1, . . . , x

∗
m ∈ X∗.

3 Spherical Hausdorff measures in X

If F ⊂ X is a m-dimensional subspace of H, B ⊂ F and δ > 0, we denote by S k
δ (B) the

spherical k-dimensional Hausdorff pre-measure of B, namely

inf

{∑
i

ωkr
k
i : B ⊂

⋃
i

Bri(xi), ri < δ

}
(ωk being the Lebesgue volume of the unit ball in Rk) and by S k(B) their monotone
limit as δ ↓ 0. When k = m this measure coincides with the (outer) Lebesgue measure
in F , and we shall mostly consider the case k = m − 1. We stress that the balls used
in the minimization above are understood with respect to the H distance and we do
not emphasize the dependence on F . Occasionally we canonically identify F with Rm,
choosing a suitable orthonormal basis.

Let F ⊂ QX∗ be an m–dimensional subspace of H. We denote by z = πF (x) the
canonical projection induced by an orthonormal basis ei = Q(e∗i ) of F , namely

πF (x) =
m∑
i=1

〈e∗i , x〉ei
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and set x = y + z, so that y = x − πF (x) belongs to Ker(πF ), the kernel of πF . This
decomposition induces the factorization γ = γ⊥ ⊗ γF with γF standard Gaussian in F
and γ⊥ Gaussian in Ker(πF ) (whose Cameron-Martin space is F⊥).

Following [14], we can now define spherical (∞− 1)-dimensional Hausdorff measures
in X by

S∞−1
F (B) :=

∫ ∗

Ker(πF )

∫
By

Gm(z) dS m−1(z) dγ⊥(y) ∀B ⊂ X. (7)

Here and in the sequel
Gm(z) := (2π)−m/2 exp(−|z|2/2)

is the m-dimensional Gaussian kernel in F and, for y ∈ Ker(πF ),

By := {z ∈ F : y + z ∈ B} . (8)

The internal integral in (7) is understood in the Choquet sense, namely∫
By

Gm(z) dS m−1(z) =

∫ ∞

0

S m−1
(
{z : Gm(z) > τ}

)
dτ.

Of course if By ∈ B(X), as it happens in the case B ∈ B(X), the integral reduces to a
standard one. Furthermore, the external integral in (7) is understood as outer integral,
in order to avoid at least at the level of the definition the issue of the measurability of
the map y 7→

∫
By
Gm dS m−1.

The next basic additivity result has been proved in [14] (the result therein is slightly
more general, since general finite-dimensional subspaces F of H, not only of QX∗, and
Suslin sets are considered).

Proposition 3.1. S∞−1
F is a σ-additive Borel measure on B(X). In addition, for all

Borel sets B the map y 7→
∫
By
Gm dS m−1 is γ⊥-measurable in Ker(πF ).

A remarkable fact is the monotonicity of S∞−1
F with respect to F , which crucially

depends on the fact that we are considering spherical Hausdorff measures.

Lemma 3.2. S∞−1
F ≤ S∞−1

G on B(X) whenever F ⊂ G.

Proof. We write G = F ⊕ L and denote by m and k − m the dimensions of F and
L, respectively, so that G is k-dimensional. We consider the orthogonal decomposition
H = G⊥ ⊕ L ⊕ F , so that γ can be written as the product γ⊥ ⊗ γL ⊗ γF , γF , γL being
standard Gaussians in F and L, respectively. Since for all B ∈ B(X) we have

S∞−1
F (B) =

∫
Ker(πF )

∫
Bw,y

Gm(z) dS m−1(z) d(γL ⊗ γ⊥)(w, y)
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and

S∞−1
G (B) =

∫
Ker(πG)

∫
By

Gm(w, z) dS k−1(w, z)dγ⊥(y),

the statement follows by applying to all sections C = By ⊂ G the following finite-
dimensional inequality:∫

L

∫
Cw

Gm(z) dS m−1(z)dγL(w) ≤
∫
C

Gk(w, z) dS
k−1(w, z). (9)

In turn, since Gk(w, z) = Gm(z)Gk−m(w), inequality (9) follows from∫
L

S m−1(Aw) dS k−m(w) ≤ S k−1(A) A ∈ B(G). (10)

For completeness we provide a proof of (10). Fix (u, v) ∈ F ⊕ L and the projection map
π : G→ L; we then have that

(Br(u, v))w =Br(u, v) ∩ π−1(w) = {z ∈ F : (w, z) ∈ Br(u, v)}
={z ∈ F : |w − u|2 + |z − v|2 < r2} = Br(u,w)(v),

where r(u,w) =
√
r2 − |w − u|2 and the ball is understood in F . Then, with the same

argument as Federer [13, 2.10.27], we obtain that

ωm−1

∫
L

(
diam(Br(u, v))w

2

)m−1

dS k−m(w) =ωm−1

∫
L

(r(u,w))m−1 dS k−m(w)

=ωk−1r
k−1 = ωk−1

(
diamBr(u, v)

2

)k−1

.

