Solitary Waves for
Nonlinear Klein-Gordon-Maxwell and
Schrodinger-Maxwell Equations

Teresa D’Aprile* Dimitri Mugnaif

Abstract

In this paper we study the existence of radially symmetric solitary
waves for nonlinear Klein-Gordon equations and nonlinear Schrédinger
equations coupled with Maxwell equations. The method relies on a
variational approach and the solutions are obtained as mountain-pass
critical points for the associated energy functional.

1 Introduction

This paper has been motivated by the search of nontrivial solutions for the
following nonlinear equations of the Klein-Gordon type:

—— =AY +mPp — [P =0, z€R3, (1.1)

or of the Schrodinger type:

o h?
h— = ———Atp — [P R? 1.2
it = — LAy — gy, o e R, (12)
where 7 >0, m>0,p>2, 9 : R} xR = C.
In recent years many papers have been devoted to find standing waves
of (1.1) or (1.2), i.e. solutions of the form

P(z,t) = elu(z), weR.
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With this Ansatz the nonlinear Klein-Gordon equation, as well as the non-
linear Schrodinger equation, is reduced to a semilinear elliptic equation and
existence theorems have been established whether u is radially symmetric
and real (see [8], [9]), or u is non-radially symmetric and complex (see [13],
[16]). In this paper we want to investigate the existence of nonlinear Klein-
Gordon or Schrodinger fields interacting with an electromagnetic field E—H;
such a problem has been extensively pursued in the case of assigned elec-
tromagnetic fields (see [3], [4], [12]). Following the ideas already introduced
in [5], [6], [7], [10], [11], [14], [15], we do not assume that the electromag-
netic field is assigned. Then we have to study a system of equations whose
unknowns are the wave function ¢ = ¢(z, t) and the gauge potentials A, ®,

ARXxRSR, :RExRoR

which are related to E — H by the Maxwell equations

B - - (ve+ )

ot
H = VxA.

Let us first consider equation (1.1). The Lagrangian density related to
(1.1) is given by

1[| 0y
I

2
1
Lra =3 — |Vl - m2|¢|2] oWl

The interaction of 1) with the electromagnetic field is described by the min-
imal coupling rule, that is the formal substitution

0 o . .
a»—>&+ze®, Vi— V —ieA,

where e is the electric charge. Then the Lagrangian density becomes:

1floy . |
Lram = 5 H(;f + 1ep®

|V — ieApf — m2|w|2] + 2P

If we set .
(e, t) = ulz, )Y,

where u, S : R® x R — R, the Lagrangian density takes the form

1 1
Lram = 2{“? — |Vul® - [|VS —eA? — (S;+e®)* + m2] u2} + ];|u|p.
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Now consider the Lagrangian density of the electromagnetic field E — H,
1 1 1
Lo = §(|E|2 —|H)*) = gl Ar+ Vo[ — 51V % A% (1.3)
Therefore, the total action is given by

S://EKGM+E0.

Making the variation of S with respect to u, S, ® and A respectively, we
get

Uy — Au +[|[VS — eA]? — (S; + e®)? + m?|u — |ulf~*u = 0, (1.4)
d 2 . 2

= [(St +ed)u } — div[(VS — eA)u?] = 0, (1.5)

div(A; + V®) = e(S; + e®)u?, (1.6)

V x (VxA)+ %(At + V®) = ¢(VS — eA)u?. (1.7)

We are interested in finding standing (or solitary) waves of (1.4)-(1.7),
that is solutions having the form

u=u(z), S=wt, A=0, ®=2(z), weR.

Then the equations (1.5) and (1.7) are identically satisfied, while (1.4) and
(1.6) become

—Au+ [m? — (w+ e®)?Ju — |uP%u =0, (1.8)

—Ad + ud = —ewu’. (1.9)

In [6] the authors proved the existence of infinitely many symmetric
solutions (uy, ®,) of (1.8)-(1.9) under the assumption 4 < p < 6, by using
an equivariant version of the mountain pass theorem (see [1], [2]).

The object of the first part of this paper is to extend this result as follows.

