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Abstract
In this paper we study the existence of radially symmetric solitarywaves for nonlinear Klein-Gordon equations and nonlinear Schr�odingerequations coupled with Maxwell equations. The method relies on avariational approach and the solutions are obtained as mountain-passcritical points for the associated energy functional.

1 Introduction
This paper has been motivated by the search of nontrivial solutions for thefollowing nonlinear equations of the Klein-Gordon type:

@2 @t2 �� +m2 � j jp�2 = 0; x 2 R3; (1.1)
or of the Schr�odinger type:

i~@ @t = � ~22m� � j jp�2 ; x 2 R3; (1.2)
where ~ > 0; m > 0, p > 2,  : R3 �R! C:In recent years many papers have been devoted to �nd standing wavesof (1.1) or (1.2), i.e. solutions of the form

 (x; t) = ei!tu(x); ! 2 R:�Dipartimento Interuniversitario di Matematica, via E. Orabona 4, 70125 BARI (Italy),e-mail: daprile@dm.uniba.ityDipartimento di Matematica e Informatica, via Vanvitelli 1, 06123 PERUGIA (Italy),e-mail: mugnai@dipmat.unipg.it
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Solitary waves 2
With this Ansatz the nonlinear Klein-Gordon equation, as well as the non-linear Schr�odinger equation, is reduced to a semilinear elliptic equation andexistence theorems have been established whether u is radially symmetricand real (see [8], [9]), or u is non-radially symmetric and complex (see [13],[16]). In this paper we want to investigate the existence of nonlinear Klein-Gordon or Schr�odinger �elds interacting with an electromagnetic �eld E�H;such a problem has been extensively pursued in the case of assigned elec-tromagnetic �elds (see [3], [4], [12]). Following the ideas already introducedin [5], [6], [7], [10], [11], [14], [15], we do not assume that the electromag-netic �eld is assigned. Then we have to study a system of equations whoseunknowns are the wave function  =  (x; t) and the gauge potentials A, �,

A : R3 �R! R3; � : R3 �R! R
which are related to E�H by the Maxwell equations

E = ��r�+ @A@t
�

H = r�A:
Let us �rst consider equation (1.1). The Lagrangian density related to(1.1) is given by

LKG = 12
�����@ @t

����
2 � jr j2 �m2j j2�+ 1p j jp:

The interaction of  with the electromagnetic �eld is described by the min-imal coupling rule, that is the formal substitution
@@t 7�! @@t + ie�; r 7�! r� ieA;

where e is the electric charge. Then the Lagrangian density becomes:
LKGM = 12

�����@ @t + ie �����2 � jr � ieA j2 �m2j j2�+ 1p j jp:
If we set  (x; t) = u(x; t)eiS(x;t);
where u; S : R3 �R! R, the Lagrangian density takes the form
LKGM = 12

�u2t � jruj2 �
�jrS � eAj2 � (St + e�)2 +m2�u2�+ 1p jujp:
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Now consider the Lagrangian density of the electromagnetic �eld E�H,

L0 = 12(jEj2 � jHj2) = 12 jAt +r�j2 � 12 jr �Aj2: (1.3)
Therefore, the total action is given by

S = Z Z LKGM + L0:
Making the variation of S with respect to u, S, � and A respectively, weget

utt ��u+ [jrS � eAj2 � (St + e�)2 +m2]u� jujp�2u = 0; (1.4)
@@t
h(St + e�)u2i� div[(rS � eA)u2] = 0; (1.5)

div(At +r�) = e(St + e�)u2; (1.6)
r� (r�A) + @@t(At +r�) = e(rS � eA)u2: (1.7)

We are interested in �nding standing (or solitary) waves of (1.4)-(1.7),that is solutions having the form
u = u(x); S = !t; A = 0; � = �(x); ! 2 R:

Then the equations (1.5) and (1.7) are identically satis�ed, while (1.4) and(1.6) become
��u+ [m2 � (! + e�)2]u� jujp�2u = 0; (1.8)

���+ e2u2� = �e!u2: (1.9)
In [6] the authors proved the existence of in�nitely many symmetricsolutions (un;�n) of (1.8)-(1.9) under the assumption 4 < p < 6, by usingan equivariant version of the mountain pass theorem (see [1], [2]).The object of the �rst part of this paper is to extend this result as follows.