We assume with no loss of generality that S k−1(A) is finite; by definition, for any δ > 0
there exists a covering of balls Bj = Brj(xj) with rj < δ and S k−1(A)+δ ≥ ωk−1

∑
j r

k−1
j ;

the balls (Bj)w cover Aw and have radii less than δ for any w ∈ L, whence

S k−1(A) + δ ≥ ωk−1

∑
j

rk−1
j =

∫
L

ωm−1

∑
j

(
diam(Bj)w

2

)m−1

dS k−m(w)

≥
∫ ∗

L

S m−1
δ (Aw)dS k−m(w).

By letting δ ↓ 0, (10) follows.
Thanks to Lemma 3.2 we can define the spherical (∞− 1)-Hausdorff measure S∞−1

in B(X) by
S∞−1(B) := sup

F
S∞−1
F (B) = lim

F
S∞−1
F (B), (11)
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the limits being understood in the directed set of finite-dimensional subspaces of QX∗.
Notice that this measure does not coincide directly with the one of [14], since we consider
subspaces ofQX∗ only. A direct consequence of Proposition 3.1 is that S∞−1 is σ-additive
on B(X).

Finally, we conclude this section with the following elementary proposition.

Proposition 3.3. Let F be a countable family of finite-dimensional subspaces of QX∗

stable under finite unions. For F ∈ F , let AF ∈ B(X) be such that

(i) S∞−1
F (AF \ AG) = 0 whenever F ⊂ G;

(ii) supF S∞−1
F (AF ) <∞.

Then limF (S∞−1
F AF ) exists, and it is representable as (limF S∞−1

F ) A with

A :=
⋃
F∈F

⋂
G∈F , G⊃F

AG ∈ B(X).

Proof. First of all, we notice that assumptions (i) implies that F 7→ S∞−1
F AF is mono-

tone w.r.t. F , hence the limit exists; it is obviously additive and, because of assumption
(i), finite and σ-additive. If we define A′F :=

⋂
G⊃F AG then, because of assumption (i),

S∞−1
F AF = S∞−1

F A′F . The monotonicity of F 7→ A′F now yields

S∞−1
F A′F ≤ S∞−1

F A ≤ (lim
F

S∞−1
F ) A

with A := ∪FA′F ; on the other hand, for all G we have

lim
F

(S∞−1
F A′F ) ≥ (lim

F
S∞−1
F ) A′G

and since G is arbitrary we conclude.

4 Preliminary results on BV functions

Before defining the class BV (X, γ)∩L2(X, γ) we recall the notation for the partial deriva-
tive and its adjoint:

∂hf(x) := lim
t→0

f(x+ th)− f(x)

t
, ∂∗hf(x) := ∂hf(x)− f(x)ĥ(x)

where h = Rĥ ∈ H with ĥ ∈ H .
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Definition 4.1 (BV space). Let u ∈ L2(X, γ). We say that u ∈ BV (X, γ) if there exists
a H-valued measure µ ∈ M (X,H) with finite total variation such that∫

X

u(x)∂∗hφ(x)dγ(x) = −
∫
X

φ(x)dµh(x) ∀h ∈ H, φ ∈ FC1
b (X) (12)

where µh = 〈µ, h〉. The measure µ is uniquely determined by (12) and will be denoted by
Dγu. Finally, we denote by νu : X → H the Borel vector field with |νu| = 1 providing the
polar decomposition

Dγu = νu|Dγu|. (13)

Notice that the L2 assumption is not natural in the context of BV functions (the
natural space is the Orlicz space L log1/2L(X, γ), see [5]) but it allows for a simpler
definition, with an integration by parts formula along all directions in H. This is possible
because u∂∗hφ is integrable.

When u ∈ BV (X, γ) and Dγu� γ we say that u ∈ W 1,1(X, γ) and denote by ∇u the
density of Dγu, so that Dγu = ∇u γ.