Theorem 1.1. Assume that one of the following two hypotheses hold: either
a) m>w>0and 4 <p<6,
or

b) myp—2>+v2w>0and 2 <p < 4.
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Then the system (1.8) — (1.9) has infinitely many radially symmetric solu-
tions (upn, @), up Z 0 and @, £ 0, with u, € H'(R3), &, € L5(R3) and
|V®,| € L2(R3).

In the second part of the paper we study the Schrodinger equation for a
particle in a electromagnetic field.
Consider the Lagrangian associated to (1.2):

Y

K2 1
Lg = z/)—flw)l2 +I;I1/)Ip-

By using the formal substitution

0 0
g — g +i @ Vi— V- Zﬁ
we obtain
1[..0 1
Lo = 2 [in205 — capp — I oy — i au|"] + Lo
2 8t p
Now take

P(z,t) = u(z, )@/,
With this Ansatz the Lagrangian Lg)s becomes

1 h? 1 1
Loy = = |ihuug — —|Vul? — [ S; 4+ e® + ——|VS —eA|? ) u?| + — [P
2 2m 2m P

Proceeding as in [5], we consider the total action S = [ [[Lom + o (|EJ* —
|H|?)] of the system “particle-electromagnetic field”. Then the Euler—Lagrange
equations associated to the functional S = S(u, S, ®, A) give rise to the fol-
lowing system of equations:

h2 1 2 p—2
o Aut (St+e<1>+%|VS—eA| Ju— ful’2u =0, (1.10)
%u + dlv[(VS —eA)u’] =0, (1.11)
0A
2 P T
eu” = 47lev (825 + V@) (1.12)

€ ug_ o_ 1|0 [(0A
5 (VS —eA)u _47r[8t<8t +V®) +Vx(VxA)|. (1.13)
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If we look for solitary wave solutions in the electrostatic case, i.e.
u=u(z), S=wt, ®=(z), A=0, weR,

then (1.11) and (1.13) are identically satisfied, while (1.10) and (1.12) be-

come )
h
———Au+ edu — |ulP"?u + wu = 0, (1.14)
2m
—AD = 4reu’. (1.15)

The existence of solutions of (1.14)-(1.15) was already studied for 4 <
p < 6: in [5] existence of infinitely many radial solutions was proved, while
in [13] existence of a non radially symmetric solution was established. In
the second part of the paper we prove the following result.

Theorem 1.2. Let w > 0 and 4 < p < 6. Then the system (1.14) — (1.15)
has at least a radially symmetric solution (u,®), u # 0 and ® # 0, with
u € HY(R?), ® € L5(R?) and |V®| € L?(R?).

2 Nonlinear Klein-Gordon Equations coupled with
Maxwell Equations

In this section we will prove Theorem 1.1. For sake of simplicity, assume
e =1 so that (1.8)-(1.9) give rise to the following system in R3:

—Au+[m* — (w + ®)*Ju — [ufP~?u =0, (2.16)
—AD +ud = —wu’. (2.17)
Assume that one of the following hypotheses hold: either
a) m>w>0,4<p<6,
or

b) myvp—2> V2w >0,2<p<4
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We note that ¢ = 6 is the critical exponent for the Sobolev embedding
H'(R3) C LY(R3).

It is clear that (2.16)-(2.17) are the Euler-Lagrange equations of the
functional F : H' x D%? — R defined as

1 1
@) = /R (196 = [V + fm = @+ 8u?) do — /R up? da.

Here H'! = H'(R?) denotes the usual Sobolev space endowed with the norm

lull g = (/RS <|Vu|2 + |u|2> dm) v (2.18)

and D%? = DV2(R?) is the completion of C§°(R3,R) with respect to the

norm
1/2
ull prz = (/ |Vu|2dx> . (2.19)
RS

The following two propositions hold.

Proposition 2.1. The functional F belongs to C'(H' x D%“2,R) and its
critical points are the solutions of (2.16) — (2.17).

(For the proof we refer to [6]).

Proposition 2.2. For every u € H', there exists a unique ® = ®[u] € D'?
which solves (2.17). Furthermore

(i) ®[u] <0;
(ii) @[u] > —w in the set {z|u(z) # 0};
(iii) if u is radially symmetric, then ®[u] is radial, too.