Theorem 1.1. Assume that one of the following two hypotheses hold: either
a) m > ! > 0 and 4 � p < 6,

or
b) mpp� 2 > p2! > 0 and 2 < p < 4.
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Then the system (1:8) � (1:9) has in�nitely many radially symmetric solu-tions (un;�n), un 6� 0 and �n 6� 0, with un 2 H1(R3), �n 2 L6(R3) andjr�nj 2 L2(R3).

In the second part of the paper we study the Schr�odinger equation for aparticle in a electromagnetic �eld.Consider the Lagrangian associated to (1.2):
LS = 12

�i~@ @t  � ~22m jr j2
�+ 1p j jp:

By using the formal substitution
@@t 7�! @@t + i e~�; r 7�! r� i e~A;

we obtain
LSM = 12

�i~@ @t  � e�j j2 � ~22m
���r � i e~A 

���2�+ 1p j jp:
Now take  (x; t) = u(x; t)eiS(x;t)=~:
With this Ansatz the Lagrangian LSM becomes
LSM = 12

�i~uut � ~22m jruj2 �
�St + e�+ 12m jrS � eAj2�u2�+ 1p j jp:

Proceeding as in [5], we consider the total action S = R R [LSM + 18� (jEj2 �jHj2)] of the system \particle-electromagnetic �eld". Then the Euler-Lagrangeequations associated to the functional S = S(u; S;�;A) give rise to the fol-lowing system of equations:
� ~22m�u+ �St + e�+ 12m jrS � eAj2�u� jujp�2u = 0; (1.10)

@@tu2 + 1mdiv[(rS � eA)u2] = 0; (1.11)
eu2 = � 14�div

�@A@t +r��; (1.12)
e2m(rS � eA)u2 = 14�

� @@t
�@A@t +r��+r� (r�A)�: (1.13)
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If we look for solitary wave solutions in the electrostatic case, i.e.

u = u(x); S = !t; � = �(x); A = 0; ! 2 R;
then (1.11) and (1.13) are identically satis�ed, while (1.10) and (1.12) be-come

� ~22m�u+ e�u� jujp�2u+ !u = 0; (1.14)
��� = 4�eu2: (1.15)

The existence of solutions of (1.14)-(1.15) was already studied for 4 <p < 6: in [5] existence of in�nitely many radial solutions was proved, whilein [13] existence of a non radially symmetric solution was established. Inthe second part of the paper we prove the following result.
Theorem 1.2. Let ! > 0 and 4 � p < 6. Then the system (1:14) � (1:15)has at least a radially symmetric solution (u;�), u 6= 0 and � 6= 0, withu 2 H1(R3), � 2 L6(R3) and jr�j 2 L2(R3).

2 Nonlinear Klein-Gordon Equations coupled with
Maxwell Equations

In this section we will prove Theorem 1.1. For sake of simplicity, assumee = 1 so that (1.8)-(1.9) give rise to the following system in R3:
��u+ [m2 � (! +�)2]u� jujp�2u = 0; (2.16)

���+ u2� = �!u2: (2.17)
Assume that one of the following hypotheses hold: either
a) m > ! > 0, 4 � p < 6,

or
b) mpp� 2 > p2! > 0, 2 < p < 4.



Solitary waves 6
We note that q = 6 is the critical exponent for the Sobolev embeddingH1(R3) � Lq(R3):It is clear that (2.16)-(2.17) are the Euler-Lagrange equations of thefunctional F : H1 �D1;2 ! R de�ned as
F (u;�) = 12

Z
R3

�jruj2 � jr�j2 + [m2 � (! +�)2]u2� dx� 1p
Z
R3
jujp dx:

Here H1 � H1(R3) denotes the usual Sobolev space endowed with the norm
kukH1 � �Z

R3

�jruj2 + juj2� dx�1=2 (2.18)
and D1;2 � D1;2(R3) is the completion of C10 (R3;R) with respect to thenorm

kukD1;2 � �Z
R3
jruj2 dx�1=2: (2.19)

The following two propositions hold.
Proposition 2.1. The functional F belongs to C1(H1 � D1;2;R) and itscritical points are the solutions of (2:16)� (2:17).