We say that E has γ-finite perimeter if u = χE ∈ BV (X, γ) and, accordingly, we
denote by |DγχE| the perimeter measure. The unit vector νχE

in (13) is simply denoted
by νE.

In the next theorem we provide a representation of the measures∫
Ker(πF )

|DγF
χEy |(By) dγ

⊥(y) B ∈ B(X)

in terms of the global derivative (we state the result in terms of BV functions, since in this
context the proof and the statement are more natural). We denote by ΠF : H → F the
orthogonal projection on F , to keep a notation distinct from the projections πF : X → F
of Section 3.

In the proof of the next theorem we use the Ornstein-Uhlenbeck semigroup Tt in (4)
and the following inequality:

lim sup
t↓0

∫
X

|ΠF (∇Ttu)| dγ ≤ |ΠF (Dγu)|(X) =

∫
X

|ΠF (νu)| d|Dγu| ∀u ∈ BV (X, γ). (14)

The first inequality is proved in [5, Remark 4.2], while the second equality follows from
(13).

Theorem 4.2. Assume that F is a finite dimensional subspace of H and u ∈ BV (X, γ).
Then, with the notation of Section 3, uy(z) = u(y, z) ∈ BV (F, γF ) for γ⊥-a.e. y ∈
Ker(πF ) and the following identity of Borel measures holds:∫

B

|ΠF (νu)| d|Dγu| =
∫

Ker(πF )

|DγF
uy|(By) dγ

⊥(y) ∀B ∈ B(X). (15)
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Proof. Let un = Ttnu, with tn → 0, and assume with no loss of generality that (un)y(z) =
un(y, z) converge to uy in L1(F, γF ) for γ⊥-a.e. y. We have∫

Ker(πF )

∫
F

|∇(un)y| dγFdγ⊥ =

∫
X

|ΠF (∇un)| dγ

and, passing to the limit as n→∞, Fatou’s lemma and (14) give∫
Ker(πF )

lim inf
n→∞

∫
F

|∇(un)y|(x) dγF (x)dγ⊥(y) ≤
∫
X

|ΠF (νu)| d|Dγu|.

From [5, Theorem 4.1] we deduce uy ∈ BV (F, γF ) for γ⊥-a.e. y ∈ Ker(πF ) and the
inequality ∫

X

|ΠF (νu)| d|Dγu| ≥
∫

Ker(πF )

|DγF
uy|(X) dγ⊥(y). (16)

Now, the factorization γ = γ⊥ ⊗ γF yields

〈h,Dγu〉 =

∫
Ker(πF )

〈h,DγF
uy〉dγ⊥(y)

for all h ∈ F (indeed, both measures satisfy the integration by parts formula in the
direction h), hence

ΠF (νu)|Dγu| =
∫

Ker(πF )

DγF
uy dγ

⊥(y).

This immediately gives the inequality of measures

|ΠF (νu)||Dγu| ≤
∫

Ker(πF )

|DγF
uy| dγ⊥(y)

that, combined with (16), yields (15).
If we apply Theorem 4.2 to u = χE and use the finite-dimensional representation of

|DγχL| as Gm|DχL| = GmS m−1 ∂∗L we get∫
B

|ΠF (νE)| d|DγχE| =
∫

Ker(πF )

∫
By∩∂∗Ey

Gm dS
m−1dγ⊥(y) ∀B ∈ B(X), (17)

where m = dim(F ). Now, by applying the result to a finite-dimensional space X = G we
obtain the following lemma, providing a kind of inclusion between essential boundaries of
different dimensions.

Lemma 4.3. Let G be a k-dimensional Hilbert space, let F ⊂ G be a m-dimensional
subspace and let E be a set with finite perimeter in G. Then, with the orthogonal decom-
position G = F ⊕ L and the notation

Ew := {z ∈ F : w + z ∈ E} w ∈ L

we have that S m−1 ({z ∈ F : z ∈ ∂∗Ew, w + z /∈ ∂∗E}) = 0 for S k−m-a.e. w ∈ L.
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Proof. Take B = G \ ∂∗E in (17), so that the left hand side vanishes. It follows that∫
∂∗Ew\(∂∗E)w

Gm dS m−1 = 0 for γ⊥-a.e. w, and therefore for S k−m-a.e. w, and, since

Gm > 0, S m−1(∂∗Ew \ (∂∗E)w) = 0.