Proof. Fixed u € H', consider the following bilinear form on D2 :
) = [ | (VO + ) do.

Obviously a(¢,$) > ||¢]|%:... Observe that, since H'(R?) C L*(R?), then
u? € L*?(R3). On the other hand D'? is continuously embedded in LS(R3),
hence, by Holder’s inequality,

a(¢, ) < gl pre$llpre+llu®ll sl bl sl ¥lle < A+CllullZs)@llprelly] pre
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for some positive constant C, given by Sobolev inequality (see [20]). There-
fore a defines an inner product, equivalent to the standard inner product in
D2,

Moreover H'(R?) ¢ L'?/5(R?), and then

‘ / u? du
R3

Therefore the linear map ¢ € D2 — fRB u?y dz is continuous. By Lax-
Milgram Lemma we get the existence of a unique ® € D'? such that

< [l pors 19l ze < ellullf s [l pre. (2.20)

/R (Vovy + W Q1) dr = —w /

u?pdr Vi € D2,
R3

i.e. @ is the unique solution of (2.17). Furthermore ® achieves the minimum

. 1
¢6H11)f1,2 /R3 <2<|V¢|2 +u2|¢|2> +wu2q§> dx

1
:/ <2(|vq>|2+u2|<1>|2) +wu2<1>> dz.
R3

Note that also —|®| achieves such a minimum; then, by uniqueness, ® =
—|®| < 0. Now let O(3) denote the group of rotations in R3. Then for every
g € O(3) and f : R® = R, set Ty(f)(z) = f(g9z). Note that T, does not
change the norms in H', DY and LP. In Lemma 4.2 of [6] it was proved
that Tg®[u] = ®[T,u]. In this way, if u is radial, we get Ty ®[u] = P[u].

Finally, following the same idea of [17], fixed u € H!, if we multiply
(2.17) by (w + @[u])” = —min{w + ®[u],0}, which is an admissible test
function, since w > 0, we get

—/ | D®[u]|? dw—/ (w + ®[u])?u? dz = 0,
Plul<—w Plul<—w

so that ®[u] > —w where u # 0. O

Remark 2.3. The result (ii) of Proposition 2.2 can be strengthened in some
cases. Indeed, take @ in H!(R3) N C™ radially symmetric such that

%>01in B(0,R), w =0 in R3\B(0,R)
for some R > 0. Then there results

—w < dE(z) <0 VzeR3
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In fact, since ®[u] solves (2.17), by standard regularity results for elliptic
equations, u € C'*° implies ®[u] € C*°. By Proposition 2.2, ®[u] is radial;
moreover ®[u] is harmonic outside B(0, R). Since ®[u] € D'2, then

afa(x) = -

= lal2 R,

|z]

for some ¢ > 0. Setting d(r) = ®[a)(z) for |z| = r, it results ®'(R) > 0 and

®(r) > ®(R) for every r > R. Therefore the minimum of ®[u] is achieved

in B(0, R). Let T be a minimum point for ®[a]. Then (2.17) implies
—wu?(T) + AP[u](T)

ofi() = LS >

In view of proposition 2.2, we can define the map
$:H' — D

which maps each v € H! in the unique solution of (2.17). From standard
arguments it results ® € C'(H', D'?) and from the very definition of ® we
get

Fi(u,®[u]) =0 VueH". (2.21)

Now let us consider the functional
J:H' — R, J(u) := F(u, ®lu]).
By proposition 2.1, J € C'(H',R) and, by (2.21),
J (u) = F),(u, ®[ul).
By definition of F', we obtain

T(u) = 1/RS (IVal? = [VO[u)f? + [m? — w?u? — 2B[u]?) da

2
2 ].
—w [ uPu] — - |ul?P dx.
R3 b Jrs

Multiplying both members of (2.17) by ®[u] and integrating by parts,
we obtain

2 2 2 = —Ww U2 u|axr. .
Lottt [ eae = —o [ uPellde (222
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Using (2.22), the functional J may be written as

1 1
J(u) = / (IVul® + [m* — w?u? — wu?®[u]) dz — / |ulP dz. (2.23)
2 R3 P JRr3
The next lemma states a relationship between the critical points of the
functionals ' and J (the proof can be found in [6]).
Lemma 2.4. The following statements are equivalent:
i) (u,®) € H' x DY2 is a critical point of F,
i) w is a critical point of J and ® = ®[u].