(For the proof we refer to [6]).
Proposition 2.2. For every u 2 H1, there exists a unique � = �[u] 2 D1;2
which solves (2:17). Furthermore
(i) �[u] � 0;
(ii) �[u] � �! in the set fx ju(x) 6= 0g;
(iii) if u is radially symmetric, then �[u] is radial, too.
Proof. Fixed u 2 H1, consider the following bilinear form on D1;2 :

a(�;  ) = Z
R3

�r r + u2� � dx:
Obviously a(�; �) � k�k2D1;2 : Observe that, since H1(R3) � L3(R3), thenu2 2 L3=2(R3): On the other hand D1;2 is continuously embedded in L6(R3);hence, by H�older's inequality,
a(�;  ) � k�kD1;2k kD1;2+ku2kL3=2k�kL6k kL6 � (1+Ckuk2L3)k�kD1;2k kD1;2
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for some positive constant C, given by Sobolev inequality (see [20]). There-fore a de�nes an inner product, equivalent to the standard inner product inD1;2:Moreover H1(R3) � L12=5(R3), and then����

Z
R3
u2 dx���� � ku2kL6=5k kL6 � ckuk2L12=5k kD1;2 : (2.20)

Therefore the linear map  2 D1;2 7! R
R3
u2 dx is continuous. By Lax-Milgram Lemma we get the existence of a unique � 2 D1;2 such thatZ

R3

�r�r + u2� � dx = �! Z
R3
u2 dx 8 2 D1;2;

i.e. � is the unique solution of (2.17). Furthermore � achieves the minimum
inf�2D1;2

Z
R3

�12
�jr�j2 + u2j�j2�+ !u2�� dx

= Z
R3

�12
�jr�j2 + u2j�j2�+ !u2�� dx:

Note that also �j�j achieves such a minimum; then, by uniqueness, � =�j�j � 0. Now let O(3) denote the group of rotations in R3. Then for everyg 2 O(3) and f : R3 ! R, set Tg(f)(x) = f(gx): Note that Tg does notchange the norms in H1, D1;2 and Lp. In Lemma 4.2 of [6] it was provedthat Tg�[u] = �[Tgu]. In this way, if u is radial, we get Tg�[u] = �[u].Finally, following the same idea of [17], �xed u 2 H1, if we multiply(2.17) by (! + �[u])� � �minf! + �[u]; 0g, which is an admissible testfunction, since ! > 0, we get
�Z�[u]<�! jD�[u]j2 dx� Z

�[u]<�!(! +�[u])2u2 dx = 0;
so that �[u] � �! where u 6= 0.
Remark 2.3. The result (ii) of Proposition 2.2 can be strengthened in somecases. Indeed, take u in H1(R3) \ C1 radially symmetric such that

u > 0 in B(0; R), u � 0 in R3 nB(0; R)
for some R > 0. Then there results

�! � �[u](x) � 0 8x 2 R3:
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In fact, since �[u] solves (2.17), by standard regularity results for ellipticequations, u 2 C1 implies �[u] 2 C1. By Proposition 2.2, �[u] is radial;moreover �[u] is harmonic outside B(0; R). Since �[u] 2 D1;2, then

�[u](x) = � cjxj ; jxj � R;
for some c > 0. Setting ~�(r) = �[u](x) for jxj = r, it results ~�0(R) > 0 and~�(r) > ~�(R) for every r > R. Therefore the minimum of �[u] is achievedin B(0; R). Let x be a minimum point for �[u]. Then (2.17) implies

�[u](x) = �!u2(x) + ��[u](x)u2(x) � �!:
In view of proposition 2.2, we can de�ne the map

� : H1 �! D1;2
which maps each u 2 H1 in the unique solution of (2.17). From standardarguments it results � 2 C1(H1; D1;2) and from the very de�nition of � weget F 0�(u;�[u]) = 0 8u 2 H1: (2.21)

Now let us consider the functional
J : H1 �! R; J(u) := F (u;�[u]):

By proposition 2.1, J 2 C1(H1;R) and, by (2.21),
J 0(u) = F 0u(u;�[u]):

By de�nition of F , we obtain
J(u) = 12

Z
R3

�jruj2 � jr�[u]j2 + [m2 � !2]u2 � u2�[u]2� dx
�! Z

R3
u2�[u]� 1p

Z
R3
jujp dx:

Multiplying both members of (2.17) by �[u] and integrating by parts,we obtainZ
R3
jr�[u]j2 dx+ Z

R3
juj2j�[u]j2 dx = �! Z

R3
juj2�[u] dx: (2.22)
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Using (2.22), the functional J may be written as

J(u) = 12
Z
R3

�jruj2 + [m2 � !2]u2 � !u2�[u]� dx� 1p
Z
R3
jujp dx: (2.23)

The next lemma states a relationship between the critical points of thefunctionals F and J (the proof can be found in [6]).
Lemma 2.4. The following statements are equivalent:

i) (u;�) 2 H1 �D1;2 is a critical point of F ,
ii) u is a critical point of J and � = �[u].
Then, in order to get solutions of (2.16)-(2.17), we look for critical pointsof J .