5 Representation of the perimeter measure

In this section we reproduce with minor variants Hino’s representation result of the perime-
ter measure, recently obtained in [19].

Definition 5.1 (Cylindrical essential boundary). Let F be a countable set of finite-
dimensional subspaces of H stable under finite union, with ∪F∈FF dense in H. For
F ∈ F , with the notation (8), we define

∂∗FE := {y + z : y ∈ Ker(πF ), z ∈ ∂∗Ey}

where ∂∗Ey is the essential boundary of Ey in F . It is not difficult to show that ∂∗FE is a
Borel set. Then, we define cylindrical essential boundary ∂∗FE along F the set

∂∗FE :=
⋃
F∈F

⋂
G∈F , G⊃F

∂∗GE. (18)

Accordingly, it is also be useful the notation S∞−1
F = limF∈F S∞−1

F .
By applying the finite-dimensional De Giorgi theorem and the obvious relationDγχE =

GmDχE = GmS m−1 ∂∗E in m-dimensional spaces F , we obtain a useful representation
formula of the Hausdorff pre-measures S∞−1

F ∂∗FE:

S∞−1
F (B ∩ ∂∗FE) =

∫
Ker(πF )

|DγF
χEy |(By) dγ

⊥(y) ∀B ∈ B(X). (19)

Theorem 5.2. Let E ∈ B(X) be a set with finite γ-perimeter in X, let F be as in
Definition 5.1 and let ∂∗FE be the corresponding cylindrical essential boundary. Then

|DγχE|(B) = S∞−1
F (B ∩ ∂∗FE) ∀B ∈ B(X). (20)

In particular, ∂∗FE is uniquely determined by (20) up to S∞−1
F -negligible sets.

Proof. The basic property we claim is that ∂∗FE\∂∗GE is contained in a S∞−1
F -negligible

set whenever F ⊂ G. Indeed, if this property holds we can apply Proposition 3.3 with
AF = ∂∗FE to obtain the existence of the limit of the measures S∞−1

F ∂∗FE and its
coincidence with S∞−1

F ∂∗FE.
The proof of the claim follows from the purely finite-dimensional result proved in Lemma 4.3.
Indeed, let us write G = L⊕ F and let m = dim(F ), k = dim(G), so that L is (k −m)-
dimensional. We consider the orthogonal decomposition H = G⊥ ⊕ L⊕ F , so that γ can
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be written as the product γ⊥ ⊗ γL ⊗ γF , γF , γL being standard Gaussians in F and L,
respectively. Then, denoting the variable in F⊥ by (y, w) with y ∈ Ker(πG) and w ∈ L,
we have

S∞−1
F (B) =

∫
Ker(πG)

∫
L

S m−1(By,w) dγL(w)dγ⊥(y).

Hence, B is S∞−1
F -negligible if, for γ⊥-a.e. y ∈ Ker(πG), the set By,w ⊂ F is S m−1-

negligible for γL-a.e. w.
Now, let us check that B := ∂∗FE \ ∂∗GE has this property; indeed, the slicing theory

of sets of finite perimeter illustrated in Section 4 shows that

Ey := {w + z ∈ L⊕ F : y + w + z ∈ E} ⊂ G

has finite γ-perimeter, and hence locally finite Euclidean perimeter, for γ⊥-a.e. y ∈
Ker(πG). For any such y, by applying Lemma 4.3 to Ey, and taking into account that

By,w = {z ∈ F : z ∈ ∂∗(Ey)w, (w, z) /∈ ∂∗Ey}

we have that By,w is S m−1-negligible for S k−m-a.e. w, and then for γL-a.e. w. This
proves the claim.

Now we show that S∞−1
F ∂∗FE = |DγχE|. Indeed, we can use (19) and Theorem 4.2

with u = χE to get
S∞−1
F ∂∗FE = |ΠF (νE)||DγχE|.

This proves that all measures in the left hand side are less than |DγχE|, and considering
an increasing family (Fn) ⊂ F whose union is dense one obtains that the limit of these
measures is |DγχE|.

6 Sobolev-rectifiability of the essential boundary

In this Section we prove that the perimeter measure |DγχE| is concentrated on a countable
union of (entire) graphs of Sobolev functions. Since the perimeter measure is representable
as in (20), this yields as a byproduct that the same property holds for the cylindrical
essential boundary ∂∗FE built from a countable family F of finite-dimensional subspaces
of H, namely this set is contained, up to S∞−1

F -negligible sets, in a countable union of
graphs of Sobolev functions.