Then, in order to get solutions of (2.16)-(2.17), we look for critical points
of J.

Theorem 2.5. Assume hypotheses a) and b). Then the functional J has
infinitely many critical points u, € H' having a radial symmetry.

Proof. Our aim is to apply the equavariant version of the Mountain-Pass
Theorem (see [1], Theorem 2.13, or [18], Theorem 9.12). Since J is invariant
under the group of translations, there is clearly a lack of compactness. In
order to overcome this difficulty, we consider radially symmetric functions.
More precisely we introduce the subspace

H' ={ueH' |u(z) =u(]z|)}.
We divide the remaining part of the proof in three steps.

Step 1. Any critical point u € H} of J| . is also a critical point of J.

Hy

The proof can be found in [6].

Step 2. The functional J) . satisfies the Palais-Smale condition, i.e.

Hy
any sequence {up}y, C H} such that J(uy) is bounded and J|’H1(un) -0
contains a convergent subsequence.

For the sake of simplicity, from now on we set @ = m? —w? > 0. Let
{un}n C H} be such that

[T (un)| < M, Ty () = 0
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for some constant M > 0. Then, using the form of J given in (2.23),

pd (un) — J (up)uy, = (g - 1) /R3 (IVun|* + Quy|?) dz

—w <]23 - 2) /R3 u? ®fuy] dr + /R3 uZ (®[uy])? dx

> (g - 1) /R3 (1Vtin|? + Qi |?) dz — w (g - 2) /R3 W2 0uy) dz.  (2.24)

We distinguish two cases: either p > 4 or 2 < p < 4.
If p > 4, by (2.24), using Proposition 2.2, we immediately deduce

pJ (un) — I (up)up > (g - 1) / (1Vtn]? + Qun |?) da. (2.25)
R3
Moreover, by hypothesis a)

(13 - 1) / (V| + Quin]?) dz > e |Jun |2, (2.26)
2 R3

and by assumption
pd (un) — J (up)un < pM + c2||un| (2.27)

for some positive constants ¢; and cso.

Combining (2.25), (2.26), (2.27), we deduce that {u,}, is bounded in
HL.

If 2 < p < 4, by Proposition 2.2 and (2.24) we get

pd (up)—J" (up)un > (g - 1) /R3 (IVun|* + Qu,|?) do—w? (2 - g) /R3 u? dzx

m2(p —2) — 2w?
= 7—1 / Vg |? + < v 2) )/R|un|2da:.

By hypothesis b) m?(p — 2) — 2w? > 0, then we repeat the same argument
as for p > 4 and obtain the bounedness of {uy,}, in H}.

On the other hand, using equation (2.17), and proceeding as in (2.20),
we get

VO[u,]|*dx S/ |V<I>[un]|2d:r+/ |t || @[] |? do = —w/ u’ ®[uy,|dx
R3 R3

R3 R3

< CW”UnH%lz/s||¢'[un]”D1f—’a
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which implies that {®[uy,]}, is bounded in D!2.
Then, up to a subsequence,

Up — U in H}

®lu,] =~ ¢  in D2
If L: H! — (H}) is defined as

L(u) = —Au + Qu,

then
L(uy) = wun®luy,] + |un|p72un + en,

where e, — 0 in (H})', that is
Un = L7 (wun ®[un]) + L7 (Jun [P~ %up) + L (en).
Now note that {un®[uy]} is bounded in ¥ %, in fact, by Holder’s inequality,
[un®[un]ll 372 < llunllr2ll@unlllze < cllunllzz ([ @lun]llpro-

/
Moreover {|u,|P~2u,} is bounded in LY (where %—i—ﬁ = 1). The immersions

H}! — L? and H} — L} are compact (see [8] or [19]) and thus, by duality,

Li'/ ? and L‘fffl are compactly embedded in (H;')’. Then by standard argu-

ments L~ (wu, ®[u,]) and L (|u,|P~2uy,) strongly converge in H}. Then
we conclude
Up, — U in H}.