Theorem 2.5. Assume hypotheses a) and b). Then the functional J hasin�nitely many critical points un 2 H1 having a radial symmetry.
Proof. Our aim is to apply the equavariant version of the Mountain-PassTheorem (see [1], Theorem 2.13, or [18], Theorem 9.12). Since J is invariantunder the group of translations, there is clearly a lack of compactness. Inorder to overcome this di�culty, we consider radially symmetric functions.More precisely we introduce the subspace

H1r = �u 2 H1 ��u(x) = u(jxj)	:
We divide the remaining part of the proof in three steps.
Step 1. Any critical point u 2 H1r of J��H1

r

is also a critical point of J .
The proof can be found in [6].

Step 2. The functional J��H1
r

satis�es the Palais-Smale condition, i.e.
any sequence fungn � H1r such that J(un) is bounded and J 0jH1

r
(un)! 0

contains a convergent subsequence.
For the sake of simplicity, from now on we set 
 = m2 � !2 > 0. Letfungn � H1r be such that

jJ(un)j �M; J 0jH1
r
(un)! 0
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for some constant M > 0. Then, using the form of J given in (2.23),

pJ(un)� J 0(un)un = �p2 � 1�Z
R3

�jrunj2 +
junj2� dx
�! �p2 � 2�Z

R3
u2n�[un] dx+

Z
R3
u2n(�[un])2 dx

� �p2 � 1�Z
R3

�jrunj2 +
junj2� dx� ! �p2 � 2�Z
R3
u2n�[un] dx: (2.24)

We distinguish two cases: either p � 4 or 2 < p < 4.If p � 4, by (2.24), using Proposition 2.2, we immediately deduce
pJ(un)� J 0(un)un � �p2 � 1�Z

R3

�jrunj2 +
junj2� dx: (2.25)
Moreover, by hypothesis a)

�p2 � 1�Z
R3

�jrunj2 +
junj2� dx � c1kunk2; (2.26)
and by assumption

pJ(un)� J 0(un)un � pM + c2kunk (2.27)
for some positive constants c1 and c2.Combining (2.25), (2.26), (2.27), we deduce that fungn is bounded inH1r .If 2 < p < 4, by Proposition 2.2 and (2.24) we get
pJ(un)�J 0(un)un � �p2 � 1�Z

R3

�jrunj2 +
junj2� dx�!2 �2� p2
�Z

R3
u2n dx

= �p2 � 1�Z
R3
jrunj2 + �m2(p� 2)� 2!2

2
�Z

R3
junj2 dx:

By hypothesis b) m2(p � 2) � 2!2 > 0, then we repeat the same argumentas for p � 4 and obtain the bounedness of fungn in H1r .On the other hand, using equation (2.17), and proceeding as in (2.20),we getZ
R3
r�[un]j2dx � Z

R3
jr�[un]j2dx+Z

R3
junj2j�[un]j2 dx = �! Z

R3
u2n�[un]dx

� c!kunk2L12=5k�[un]kD1;2 ;
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which implies that f�[un]gn is bounded in D1;2.Then, up to a subsequence,

un * u in H1r
�[un]* � in D1;2:

If L : H1r ! (H1r )0 is de�ned as
L(u) = ��u+
u;

then L(un) = !un�[un] + junjp�2un + "n;
where "n ! 0 in (H1r )0, that is

un = L�1(!un�[un]) + L�1(junjp�2un) + L�1("n):
Now note that fun�[un]g is bounded in L3=2r ; in fact, by H�older's inequality,

kun�[un]kL3=2r
� kunkL2rk�[un]kL6r � ckunkL2rk�[un]kD1;2 :

Moreover fjunjp�2ung is bounded in Lp0r (where 1p+ 1p0 = 1). The immersionsH1r ,! L3r and H1r ,! Lpr are compact (see [8] or [19]) and thus, by duality,L3=2r and Lp0r are compactly embedded in (H1r )0. Then by standard argu-ments L�1(!un�[un]) and L�1(junjp�2un) strongly converge in H1r . Thenwe conclude un ! u in H1r :
Step 3. The functional J��H1

r

satis�es the geometrical hypothesis of the equiv-
ariant version of the Mountain Pass Theorem.