We fix a set E with finite perimeter and a unit vector in the Cameron-Martin space
k = Qx∗, x∗ ∈ X∗, and uniquely write any element x ∈ X as y + tk with

t = 〈x∗, x〉, y ∈ Ker(πF ),

πF (x) = 〈x∗, x〉k being the canonical projection map from X to F := Rk. The measure
γk in the resulting product decomposition γ = γk ⊗ γ⊥ is the law under t 7→ tk of the

12



standard 1-dimensional Gaussian measure γ1 = G1L 1 in R. If E ⊂ X is a set with finite
perimeter, with the notation

Ey := {t ∈ R : y + tk ∈ E}

(unlike the previous sections, here we directly view Ey as subsets of R), Theorem 4.2 gives∫
B

|〈νE, k〉| d|DγχE| =
∫

Ker(πF )

|Dγ1χEy |(By) dγ
⊥(y) ∀B ∈ B(X). (21)

In particular this gives
(Id− πF )]|〈νE, k〉||DγχE| � γ⊥. (22)

In the sequel we use the notation ψ∗ for the function ψ′(t)−tψ(t); notice that ψ∗ = ∂∗ψ
in the 1-dimensional Gaussian space (R, G1L 1).

Lemma 6.1. For all ψ ∈ C1
c (R) the map ψ̂ : Ker(πF ) → R defined by

ψ̂(y) :=

∫
R
ψ dDγ1χEy

belongs to BV (Ker(πF ), γ⊥) and

|Dγ⊥ψ̂| ≤ sup |ψ∗|(Id− πF )]|Π⊥
FνE||DγχE|, (23)

where Π⊥
F : H → H denotes the orthogonal projection on k⊥. In addition, it belongs to

W 1,1(Ker(πF ), γ⊥) if

|DγχE|
(
{x ∈ X : 〈νE(x), k〉 = 0}

)
= 0. (24)

Proof. First of all we notice that an integration by parts gives that ‖ψ̂‖∞ ≤ sup |ψ∗|.
We fix a unit vector h ∈ k⊥ and g ∈ FC1

b (X). Then, we get∫
Ker(πF )

∂∗hg(y)ψ̂(y) dγ⊥(y) =

∫
Ker(πF )

∂∗hg(y)

∫
R
ψ(t) dDγ1χEy(t) dγ

⊥(y)

=−
∫

Ker(πF )

∂∗hg(y)

∫
Ey

ψ∗(t)G1(t) dtdγ
⊥(y)

=−
∫
E

∂∗hg(x− 〈x∗, x〉k)ψ∗(〈x∗, x〉) dγ(x)

=−
∫
E

∂∗h [g(x− 〈x∗, x〉k)ψ∗(〈x∗, x〉)] dγ(x)

=

∫
X

g(x− 〈x∗, x〉k)ψ∗(〈x∗, x〉)〈νE(x), h〉|DγχE|(x),
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where we used the product rule ∂∗h(fg) = f∂∗hg if ∂hf = 0.
Hence, estimating |〈νE(x), h〉| with |Π⊥

F (νE)| gives∣∣∣∣∫
Ker(πF )

∂∗hg(y)ψ̂(y) dγ⊥(y)

∣∣∣∣ ≤ sup |ψ∗|
∫

Ker(πF )

|g| d(Id− πF )]|Π⊥
F (νE)||DγχE|.

Since g is arbitrary, Daniell’s theorem (see e.g. [8, Theorem 7.8.1]) gives that ψ̂ has a weak
derivative along the direction h, given by a measure νh satisfying |νh| ≤ sup |ψ∗|(Id −
πF )]|Π⊥

F (νE)||DγχE|. Since h is arbitrary and the upper bound does not depend on

h, it is easy to derive from this fact (see Proposition 3.4 of [5] for details) that ψ̂ ∈
BV (Ker(πF ), γ⊥) and (23) holds. If (24) holds, then

|Dγ⊥ψ̂| ≤ sup |ψ∗|(Id− πF )]|DγχE| � sup |ψ∗|(Id− πF )]|〈νE, k〉||DγχE|

because 〈νE, k〉 6= 0 |DγχE|-a.e. in X. We conclude from (22) that |Dγ⊥ψ̂| � γ⊥, i.e., the

Sobolev regularity of ψ̂.