Step 3. The functional J i satisfies the geometrical hypothesis of the equiv-

T

ariant version of the Mountain Pass Theorem.

First of all we observe that J(0) = 0. Moreover, by Proposition 2.2 and
(2.23),

1 Q 1
J(u) > / |Vu|? dz + / |u|? dz — / |ulP dz.
2 Jps 2 Jps P Jrs

The hypothesis 2 < p < 6 and the continuous embedding H' C LP imply
that there exists p > 0 small enough such that

inf  J(u) > 0.

llull r=p
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Since J is even, the thesis of step 3 will follow if we prove that for every
finite dimensional subset V of H} it results

lim  J(u) = —oc0. (2.28)
u€eV,
llull 1 =400

Let V be an m-dimensional subspace of H;} and let v € V. By Proposi-
tion 2.2 ®[u] > —w where u # 0, so that

1 1 1
I <5 [ (Tl + Ol +wte) do = [l < clully — ol
2 Jrs p Jrs p
and (2.28) follows, since all norms in V' are equivalent. O

Proof of Theorem 1.1. Lemma 2.4 + Theorem 2.5.

Remark 2.6. In view of Remark 2.3 the existence of one nontrivial critical
point for the functional J follows from the classical mountain pass theorem:
more precisely, taken u € H} N C* as in Remark 2.3, since ||®[u]|/c < w,
there results

t? tP
J(tw) < / (IvVal* + Q> + w’a?) do — — [ [’ — —oco as t — +oo.
2 Jrs P Jrs

3 Nonlinear Schrodinger Equations coupled with
Maxwell Equations

For sake of simplicity assume 7 = m = e = 1 in (1.14)-(1.15). Then we are
reduced to study the following system in R3:

1
—§Au + ®u + wu — |uPu = 0, (3.29)

—A® = 47u’. (3.30)
We will assume
a) w>0

b)) 4<p<6.
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Of course, (3.29)-(3.30) are the Euler-Lagrange equations of the func-
tional F : H' x D2 — R defined as

1 1 1
F(u,®) = 4/]1@3 |Vu|? dz — 67 Jas |V®|? dz + 2/]1@ (®u? + wu?) dz

1
—/ |u|P dz,
P JRrs

where H' and D? are defined as in the previous section.
It is easy to prove the analogous of Proposition 2.1, i.e. that F €
C'(H!' x D%2? R) and that its critical points are solutions of (3.29)-(3.30).
Moreover we have the following proposition.

Proposition 3.1. For every v € H' there exists a unique solution ® =
®[u] € DY? of (3.30), such that

o Ofu] > 0;
o O[tu] = t2®[u] for every u € H' and t € R.

Proof. Let us consider the linear map ¢ € DY f]RS u?¢ dz, which is
continuous by (2.20). By Lax-Milgram’s Lemma we get the existence of a
unique ® € D2 such that

VoVedr = 47T/

u?pdz V¢ € DY,
R3

R3

i.e. @ is the unique solution of (3.30). Furthermore ® achieves the minimum

1 1
inf / |V¢|2—47r/ wrpdr y = / |vq>|2dx—47r/ u?d dz.
peD12 | 2 Jps R3 2 Jgs R3

Note that also |®| achieves such minimum; then, by uniqueness, ® = |®| > 0.
Finally,

—AD[tu] = 4nt*u? = —t2AdD[u] = —A(t*®[u)),
thus, by uniqueness, ®[tu] = t2®[u). O
Proceeding as in the previous section we can define the map
®: H' — DY,

which maps each v € H' in the unique solution of (3.30). As before, ® €
CY(H', D%?) and
Fi(u,®u]) =0 Yue H'.
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Now consider the functional 7 : H! — R defined by
J (u) = F(u, ®[u]).

J belongs to C'(H',R) and satisfies J'(u) = F,(u, ®[u]). Using the defi-
nition of F and equation (3.30), we obtain

1 w 1 1
T(u) = 4/]1@3 |Vu|2dz-l—2/RS |u|2dx—|—4/Rs u2B[u] dm—p/RS uf? da.