First of all we observe that J(0) = 0. Moreover, by Proposition 2.2 and(2.23),
J(u) � 12

Z
R3
jruj2 dx+ 
2

Z
R3
juj2 dx� 1p

Z
R3
jujp dx:

The hypothesis 2 < p < 6 and the continuous embedding H1 � Lp implythat there exists � > 0 small enough such that
infkukH1=� J(u) > 0:
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Since J is even, the thesis of step 3 will follow if we prove that for every�nite dimensional subset V of H1r it results

lim
u2V;kukH1!+1 J(u) = �1: (2.28)

Let V be an m-dimensional subspace of H1r and let u 2 V . By Proposi-tion 2.2 �[u] � �! where u 6= 0, so that
J(u) � 12

Z
R3

�jruj2 +
juj2 + !2u2� dx� 1p
Z
R3
jujp � ckuk2H1 � 1pkukpLp

and (2.28) follows, since all norms in V are equivalent.
Proof of Theorem 1.1. Lemma 2.4 + Theorem 2.5.
Remark 2.6. In view of Remark 2.3 the existence of one nontrivial criticalpoint for the functional J follows from the classical mountain pass theorem:more precisely, taken u 2 H1r \ C1 as in Remark 2.3, since k�[u]k1 � !,there results
J(tu) � t22

Z
R3

�jruj2 +
juj2 + !2u2� dx� tpp
Z
R3
jujp ! �1 as t! +1:

3 Nonlinear Schr�odinger Equations coupled with
Maxwell Equations

For sake of simplicity assume ~ = m = e = 1 in (1.14)-(1.15). Then we arereduced to study the following system in R3:
�12�u+�u+ !u� jujp�2u = 0; (3.29)

��� = 4�u2: (3.30)
We will assume

a') ! > 0
b') 4 � p < 6.



Solitary waves 13
Of course, (3.29)-(3.30) are the Euler-Lagrange equations of the func-tional F : H1 �D1;2 ! R de�ned as
F(u;�) = 14

Z
R3
jruj2 dx� 116�

Z
R3
jr�j2 dx+ 12

Z
R3

��u2 + !u2� dx
�1p

Z
R3
jujp dx;

where H1 and D1;2 are de�ned as in the previous section.It is easy to prove the analogous of Proposition 2.1, i.e. that F 2C1(H1 �D1;2;R) and that its critical points are solutions of (3.29)-(3.30).Moreover we have the following proposition.
Proposition 3.1. For every u 2 H1 there exists a unique solution � =�[u] 2 D1;2 of (3:30), such that

� �[u] � 0;
� �[tu] = t2�[u] for every u 2 H1 and t 2 R.

Proof. Let us consider the linear map � 2 D1;2 7! R
R3
u2�dx, which iscontinuous by (2.20). By Lax-Milgram's Lemma we get the existence of aunique � 2 D1;2 such thatZ

R3
r�r�dx = 4� Z

R3
u2�dx 8� 2 D1;2;

i.e. � is the unique solution of (3.30). Furthermore � achieves the minimum
inf�2D1;2

�12
Z
R3
jr�j2 � 4� Z

R3
u2�dx� = 12

Z
R3
jr�j2dx� 4� Z

R3
u2� dx:

Note that also j�j achieves such minimum; then, by uniqueness, � = j�j � 0.Finally,
���[tu] = 4�t2u2 = �t2��[u] = ��(t2�[u]);

thus, by uniqueness, �[tu] = t2�[u].
Proceeding as in the previous section we can de�ne the map

� : H1 ! D1;2;
which maps each u 2 H1 in the unique solution of (3.30). As before, � 2C1(H1; D1;2) and F 0�(u;�[u]) = 0 8u 2 H1:
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Now consider the functional J : H1 ! R de�ned by

J (u) = F(u;�[u]):
J belongs to C1(H1;R) and satis�es J 0(u) = Fu(u;�[u]). Using the de�-nition of F and equation (3.30), we obtain
J (u) = 14

Z
R3
jruj2 dx+ !2

Z
R3
juj2 dx+ 14

Z
R3
juj2�[u] dx� 1p

Z
R3
jujp dx:

As before, one can prove the following lemma.
Lemma 3.2. The following statements are equivalent:

i) (u;�) 2 H1 �D1;2 is a critical point of F ,
ii) u is a critical point of J and � = �[u].
Now we are ready to prove the existence result for equations (3.29)-(3.30).