Remark 6.2. The previous result can be also interpreted in a more abstract form by
saying that the map y 7→ Dγ1χEy is a BV function with values in the space of bounded
measures in R endowed with a suitable (weak) distance. Even though this interpretation
does not play any role in this paper, we think it is worthwhile to present this point of
view. Let (Z, θ) be a Gaussian space. Following [1], a function u : Z → Y with values in
a metric space Y is said to have bounded variation if:

(i) for any 1–Lipschitz map ϕ : Y → R the map ϕ ◦ u : Z → R belongs to BV (Z, θ);

(ii) the supremum of the family of measures |Dθ(ϕ ◦ u)|, among all ϕ : Y → R 1–
Lipschitz, is a positive finite measure in Z.

The supremum in (ii) is again called total variation measure of u, and denoted by |Dθu|.
In our case Z = Ker(πF ), θ = γ⊥, Y = M (R) endowed with the distance

d(µ, ν) := sup

{∫
R
ψ dµ−

∫
R
ψ dν : ψ ∈ C1

c (R), max{sup |ψ|, sup |ψ∗|} ≤ 1

}
.

If ψ ∈ C1
c (R) with |ψ| ≤ 1 and |ψ∗| ≤ 1, then ψ̂(µ) :=

∫
R ψ dµ is clearly 1–Lipschitz in

(Y, d); on the other hand, we have also

|Dγ⊥ψ̂| ≤ (Id− πF )]|Π⊥
FνE||DγχE|.

Hence, it follows that y 7→ Dγ1χEy is BV from Ker(πF ) to (M (R), d) and that its total
variation is less than (Id− πF )]|Π⊥

FνE||DγχE|.
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The next lemma (applied with σ = |DγχE| and f = νE) shows that the set of “good”
directions k ∈ QX∗ satisfying (24) is dense.

Lemma 6.3. Let σ ∈ M+(X) and f : X → H with f 6= 0 σ-a.e. in X. Then the set of
vectors k ∈ QX∗ satisfying

σ
(
{x ∈ X : 〈f(x), k〉 = 0}

)
= 0

is dense in H.

Proof. First we build θ ∈ P(H) concentrated on QX∗, with (topological) support
equal to the whole of H and satisfying θ(h⊥) = 0 for all h ∈ H \ {0}. To this aim, we
consider in the space RN∗ , N∗ = N \ {0}, a product θ̃ of centered Gaussian measures γi
with variance c2i > 0; since∫

RN∗

∑
i

|xi| dθ̃ =

∫
R
|t|G1(t) dt

∑
i

ci,

if (ci) ∈ `1 we can consider θ̃ as a Gaussian measure in `1. It is not difficult to check that
its support is the whole of `1: indeed, if (di) ∈ `1 and di = 0 for i sufficiently large, then
(di/c

2
i ) ∈ (`1)

∗ and Q(di/c
2
i ) = (di); this proves that the Cameron-Martin space of θ̃ is

dense in `1. Now, if B were a ball with θ̃(B) = 0 we could shift B along Cameron-Martin
directions to obtain a countable family of θ̃-negligible balls covering the whole of `1, a
contradiction.

Then, we consider the continuous map

Φ : `1 7→ H, Φ((xi)) :=
∑
i

xiei,

where ei = Qe∗i is an orthonormal basis of H made by vectors in QX∗, and define θ := Φ]θ̃.
The continuity of Φ ensures the inclusion supp(θ) ⊃ Φ(supp(θ̃)), hence the support of θ
contains Φ(`1) and therefore coincides with the whole of H. On the other hand, since the
image of Φ is contained in {∑

i

xiQe
∗
i : (xi) ∈ `1

}
and this set is contained in QX∗, we obtain that θ is concentrated on QX∗. Finally, we
check that θ(k⊥) = 0 for all k =

∑
i viei ∈ H \ {0}: by the definition of θ, we need to

check that
θ̃
(
{x ∈ `1 :

∑
i

xivi = 0}
)

= 0. (25)

Since (xi) are independent, Gaussian with variance c2i , it turns out that
∑

i xivi is a
Gaussian random variable with variance

∑
i v

2
i c

2
i > 0, hence (25) holds.
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Since the support of θ is the whole of H, it suffices to show that the set of vectors
k ∈ QX∗ satisfying

σ
(
{x ∈ X : 〈f(x), k〉 = 0}

)
> 0

is θ-negligible. By applying Fubini’s theorem, it suffices to show that the set of all x ∈ X
satisfying