As before, one can prove the following lemma.
Lemma 3.2. The following statements are equivalent:
i) (u,®) € H' x DY2 is a critical point of F,
i1) w is a critical point of J and ® = P[ul].

Now we are ready to prove the existence result for equations (3.29)-
(3.30).

Theorem 3.3. Assume hypotheses a’) and b’). Then the functional J has
a nontrivial critical point u € H' having a radial symmetry.

Proof. Let H} be defined as in theorem 2.5.

Step 1. Any critical point u € H} of jHl is also a critical point of J.

T

The proof is as in theorem 2.5.

Step 2. The functional jHl

T

Let {uy}n, C H} be such that

satisfies the Palais-Smale condition.

| T (un)| < M, \7|,Hr1(un) —0
for some constant M > 0. Then

pj(un) - jl(un)un

_(p_1 2 (P_ 2 p_ 2
= (4 2) /R$|Vun| +<4 1>/qu)[un]und:v+<2 1>w/Rg|un| dx
p 1 2 p 2
> (22 A2+ (-1 A% d
—(4 2>/RP,|V“| +<2 )“’/RJ“' v
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by Proposition 3.1, since p > 4. Moreover

1
(Z B 2) /R (IVul + wluf?) do > el|un|?

and by assumption
pJ (un) = I (un)un < pM + c2lunl|

for some positive constants ¢; and cso.

We have thus proved that {uy,}, is bounded in H;.

On the other hand, || ®[un]||%:2 = 47 [ps u?®[uy) dz, and then, using
inequality (2.20), we easily deduce that {®[u,]}, is bounded in D2

The remaining part of the proof follows as in Step 2 of Theorem 2.5,
after replacing L with £: H} — (H})' defined as L(u) = —4 Au + wu.

Step 3. The functional JHl satisfies the three geometrical hypothesis of the

r

mountain pass theorem.

By Proposition 3.1 it results

1 1
J(u) > / |Vu|2dx+w/ |u|2da:—/ |ul? da.
4 R3 2 R3 D Jprs3

Then, using the continuous embedding H' C LP, we deduce that J has a
strict local minimum in 0.
We introduce the following notation: if u : R?* — R, we set

Unap(x) = Mu\z), A >0, a, f€R.
Now fix u € H;}. We want to show that

Durap] = (Plul)ra2(8-a): (3.31)

In fact
—AB[uy0,5)(2) = 4w, 5(x) = 4mAPU>(\)

= — N (A2[u])(\x) = —A((R[u])r 0,2(5-a)) ().

By uniqueness (see Proposition 3.1), (3.31) follows.
Now take u # 0 in H} and evaluate

20—«
T (uxra,p) = A / |Vu|® dz + w)\Q,G—Sa/ u? dz
” 4 R3 2 R3
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)\4,87504 )\ﬂp73a
/ uw®u) do — / |ul? dz.
4 Jrs P Jrs

We want to prove that J(uyq5) < J(0) for some suitable choice of A,
a and S.

For example assume

_.l_

Op —3a <0,

Op —3a <26 —a,
Op —3a < 20 — 3a,
Op — 3a < 48 — ba,

(3.32)

then it is clear that J(uyqa,8) — —00 as A — 0.

So we look for a couple (o, 3) which satisfies (3.32). From the third
inequality we get § < 0. Combining the second and the fourth ones, we
derive

2
4—p<ﬁa<p—2. (3.33)
Such an inequality is satisfied by taking 8 = 2, which also satisfies the first
inequality in (3.32).
In a similar way one can prove that if

Bp —3a > 0,

Bp —3a>206—a,
Bp — 3a > 20 — 3a,
Bp — 3a > 40 — ba,

(3.34)

then J(uyqa,8) = —00 as A = +oo with the same choice 5 = 2.

Remark 3.4. Notice that the systems (3.32) or (3.34) have a solution for
every p > 3. More precisely for every p > 3 there is a couple («, ) which
satisfies the inequality (3.33) and, consequently, J(uy.q,3) — —oo. The
restriction p > 4 appears in proving the Palais-Smale condition.

Proof of Theorem 1.2 Lemma 3.2 + Theorem 3.3.
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