Theorem 3.3. Assume hypotheses a') and b'). Then the functional J hasa nontrivial critical point u 2 H1 having a radial symmetry.
Proof. Let H1r be de�ned as in theorem 2.5.
Step 1. Any critical point u 2 H1r of J��H1

r

is also a critical point of J .
The proof is as in theorem 2.5.

Step 2. The functional J��H1
r

satis�es the Palais-Smale condition.
Let fungn � H1r be such that

jJ (un)j �M; J 0jH1
r
(un)! 0

for some constant M > 0. Then
pJ (un)� J 0(un)un

= �p4 � 12
�Z

R3
jrunj2 + �p4 � 1�Z

R3
�[un]u2n dx+ �p2 � 1�! Z

R3
junj2 dx

� �p4 � 12
�Z

R3
jrunj2 + �p2 � 1�! Z

R3
junj2 dx
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by Proposition 3.1, since p � 4. Moreover�p4 � 12

�Z
R3

�jruj2 + !juj2� dx � c1kunk2
and by assumption

pJ (un)� J 0(un)un � pM + c2kunkH1

for some positive constants c1 and c2.We have thus proved that fungn is bounded in H1r .On the other hand, k�[un]k2D1;2 = 4� R
R3
u2�[un] dx, and then, usinginequality (2.20), we easily deduce that f�[un]gn is bounded in D1;2.The remaining part of the proof follows as in Step 2 of Theorem 2.5,after replacing L with L : H1r ! (H1r )0 de�ned as L(u) = �12�u+ !u:

Step 3. The functional J��H1
r

satis�es the three geometrical hypothesis of the
mountain pass theorem.

By Proposition 3.1 it results
J (u) � 14

Z
R3
jruj2 dx+ !2

Z
R3
juj2 dx� 1p

Z
R3
jujp dx:

Then, using the continuous embedding H1 � Lp, we deduce that J has astrict local minimum in 0.We introduce the following notation: if u : R3 ! R, we set
u�;�;�(x) = ��u(��x); � > 0; �; � 2 R:

Now �x u 2 H1r . We want to show that
�[u�;�;�] = (�[u])�;�;2(���): (3.31)

In fact ���[u�;�;�](x) = 4�u2�;�;�(x) = 4��2�u2(��x)
= ��2�(��[u])(��x) = ��((�[u])�;�;2(���))(x):

By uniqueness (see Proposition 3.1), (3.31) follows.Now take u 6� 0 in H1r and evaluate
J (u�;�;�) = �2���4

Z
R3
jruj2 dx+ !2 �2��3�

Z
R3
u2 dx



Solitary waves 16
+�4��5�4

Z
R3
u2�[u] dx� ��p�3�p

Z
R3
jujp dx:

We want to prove that J (u�;�;�) < J (0) for some suitable choice of �,� and �.For example assume 8>><
>>:

�p� 3� < 0;�p� 3� < 2� � �;�p� 3� < 2� � 3�;�p� 3� < 4� � 5�;
(3.32)

then it is clear that J (u�;�;�)! �1 as �! 0.So we look for a couple (�; �) which satis�es (3.32). From the thirdinequality we get � < 0. Combining the second and the fourth ones, wederive 4� p < 2�� < p� 2: (3.33)
Such an inequality is satis�ed by taking � = 2�, which also satis�es the �rstinequality in (3.32).In a similar way one can prove that if8>><

>>:
�p� 3� > 0;�p� 3� > 2� � �;�p� 3� > 2� � 3�;�p� 3� > 4� � 5�;

(3.34)

then J (u�;�;�)! �1 as �! +1 with the same choice � = 2�.
Remark 3.4. Notice that the systems (3.32) or (3.34) have a solution forevery p > 3. More precisely for every p > 3 there is a couple (�; �) whichsatis�es the inequality (3.33) and, consequently, J (u�;�;�) ! �1. Therestriction p � 4 appears in proving the Palais-Smale condition.
Proof of Theorem 1.2 Lemma 3.2 + Theorem 3.3.
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