θ
(
{k ∈ H : 〈f(x), k〉 = 0}

)
> 0

is σ-negligible. But, by our construction of θ, the latter set is empty.
We make a particular choice of the functions ψ in Lemma 6.1; we start by considering

cut-off functions ηt0,r,ε of class C1, having support contained in [t0 − r− ε, t0 + r+ ε] and
identically equal to 1 on [t0 − r, t0 + r]. We then have that the family

D :=

{
t

G1(t)
ηt0,r,ε(t) : t0 ∈ Q, r, ε ∈ Q+

}
is countable and any function ψ̂, ψ ∈ D, belongs to BV (Ker(πF ), γ⊥) and to the Sobolev
space W 1,1(Ker(πF ), γ⊥) if (24) holds.

Definition 6.4 (H-graph). A set Γ ⊂ X is called a H–graph if there exist a unit vector
k ∈ QX∗ and u : D ⊂ Ker(πF ) → R such that

Γ = {y + u(y)k : y ∈ D}.

We say that Γ is an entire Sobolev H–graph if D ∈ B(Ker(πF )), γ⊥
(
Ker(πF ) \ D

)
= 0

and u ∈ W 1,1(Ker(πF ), γ⊥).

Theorem 6.5. For any set E ⊂ X with finite perimeter the measure |DγχE| is concen-
trated on a countable union of entire Sobolev H–graphs.

Proof. We fix a good direction k = Qx∗ satisfying (24) and prove the property
for the measure |〈νE, k〉||DγχE|, using the fact that all functions ψ̂ are Sobolev; then,
Lemma 6.3 provides the density of good directions and the validity of the statement for
the whole measure |DγχE|.

We consider the set D ⊂ Ker(πF ) of all y such that Ey has finite perimeter in (R, γ1);
this set has full γ⊥-measure in Ker(πF ). Then, we study the map

y ∈ D 7→ Dγ1χEy .

Such measures are atomic and, because of the identity Dγ1χL = G1DχL, have the form∑
i∈I

G1(ti)δti
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with I finite or countable. For y ∈ D we denote by Ay the set of atoms of Dγ1χEy ; notice
that the set is discrete, since G1 is locally bounded away from 0 and Dγ1χEy has finite
mass. We fix a point t̄ ∈ Ay; then, there exists ψ(t) = tG−1

1 (t)ηt0,r,ε(t) ∈ D such that

[t0 − r − ε, t0 + r + ε] ∩Ay = {t̄}, t̄ ∈ [t0 − r, t0 + r].

We then have

ψ̂(y) =

∫
R
ψ dDγ1χEy =

∑
t∈Ay

tηt0,r,ε(t) = t̄,

so that
{y + tk : y ∈ D, t ∈ Ay} ⊂

⋃
ψ∈D

graph(ψ̂).

Since, by (21), |〈νE, k〉||DγχE| is concentrated on {y + tk : y ∈ D, t ∈ Ay} the proof is
achieved.

7 Further extensions, open problems

In this section we discuss some open problems related to the rectifiability result and
potential alternative definitions of essential and reduced boundary. In connection with
the latter problem, the motivation we have in mind is to try to achieve coordinate-free
definitions, i.e., independent of the family of finite-dimensional subspaces.

A first natural question is whether the Sobolev rectifiability result can be improved
to a Lipschitz one, namely whether |DγχE| is concentrated on countably many graphs
of W 1,∞ functions (i.e., Lipschitz in the Cameron-Martin directions). In the Euclidean
space Rm there is not a real difference between the two concepts, since Sobolev (and even
BV ) functions can be approximated in the Lusin sense by Lipschitz maps (and even by
C1 maps, using Whitney’s extension theorem [13, 3.1.14]). By Lusin approximation we
mean, here, that L m-almost all of Rm can be covered by a sequence of sets Eλ such that
u|Eλ

is Lipschitz. In order to obtain this approximation for u ∈ W 1,1(Rm) it suffices to
consider the pointwise inequality

|ũ(x)− ũ(y)| ≤ c(m)|x− y|
[
M |∇u|(x) +M |∇u|(y)

]
(see for instance [3, Theorem 5.34]). Here M |∇u| is the Hardy-Littlewood maximal
function of |∇u| and ũ is the approximate limit of u at x, coinciding with u at L m-
a.e. point. Considering the restriction of ũ to {M |∇u| ≤ λ} ∩ {u = ũ} we obtain that ũ
is a Lipschitz function; these Lipschitz functions, possibly extended to the whole of Rm,
provide the desired Lusin approximation of u.
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Let us now discuss other potential definitions of essential and reduced boundary. We
start by recalling the following maximal inequality for the Ornstein-Uhlenbeck semigroup
Tt in (4), see [22, Page 73]:

‖ sup
t>0

Ttf‖p ≤ Cp‖f‖p f ∈ Lp(X, γ), 1 < p <∞.

Since Cb(X) is dense in Lp(X, γ) and Ttf → f pointwise as t ↓ 0 on Cb, for all p ∈ (1,∞)
we can use a classical decomposition argument to infer

lim
t↓0

Ttf(x) = f(x) for γ-a.e. x ∈ X, for all f ∈ Lp(X, γ)

from the maximal inequality. Of course this is still valid for L∞ functions and motivates
the following definition:

Definition 7.1 (Gaussian Essential boundary). Let E ∈ B(X); we denote by ∂∗E the
set of points x ∈ X where either TtχE(x) does not have a limit as t ↓ 0, or the limit exists
and belongs to (0, 1).

Obviously ∂∗χE is γ-negligible and the definition is easily seen to be consistent with
the finite-dimensional case (heuristically, Tt amounts to an average of averages on balls
with radius r ∼

√
t). Notice however that, in order to turn really Definition 7.1 into a

pointwise definition, one should work with precise representatives of Sobolev functions,
well defined out of sets with 0 capacity: indeed, even though TtχE is not continuous, is
known to be a function in W 1,1(X, γ) (see [16] or [5]). Additional difficulties arise from
the fact that a continuum of times t is considered, and that t 7→ Tt(x) is not necessarily
continuous.

Let us now discuss the reduced boundary. De Giorgi’s definition in Euclidean spaces
requires x ∈ supp |DχE|, existence of the limit

νE(x) := lim
r↓0

DχE(Br(x))

|DχE|(Br(x))|
(26)

and |νE(x)| = 1, so that at points in FE the unit inner normal is also pointwise defined.
In our infinite-dimensional framework we start from the observation that Tt, t > 0,

can be extended to an operator T ∗t : M (X) → M (X) by duality:

〈T ∗t µ, φ〉 = 〈µ, Ttφ〉 φ bounded Borel.

Componentwise, the definition can be extended to vector-valued measures as well. More-
over, we know that

T ∗t Dγu = et(∇Ttu)γ.
Now we have all the ingredients for a potential definition of Gaussian reduced bound-

ary:
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Definition 7.2 (Gaussian Reduced boundary). Let E ∈ B(X); we denote by FE the
set of points x ∈ X where the limit

νE(x) := lim
t↓0

Tt

(
T ∗t DγχE
T ∗t |DγχE|

)
(x)

exists and satisfies |νE(x)| = 1.

Even this definition is fully consistent with the finite-dimensional case. But, in this
framework no analog of Besicovitch differentiation theorem holds, hence it is not clear
whether |DχE|-a.e. point belongs to the Gaussian reduced boundary FE. In addition,
the same difficulties (precise representatives, continuity in time) as Definition 7.1 are
present here.

More generally, the relations between cylindrical essential boundary, dependent on the
family of subspaces, essential boundary and reduced boundary are still to be understood,
and this seems to be a challenging open question. To conclude, we recall the relations,
already mentioned in the introduction, between these concepts in the case of the Euclidean
space Rm:

FE ⊂ ∂∗E, S m−1(∂∗E \FE) = 0, DχE = νES m−1 FE.
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topics in Kyoto in honour of Kiyoshi Itô, Advanced Studies in Pure Mathematics,
41 (2004), 121–140.

[19] M. Hino: Sets of finite perimeter and the Hausdorff–Gauss measure on the Wiener
space. J. Funct. Anal., 258 (2010), 1656–1681.

[20] M. Ledoux: Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory
and Statistics. Saint Flour, 1994, Lecture Notes in Mathematics, 1648, Springer, 1996,
165–294.

20



[21] D.Preiss: Gaussian measures and the density theorem. Comment. Math. Univ.
Carolin., 22 (1981), 181–193.

[22] E.M. Stein: Topics in Harmonic Analysis related to the Littlewood-Paley theory.
Annals of Mathematics Studies 63, Princeton University Press, 1970.

21


